
Algebraic Groups I. Homework 1

1. This exercise studies the endomorphism rings of the k-groups Gm and Ga, with k any commutative ring.
(i) Prove that Endk(Ga) consists of f ∈ k[t] such that f(x+y) = f(x)+f(y) in k[x, y], and that Endk(Gm)

consists of f ∈ k[t, t−1] such that f(xy) = f(x)f(y) in k[x, y, x−1, y−1] and f has no zeros on any geometric
fibers over Spec k.

(ii) Deduce that if k is a Q-algebra then naturally Endk(Ga) = k, and that if k is a field with characteristic

p > 0 then it consists of f =
∑
cjt

pj (cj ∈ k). What if k = Z/(p2)?
(iii) Prove that Endk(Gm) = Z when k is a field, and deduce the same when k is an artin local ring via

induction on the length of k. (Hint: reduce to the case when f vanishes on the special fiber.)
(iv) Prove that Endk(Gm) = Z for k any local ring by using (iii) to settle the case of a complete local

noetherian ring, then any local noetherian ring, and finally any local ring (by using local noetherian subrings
of k). Deduce that if k is any ring whatsoever, an endomorphism of the k-group Gm is t 7→ tn for a locally
constant function n : Spec k → Z.

2. Let V be a finite-dimensional vector space over a field k. This exercise develops coordinate-free versions
of GLn, SLn, and Sp2n attached to V .

(i) Elements of the graded symmetric algebra Sym(V ∗) are called polynomial functions on V . Justify the
name (even for finite k!) by identifying them with functorial maps of sets VR → R given by polynomial
expressions relative to some (equivalently, any) basis of V , with R a varying k-algebra. In particular, show
that det is a polynomial function on End(V ).

(ii) For any k-algebra R, define the functors End(V ) and Aut(V ) on k-algebras R by R  End(VR),
R  AutR(VR). Using the identification End(VR, VR) = End(V )R, prove that End(V ) is represented by
Sym(End(V )∗).

(iii) Define det ∈ Sym(End(V )∗) and prove its non-vanishing locus

GL(V ) := Spec(Sym(End(V )∗)[1/ det])

represents Aut(V ) as subfunctor of End(V ). Also discuss SL(V ) as a closed k-subgroup of GL(V ).
(iv) Let B : V × V → k be a bilinear form. Prove that the subfunctor Aut(V,B) of points of Aut(V )

preserving B is represented by a closed k-subgroup of GL(V ). (You can use coordinates in the proof!) This
is pretty bad unless B is non-degenerate. (In the alternating non-degenerate case it is denoted Sp(B).)

Assuming non-degeneracy, a linear automorphism T of VR is a B-similitude if BR(Tv, Tw) = µ(T )B(v, w)
for all v, w ∈ VR and some µ(T ) ∈ R×. Prove µ(T ) is then unique, and show that the functor of B-similitudes
is represented by a closed k-subgroup of GL(V )×Gm. (In the alternating case it is denoted GSp(B).)

3. (i) Prove that if a connected schemeX of finite type over a field k has a k-rational point, thenXk′ = X⊗kk′
is connected for every finite extension k′/k (hint: Xk′ → X is open and closed; look at fiber over X(k)).
Deduce that Xk′ is connected for every extension k′/k (i.e., X is geometrically connected over k).

(ii) Prove that if X and Y are geometrically connected of finite type over k, so is X×Y ; give a counterex-
ample over k = Q if “geometrically” is removed. Deduce that if G is a k-group then the identity component
G0 is a k-subgroup whose formation commutes with any extension on k.

4. Let G be a group of finite type over a field k.
(i) Prove that (Gk)red is a closed k-subgroup of Gk, and prove it is smooth. Deduce that G0 is geometrically

irreducible.
(ii) Over any imperfect field k, one can make a non-reduced k-group G such that Gred is not a k-subgroup.

Where does an attempted proof to the contrary get stuck?
(iii) Assume k is imperfect, char(k) = p > 0, and choose a ∈ k− kp. Prove xp0 + axp1 + · · ·+ ap−1xpp−1 = 1

defines a reduced k-group (think of Nk(a1/p)/k) that is non-reduced over k and hence not smooth!

(iv) Prove that the condition tn = 1 defines a finite closed k-subgroup µn ⊆ Gm, and show its preimage
G under det : GLN → Gm is a k-subgroup of GLN . Accepting that SLN is connected, prove G0 = SLN if
char(k) - n. For k = Q and n = 5, prove that G−G0 is connected but over k has 4 connected components.
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Algebraic Groups I. Homework 2

1. Let k be a perfect field, and G a 1-dimensional connected linear algebraic k-group (so G is geometrically
integral over k). Assume G is in the additive case. This exercise proves G is k-isomorphic to Ga.

(i) Let X denote its regular compactification over k. Prove that Xk is regular, so X is smooth (hint: k is
a direct limit of finite separable extensions of k, and unit discriminant is a sufficient test for integral closures
in the Dedekind setting). Deduce that X −G consists of a single physical point, say Spec k′.

(ii) Prove that k′ ⊗k k is reduced and in fact equal to k. Deduce k′ = k, and prove that X ' P1
k. Show

that G ' Ga as k-groups.

2. Let T be a torus of dimension r ≥ 1 over a field k (e.g., a 1-dimensional connected linear algebraic group
in the multiplicative case). This exercise proves that Tk′ ' Gr

m for some finite separable extension k′/k.
(i) Prove that it suffices to treat the case k = ks.
(ii) Assume k = ks. We constructed an isomorphism f : Tk′ ' Gr

m as k′-groups for some finite extension
k′/k. Let k′′ = k′⊗k k′, and let p1, p2 : Spec k′′ ⇒ Spec k′ be the projections. Prove that k′′ is an artin local
ring with residue field k′, and deduce that the k′′-isomorphisms p∗i (f) : Tk′′ ' Gr

m coincide by comparing
them with f on the special fiber!

(iii) For any k-vector space V , prove that the only elements of k′ ⊗k V with equal images under both
maps to k′′ ⊗k V are the elements of V (hint: reduce to the case V = k and replace k′ with any k-vector
space W , and k′′ with W ⊗k W ). Deduce that f uniquely descends to a k-isomorphism.

3. Let X and Y be schemes over a field k, K/k an extension field, and f, g : X ⇒ Y two k-morphisms.
(i) Prove fK = gK if and only if f = g. (Use surjectivity of XK → X to aid in reducing to the affine case.)

