- 1. This exercise studies the endomorphism rings of the k-groups G_m and G_a , with k any commutative ring.
- (i) Prove that $\operatorname{End}_k(\mathbf{G}_a)$ consists of $f \in k[t]$ such that f(x+y) = f(x) + f(y) in k[x,y], and that $\operatorname{End}_k(\mathbf{G}_m)$ consists of $f \in k[t,t^{-1}]$ such that f(xy) = f(x)f(y) in $k[x,y,x^{-1},y^{-1}]$ and f has no zeros on any geometric fibers over Spec k.
- (ii) Deduce that if k is a **Q**-algebra then naturally $\operatorname{End}_k(\mathbf{G}_a) = k$, and that if k is a field with characteristic p > 0 then it consists of $f = \sum c_j t^{p^j}$ ($c_j \in k$). What if $k = \mathbf{Z}/(p^2)$?
- (iii) Prove that $\operatorname{End}_k(\mathbf{G}_m) = \mathbf{Z}$ when k is a field, and deduce the same when k is an artin local ring via induction on the length of k. (Hint: reduce to the case when f vanishes on the special fiber.)
- (iv) Prove that $\operatorname{End}_k(\mathbf{G}_m) = \mathbf{Z}$ for k any local ring by using (iii) to settle the case of a complete local noetherian ring, then any local noetherian ring, and finally any local ring (by using local noetherian subrings of k). Deduce that if k is any ring whatsoever, an endomorphism of the k-group \mathbf{G}_m is $t \mapsto t^n$ for a locally constant function $n : \operatorname{Spec} k \to \mathbf{Z}$.
- 2. Let V be a finite-dimensional vector space over a field k. This exercise develops coordinate-free versions of GL_n , SL_n , and Sp_{2n} attached to V.
- (i) Elements of the graded symmetric algebra $\operatorname{Sym}(V^*)$ are called *polynomial functions on* V. Justify the name (even for finite k!) by identifying them with functorial maps of sets $V_R \to R$ given by polynomial expressions relative to some (equivalently, any) basis of V, with R a varying k-algebra. In particular, show that det is a polynomial function on $\operatorname{End}(V)$.
- (ii) For any k-algebra R, define the functors $\underline{\operatorname{End}}(V)$ and $\underline{\operatorname{Aut}}(V)$ on k-algebras R by $R \leadsto \operatorname{End}(V_R)$, $R \leadsto \operatorname{Aut}_R(V_R)$. Using the identification $\operatorname{End}(V_R, V_R) = \operatorname{End}(V)_R$, prove that $\underline{\operatorname{End}}(V)$ is represented by $\operatorname{Sym}(\operatorname{End}(V)^*)$.
 - (iii) Define $\det \in \operatorname{Sym}(\operatorname{End}(V)^*)$ and prove its non-vanishing locus

$$GL(V) := Spec(Sym(End(V)^*)[1/det])$$

represents Aut(V) as subfunctor of End(V). Also discuss SL(V) as a closed k-subgroup of GL(V).

(iv) Let $B: V \times V \to k$ be a bilinear form. Prove that the subfunctor $\underline{\mathrm{Aut}}(V, B)$ of points of $\underline{\mathrm{Aut}}(V)$ preserving B is represented by a closed k-subgroup of $\mathrm{GL}(V)$. (You can use coordinates in the proof!) This is pretty bad unless B is non-degenerate. (In the alternating non-degenerate case it is denoted $\mathrm{Sp}(B)$.)

Assuming non-degeneracy, a linear automorphism T of V_R is a B-similitude if $B_R(Tv,Tw) = \mu(T)B(v,w)$ for all $v,w \in V_R$ and some $\mu(T) \in R^{\times}$. Prove $\mu(T)$ is then unique, and show that the functor of B-similitudes is represented by a closed k-subgroup of $\operatorname{GL}(V) \times \mathbf{G}_m$. (In the alternating case it is denoted $\operatorname{GSp}(B)$.)

- 3. (i) Prove that if a connected scheme X of finite type over a field k has a k-rational point, then $X_{k'} = X \otimes_k k'$ is connected for every finite extension k'/k (hint: $X_{k'} \to X$ is open and closed; look at fiber over X(k)). Deduce that $X_{k'}$ is connected for every extension k'/k (i.e., X is geometrically connected over k).
- (ii) Prove that if X and Y are geometrically connected of finite type over k, so is $X \times Y$; give a counterexample over $k = \mathbf{Q}$ if "geometrically" is removed. Deduce that if G is a k-group then the identity component G^0 is a k-subgroup whose formation commutes with any extension on k.
- 4. Let G be a group of finite type over a field k.
- (i) Prove that $(G_{\overline{k}})_{\text{red}}$ is a closed \overline{k} -subgroup of $G_{\overline{k}}$, and prove it is *smooth*. Deduce that G^0 is *geometrically irreducible*.
- (ii) Over any imperfect field k, one can make a non-reduced k-group G such that G_{red} is not a k-subgroup. Where does an attempted proof to the contrary get stuck?
- (iii) Assume k is imperfect, $\operatorname{char}(k) = p > 0$, and choose $a \in k k^p$. Prove $x_0^p + ax_1^p + \cdots + a^{p-1}x_{p-1}^p = 1$ defines a reduced k-group (think of $N_{k(a^{1/p})/k}$) that is non-reduced over \overline{k} and hence not smooth!
- (iv) Prove that the condition $t^n = 1$ defines a finite closed k-subgroup $\mu_n \subseteq \mathbf{G}_m$, and show its preimage G under det : $\mathrm{GL}_N \to \mathbf{G}_m$ is a k-subgroup of GL_N . Accepting that SL_N is connected, prove $G^0 = \mathrm{SL}_N$ if $\mathrm{char}(k) \nmid n$. For $k = \mathbf{Q}$ and n = 5, prove that $G G^0$ is connected but over \overline{k} has 4 connected components.

