Algebraic Groups I. Homework 1

- 1. This exercise studies the endomorphism rings of the k-groups \mathbf{G}_m and \mathbf{G}_a , with k any commutative ring.
- (i) Prove that $\operatorname{End}_k(\mathbf{G}_a)$ consists of $f \in k[t]$ such that f(x+y) = f(x) + f(y) in k[x,y], and that $\operatorname{End}_k(\mathbf{G}_m)$ consists of $f \in k[t,t^{-1}]$ such that f(xy) = f(x)f(y) in $k[x,y,x^{-1},y^{-1}]$ and f has no zeros on any geometric fibers over Spec k.
- (ii) Deduce that if k is a **Q**-algebra then naturally $\operatorname{End}_k(\mathbf{G}_a) = k$, and that if k is a field with characteristic p > 0 then it consists of $f = \sum c_j t^{p^j}$ ($c_j \in k$). What if $k = \mathbf{Z}/(p^2)$?
- (iii) Prove that $\operatorname{End}_k(\mathbf{G}_m) = \mathbf{Z}$ when k is a field, and deduce the same when k is an artin local ring via induction on the length of k. (Hint: reduce to the case when f vanishes on the special fiber.)
- (iv) Prove that $\operatorname{End}_k(\mathbf{G}_m) = \mathbf{Z}$ for k any local ring by using (iii) to settle the case of a complete local noetherian ring, then any local noetherian ring, and finally any local ring (by using local noetherian subrings of k). Deduce that if k is any ring whatsoever, an endomorphism of the k-group \mathbf{G}_m is $t \mapsto t^n$ for a locally constant function $n : \operatorname{Spec} k \to \mathbf{Z}$.
- 2. Let V be a finite-dimensional vector space over a field k. This exercise develops coordinate-free versions of GL_n , SL_n , and Sp_{2n} attached to V.
- (i) Elements of the graded symmetric algebra $\operatorname{Sym}(V^*)$ are called *polynomial functions on* V. Justify the name (even for finite k!) by identifying them with *functorial maps* of sets $V_R \to R$ given by polynomial expressions relative to some (equivalently, any) basis of V, with R a varying k-algebra. In particular, show that det is a polynomial function on $\operatorname{End}(V)$.
- (ii) For any k-algebra R, define the functors $\underline{\operatorname{End}}(V)$ and $\underline{\operatorname{Aut}}(V)$ on k-algebras R by $R \leadsto \operatorname{End}(V_R)$, $R \leadsto \operatorname{Aut}_R(V_R)$. Using the identification $\operatorname{End}(V_R, V_R) = \operatorname{End}(V)_R$, prove that $\underline{\operatorname{End}}(V)$ is represented by $\operatorname{Sym}(\operatorname{End}(V)^*)$.
 - (iii) Define $\det \in \operatorname{Sym}(\operatorname{End}(V)^*)$ and prove its non-vanishing locus

$$GL(V) := Spec(Sym(End(V)^*)[1/det])$$

represents Aut(V) as subfunctor of End(V). Also discuss SL(V) as a closed k-subgroup of GL(V).

(iv) Let $B: V \times V \to k$ be a bilinear form. Prove that the subfunctor $\underline{\mathrm{Aut}}(V, B)$ of points of $\underline{\mathrm{Aut}}(V)$ preserving B is represented by a closed k-subgroup of $\mathrm{GL}(V)$. (You can use coordinates in the proof!) This is pretty bad unless B is non-degenerate. (In the alternating non-degenerate case it is denoted $\mathrm{Sp}(B)$.)

Assuming non-degeneracy, a linear automorphism T of V_R is a B-similitude if $B_R(Tv,Tw) = \mu(T)B(v,w)$ for all $v,w \in V_R$ and some $\mu(T) \in R^{\times}$. Prove $\mu(T)$ is then unique, and show that the functor of B-similitudes is represented by a closed k-subgroup of $\operatorname{GL}(V) \times \mathbf{G}_m$. (In the alternating case it is denoted $\operatorname{GSp}(B)$.)

- 3. (i) Prove that if a connected scheme X of finite type over a field k has a k-rational point, then $X_{k'} = X \otimes_k k'$ is connected for every finite extension k'/k (hint: $X_{k'} \to X$ is open and closed; look at fiber over X(k)). Deduce that $X_{k'}$ is connected for every extension k'/k (i.e., X is geometrically connected over k).
- (ii) Prove that if X and Y are geometrically connected of finite type over k, so is $X \times Y$; give a counterexample over $k = \mathbf{Q}$ if "geometrically" is removed. Deduce that if G is a k-group then the identity component G^0 is a k-subgroup whose formation commutes with any extension on k.
- 4. Let G be a group of finite type over a field k.
- (i) Prove that $(G_{\overline{k}})_{\text{red}}$ is a closed \overline{k} -subgroup of $G_{\overline{k}}$, and prove it is *smooth*. Deduce that G^0 is *geometrically irreducible*
- (ii) Over any imperfect field k, one can make a non-reduced k-group G such that G_{red} is not a k-subgroup. Where does an attempted proof to the contrary get stuck?
- (iii) Assume k is imperfect, $\operatorname{char}(k) = p > 0$, and choose $a \in k k^p$. Prove $x_0^p + ax_1^p + \cdots + a^{p-1}x_{p-1}^p = 1$ defines a reduced k-group (think of $N_{k(a^{1/p})/k}$) that is non-reduced over \overline{k} and hence not smooth!
- (iv) Prove that the condition $t^n = 1$ defines a finite closed k-subgroup $\mu_n \subseteq \mathbf{G}_m$, and show its preimage G under det : $\mathrm{GL}_N \to \mathbf{G}_m$ is a k-subgroup of GL_N . Accepting that SL_N is connected, prove $G^0 = \mathrm{SL}_N$ if $\mathrm{char}(k) \nmid n$. For $k = \mathbf{Q}$ and n = 5, prove that $G G^0$ is connected but over \overline{k} has 4 connected components.