Likewise prove that if Z,Z ′ ⊆ X are closed subschemes such that ZK = Z ′K inside of XK then Z = Z ′,
(ii) If fK is an isomorphism and X and Y are affine, prove f is an isomorphism. Then do the same

without affineness (may be really hard without Serre’s cohomological criterion for affineness).
(iii) Assume K/k is Galois, Γ = Gal(K/k). Prove that if a map F : XK → YK satisfies γ∗(F ) = F for

all γ ∈ Γ, then F = fK for a unique k-map f : X → Y . Likewise, if Z ′ ⊆ XK is a closed subscheme and
γ∗(Z ′) = Z ′ for all γ ∈ Γ then prove Z ′ = ZK for a unique closed subscheme Z ⊆ X. Do the same for open
subschemes.

4. Let q : V → k be a quadratic form on a finite-dimensional vector space V of dimension d ≥ 2, and let
Bq : V × V → k be the corresponding symmetric bilinear form. Let V ⊥ = {v ∈ V |Bq(v, ·) = 0}; we call
δq := dimV ⊥ the defect of q.

(i) Prove that Bq uniquely factors through a non-degenerate symmetric bilinear form on V/V ⊥, and Bq is
non-degenerate precisely when the defect is 0. Prove that if char(k) = 2 then Bq is alternating, and deduce
that δq ≡ dimV mod 2 for such k (so δq ≥ 1 if dimV is odd).

(ii) Prove that if δq = 0 then qk admits one of the following “standard forms”:
∑n
i=1 xixi+n if dimV = 2n

(n ≥ 1), and x2
0 +

∑n
i=1 xixi+n if dimV = 2n + 1 (n ≥ 1). Do the same if char(k) = 2 and δq = 1.

(Distinguish whether or not q|V ⊥ 6= 0.) How about the converse?
(iii) If char(k) 6= 2, prove δq = 0 if and only if q 6= 0 and (q = 0) ⊆ Pd−1 is smooth. If char(k) = 2 then

prove δq ≤ 1 with q|V ⊥ 6= 0 when δq = 1 if and only if q 6= 0 and the (q = 0) is smooth. (Hint: use (ii) to
simplify calculations.) We say q is non-degenerate when q 6= 0 and (q = 0) is smooth in Pd−1.

5. Learn about separability and Ω1 by reading in Matsumura’s CRT: §25 up to before 25.3 (this is better
than AG15.1–15.8 in Borel’s book), and read §26 up through and including Theorem 26.3.

(i) Do Exercises 25.3, 25.4 in Matsumura, and read AG17.1 in Borel’s book (noting he requires V to be
geometrically reduced over k!).

(ii) Use 26.2 in Matsumura to prove that a finite type reduced k-scheme X is smooth on a dense open if
and only if all functions fields of X (at its generic points) are separable over k.

(iii) Using separating transcendence bases, the primitive element theorem, and “denominator chasing”,
prove that if X is smooth on a dense open then X(ks) is Zariski-dense in Xks . (Hint: it suffices to prove
X(ks) is non-empty!)
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Algebraic Groups I. Homework 3
1. Let k[xij ] be the polynomial ring in variables xij with 1 ≤ i, j ≤ n. Observe that the localization k[xij ]det

has a natural Z-grading, since det ∈ k[xij ] is homogeneous. Let k[xij ](det) denote the degree-0 part (i.e.,
fractions f/dete with f homogenous of degree e deg(det) = en, for e ≥ 0).

(i) Define PGLn = Spec(k[xij ](det)). Identify this with the open affine {det 6= 0} in Pn
2−1, and construct

an injective map of sets GLn(R)/R× → PGLn(R) := Homk(SpecR,PGLn) naturally in k-algebras R.
(ii) For any R and any m ∈ PGLn(R), show that there is an affine open covering {SpecRi} of SpecR such

that m|Ri
∈ GLn(Ri)/R

×
i . Deduce that PGLn(R) is the sheafification of the presheaf U 7→ GLn(U)/GL1(U)

on SpecU , and that PGLn has a unique k-group structure such that GLn → PGLn is a k-homomorphism.
(iii) Prove that if R is local then GLn(R)/R× = PGLn(R), and construct a counterexample with n = 2 for

any Dedekind domain R whose class group has nontrivial 2-torsion. (Hint: I ⊕ I ' R2 when I is 2-torsion.)
(iv) Write out the effect of multiplication and inversion on PGLn at the level of coordinate rings.

2. The scheme-theoretic kernel of a k-homomorphism f : G′ → G between k-group schemes is the scheme-
theoretic fiber f−1(e) (with e : Spec k → G the identity). It is denoted ker f .

(i) Prove that if R is any k-algebra then (ker f)(R) = ker(G′(R)→ G(R)) as subgroups of G′(R); deduce
that ker f is a normal k-subgroup of G′.

(ii) Prove that the homomorphism GLn → PGLn constructed in Exercise 1 is surjective with scheme-
theoretic kernel equal to the k-subgroup D ' GL1 of scalar diagonal matrices.

(iii) Let µn = ker(tn : Gm → Gm) = Spec(k[t, 1/t]/(tn − 1)). Identify µn(R) with the group of nth roots
of unity in R× naturally in any k-algebra R, and prove that the homomorphism SLn → PGLn obtained by
restriction of the map in (ii) to SLn is surjective, with kernel µn.

3. Let G be a k-group of finite type equipped with an action on k-scheme V of finite type. Let W,W ′ ⊆ V
be closed subschemes. Define the functorial centralizer ZG(W ) and functorial transporter TranG(W,W ′) as
follows: for any k-scheme S, ZG(W )(S) is the subgroup of points g ∈ G(S) such that the g-action on VS is
trivial, and TranG(W,W ′)(S) is the subset of points g ∈ G(S) such that g.(WS) ⊆W ′S (as closed subschemes
of VS). The functorial normalizer NG(W ) is TranG(W,W ).

These are of most interest when W is a smooth closed k-subgroup of V = G equipped with the left
translation action. Below, assume W is geometrically reduced and separated over k.

(i) Prove W is smooth on a dense open, so W (ks) is Zariski-dense in Wks (by Exercise 5(iii), HW2). Hint:
if k = ks then Wk →W is a homeomorphism, and in general use Galois descent (as in Exercise 3(iii), HW2).