- 1. Let k be a perfect field, and G a 1-dimensional connected linear algebraic k-group (so G is geometrically integral over k). Assume G is in the additive case. This exercise proves G is k-isomorphic to \mathbf{G}_a .
- (i) Let X denote its regular compactification over k. Prove that $X_{\overline{k}}$ is regular, so X is smooth (hint: \overline{k} is a direct limit of finite separable extensions of k, and unit discriminant is a sufficient test for integral closures in the Dedekind setting). Deduce that X G consists of a single physical point, say Spec k'.
- (ii) Prove that $k' \otimes_k \overline{k}$ is reduced and in fact equal to \overline{k} . Deduce k' = k, and prove that $X \simeq \mathbf{P}_k^1$. Show that $G \simeq \mathbf{G}_a$ as k-groups.
- 2. Let T be a torus of dimension $r \ge 1$ over a field k (e.g., a 1-dimensional connected linear algebraic group in the multiplicative case). This exercise proves that $T_{k'} \simeq \mathbf{G}_m^r$ for some finite separable extension k'/k.
 - (i) Prove that it suffices to treat the case $k = k_s$.
- (ii) Assume $k = k_s$. We constructed an isomorphism $f: T_{k'} \simeq \mathbf{G}_m^r$ as k'-groups for some finite extension k'/k. Let $k'' = k' \otimes_k k'$, and let $p_1, p_2 : \operatorname{Spec} k'' \rightrightarrows \operatorname{Spec} k'$ be the projections. Prove that k'' is an artin local ring with residue field k', and deduce that the k''-isomorphisms $p_i^*(f) : T_{k''} \simeq \mathbf{G}_m^r$ coincide by comparing them with f on the special fiber!
- (iii) For any k-vector space V, prove that the only elements of $k' \otimes_k V$ with equal images under both maps to $k'' \otimes_k V$ are the elements of V (hint: reduce to the case V = k and replace k' with any k-vector space W, and k'' with $W \otimes_k W$). Deduce that f uniquely descends to a k-isomorphism.
- 3. Let X and Y be schemes over a field k, K/k an extension field, and $f, g: X \rightrightarrows Y$ two k-morphisms.
- (i) Prove $f_K = g_K$ if and only if f = g. (Use surjectivity of $X_K \to X$ to aid in reducing to the affine case.) Likewise prove that if $Z, Z' \subseteq X$ are closed subschemes such that $Z_K = Z'_K$ inside of X_K then Z = Z',
- (ii) If f_K is an isomorphism and X and Y are affine, prove f is an isomorphism. Then do the same without affineness (may be really hard without Serre's cohomological criterion for affineness).
- (iii) Assume K/k is Galois, $\Gamma = \operatorname{Gal}(K/k)$. Prove that if a map $F: X_K \to Y_K$ satisfies $\gamma^*(F) = F$ for all $\gamma \in \Gamma$, then $F = f_K$ for a unique k-map $f: X \to Y$. Likewise, if $Z' \subseteq X_K$ is a closed subscheme and $\gamma^*(Z') = Z'$ for all $\gamma \in \Gamma$ then prove $Z' = Z_K$ for a unique closed subscheme $Z \subseteq X$. Do the same for open subschemes.
- 4. Let $q: V \to k$ be a quadratic form on a finite-dimensional vector space V of dimension $d \geq 2$, and let $B_q: V \times V \to k$ be the corresponding symmetric bilinear form. Let $V^{\perp} = \{v \in V \mid B_q(v, \cdot) = 0\}$; we call $\delta_q := \dim V^{\perp}$ the defect of q.
- (i) Prove that B_q uniquely factors through a non-degenerate symmetric bilinear form on V/V^{\perp} , and B_q is non-degenerate precisely when the defect is 0. Prove that if $\operatorname{char}(k) = 2$ then B_q is alternating, and deduce that $\delta_q \equiv \dim V \mod 2$ for such k (so $\delta_q \geq 1$ if $\dim V$ is odd).
- (ii) Prove that if $\delta_q=0$ then $q_{\overline{k}}$ admits one of the following "standard forms": $\sum_{i=1}^n x_i x_{i+n}$ if $\dim V=2n$ $(n\geq 1)$, and $x_0^2+\sum_{i=1}^n x_i x_{i+n}$ if $\dim V=2n+1$ $(n\geq 1)$. Do the same if $\operatorname{char}(k)=2$ and $\delta_q=1$. (Distinguish whether or not $q|_{V^{\perp}}\neq 0$.) How about the converse?
- (iii) If $\operatorname{char}(k) \neq 2$, prove $\delta_q = 0$ if and only if $q \neq 0$ and $(q = 0) \subseteq \mathbf{P}^{d-1}$ is smooth. If $\operatorname{char}(k) = 2$ then prove $\delta_q \leq 1$ with $q|_{V^{\perp}} \neq 0$ when $\delta_q = 1$ if and only if $q \neq 0$ and the (q = 0) is smooth. (Hint: use (ii) to simplify calculations.) We say q is non-degenerate when $q \neq 0$ and (q = 0) is smooth in \mathbf{P}^{d-1} .
- 5. Learn about separability and Ω^1 by reading in Matsumura's CRT: §25 up to before 25.3 (this is better than AG15.1–15.8 in Borel's book), and read §26 up through and including Theorem 26.3.
- (i) Do Exercises 25.3, 25.4 in Matsumura, and read AG17.1 in Borel's book (noting he requires V to be geometrically reduced over k!).
- (ii) Use 26.2 in Matsumura to prove that a finite type reduced k-scheme X is smooth on a dense open if and only if all functions fields of X (at its generic points) are separable over k.
- (iii) Using separating transcendence bases, the primitive element theorem, and "denominator chasing", prove that if X is smooth on a dense open then $X(k_s)$ is Zariski-dense in X_{k_s} . (Hint: it suffices to prove $X(k_s)$ is non-empty!)

- 1. Let $k[x_{ij}]$ be the polynomial ring in variables x_{ij} with $1 \le i, j \le n$. Observe that the localization $k[x_{ij}]_{\text{det}}$ has a natural **Z**-grading, since $\det \in k[x_{ij}]$ is homogeneous. Let $k[x_{ij}]_{(\text{det})}$ denote the degree-0 part (i.e., fractions f/\det^e with f homogeneous of degree $e \deg(\det) = en$, for $e \ge 0$).
- (i) Define $\operatorname{PGL}_n = \operatorname{Spec}(k[x_{ij}]_{(\det)})$. Identify this with the open affine $\{\det \neq 0\}$ in \mathbf{P}^{n^2-1} , and construct an injective map of sets $\operatorname{GL}_n(R)/R^{\times} \to \operatorname{PGL}_n(R) := \operatorname{Hom}_k(\operatorname{Spec} R, \operatorname{PGL}_n)$ naturally in k-algebras R.
- (ii) For any R and any $m \in \operatorname{PGL}_n(R)$, show that there is an affine open covering $\{\operatorname{Spec} R_i\}$ of $\operatorname{Spec} R$ such that $m|_{R_i} \in \operatorname{GL}_n(R_i)/R_i^{\times}$. Deduce that $\operatorname{PGL}_n(R)$ is the *sheafification* of the presheaf $U \mapsto \operatorname{GL}_n(U)/\operatorname{GL}_1(U)$ on $\operatorname{Spec} U$, and that PGL_n has a unique k-group structure such that $\operatorname{GL}_n \to \operatorname{PGL}_n$ is a k-homomorphism.
- (iii) Prove that if R is local then $GL_n(R)/R^{\times} = PGL_n(R)$, and construct a counterexample with n = 2 for any Dedekind domain R whose class group has nontrivial 2-torsion. (Hint: $I \oplus I \simeq R^2$ when I is 2-torsion.)
 - (iv) Write out the effect of multiplication and inversion on PGL_n at the level of coordinate rings.
- 2. The scheme-theoretic kernel of a k-homomorphism $f: G' \to G$ between k-group schemes is the scheme-theoretic fiber $f^{-1}(e)$ (with $e: \operatorname{Spec} k \to G$ the identity). It is denoted ker f.
- (i) Prove that if R is any k-algebra then $(\ker f)(R) = \ker(G'(R) \to G(R))$ as subgroups of G'(R); deduce that $\ker f$ is a normal k-subgroup of G'.
- (ii) Prove that the homomorphism $GL_n \to PGL_n$ constructed in Exercise 1 is surjective with scheme-theoretic kernel equal to the k-subgroup $D \simeq GL_1$ of scalar diagonal matrices.
- (iii) Let $\mu_n = \ker(t^n : \mathbf{G}_m \to \mathbf{G}_m) = \operatorname{Spec}(k[t, 1/t]/(t^n 1))$. Identify $\mu_n(R)$ with the group of nth roots of unity in R^{\times} naturally in any k-algebra R, and prove that the homomorphism $\operatorname{SL}_n \to \operatorname{PGL}_n$ obtained by restriction of the map in (ii) to SL_n is surjective, with kernel μ_n .
- 3. Let G be a k-group of finite type equipped with an action on k-scheme V of finite type. Let $W, W' \subseteq V$ be closed subschemes. Define the functorial centralizer $\underline{Z}_G(W)$ and functorial transporter $\underline{\operatorname{Tran}}_G(W, W')$ as follows: for any k-scheme S, $\underline{Z}_G(W)(S)$ is the subgroup of points $g \in G(S)$ such that the g-action on V_S is trivial, and $\underline{\operatorname{Tran}}_G(W, W')(S)$ is the subset of points $g \in G(S)$ such that $g.(W_S) \subseteq W'_S$ (as closed subschemes of V_S). The functorial normalizer $N_G(W)$ is $\underline{\operatorname{Tran}}_G(W, W)$.

These are of most interest when W is a smooth closed k-subgroup of V = G equipped with the left translation action. Below, assume W is geometrically reduced and separated over k.

- (i) Prove W is smooth on a dense open, so $W(k_s)$ is Zariski-dense in W_{k_s} (by Exercise 5(iii), HW2). Hint: if $k = k_s$ then $W_{\overline{k}} \to W$ is a homeomorphism, and in general use Galois descent (as in Exercise 3(iii), HW2).
- (ii) For each $w \in W(k)$, let $\alpha_w : G \to W$ be the orbit map $g \mapsto g.w$. Define $Z_G(w) = \alpha_w^{-1}(w)$. Prove that $Z_G(w)(S)$ is the subgroup of points $g \in G(S)$ such that $g.w_S = w_S$ in W(S).
- (iii) If $k = k_s$ prove $\bigcap_{w \in W(k)} Z_G(w)$ represents $\underline{Z}_G(W)$. (You need to use separatedness.) For general k apply Galois descent to $Z_{G_{k_s}}(W_{k_s})$; the representing scheme is denoted $Z_G(W)$.
- (iv) If $k = k_s$, prove that $\cap_{w \in W(k)} \alpha_w^{-1}(W')$ represents $\underline{\operatorname{Tran}}_G(W, W')$. Then use Galois descent to prove representability by a closed subscheme $\operatorname{Tran}_G(W, W')$ for any k. The representing scheme is denoted $\operatorname{Tran}_G(W, W)$, so $N_G(W) := \operatorname{Tran}_G(W, W)$ represents $\underline{N}_G(W)$.
- (v) Prove that for any k-algebra R and $g \in N_G(W)(R)$, the g-action $V_R \simeq V_R$ carries W_R isomorphically onto itself, and deduce that $N_G(W)$ is a k-subgroup of G. (Hint: reduce to artin local R and $k = \overline{k}$.)
- 4. Let G be a k-group of finite type. This exercise builds on the previous one. Note G is separated: $\Delta_{G/k}$ is a base change of $e: \operatorname{Spec} k \to G!$ If G is smooth then the scheme-theoretic center of G is $Z_G := Z_G(G)$.
- (i) Let G be SL_n or GL_n or PGL_n , and let T be the diagonal k-torus in each case. Prove that $Z_G(T) = T$ (as subschemes of G, not just at the level of geometric points!). Hint: to deduce the PGL_n -case from the GL_n -case, prove that the diagonal k-torus in GL_n is the scheme-theoretic preimage of the one in PGL_n .
 - (ii) Using (i), prove $Z_{SL_n} = \mu_n$, $Z_{PGL_n} = 1$, and Z_{GL_n} is the k-subgroup of scalar diagonal matrices.
- (iii) Prove that for a smooth closed subscheme V in G, the formation of $Z_G(V)$ and $N_G(V)$ commutes with any extension of the ground field. (Hint: use the functorial characterizations, not the explicit constructions.) This applies to Z_G when G is smooth.

- 1. Let $T \subset \operatorname{Sp}_{2n}$ be the points $\binom{t-0}{0-t-1}$ for diagonal $t \in \operatorname{GL}_n$. Prove $Z_G(T) = T$ (so T is a maximal torus!); deduce $Z_{\operatorname{Sp}_{2n}} = \mu_2$. The Appendix "Properties of orthogonal groups" computes $Z_{\operatorname{SO}(q)}$ (see Theorem 1.7).
- 2. Prove that PGL_n is smooth using the infinitesimal criterion, and prove that it is connected by a suitable "action" argument. The Appendix "Properties of orthogonal groups" treats the harder analogue for SO(q).
- 3. Let X be a scheme over a field k, and $x \in X(k)$. Recall that $\operatorname{Tan}_x(X)$ is identified as a set with the fiber of $X(k[\epsilon]) \to X(k)$ over x. Let $k[\epsilon, \epsilon'] = k[t, t']/(t, t')^2$, so this is 3-dimensional with basis $\{1, \epsilon, \epsilon'\}$.
- (i) For $c \in k$, consider the k-algebra endomorphism of $k[\epsilon]$ defined by $\epsilon \mapsto c\epsilon$. Show that the resulting endomorphism of $X(k[\epsilon])$ over X(k) restricts to scalar multiplication by c on the fiber $\mathrm{Tan}_x(X)$.
 - (ii) Using the two natural quotient maps $k[\epsilon, \epsilon'] \rightarrow k[\epsilon]$, define a natural map

$$X(k[\epsilon, \epsilon']) \to X(k[\epsilon]) \times_{X(k)} X(k[\epsilon])$$

and prove it is bijective. Using the natural quotient map $k[\epsilon, \epsilon'] \rightarrow k[\epsilon]$, show that the resulting map

$$X(k[\epsilon]) \times_{X(k)} X(k[\epsilon]) \stackrel{\sim}{\leftarrow} X(k[\epsilon, \epsilon']) \to X(k[\epsilon])$$

induces addition on $\operatorname{Tan}_x(X)$: the k-linear structure on $\operatorname{Tan}_x(X)$ is encoded by the functor of X!

- (iii) For (X,x)=(G,e) with a k-group G, relate addition on $\mathrm{Tan}_x(X)$ to the group law on G: for $m:G\times G\to G$, show that $\mathrm{Tan}_e(G)\times \mathrm{Tan}_e(G)=\mathrm{Tan}_{(e,e)}(G\times G)\to \mathrm{Tan}_e(G)$ is addition.
- 4. Let A be a finite-dimensional associative algebra over a field k. Define the ring functor \underline{A} on k-algebras by $\underline{A}(R) = A \otimes_k R$ and the group functor \underline{A}^{\times} by $\underline{A}^{\times}(R) = (A \otimes_k R)^{\times}$.
- (i) Prove that \underline{A} is represented by an affine space over k. Using the k-scheme map $N_{A/k}: \underline{A} \to \mathbf{A}_k^1$ defined functorially by $u \mapsto \det(m_u)$, where $m_u: A \otimes_k R \to A \otimes_k R$ is left multiplication by $u \in \underline{A}(R)$, prove that \underline{A}^{\times} is represented by the open affine subscheme $N_{A/k}^{-1}(\mathbf{G}_m)$. (This is often called " A^{\times} viewed as a k-group", a phrase that is, strictly speaking, meaningless, since A^{\times} does not encode the k-algebra A.)
- (ii) For $A = \operatorname{Mat}_n(k)$ show that $\underline{A}^{\times} = \operatorname{GL}_n$, and for $k = \mathbf{Q}$ and $A = \mathbf{Q}(\sqrt{d})$ identify it with an explicit \mathbf{Q} -subgroup of GL_2 (depending on d).
- (iii) How does the kernel of $N_{A/k}: \underline{A}^{\times} \to \mathbf{G}_m$ (the group of norm-1 units) relate to Exercise 4(iii) in HW1 as a special case? For $A = \operatorname{Mat}_n(k)$, show that this homomorphism is the nth power (!) of the determinant.
- 5. This exercise develops a very important special case of Exercise 4. Let A be a finite-dimensional central simple algebra over k. By general theory, this is exactly the condition that $A_{\overline{k}} \simeq \operatorname{Mat}_n(\overline{k})$ as \overline{k} -algebras (for some $n \geq 1$), and such an isomorphism is unique up to conjugation by a unit (Skolem-Noether theorem).
- (i) By a clever application of the Skolem-Noether theorem (see Exercise 30, Chapter 3 of the book by Farb/Dennis on non-commutative algebra), it is a classical fact that the linear derivations of a matrix algebra over a field are precisely the inner derivations (i.e., $x \mapsto yx xy$ for some y). Combining this with length-induction on artin local rings, prove the Skolem-Noether theorem for $\operatorname{Mat}_n(R)$ for any artin local ring R (i.e., all R-algebra automorphisms are conjugation by a unit).
- (ii) Construct an affine k-scheme I of finite type such that naturally $I(R) = \operatorname{Isom}_R(A_R, \operatorname{Mat}_n(R))$, the set of R-algebra isomorphisms. Note that $I(\overline{k})$ is non-empty! Prove I is smooth by checking the infinitesimal criterion for $I_{\overline{k}}$ with the help of (i). Deduce that $A_K \simeq \operatorname{Mat}_n(K)$ for a finite separable extension K/k.
- (iii) By (ii), we can choose a finite Galois extension K/k and a K-algebra isomorphism $\theta: A_K \simeq \operatorname{Mat}_n(K)$, and by Skolem-Noether this is unique up to conjugation by a unit. Prove that for any choice of θ , the determinant map transfers to a multiplicative map $\underline{A}_K \to \mathbf{A}_K^1$ which is independent of θ . Deduce that it is $\operatorname{Gal}(K/k)$ -equivariant, and so descends to a multiplicative map $\operatorname{Nrd}_{A/k}: \underline{A} \to \mathbf{A}_k^1$ which "becomes" the determinant over any extension F/k for which $A_F \simeq \operatorname{Mat}_n(F)$. Prove that $\operatorname{Nrd}_{A/k}^n = \operatorname{N}_{A/k}$ (explaining the name reduced norm for $\operatorname{Nrd}_{A/k}$), and conclude that $\underline{A}^{\times} = \operatorname{Nrd}_{A/k}^{-1}(\mathbf{G}_m)$.
- (iv) Let SL(A) denote the scheme-theoretic kernel of $Nrd_{A/k}: \underline{A}^{\times} \to \mathbf{G}_m$. Prove that its formation commutes with any extension of the ground field, and that it becomes isomorphic to SL_n over \overline{k} . In particular, SL(A) is *smooth* and *connected*; it is a "twisted form" of SL_n . (This is false for $\ker N_{A/k}$ whenever $\operatorname{char}(k)|n!$)