(ii) For each w ∈W (k), let αw : G→W be the orbit map g 7→ g.w. Define ZG(w) = α−1
w (w). Prove that

ZG(w)(S) is the subgroup of points g ∈ G(S) such that g.wS = wS in W (S).
(iii) If k = ks prove ∩w∈W (k)ZG(w) represents ZG(W ). (You need to use separatedness.) For general k

apply Galois descent to ZGks
(Wks); the representing scheme is denoted ZG(W ).

(iv) If k = ks, prove that ∩w∈W (k)α
−1
w (W ′) represents TranG(W,W ′). Then use Galois descent to

prove representability by a closed subscheme TranG(W,W ′) for any k. The representing scheme is denoted
TranG(W,W ), so NG(W ) := TranG(W,W ) represents NG(W ).

(v) Prove that for any k-algebra R and g ∈ NG(W )(R), the g-action VR ' VR carries WR isomorphically
onto itself, and deduce that NG(W ) is a k-subgroup of G. (Hint: reduce to artin local R and k = k.)

4. Let G be a k-group of finite type. This exercise builds on the previous one. Note G is separated: ∆G/k

is a base change of e : Spec k → G! If G is smooth then the scheme-theoretic center of G is ZG := ZG(G).
(i) Let G be SLn or GLn or PGLn, and let T be the diagonal k-torus in each case. Prove that ZG(T ) = T

(as subschemes of G, not just at the level of geometric points!). Hint: to deduce the PGLn-case from the
GLn-case, prove that the diagonal k-torus in GLn is the scheme-theoretic preimage of the one in PGLn.

(ii) Using (i), prove ZSLn
= µn, ZPGLn

= 1, and ZGLn
is the k-subgroup of scalar diagonal matrices.

(iii) Prove that for a smooth closed subscheme V in G, the formation of ZG(V ) and NG(V ) commutes with
any extension of the ground field. (Hint: use the functorial characterizations, not the explicit constructions.)
This applies to ZG when G is smooth.
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Algebraic Groups I. Homework 4

1. Let T ⊂ Sp2n be the points
(
t 0
0 t−1

)
for diagonal t ∈ GLn. Prove ZG(T ) = T (so T is a maximal torus!);

deduce ZSp2n
= µ2. The Appendix “Properties of orthogonal groups” computes ZSO(q) (see Theorem 1.7).

2. Prove that PGLn is smooth using the infinitesimal criterion, and prove that it is connected by a suitable
“action” argument. The Appendix “Properties of orthogonal groups” treats the harder analogue for SO(q).

3. Let X be a scheme over a field k, and x ∈ X(k). Recall that Tanx(X) is identified as a set with the fiber
of X(k[ε])→ X(k) over x. Let k[ε, ε′] = k[t, t′]/(t, t′)2, so this is 3-dimensional with basis {1, ε, ε′}.

(i) For c ∈ k, consider the k-algebra endomorphism of k[ε] defined by ε 7→ cε. Show that the resulting
endomorphism of X(k[ε]) over X(k) restricts to scalar multiplication by c on the fiber Tanx(X).

(ii) Using the two natural quotient maps k[ε, ε′]� k[ε], define a natural map

X(k[ε, ε′])→ X(k[ε])×X(k) X(k[ε])

and prove it is bijective. Using the natural quotient map k[ε, ε′]� k[ε], show that the resulting map

X(k[ε])×X(k) X(k[ε])
'← X(k[ε, ε′])→ X(k[ε])

induces addition on Tanx(X): the k-linear structure on Tanx(X) is encoded by the functor of X!
(iii) For (X,x) = (G, e) with a k-group G, relate addition on Tanx(X) to the group law on G: for

m : G×G→ G, show that Tane(G)× Tane(G) = Tan(e,e)(G×G)→ Tane(G) is addition.

4. Let A be a finite-dimensional associative algebra over a field k. Define the ring functor A on k-algebras
by A(R) = A⊗k R and the group functor A× by A×(R) = (A⊗k R)×.

(i) Prove that A is represented by an affine space over k. Using the k-scheme map NA/k : A→ A1
k defined

functorially by u 7→ det(mu), where mu : A ⊗k R → A ⊗k R is left multiplication by u ∈ A(R), prove that
A× is represented by the open affine subscheme N−1

A/k(Gm). (This is often called “A× viewed as a k-group”,

a phrase that is, strictly speaking, meaningless, since A× does not encode the k-algebra A.)

(ii) For A = Matn(k) show that A× = GLn, and for k = Q and A = Q(
√
d) identify it with an explicit

Q-subgroup of GL2 (depending on d).
(iii) How does the kernel of NA/k : A× → Gm (the group of norm-1 units) relate to Exercise 4(iii) in HW1

as a special case? For A = Matn(k), show that this homomorphism is the nth power (!) of the determinant.

5. This exercise develops a very important special case of Exercise 4. Let A be a finite-dimensional central
simple algebra over k. By general theory, this is exactly the condition that Ak ' Matn(k) as k-algebras (for
some n ≥ 1), and such an isomorphism is unique up to conjugation by a unit (Skolem-Noether theorem).

(i) By a clever application of the Skolem-Noether theorem (see Exercise 30, Chapter 3 of the book by
Farb/Dennis on non-commutative algebra), it is a classical fact that the linear derivations of a matrix algebra
over a field are precisely the inner derivations (i.e., x 7→ yx − xy for some y). Combining this with length-
induction on artin local rings, prove the Skolem-Noether theorem for Matn(R) for any artin local ring R
(i.e., all R-algebra automorphisms are conjugation by a unit).

(ii) Construct an affine k-scheme I of finite type such that naturally I(R) = IsomR(AR,Matn(R)), the set
of R-algebra isomorphisms. Note that I(k) is non-empty! Prove I is smooth by checking the infinitesimal
criterion for Ik with the help of (i). Deduce that AK ' Matn(K) for a finite separable extension K/k.

(iii) By (ii), we can choose a finite Galois extension K/k and a K-algebra isomorphism θ : AK ' Matn(K),
and by Skolem-Noether this is unique up to conjugation by a unit. Prove that for any choice of θ, the
determinant map transfers to a multiplicative map AK → A1

K which is independent of θ. Deduce that it
is Gal(K/k)-equivariant, and so descends to a multiplicative map NrdA/k : A → A1

k which “becomes” the
determinant over any extension F/k for which AF ' Matn(F ). Prove that NrdnA/k = NA/k (explaining the

name reduced norm for NrdA/k), and conclude that A× = Nrd−1
A/k(Gm).

(iv) Let SL(A) denote the scheme-theoretic kernel of NrdA/k : A× → Gm. Prove that its formation

commutes with any extension of the ground field, and that it becomes isomorphic to SLn over k. In particular,
SL(A) is smooth and connected; it is a “twisted form” of SLn. (This is false for ker NA/k whenever char(k)|n!)
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Algebraic Groups I. Homework 5
1. Let k be a field, Un the standard strictly upper-triangular unipotent k-subgroup of GLn. Prove that

no nontrivial k-group scheme is isomorphic to closed k-subgroups of Ga and Gm. (If char(k) = p > 0, the
key is to prove that µp is not a k-subgroup of Ga.) Deduce that T ∩ Un = 1 for any k-torus T in GLn.

2. Let a smooth finite type k-group G act linearly on a finite-dimensional V . Let V denote the affine space
whose A-points are VA. Define V G(A) to be the set of v ∈ VA on which GA acts trivially.

(i) Prove that V G is represented by the closed subscheme associated to a k-subspace of V (denoted of
course as V G). Hint: use Galois descent to reduce to the case k = ks, and then show V G(k) works.

(ii) For an extension field K/k, prove that (VK)GK = (V G)K inside of VK .

3. This exercise develops the important concept of Weil restriction of scalars in the affine case. It is an
analogue of viewing a complex manifold as a real manifold with twice the dimension (and “complex points”
become “real points”). Let k be a field, k′ a finite commutative k-algebra (not necessarily a field!), and X ′

an affine k′-scheme of finite type. Consider the functor Rk′/k(X ′) : A X ′(k′ ⊗k A) on k-algebras.
(i) By considering X ′ = An

k′ and then any X ′ via a closed immersion into an affine space, prove that this
functor is represented by an affine k-scheme of finite type, again denoted Rk′/k(X ′). Prove its formation

naturally commutes with products in X ′, and compute Rk′/k(Gm) inside Rk′/k(A1
k′). What if k′ = 0?

(ii) Prove Rk′/k(Spec k′) = Spec k, and explain why Rk′/k(X ′) is naturally a k-group whenX ′ is a k′-group.

(iii) For an extension field K/k, prove that Rk′/k(X ′)K ' RK′/K(X ′K′) for K ′ = k′⊗kK. Taking K = k,
use the infinitesimal criterion to prove that if k′ is a field then Rk′/k(X ′) is k-smooth when X ′ is k′-smooth.
(Can you see it directly from the construction?) Warning: if k′/k is not separable then Rk′/k(X ′) can be
empty (resp. disconnected) when X ′ is non-empty (resp. geometrically integral)!

(iv) If k′/k is a separable extension field, prove Rk′/k(X ′)ks '
∏
σ σ
∗(X ′) with σ varying through

Homk(k′, ks). Transfer the natural Gal(ks/k)-action on the left over to the right and describe it.

4. Let Γ = Gal(ks/k). For any k-torus T , define the character group X(T ) = Homks(Tks ,Gm). A Γ-lattice
is a finite free Z-module equipped with a Γ-action making an open subgroup act trivially.

(i) Prove X(T ) is a finite free Z-module of rank dimT . Describe a natural Γ-lattice structure on X(T ).
(ii) For a Γ-lattice Λ, prove R  Hom(Λ, R×ks)Γ is represented by a k-torus Dk(Λ), the dual of Λ. (Hint:

use finite Galois descent to reduce to Λ with trivial Γ-action.) Prove Λ ' X(Dk(Λ)) naturally as Γ-lattices.
(iii) Prove T ' Dk(X(T )) naturally as k-tori, so the category of k-tori is anti-equivalent to the category

of Γ-lattices. Describe scalar extension in such terms, and prove T is k-split if and only if X(T ) = X(T )Γ.
(iv) Prove a map of k-tori T ′ → T is surjective if and only if X(T )→ X(T ′) is injective. Prove ker(T ′ → T )

is a k-torus (resp. finite, resp. 0) if and only if coker(X(T ) → X(T ′)) is torsion-free (resp. finite, resp. 0).
Inducting on dimT , prove smooth connected k-subgroups M of T are k-tori. (Hint: prove M(k) is divisible.)

(v) If k′/k is a finite separable subextension of ks, prove that Rk′/k(T ′) is a k-torus if T ′ is a k′-torus. (For

T ′ = Gm, this is “k′
×

viewed as a k-group”.) By functorial considerations, prove X(Rk′/k(T ′)) = IndΓ
Γ′(X(T ))

with Γ′ the open subgroup corresponding to k′. For every k-torus T , construct a surjective k-homomorphism∏
i Resk′i/k(Gm)� T for finite separable extensions k′i/k. Conclude that k-tori are unirational over k.

(vi) (optional) For a finite extension field k′/k, define a norm map Nk′/k : Rk′/k(Gm) → Gm. Prove its
kernel is a torus when k′/k is separable (e.g., k = R!), and relate to HW1, Exercise 4(iii) for imperfect k.

5. Consider a k-torus T ⊂ GL(V ), with k infinite. Let AT ⊂ End(V ) be the commutative k-subalgebra
generated by T (k) (Zariski-dense in T since k is infinite, due to unirationality from Exercise 4(iv)).

(i) Using Jordan decomposition, prove that all elements of T (k) are semisimple in End(Vk).

(ii) Assume k = ks. Prove AT is a product of copies of k, and T (k) = A×T when T is maximal.

(iii) Using Galois descent and the end of 4(v), prove (AT )ks = ATks
, and deduce T (k) = A×T for maximal T .

Show naturally T ' ResAT /k(Gm), and that maximal k-subtori in GL(V ) and maximal étale commutative
k-subalgebras of End(V ) are in bijective correspondence. Generalize to finite k with another definition of
AT , and to central simple algebras in place of End(V ) (hint: use HW4 Exercise 5(ii) and Galois descent).

(iv) For any (possibly finite) k, prove a smooth connected commutative k-group is a torus if and only if
its k-points are semisimple. (Use the end of Exercise 4(iv).)
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Algebraic Groups I. Homework 6

1. Use the method of proof of Proposition 4.10, Chapter I, to prove the following scheme-theoretic version: if
k is a field and a smooth unipotent affine k-group G is equipped with a left action on a quasi-affine k-scheme
V of finite type then for any v ∈ V (k) the smooth locally closed image of the orbit map G→ V defined by
g 7→ gv is actually closed in V .