- 1. Let k be a field, U_n the standard strictly upper-triangular unipotent k-subgroup of GL_n . Prove that no nontrivial k-group scheme is isomorphic to closed k-subgroups of G_a and G_m . (If $\operatorname{char}(k) = p > 0$, the key is to prove that μ_p is not a k-subgroup of G_a .) Deduce that $T \cap U_n = 1$ for any k-torus T in GL_n .
- 2. Let a smooth finite type k-group G act linearly on a finite-dimensional V. Let \underline{V} denote the affine space whose A-points are V_A . Define $\underline{V}^G(A)$ to be the set of $v \in V_A$ on which G_A acts trivially.
- (i) Prove that \underline{V}^G is represented by the closed subscheme associated to a k-subspace of V (denoted of course as V^G). Hint: use Galois descent to reduce to the case $k = k_s$, and then show $V^{G(k)}$ works.
 - (ii) For an extension field K/k, prove that $(V_K)^{G_K} = (V^G)_K$ inside of V_K .
- 3. This exercise develops the important concept of Weil restriction of scalars in the affine case. It is an analogue of viewing a complex manifold as a real manifold with twice the dimension (and "complex points" become "real points"). Let k be a field, k' a finite commutative k-algebra (not necessarily a field!), and K' an affine K'-scheme of finite type. Consider the functor $R_{K'/k}(X'): A \leadsto X'(k' \otimes_k A)$ on K-algebras.
- (i) By considering $X' = \mathbf{A}_{k'}^n$ and then any X' via a closed immersion into an affine space, prove that this functor is represented by an affine k-scheme of finite type, again denoted $R_{k'/k}(X')$. Prove its formation naturally commutes with products in X', and compute $R_{k'/k}(\mathbf{G}_m)$ inside $R_{k'/k}(\mathbf{A}_{k'}^1)$. What if k' = 0?
 - (ii) Prove $R_{k'/k}(\operatorname{Spec} k') = \operatorname{Spec} k$, and explain why $R_{k'/k}(X')$ is naturally a k-group when X' is a k'-group.
- (iii) For an extension field K/k, prove that $R_{k'/k}(X')_K \simeq R_{K'/K}(X'_{K'})$ for $K' = k' \otimes_k K$. Taking $K = \overline{k}$, use the infinitesimal criterion to prove that if k' is a field then $R_{k'/k}(X')$ is k-smooth when X' is k'-smooth. (Can you see it directly from the construction?) Warning: if k'/k is not separable then $R_{k'/k}(X')$ can be empty (resp. disconnected) when X' is non-empty (resp. geometrically integral)!
- (iv) If k'/k is a separable extension field, prove $R_{k'/k}(X')_{k_s} \simeq \prod_{\sigma} \sigma^*(X')$ with σ varying through $\operatorname{Hom}_k(k',k_s)$. Transfer the natural $\operatorname{Gal}(k_s/k)$ -action on the left over to the right and describe it.
- 4. Let $\Gamma = \operatorname{Gal}(k_s/k)$. For any k-torus T, define the character group $X(T) = \operatorname{Hom}_{k_s}(T_{k_s}, \mathbf{G}_m)$. A Γ -lattice is a finite free **Z**-module equipped with a Γ -action making an open subgroup act trivially.
 - (i) Prove X(T) is a finite free **Z**-module of rank dim T. Describe a natural Γ -lattice structure on X(T).
- (ii) For a Γ -lattice Λ , prove $R \leadsto \operatorname{Hom}(\Lambda, R_{k_s}^{\times})^{\Gamma}$ is represented by a k-torus $D_k(\Lambda)$, the dual of Λ . (Hint: use finite Galois descent to reduce to Λ with trivial Γ -action.) Prove $\Lambda \simeq \operatorname{X}(D_k(\Lambda))$ naturally as Γ -lattices.
- (iii) Prove $T \simeq D_k(X(T))$ naturally as k-tori, so the category of k-tori is anti-equivalent to the category of Γ -lattices. Describe scalar extension in such terms, and prove T is k-split if and only if $X(T) = X(T)^{\Gamma}$.
- (iv) Prove a map of k-tori $T' \to T$ is surjective if and only if $X(T) \to X(T')$ is injective. Prove $\ker(T' \to T)$ is a k-torus (resp. finite, resp. 0) if and only if $\operatorname{coker}(X(T) \to X(T'))$ is torsion-free (resp. finite, resp. 0). Inducting on $\dim T$, prove smooth *connected* k-subgroups M of T are k-tori. (Hint: prove $M(\overline{k})$ is divisible.)
- (v) If k'/k is a finite separable subextension of k_s , prove that $R_{k'/k}(T')$ is a k-torus if T' is a k'-torus. (For $T' = \mathbf{G}_m$, this is "k'" viewed as a k-group".) By functorial considerations, prove $X(R_{k'/k}(T')) = \operatorname{Ind}_{\Gamma'}^{\Gamma}(X(T))$ with Γ' the open subgroup corresponding to k'. For every k-torus T, construct a surjective k-homomorphism $\prod_i \operatorname{Res}_{k'/k}(\mathbf{G}_m) \to T$ for finite separable extensions k'_i/k . Conclude that k-tori are unirational over k.
- (vi) (optional) For a finite extension field k'/k, define a norm map $N_{k'/k} : R_{k'/k}(\mathbf{G}_m) \to \mathbf{G}_m$. Prove its kernel is a torus when k'/k is separable (e.g., $k = \mathbf{R}!$), and relate to HW1, Exercise 4(iii) for imperfect k.
- 5. Consider a k-torus $T \subset GL(V)$, with k infinite. Let $A_T \subset End(V)$ be the commutative k-subalgebra generated by T(k) (Zariski-dense in T since k is infinite, due to unirationality from Exercise 4(iv)).
 - (i) Using Jordan decomposition, prove that all elements of $T(\overline{k})$ are semisimple in $\operatorname{End}(V_{\overline{k}})$.
 - (ii) Assume $k = k_s$. Prove A_T is a product of copies of k, and $T(k) = A_T^{\times}$ when T is maximal.
- (iii) Using Galois descent and the end of $4(\mathbf{v})$, prove $(A_T)_{k_s} = A_{T_k}$, and deduce $T(k) = A_T^X$ for maximal T. Show naturally $T \simeq \operatorname{Res}_{A_T/k}(\mathbf{G}_m)$, and that maximal k-subtori in $\operatorname{GL}(V)$ and maximal étale commutative k-subalgebras of $\operatorname{End}(V)$ are in bijective correspondence. Generalize to *finite* k with another definition of A_T , and to central simple algebras in place of $\operatorname{End}(V)$ (hint: use HW4 Exercise 5(ii) and Galois descent).
- (iv) For any (possibly finite) k, prove a smooth connected *commutative* k-group is a torus if and only if its \overline{k} -points are semisimple. (Use the end of Exercise 4(iv).)