(Hint: to begin, let k[V ] denote the k-algebra of global functions on V and prove that R ⊗k k[V ] is
the R-algebra of global functions on VR for any k-algebra R. Use this to construct a functorial k-linear
representation of G on k[V ] respecting the k-algebra structure. Borel’s K should be replaced with k after
passing to the case k = k. Note that it is not necessary to assume Borel’s F is non-empty; the argument
directly proves J meets k×, so J = (1) and hence F is empty.)

2. A k-homomorphism f : G′ → G between k-groups of finite type is an isogeny if it is surjective and flat
with finite kernel.

(i) Prove that a surjective homomorphism between smooth finite type k-groups of the same dimension is
an isogeny. (The Miracle Flatness Theorem will be useful here.)

(ii) Prove that a map f : T ′ → T between k-tori is an isogeny if and only if the corresponding map
X(T )→ X(T ′) between Galois lattices is injective with finite cokernel.

(iii) Prove the following are equivalent for a k-torus T : (a) it contains Gm as a k-subgroup, (b) there
exists a surjective k-homomorphism T � Gm, and (c) X(T )Q has a nonzero Gal(ks/k)-invariant vector.
Such T are called k-isotropic; otherwise we say T is k-anisotropic. In general, a smooth affine k-group is
called k-isotropic if it contains Gm as a k-subgroup, and k-anisotropic otherwise.

(iv) Let T be a k-torus. Prove the existence of a k-split k-subtorus Ts that contains all others, as well as
a k-anisotropic k-subtorus Ta that contains all others. Also prove that Ts × Ta → T is an isogeny. Compute
Ts and Ta for T = Rk′/k(Gm) for a finite separable extension k′/k.

3. (i) For a k-torus T , prove the existence of an étale k-group AutT/k representing the automorphism functor
S  AutS(TS). (Hint: if T is k-split then show that the constant k-group associated to Aut(X(T )) ' GLr(Z)
does the job. In general let k′/k be finite Galois such that Tk′ is k′-split, and use Galois descent.)

(ii) Using the existence of the étale k-group AutT/k, prove that if a connected k-group scheme G is
equipped with an action on T then the action must be trivial. Deduce that if T is a normal k-subgroup of
a connected finite type k-group G then it is a central k-subgroup. Give an example of a smooth connected
k-group containing Ga as a non-central normal k-subgroup. (Hint: look inside SL2.)

4. Let T be a k-torus in a k-group G of finite type. This exercise uses AutT/k from Exercise 3.

(i) Construct a k-morphism NG(T )→ AutT/k with kernel ZG(T ). Prove W (G,T ) := NG(T )(k)/ZG(T )(k)
is naturally a finite subgroup of AutZ(X(T )). If f : G′ → G is surjective with finite kernel and T ′ is a k-torus
in G′ containing ker f with f(T ′) = T then prove W (G′, T ′)→W (G,T ) is an isomorphism.

(ii) For G = GLn,PGLn,SLn,Sp2n and T the k-split diagonal maximal k-torus (so ZG(T ) = T ), re-
spectively identify X(T ) with Zn, Zn/diag, {m ∈ Zn |

∑
mj = 0}, and Zn. Prove NG(T )(k)/ZG(T )(k) ⊂

AutQ(X(T )Q) is Sn for the first three, and Sn n 〈−1〉n for Sp2n, all with natural action. (Hint: to control
NG(T ), via G ↪→ GL(V ) decompose V as a direct sum of T -stable lines with distinct eigencharacters.)

5. Let (V, q) be a non-degenerate quadratic space over a field k with dimV ≥ 2. This exercise proves SO(q)
contains Gm (i.e., it is k-isotropic in the sense of Exercise 2(iii)) if and only if q = 0 has a solution in V −{0}.

(i) If q = 0 has a nonzero solution v in V , prove that v lies in a hyperbolic plane H with H ⊕H⊥ = V .
(If char(k) = 2 and dimV is odd, work over k to show v 6∈ V ⊥.) Use this to construct a Gm inside of SO(q).

(ii) If SO(q) contains Gm as a k-subgroup S, prove that q = 0 has a nonzero solution in V . (Hint: apply
Exercise 5(iii) in HW5 to the 2-dimensional k-split k-torus T generated in GL(V ) by S and the central Gm.
If A ' kr is the corresponding “k-split” commutative k-subalgebra of End(V ), prove the resulting inclusion
Gm = S ↪→ T = RA/k(Gm) = Gr

m is t 7→ (th1 , . . . , thr ). Use the A-module structure on V to find a k-basis
{ei} that identifies S with diag(tn1 , . . . , tnd) for n1 ≤ · · · ≤ nd with

∑
ni = 0. Prove n1 < 0 < nd, and if

q =
∑
i≤j aijxixj in these coordinates then prove ni + nj = 0 when aij 6= 0. Deduce q(v) = 0 for any v in

the span of the ei for which ni < 0, or for which ni > 0.)
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0. (optional) Read the proof (p. 101 in Mumford’s “Abelian Varieties”) of Cartier’s theorem: group schemes
G locally of finite type over a field of characteristic 0 are smooth! (This uses the left-invariant derivations.)

1. (i) Prove that ∂x is an invariant vector field on Ga, and t−1∂t is an invariant vector field on Gm.
(ii) Let A be a finite-dimensional associative k-algebra, and A× the associated k-group of units. Prove

Tane(A
×) = A naturally, and that the Lie algebra structure is then [a, a′] = aa′ − a′a. Using A = End(V ),

compute gl(V ). Use this to compute the Lie algebras sl(V ), pgl(V ), sp(B), gsp(B), so(q).
(iii) Read Corollary A.7.6 and Lemma A.7.13 (and the paragraph preceding it) in the book Pseudo-

reductive groups. Compute the p-Lie algebra structure on Lie(A×), Lie(Gm), and Lie(Ga) if char(k) = p > 0.

2. Let G be a smooth group of dimension d > 0 over k.

(i) Define the concept of left-invariant differential i-form for i ≥ 0, and prove the space Ωi,`G (G) of such

form has dimension
(
d
i

)
. Compute the 1-dimensional Ωd,`G (G) for GL(V ), SL(V ), and PGL(V ).

(ii) Using right-translation, construct a linear representation of G on Ωd,`G (G); the associated character
χG : G→ Gm is the modulus character. Prove χG|ZG

= 1 and deduce that χG = 1 if G/ZG = D(G/ZG).
(iii) (optional) If k is local (allow R, C) and X is smooth, use the k-analytic inverse function theorem to

equip X(k) with a functorial k-analytic manifold structure, and use k-analytic Change of Variables to assign
a measure on X(k) to a nowhere-vanishing ω ∈ ΩdimX

X (X). (Serre’s “Lie groups and Lie algebras” does

k-analytic foundations.) Relate with Haar measures, and prove χ±1
G |G(k) is the classical modulus character.

3. Let K/k be a degree-2 finite étale algebra (i.e., a separable quadratic field extension or k × k), and
let σ be the unique non-trivial k-automorphism of K; note that Kσ = k. A σ-hermitian space is a pair
(V, h) consisting of a finite free K-module equipped with a perfect σ-semilinear form h : V × V → K (i.e.,
h(cv, v′) = ch(v, v′), h(v, cv′) = σh(v, v′), and h(v′, v) = σ(h(v, v′))). Note v 7→ h(v, v) is a quadratic form
qh : V → k over k satisfying qh(cv) = NK/k(c)qh(v) for c ∈ K, v ∈ V , and dimk V is even (char(k) = 2 ok!).

The unitary group U(h) over k is the subgroup of RK/k(GL(V )) preserving h. Using RK/k(SL(V )) gives
the special unitary group SU(h). Example: V = F finite étale over K with an involution σ′ lifting σ, and
h(v, v′) := TrF/K(vσ′(v′)); e.g., F and K CM fields, k totally real, and complex conjugations σ′ and σ.

(i) If K = k× k, prove V ' V0×V ∨0 with h((v, `), (v′, `′)) = (`′(v), `(v′)) for a k-vector space V0. Identify
U(h) with GL(V0) carrying SU(h) to SL(V0). Compute qh and prove non-degeneracy.

(ii) In the non-split case prove that U(h)K ' GLn carrying SU(h) to SLn (n = dimK V ). Prove U(h) is
smooth and connected with derived group SU(h) and center Gm, and qh is non-degenerate. Compute su(h).

(iii) Identify U(h) with a k-subgroup of SO(qh). Discuss the split case, and all cases with k = R.

4. Let a smooth k-group H act on a separated k-scheme Y . For a k-scheme S, let Y H(S) be the set of
y ∈ Y (S) invariant by the HS-action on YS (i.e., yS′ is H(S′)-invariant for all S-schemes S′).

(i) If k = ks, prove Y H is represented by the closed subscheme ∩h∈H(k)Y
h where Y h = α−1

h (∆Y/k) for
αh : Y → Y × Y the map y 7→ (y, h.y). Then prove representability by a closed subscheme of Y for general
k by Galois descent. Relate this to Exercise 2 in HW5.

(ii) For y ∈ Y H(k) explain why H acts on Tany(Y ) and prove Tany(Y H) = Tany(Y )H .
(iii) Assume H is a closed subgroup of a k-group G of finite type, g := Lie(G) and h := Lie(H). Prove

Tane(ZG(H)) = gH via adjoint action. Also prove Tane(NG(H)) = ∩h∈H(k)(AdG(h)−1)−1(h) when k = ks.

5. A diagram 1→ G′
j→ G

π→ G′′ → 1 of finite type k-groups is exact if π is faithfully flat and G′ = kerπ.
(i) For any such diagram, prove G′′ = G/G′ via π. Prove a diagram of k-tori 1 → T ′ → T → T ′′ → is

exact if and only if 0→ X(T ′′)→ X(T )→ X(T ′)→ 0 is exact (as Z-modules).
(ii) If G′ is finite then π is an isogeny. Prove that isogenies are finite flat with constant degree, and that

πn : SLn → PGLn is an isogeny of degree n. Compute Lie(πn); when is it surjective?
(iii) Prove that a short exact sequence of finite type k-groups induces a left-exact sequence of Lie algebras,

short exact if G and G′ are smooth. (Smoothness of G can be dropped.)
(iv) Read §A.3 through Example A.3.4 in Pseudo-reductive groups, and prove FX/k : X → X(p) is finite

flat of degree pdimX for k-smooth X. Prove Lie(FG/k) = 0, and compute FG/k for GL(V ) and O(q).



8

Algebraic Groups I. Homework 8

1. Let A be a central simple algebra over a field k, T a k-torus in A×.
(i) Adapt Exercise 5 in HW5 to make an étale commutative k-subalgebra AT ⊆ A such that (AT )ks is

generated by T (ks), and establish a bijection between the sets of maximal k-tori in A× and maximal étale
commutative k-subalgebras of A. Deduce that SL(A) is k-anisotropic if and only if A is a division algebra.

(ii) For an étale commutative k-subalgebra C ⊆ A, prove ZA(C) is a semisimple k-algebra with center C.
(iv) If T is maximal as a k-split subtorus of A× prove T is the k-group of units in AT and that the

(central!) simple factors Bi of BT := ZA(AT ) are division algebras.
(v) Fix A ' EndD(V ) for a right module V over a central division algebra D, so V is a left A-module and

V =
∏
Vi with nonzero left Bi-modules Vi. If T is maximal as a k-split torus in A×, prove Vi has rank 1

over Bi and D, so Bi ' D. Using D-bases, deduce that all maximal k-split tori in A× are A×(k)-conjugate.

2. For a torus T over a local field k (allow R, C), prove T is k-anisotropic if and only if T (k) is compact.

3. Let Y be a smooth separated k-scheme locally of finite type, and T a k-torus with a left action on Y .
This exercise proves that Y T is smooth.

(i) Reduce to the case k = k. Fix a finite local k-algebra R with residue field k, and an ideal J in R with
JmR = 0. Choose y ∈ Y T (R/J), and for R-algebras A let E(A) be the fiber of Y (A) � Y (A/JA) over
yA/JA. Let y0 = y mod mR ∈ Y T (k) and A0 = A/mRA. Prove E(A) 6= ∅ and make it a torsor over the

A0-module F (A) := JA⊗k Tany0(Y ) = JA⊗A0
(A0 ⊗k Tany0(Y )) naturally in A (denoted v + y).