1. Use the method of proof of Proposition 4.10, Chapter I, to prove the following scheme-theoretic version: if k is a field and a smooth unipotent affine k-group G is equipped with a left action on a quasi-affine k-scheme V of finite type then for any $v \in V(k)$ the smooth locally closed image of the orbit map $G \to V$ defined by $g \mapsto gv$ is actually closed in V.

(Hint: to begin, let k[V] denote the k-algebra of global functions on V and prove that $R \otimes_k k[V]$ is the R-algebra of global functions on V_R for any k-algebra R. Use this to construct a functorial k-linear representation of G on k[V] respecting the k-algebra structure. Borel's K should be replaced with k after passing to the case $k = \overline{k}$. Note that it is not necessary to assume Borel's F is non-empty; the argument directly proves J meets k^{\times} , so J = (1) and hence F is empty.)

- 2. A k-homomorphism $f: G' \to G$ between k-groups of finite type is an *isogeny* if it is surjective and flat with finite kernel.
- (i) Prove that a surjective homomorphism between smooth finite type k-groups of the same dimension is an isogeny. (The Miracle Flatness Theorem will be useful here.)
- (ii) Prove that a map $f: T' \to T$ between k-tori is an isogeny if and only if the corresponding map $X(T) \to X(T')$ between Galois lattices is injective with finite cokernel.
- (iii) Prove the following are equivalent for a k-torus T: (a) it contains \mathbf{G}_m as a k-subgroup, (b) there exists a surjective k-homomorphism $T \to \mathbf{G}_m$, and (c) $\mathbf{X}(T)_{\mathbf{Q}}$ has a nonzero $\mathrm{Gal}(k_s/k)$ -invariant vector. Such T are called k-isotropic; otherwise we say T is k-anisotropic. In general, a smooth affine k-group is called k-isotropic if it contains \mathbf{G}_m as a k-subgroup, and k-anisotropic otherwise.
- (iv) Let T be a k-torus. Prove the existence of a k-split k-subtorus T_s that contains all others, as well as a k-anisotropic k-subtorus T_a that contains all others. Also prove that $T_s \times T_a \to T$ is an isogeny. Compute T_s and T_a for $T = \mathbb{R}_{k'/k}(\mathbf{G}_m)$ for a finite separable extension k'/k.
- 3. (i) For a k-torus T, prove the existence of an étale k-group $\operatorname{Aut}_{T/k}$ representing the automorphism functor $S \leadsto \operatorname{Aut}_S(T_S)$. (Hint: if T is k-split then show that the constant k-group associated to $\operatorname{Aut}(X(T)) \simeq \operatorname{GL}_r(\mathbf{Z})$ does the job. In general let k'/k be finite Galois such that $T_{k'}$ is k'-split, and use Galois descent.)
- (ii) Using the existence of the étale k-group $\operatorname{Aut}_{T/k}$, prove that if a connected k-group scheme G is equipped with an action on T then the action must be trivial. Deduce that if T is a normal k-subgroup of a connected finite type k-group G then it is a central k-subgroup. Give an example of a smooth connected k-group containing \mathbf{G}_a as a non-central normal k-subgroup. (Hint: look inside SL_2 .)
- 4. Let T be a k-torus in a k-group G of finite type. This exercise uses $Aut_{T/k}$ from Exercise 3.
- (i) Construct a k-morphism $N_G(T) \to \operatorname{Aut}_{T/k}$ with kernel $Z_G(T)$. Prove $W(G,T) := N_G(T)(\overline{k})/Z_G(T)(\overline{k})$ is naturally a *finite* subgroup of $\operatorname{Aut}_{\mathbf{Z}}(X(T))$. If $f: G' \to G$ is surjective with finite kernel and T' is a k-torus in G' containing ker f with f(T') = T then prove $W(G', T') \to W(G, T)$ is an isomorphism.
- (ii) For $G = \operatorname{GL}_n, \operatorname{PGL}_n, \operatorname{SL}_n, \operatorname{Sp}_{2n}$ and T the k-split diagonal maximal k-torus (so $Z_G(T) = T$), respectively identify X(T) with $\mathbf{Z}^n, \mathbf{Z}^n/\operatorname{diag}, \{m \in \mathbf{Z}^n \mid \sum m_j = 0\}$, and \mathbf{Z}^n . Prove $N_G(T)(k)/Z_G(T)(k) \subset \operatorname{Aut}_{\mathbf{Q}}(X(T)_{\mathbf{Q}})$ is S_n for the first three, and $S_n \ltimes \langle -1 \rangle^n$ for Sp_{2n} , all with natural action. (Hint: to control $N_G(T)$, via $G \hookrightarrow \operatorname{GL}(V)$ decompose V as a direct sum of T-stable lines with distinct eigencharacters.)
- 5. Let (V, q) be a non-degenerate quadratic space over a field k with dim $V \ge 2$. This exercise proves SO(q) contains \mathbf{G}_m (i.e., it is k-isotropic in the sense of Exercise 2(iii)) if and only if q = 0 has a solution in $V \{0\}$.
- (i) If q = 0 has a nonzero solution v in V, prove that v lies in a hyperbolic plane H with $H \oplus H^{\perp} = V$. (If $\operatorname{char}(k) = 2$ and $\operatorname{dim} V$ is odd, work over \overline{k} to show $v \notin V^{\perp}$.) Use this to construct a \mathbf{G}_m inside of $\operatorname{SO}(q)$.
- (ii) If SO(q) contains \mathbf{G}_m as a k-subgroup S, prove that q=0 has a nonzero solution in V. (Hint: apply Exercise 5(iii) in HW5 to the 2-dimensional k-split k-torus T generated in GL(V) by S and the central \mathbf{G}_m . If $A \simeq k^r$ is the corresponding "k-split" commutative k-subalgebra of End(V), prove the resulting inclusion $\mathbf{G}_m = S \hookrightarrow T = \mathbf{R}_{A/k}(\mathbf{G}_m) = \mathbf{G}_m^r$ is $t \mapsto (t^{h_1}, \dots, t^{h_r})$. Use the A-module structure on V to find a k-basis $\{e_i\}$ that identifies S with $\operatorname{diag}(t^{n_1}, \dots, t^{n_d})$ for $n_1 \leq \dots \leq n_d$ with $\sum n_i = 0$. Prove $n_1 < 0 < n_d$, and if $q = \sum_{i \leq j} a_{ij} x_i x_j$ in these coordinates then prove $n_i + n_j = 0$ when $a_{ij} \neq 0$. Deduce q(v) = 0 for any v in the span of the e_i for which $n_i < 0$, or for which $n_i > 0$.)

- 0. (optional) Read the proof (p. 101 in Mumford's "Abelian Varieties") of Cartier's theorem: group schemes G locally of finite type over a field of characteristic 0 are smooth! (This uses the left-invariant derivations.)
- 1. (i) Prove that ∂_x is an invariant vector field on \mathbf{G}_a , and $t^{-1}\partial_t$ is an invariant vector field on \mathbf{G}_m .
- (ii) Let A be a finite-dimensional associative k-algebra, and \underline{A}^{\times} the associated k-group of units. Prove $\operatorname{Tan}_e(\underline{A}^{\times}) = A$ naturally, and that the Lie algebra structure is then [a, a'] = aa' a'a. Using $A = \operatorname{End}(V)$, compute $\mathfrak{gl}(V)$. Use this to compute the Lie algebras $\mathfrak{sl}(V)$, $\mathfrak{sp}(B)$, $\mathfrak{sp}(B)$, $\mathfrak{so}(q)$.
- (iii) Read Corollary A.7.6 and Lemma A.7.13 (and the paragraph preceding it) in the book *Pseudo-reductive groups*. Compute the *p*-Lie algebra structure on $\text{Lie}(\underline{A}^{\times})$, $\text{Lie}(\mathbf{G}_m)$, and $\text{Lie}(\mathbf{G}_a)$ if char(k) = p > 0.
- 2. Let G be a smooth group of dimension d > 0 over k.
- (i) Define the concept of left-invariant differential i-form for $i \geq 0$, and prove the space $\Omega_G^{i,\ell}(G)$ of such form has dimension $\binom{d}{i}$. Compute the 1-dimensional $\Omega_G^{d,\ell}(G)$ for $\mathrm{GL}(V)$, $\mathrm{SL}(V)$, and $\mathrm{PGL}(V)$.
- (ii) Using right-translation, construct a linear representation of G on $\Omega_G^{d,\ell}(G)$; the associated character $\chi_G: G \to \mathbf{G}_m$ is the modulus character. Prove $\chi_G|_{Z_G} = 1$ and deduce that $\chi_G = 1$ if $G/Z_G = \mathscr{D}(G/Z_G)$.
- (iii) (optional) If k is local (allow \mathbf{R} , \mathbf{C}) and X is smooth, use the k-analytic inverse function theorem to equip X(k) with a functorial k-analytic manifold structure, and use k-analytic Change of Variables to assign a measure on X(k) to a nowhere-vanishing $\omega \in \Omega_X^{\dim X}(X)$. (Serre's "Lie groups and Lie algebras" does k-analytic foundations.) Relate with Haar measures, and prove $\chi_{\mathcal{L}}^{\pm 1}|_{G(k)}$ is the classical modulus character.
- 3. Let K/k be a degree-2 finite étale algebra (i.e., a separable quadratic field extension or $k \times k$), and let σ be the unique non-trivial k-automorphism of K; note that $K^{\sigma} = k$. A σ -hermitian space is a pair (V, h) consisting of a finite free K-module equipped with a perfect σ -semilinear form $h: V \times V \to K$ (i.e., h(cv, v') = ch(v, v'), $h(v, cv') = \sigma h(v, v')$, and $h(v', v) = \sigma (h(v, v'))$). Note $v \mapsto h(v, v)$ is a quadratic form $q_h: V \to k$ over k satisfying $q_h(cv) = N_{K/k}(c)q_h(v)$ for $c \in K$, $v \in V$, and $\dim_k V$ is even (char(k) = 2 ok!).

The unitary group U(h) over k is the subgroup of $R_{K/k}(GL(V))$ preserving h. Using $R_{K/k}(SL(V))$ gives the special unitary group SU(h). Example: V = F finite étale over K with an involution σ' lifting σ , and $h(v, v') := \text{Tr}_{F/K}(v\sigma'(v'))$; e.g., F and K CM fields, k totally real, and complex conjugations σ' and σ .

- (i) If $K = k \times k$, prove $V \simeq V_0 \times V_0^{\vee}$ with $h((v, \ell), (v', \ell')) = (\ell'(v), \ell(v'))$ for a k-vector space V_0 . Identify U(h) with $GL(V_0)$ carrying SU(h) to $SL(V_0)$. Compute q_h and prove non-degeneracy.
- (ii) In the non-split case prove that $U(h)_K \simeq GL_n$ carrying SU(h) to SL_n $(n = \dim_K V)$. Prove U(h) is smooth and connected with derived group SU(h) and center \mathbf{G}_m , and q_h is non-degenerate. Compute $\mathfrak{su}(h)$.
 - (iii) Identify U(h) with a k-subgroup of $SO(q_h)$. Discuss the split case, and all cases with $k = \mathbf{R}$.
- 4. Let a smooth k-group H act on a separated k-scheme Y. For a k-scheme S, let $Y^H(S)$ be the set of $y \in Y(S)$ invariant by the H_S -action on Y_S (i.e., $y_{S'}$ is H(S')-invariant for all S-schemes S').
- (i) If $k = k_s$, prove Y^H is represented by the closed subscheme $\bigcap_{h \in H(k)} Y^h$ where $Y^h = \alpha_h^{-1}(\Delta_{Y/k})$ for $\alpha_h : Y \to Y \times Y$ the map $y \mapsto (y, h.y)$. Then prove representability by a closed subscheme of Y for general k by Galois descent. Relate this to Exercise 2 in HW5.
 - (ii) For $y \in Y^H(k)$ explain why H acts on $\operatorname{Tan}_y(Y)$ and prove $\operatorname{Tan}_y(Y^H) = \operatorname{Tan}_y(Y)^H$.
- (iii) Assume H is a closed subgroup of a k-group G of finite type, $\mathfrak{g} := \text{Lie}(G)$ and $\mathfrak{h} := \text{Lie}(H)$. Prove $\text{Tan}_e(Z_G(H)) = \mathfrak{g}^H$ via adjoint action. Also prove $\text{Tan}_e(N_G(H)) = \cap_{h \in H(k)} (\text{Ad}_G(h) 1)^{-1}(\mathfrak{h})$ when $k = k_s$.
- 5. A diagram $1 \to G' \xrightarrow{j} G \xrightarrow{\pi} G'' \to 1$ of finite type k-groups is exact if π is faithfully flat and $G' = \ker \pi$.
- (i) For any such diagram, prove G'' = G/G' via π . Prove a diagram of k-tori $1 \to T' \to T \to T'' \to i$ s exact if and only if $0 \to X(T'') \to X(T) \to X(T') \to 0$ is exact (as **Z**-modules).
- (ii) If G' is finite then π is an *isogeny*. Prove that isogenies are *finite flat* with constant degree, and that $\pi_n : \mathrm{SL}_n \to \mathrm{PGL}_n$ is an isogeny of degree n. Compute $\mathrm{Lie}(\pi_n)$; when is it surjective?
- (iii) Prove that a short exact sequence of finite type k-groups induces a left-exact sequence of Lie algebras, short exact if G and G' are smooth. (Smoothness of G can be dropped.)
- (iv) Read §A.3 through Example A.3.4 in *Pseudo-reductive groups*, and prove $F_{X/k}: X \to X^{(p)}$ is finite flat of degree $p^{\dim X}$ for k-smooth X. Prove $\text{Lie}(F_{G/k}) = 0$, and compute $F_{G/k}$ for GL(V) and O(q).