(ii) Define an A0-linear T (A0)-action on F (A) (hence a TR-action on F ), and prove that E(A) is T (A)-
stable in Y (A) with t.(v + y) = t0.v + t.y for y ∈ E(A), t ∈ T (A), v ∈ F (A), and t0 = t mod mR.

(iii) Choose ξ ∈ E(R) and define a map of functors h : TR → F by t.ξ = h(t) + ξ for points t of TR; check
it is a 1-cocycle, and is a 1-coboundary if and only if ETR(R) 6= ∅. For V0 = J ⊗k Tany0(Y ) use h to define a
1-cocycle h0 : T → V 0, and prove t.(v, c) := (t.v + ch0(t), c) is a k-linear representation of T on V0 ⊕ k. Use
a T -equivariant splitting (!) to prove h0 (and then h) is a 1-coboundary; deduce Y T is smooth!

4. Let G be a smooth k-group of finite type, and T a k-torus equipped with a left action on G (an interesting
case being T a k-subgroup acting by conjugation, in which case GT = ZG(T )).

(i) Use Exercise 3 to show ZG(T ) is smooth, and by computing its tangent space at the identity prove for
connected G that T ⊂ ZG if and only if T acts trivially on g = Lie(G).

(ii) Assume T is a k-subgroup of G acting by conjugation. Using Exercise 4(iii) of HW7 and the semisim-
plicity of the restriction to T of AdG : G → GL(g), prove that NG(T ) and ZG(T ) have the same tangent
space at the identity. Via (i), deduce that ZG(T ) is an open subscheme of NG(T ), so NG(T ) is smooth and
NG(T )/ZG(T ) is finite étale over k.

(iii) Assumptions as in (ii), the Weyl group W = W (G,T ) is NG(T )/ZG(T ). If T is k-split, use the
equality Endk(T ) = Endks(Tks) to prove that W (k) = W (ks) and deduce that W is a constant k-group.
But show NG(T )(k) does not map onto W (k) if k is infinite and K is a separable quadratic extension of k

such that −1 6∈ NK/k(K×) (e.g., k totally real and K a CM extension, or k = Q and K = Q(
√

3)) with
G = SL(K) ' SL2 and T the non-split maximal k-torus corresponding the norm-1 part of K ⊂ Endk(K).

(iv) Prove that NG(T )(k)→W (k) = W (k) is surjective for the cases in HW6, Exercise 4(ii).

5. (i) For any field k, affine k-scheme X of finite type, and nonzero finite k-algebra k′, define a natural map
jX,k′/k : X → Resk′/k(Xk′) by X(R) → X(k′ ⊗k R) = Xk′(k

′ ⊗k R) for k-algebras R. Prove jX,k′/k is a
closed immersion and that its formation commutes with fiber products in X.

(ii) Let G be an affine k-group of finite type. Prove that jG,k′/k is a k-homomorphism.
(iii) A vector group over k is a k-group G admitting an isomorphism G ' Gn

a , and a linear structure on
G is the resulting Gm-action. A linear homomorphism G′ → G between vector groups equipped with linear
structures is a k-homomorphism which respects the linear structures. For example, (x, y) 7→ (x, y + xp) is a
non-linear automorphism of G2

a (with its usual linear structure) when char(k) = p > 0.
For any k, prove Ga admits a unique linear structure and its linear endomorphism ring is k. Giving

Gn
a and Gm

a their usual linear structures, prove the linear k-homomorphisms Gn
a → Gm

a correspond to
Matm×n(k). Are there non-linear homomorphisms if char(k) = 0?
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1. Read Appendix B in the book Pseudo-reductive groups to learn Tits’ structure theory for smooth connected
unipotent groups over arbitrary fields k with positive characteristic, and how k-tori act on such groups.
Especially noteworthy are the results labelled B.1.13, B.2.7, B.3.4, and B.4.3.

2. Let U be a smooth connected commutative affine k-group, and assume U is p-torsion if char(k) = p > 0.
(i) If char(k) > 0 and U is k-split, use B.1.12 in Pseudo-reductive groups to prove U is a vector group.
(ii) Assume char(k) = 0. Prove that any short exact sequence 0 → Ga → G → Ga → 0 is split. (Hint:

log(u) is an “algebraic” function on the unipotent points of Matn.) Deduce that U ' GN
a , and prove that

any action on U by a k-split torus T respects this linear structure.

3. Let k′/k be a degree-p purely inseparable extension of a field k of characteristic p > 0.
(i) Prove that U = Rk′/k(Gm)/Gm is smooth and connected of dimension p− 1, and is p-torsion. Deduce

it is unipotent.
(ii) In the Appendix “Quotient formalism” it is proved that any commutative extension of Ga by Gm over

any field is uniquely split over that field. Prove that Rk′/k(Gm)(ks)[p] = 1, and deduce that U in (i) does
not contain Ga as a k-subgroup! (For a salvage, see Lemma B.1.10 in Pseudo-reductive groups: a p-torsion
smooth connected commutative affine group over any field of characteristic p > 0 admits an étale isogeny
onto a vector group.)

4. Let G be a smooth group of finite type over a field k, and N a commutative normal k-subgroup scheme.
(i) Prove that the left G-action on N via conjugation factors uniquely through an action of G/N on N ,

and if N is central in G then prove that the action of G on itself via conjugation uniquely factors through
an action of G/N on G. Describe this explicitly for G = SLn and N = µn over any field k, accounting for
the fact that SLn(k)→ PGLn(k) is generally not surjective.

(ii) Prove the commutator map G×G→ G uniquely factors through a k-morphism (G/ZG)× (G/ZG)→
D(G).

5. Let B be a smooth connected solvable group over a field k.
(i) If B = GmoGa with the standard semi-direct product structure, prove that ZB(t, 0) is the left factor

for any t ∈ k× − {1}.
(ii) Deduce by inductive arguments resting on (i) that if k = k and S ⊂ B(k) is a commutative subgroup

of semisimple elements then S ⊂ T (k) for some maximal torus T ⊂ B.
(iii) Assume char(k) 6= 2 with k = k, and let G = SOn with n ≥ 3. Let µ ' µn−1

2 be the “diagonal” k-
subgroup {(ζi) ∈ µn2 |

∏
ζi = 1}. Prove that the disconnected µ is maximal as a solvable smooth k-subgroup

of G and is not contained in any maximal k-torus of G (hint: it has too much 2-torsion), so in particular is
not contained in any Borel k-subgroup (by (ii))!