- 1. Let A be a central simple algebra over a field k, T a k-torus in \underline{A}^{\times} .
- (i) Adapt Exercise 5 in HW5 to make an étale commutative k-subalgebra $A_T \subseteq A$ such that $(A_T)_{k_s}$ is generated by $T(k_s)$, and establish a bijection between the sets of maximal k-tori in \underline{A}^{\times} and maximal étale commutative k-subalgebras of A. Deduce that SL(A) is k-anisotropic if and only if A is a division algebra.
 - (ii) For an étale commutative k-subalgebra $C \subseteq A$, prove $Z_A(C)$ is a semisimple k-algebra with center C.
- (iv) If T is maximal as a k-split subtorus of \underline{A}^{\times} prove T is the k-group of units in A_T and that the (central!) simple factors B_i of $B_T := Z_A(A_T)$ are division algebras.
- (v) Fix $A \simeq \operatorname{End}_D(V)$ for a right module V over a central division algebra D, so V is a left A-module and $V = \prod V_i$ with nonzero left B_i -modules V_i . If T is maximal as a k-split torus in \underline{A}^{\times} , prove V_i has rank 1 over B_i and D, so $B_i \simeq D$. Using D-bases, deduce that all maximal k-split torus in \underline{A}^{\times} are $\underline{A}^{\times}(k)$ -conjugate.
- 2. For a torus T over a local field k (allow \mathbf{R} , \mathbf{C}), prove T is k-anisotropic if and only if T(k) is compact.
- 3. Let Y be a smooth separated k-scheme locally of finite type, and T a k-torus with a left action on Y. This exercise proves that Y^T is smooth.
- (i) Reduce to the case $k = \overline{k}$. Fix a finite local k-algebra R with residue field k, and an ideal J in R with $J\mathfrak{m}_R = 0$. Choose $\overline{y} \in Y^T(R/J)$, and for R-algebras A let E(A) be the fiber of $Y(A) \twoheadrightarrow Y(A/JA)$ over $\overline{y}_{A/JA}$. Let $y_0 = \overline{y} \mod \mathfrak{m}_R \in Y^T(k)$ and $A_0 = A/\mathfrak{m}_R A$. Prove $E(A) \neq \emptyset$ and make it a torsor over the A_0 -module $F(A) := JA \otimes_k \operatorname{Tan}_{y_0}(Y) = JA \otimes_{A_0} (A_0 \otimes_k \operatorname{Tan}_{y_0}(Y))$ naturally in A (denoted v + y).
- (ii) Define an A_0 -linear $T(A_0)$ -action on F(A) (hence a T_R -action on F), and prove that E(A) is T(A)-stable in Y(A) with $t \cdot (v + y) = t_0 \cdot v + t \cdot y$ for $y \in E(A)$, $t \in T(A)$, $v \in F(A)$, and $t_0 = t \mod \mathfrak{m}_R$.
- (iii) Choose $\xi \in E(R)$ and define a map of functors $h: T_R \to F$ by $t.\xi = h(t) + \xi$ for points t of T_R ; check it is a 1-cocycle, and is a 1-coboundary if and only if $E^{T_R}(R) \neq \emptyset$. For $V_0 = J \otimes_k \operatorname{Tan}_{y_0}(Y)$ use h to define a 1-cocycle $h_0: T \to \underline{V}_0$, and prove $t.(v,c) := (t.v + ch_0(t),c)$ is a k-linear representation of T on $V_0 \oplus k$. Use a T-equivariant splitting (!) to prove h_0 (and then h) is a 1-coboundary; deduce Y^T is smooth!
- 4. Let G be a smooth k-group of finite type, and T a k-torus equipped with a left action on G (an interesting case being T a k-subgroup acting by conjugation, in which case $G^T = Z_G(T)$).
- (i) Use Exercise 3 to show $Z_G(T)$ is smooth, and by computing its tangent space at the identity prove for connected G that $T \subset Z_G$ if and only if T acts trivially on $\mathfrak{g} = \text{Lie}(G)$.
- (ii) Assume T is a k-subgroup of G acting by conjugation. Using Exercise 4(iii) of HW7 and the semisimplicity of the restriction to T of $Ad_G: G \to GL(\mathfrak{g})$, prove that $N_G(T)$ and $Z_G(T)$ have the same tangent space at the identity. Via (i), deduce that $Z_G(T)$ is an open subscheme of $N_G(T)$, so $N_G(T)$ is smooth and $N_G(T)/Z_G(T)$ is finite étale over k.
- (iii) Assumptions as in (ii), the Weyl group W = W(G,T) is $N_G(T)/Z_G(T)$. If T is k-split, use the equality $\operatorname{End}_k(T) = \operatorname{End}_{k_s}(T_{k_s})$ to prove that $W(k) = W(k_s)$ and deduce that W is a constant k-group. But show $N_G(T)(k)$ does not map onto W(k) if k is infinite and K is a separable quadratic extension of k such that $-1 \notin N_{K/k}(K^{\times})$ (e.g., k totally real and K a CM extension, or $k = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{3})$) with $K = \operatorname{SL}(K) \cong \operatorname{$
 - (iv) Prove that $N_G(T)(k) \to W(k) = W(\overline{k})$ is surjective for the cases in HW6, Exercise 4(ii).
- 5. (i) For any field k, affine k-scheme X of finite type, and nonzero finite k-algebra k', define a natural map $j_{X,k'/k}: X \to \operatorname{Res}_{k'/k}(X_{k'})$ by $X(R) \to X(k' \otimes_k R) = X_{k'}(k' \otimes_k R)$ for k-algebras R. Prove $j_{X,k'/k}$ is a closed immersion and that its formation commutes with fiber products in X.
 - (ii) Let G be an affine k-group of finite type. Prove that $j_{G,k'/k}$ is a k-homomorphism.
- (iii) A vector group over k is a k-group G admitting an isomorphism $G \simeq \mathbf{G}_a^n$, and a linear structure on G is the resulting \mathbf{G}_m -action. A linear homomorphism $G' \to G$ between vector groups equipped with linear structures is a k-homomorphism which respects the linear structures. For example, $(x, y) \mapsto (x, y + x^p)$ is a non-linear automorphism of \mathbf{G}_a^2 (with its usual linear structure) when $\operatorname{char}(k) = p > 0$.

For any k, prove \mathbf{G}_a admits a unique linear structure and its linear endomorphism ring is k. Giving \mathbf{G}_a^n and \mathbf{G}_a^m their usual linear structures, prove the linear k-homomorphisms $\mathbf{G}_a^n \to \mathbf{G}_a^m$ correspond to $\mathrm{Mat}_{m \times n}(k)$. Are there non-linear homomorphisms if $\mathrm{char}(k) = 0$?

- 1. Read Appendix B in the book $Pseudo-reductive\ groups$ to learn Tits' structure theory for smooth connected unipotent groups over arbitrary fields k with positive characteristic, and how k-tori act on such groups. Especially noteworthy are the results labelled B.1.13, B.2.7, B.3.4, and B.4.3.
- 2. Let U be a smooth connected commutative affine k-group, and assume U is p-torsion if char(k) = p > 0.
 - (i) If char(k) > 0 and U is k-split, use B.1.12 in Pseudo-reductive groups to prove U is a vector group.
- (ii) Assume $\operatorname{char}(k) = 0$. Prove that any short exact sequence $0 \to \mathbf{G}_a \to G \to \mathbf{G}_a \to 0$ is split. (Hint: $\log(u)$ is an "algebraic" function on the unipotent points of Mat_n .) Deduce that $U \simeq \mathbf{G}_a^N$, and prove that any action on U by a k-split torus T respects this linear structure.
- 3. Let k'/k be a degree-p purely inseparable extension of a field k of characteristic p > 0.
- (i) Prove that $U = R_{k'/k}(\mathbf{G}_m)/\mathbf{G}_m$ is smooth and connected of dimension p-1, and is p-torsion. Deduce it is unipotent.
- (ii) In the Appendix "Quotient formalism" it is proved that any commutative extension of \mathbf{G}_a by \mathbf{G}_m over any field is uniquely split over that field. Prove that $R_{k'/k}(\mathbf{G}_m)(k_s)[p] = 1$, and deduce that U in (i) does not contain \mathbf{G}_a as a k-subgroup! (For a salvage, see Lemma B.1.10 in *Pseudo-reductive groups*: a p-torsion smooth connected commutative affine group over any field of characteristic p > 0 admits an étale isogeny onto a vector group.)
- 4. Let G be a smooth group of finite type over a field k, and N a commutative normal k-subgroup scheme.
- (i) Prove that the left G-action on N via conjugation factors uniquely through an action of G/N on N, and if N is central in G then prove that the action of G on itself via conjugation uniquely factors through an action of G/N on G. Describe this explicitly for $G = \operatorname{SL}_n$ and $N = \mu_n$ over any field k, accounting for the fact that $\operatorname{SL}_n(k) \to \operatorname{PGL}_n(k)$ is generally not surjective.
- (ii) Prove the commutator map $G \times G \to G$ uniquely factors through a k-morphism $(G/Z_G) \times (G/Z_G) \to \mathcal{D}(G)$.
- 5. Let B be a smooth connected solvable group over a field k.
- (i) If $B = \mathbf{G}_m \rtimes \mathbf{G}_a$ with the standard semi-direct product structure, prove that $Z_B(t,0)$ is the left factor for any $t \in k^{\times} \{1\}$.
- (ii) Deduce by inductive arguments resting on (i) that if $k = \overline{k}$ and $S \subset B(k)$ is a commutative subgroup of semisimple elements then $S \subset T(k)$ for some maximal torus $T \subset B$.
- (iii) Assume $\operatorname{char}(k) \neq 2$ with $k = \overline{k}$, and let $G = \operatorname{SO}_n$ with $n \geq 3$. Let $\mu \simeq \mu_2^{n-1}$ be the "diagonal" k-subgroup $\{(\zeta_i) \in \mu_2^n \mid \prod \zeta_i = 1\}$. Prove that the disconnected μ is maximal as a solvable smooth k-subgroup of G and is not contained in any maximal k-torus of G (hint: it has too much 2-torsion), so in particular is not contained in any Borel k-subgroup (by (ii))!
- 6. Let G be a quasi-split smooth connected affine k-group, and $B \subset G$ a Borel k-subgroup. Let T be a maximal k-torus in B.
- (i) Using conjugacy of maximal tori in $G_{\overline{k}}$, prove $g \mapsto gBg^{-1}$ is a bijection from $N_G(T)(\overline{k})/Z_G(T)(\overline{k})$ onto the set of Borel \overline{k} -subgroups containing $T_{\overline{k}}$. In particular, this set is *finite*.
- (ii) Using HW8 Exercise 4, prove that $N_G(T)(k_s)/Z_G(T)(k_s) \to N_G(\overline{k})/Z_G(T)(\overline{k})$ is bijective, and deduce that every Borel subgroup of $G_{\overline{k}}$ containing $T_{\overline{k}}$ is defined over k_s !
- (iii) Assume that T is k-split and $Z_G(T) = T$. Using Hilbert 90 and HW8 Exercise 4, prove that $N_G(T)(k)/T(k) \to N_G(T)(k_s)/Z_G(T)(k_s)$ is bijective. Deduce that every Borel subgroup of $G_{\overline{k}}$ containing $T_{\overline{k}}$ is defined over k! In each of the classical cases (GL_n , SL_n , PGL_n , Sp_{2n} , and SO_n), find all B containing the k-split maximal "diagonal" T. How many parabolic k-subgroups can you find containing one such B? (At least for GL_n , SL_n , and PGL_n , prove you have found all such parabolics.)
- (iv) Prove that each maximal smooth unipotent subgroup of $G_{\overline{k}}$ admits a conjugate contained in $B_{\overline{k}}$, and deduce that if $B \cap B' = T$ for another Borel B' containing T then G is reductive. Use this with (iii) to prove reductivity for GL_n $(n \ge 1)$, SL_n $(n \ge 2)$, PGL_n $(n \ge 2)$, Sp_{2n} $(n \ge 1)$, and SO_n $(n \ge 2)$.

- 1. Let G be a smooth connected affine group over a field k.
- (i) For a maximal k-torus T in G and a smooth connected k-subgroup N in G that is normalized by T, prove that $T \cap N$ is a maximal k-torus in N (e.g., smooth and connected!). Show by example that $S \cap N$ can be disconnected for a non-maximal k-torus S. Hint: first analyze $Z_G(T) \cap N$ using $T \ltimes N$ to reduce to the case when T is central in G, and then pass to G/T.
- (ii) Let H be a smooth connected normal k-subgroup of G, and P a parabolic k-subgroup. If $k = \overline{k}$ then prove $(P \cap H)^0_{\text{red}}$ is a parabolic k-subgroup of H, and use Chevalley's theorem on parabolics being their own normalizers on geometric points (applied to H) to prove $P \cap H$ is connected (hint: work over \overline{k}).
- (iii) Granting $Q = N_H(Q)$ scheme-theoretically for parabolic Q in H (Prop. 3.5.7 in Pseudo-reductive groups, rests on structure theory of reductive groups), prove $P \cap H$ in (ii) is smooth. (Hint: prove $(P \cap H)^0_{\text{red}}$ is normal in P, hence in $P \cap H$!) In particular, $B \cap H$ is a Borel k-subgroup of H for all Borels B of G.
- 2. Let k be a field, and $G \in \{SL_2, PGL_2\}$.
- (i) Define a unique PGL_2 -action on SL_2 lifting conjugation. Prove a k-automorphism of G preserving the standard Borel k-subgroup and the diagonal k-torus is induced by the action of a diagonal k-point of PGL_2 .
- (ii) Prove that the homomorphism $\operatorname{PGL}_2(k) \to \operatorname{Aut}_k(G)$ is an isomorphism. In particular, every k-automorphism of PGL_2 is inner. Show that SL_2 admits non-inner k-automorphisms if and only if $k^{\times} \neq (k^{\times})^2$.
- 3. Let $\lambda : \mathbf{G}_m \to G$ be a 1-parameter k-subgroup of a smooth affine k-group G. Define $\mu : U_G(\lambda^{-1}) \times P_G(\lambda) \to G$ to be multiplication. We seek to prove it is an open immersion. Let $\mathfrak{g} = \mathrm{Lie}(G)$.
- (i) For $n \in \mathbf{Z}$ define \mathfrak{g}_n to be the *n*-weight space for λ (i.e., $\operatorname{ad}(\lambda(t)).X = t^n X$). Define $\mathfrak{g}_{\lambda \geq 0} = \bigoplus_{n \geq 0} \mathfrak{g}_n$, and similarly for $\mathfrak{g}_{\lambda > 0}$. Prove $\operatorname{Lie}(P_G(\lambda)) = \mathfrak{g}_{\lambda \geq 0}$, $\operatorname{Lie}(U_G(\lambda)) = \mathfrak{g}_{\lambda > 0}$, and $\operatorname{Tan}_{(e,e)}(\mu)$ is an isomorphism.
- (ii) If G = GL(V) and the \mathbf{G}_m -action on V has weights $e_1 > \cdots > e_m$, justify the block-matrix descriptions of $U_G(\lambda^{\pm 1})$, $Z_G(\lambda)$, and $P_G(\lambda)$. Deduce $U_G(\lambda^{-1})$ and $P_G(\lambda)$ are smooth and have trivial intersection.
- (iii) Working over \overline{k} and using suitable left and right translations by geometric points, prove that $d\mu(\xi)$ is an isomorphism for all \overline{k} -points ξ of $U_G(\lambda^{-1}) \times P_G(\lambda)$. Deduce that if $U_G(\lambda^{-1})$ and $P_G(\lambda)$ are smooth (OK for GL(V) by (ii)) then μ induces an isomorphism between complete local rings at all \overline{k} -points, and conclude that μ is flat and quasi-finite. Hence, μ has open image in such cases.
- (iv) Using valuative criterion for properness, prove a flat quasi-finite separated map $f: X \to Y$ between noetherian schemes is proper if all fibers X_y have the same rank. (Hint: base change to Y the spectrum of a dvr.) By Zariski's Main Theorem, proper quasi-finite maps are finite. Deduce μ is an open immersion if $U_G(\lambda^{-1})$ and $P_G(\lambda)$ are smooth with trivial intersection. (Hint: finite flat of fiber-degree 1 is isomorphism.) This settles GL(V); the Appendix "Dynamic approach to algebraic groups" then yields the general case!
- 4. Let $\lambda: \mathbf{G}_m \to G$ be a 1-parameter k-subgroup of a smooth affine k-group. For any integer $n \geq 1$, prove that $P_G(\lambda^n) = P_G(\lambda)$, $U_G(\lambda^n) = U_G(\lambda)$, and $Z_G(\lambda^n) = Z_G(\lambda)$.
- 5. Let G be a reductive group over a field k, and N a smooth closed normal k-subgroup. Prove N is reductive. In particular, $\mathcal{D}(G)$ is reductive.
- 6. Prove that $\mu_n[d] = \mu_d$ for d|n, and that $\mathbf{Z}/n\mathbf{Z} \to \operatorname{End}(\mu_n)$ is an isomorphism.
- 7. Prove that a rational homomorphism (defined in evident manner: respecting multiplication as rational map) between smooth connected groups over a field k extends uniquely to a k-homomorphism. (Hint: pass to the case $k = k_s$ by Galois descent, and then use suitable k-point translations.)
- 8. (optional) Let G be a smooth connected affine group over an algebraically closed field k, $\operatorname{char}(k) = 0$.
- (i) If all finite-dimensional linear representations of G are completely reducible, then prove that G is reductive. (Hint: use Lie-Kolchin, and behavior of semisimplicity under restriction to a normal subgroup. This will not use characteristic 0.)
- (ii) Conversely, assume that G is reductive. The structure theory of reductive groups implies that $\text{Lie}(\mathscr{D}G)$ is a semisimple Lie algebra, and a subspace of a finite-dimensional linear representation space for G is G-stable if and only if it is \mathfrak{g} -stable under the induced action $\mathfrak{g} \to \text{End}(V)$ since char(k) = 0. Prove that all finite-dimensional linear representations of G are completely reducible.