6. Let G be a quasi-split smooth connected affine k-group, and B ⊂ G a Borel k-subgroup. Let T be a
maximal k-torus in B.

(i) Using conjugacy of maximal tori in Gk, prove g 7→ gBg−1 is a bijection from NG(T )(k)/ZG(T )(k) onto

the set of Borel k-subgroups containing Tk. In particular, this set is finite.

(ii) Using HW8 Exercise 4, prove that NG(T )(ks)/ZG(T )(ks)→ NG(k)/ZG(T )(k) is bijective, and deduce
that every Borel subgroup of Gk containing Tk is defined over ks!

(iii) Assume that T is k-split and ZG(T ) = T . Using Hilbert 90 and HW8 Exercise 4, prove that
NG(T )(k)/T (k) → NG(T )(ks)/ZG(T )(ks) is bijective. Deduce that every Borel subgroup of Gk containing
Tk is defined over k! In each of the classical cases (GLn, SLn, PGLn, Sp2n, and SOn), find all B containing
the k-split maximal“diagonal” T . How many parabolic k-subgroups can you find containing one such B?
(At least for GLn, SLn, and PGLn, prove you have found all such parabolics.)

(iv) Prove that each maximal smooth unipotent subgroup of Gk admits a conjugate contained in Bk, and
deduce that if B∩B′ = T for another Borel B′ containing T then G is reductive. Use this with (iii) to prove
reductivity for GLn (n ≥ 1), SLn (n ≥ 2), PGLn (n ≥ 2), Sp2n (n ≥ 1), and SOn (n ≥ 2).
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1. Let G be a smooth connected affine group over a field k.
(i) For a maximal k-torus T in G and a smooth connected k-subgroup N in G that is normalized by T ,

prove that T ∩ N is a maximal k-torus in N (e.g., smooth and connected!). Show by example that S ∩ N
can be disconnected for a non-maximal k-torus S. Hint: first analyze ZG(T ) ∩N using T nN to reduce to
the case when T is central in G, and then pass to G/T .

(ii) Let H be a smooth connected normal k-subgroup of G, and P a parabolic k-subgroup. If k = k then
prove (P ∩H)0

red is a parabolic k-subgroup of H, and use Chevalley’s theorem on parabolics being their own

normalizers on geometric points (applied to H) to prove P ∩H is connected (hint: work over k).
(iii) Granting Q = NH(Q) scheme-theoretically for parabolic Q in H (Prop. 3.5.7 in Pseudo-reductive

groups, rests on structure theory of reductive groups), prove P ∩H in (ii) is smooth. (Hint: prove (P ∩H)0
red

is normal in P , hence in P ∩H!) In particular, B ∩H is a Borel k-subgroup of H for all Borels B of G.

2. Let k be a field, and G ∈ {SL2,PGL2}.
(i) Define a unique PGL2-action on SL2 lifting conjugation. Prove a k-automorphism of G preserving the

standard Borel k-subgroup and the diagonal k-torus is induced by the action of a diagonal k-point of PGL2.
(ii) Prove that the homomorphism PGL2(k) → Autk(G) is an isomorphism. In particular, every k-

automorphism of PGL2 is inner. Show that SL2 admits non-inner k-automorphisms if and only if k× 6= (k×)2.

3. Let λ : Gm → G be a 1-parameter k-subgroup of a smooth affine k-groupG. Define µ : UG(λ−1)×PG(λ)→
G to be multiplication. We seek to prove it is an open immersion. Let g = Lie(G).

(i) For n ∈ Z define gn to be the n-weight space for λ (i.e., ad(λ(t)).X = tnX). Define gλ≥0 = ⊕n≥0gn,
and similarly for gλ>0. Prove Lie(PG(λ)) = gλ≥0, Lie(UG(λ)) = gλ>0, and Tan(e,e)(µ) is an isomorphism.

(ii) If G = GL(V ) and the Gm-action on V has weights e1 > · · · > em, justify the block-matrix descriptions
of UG(λ±1), ZG(λ), and PG(λ). Deduce UG(λ−1) and PG(λ) are smooth and have trivial intersection.

(iii) Working over k and using suitable left and right translations by geometric points, prove that dµ(ξ) is
an isomorphism for all k-points ξ of UG(λ−1)×PG(λ). Deduce that if UG(λ−1) and PG(λ) are smooth (OK
for GL(V ) by (ii)) then µ induces an isomorphism between complete local rings at all k-points, and conclude
that µ is flat and quasi-finite. Hence, µ has open image in such cases.

(iv) Using valuative criterion for properness, prove a flat quasi-finite separated map f : X → Y between
noetherian schemes is proper if all fibers Xy have the same rank. (Hint: base change to Y the spectrum of
a dvr.) By Zariski’s Main Theorem, proper quasi-finite maps are finite. Deduce µ is an open immersion if
UG(λ−1) and PG(λ) are smooth with trivial intersection. (Hint: finite flat of fiber-degree 1 is isomorphism.)

This settles GL(V ); the Appendix “Dynamic approach to algebraic groups” then yields the general case!

4. Let λ : Gm → G be a 1-parameter k-subgroup of a smooth affine k-group. For any integer n ≥ 1, prove
that PG(λn) = PG(λ), UG(λn) = UG(λ), and ZG(λn) = ZG(λ).

5. Let G be a reductive group over a field k, and N a smooth closed normal k-subgroup. Prove N is
reductive. In particular, D(G) is reductive.

6. Prove that µn[d] = µd for d|n, and that Z/nZ→ End(µn) is an isomorphism.

7. Prove that a rational homomorphism (defined in evident manner: respecting multiplication as rational
map) between smooth connected groups over a field k extends uniquely to a k-homomorphism. (Hint: pass
to the case k = ks by Galois descent, and then use suitable k-point translations.)

8. (optional) Let G be a smooth connected affine group over an algebraically closed field k, char(k) = 0.
(i) If all finite-dimensional linear representations of G are completely reducible, then prove that G is

reductive. (Hint: use Lie-Kolchin, and behavior of semisimplicity under restriction to a normal subgroup.
This will not use characteristic 0.)

(ii) Conversely, assume that G is reductive. The structure theory of reductive groups implies that Lie(DG)
is a semisimple Lie algebra, and a subspace of a finite-dimensional linear representation space for G is G-
stable if and only if it is g-stable under the induced action g → End(V ) since char(k) = 0. Prove that all
finite-dimensional linear representations of G are completely reducible.


