
Algebraic Groups I. Homework 2

1. Let k be a perfect field, and G a 1-dimensional connected linear algebraic k-group (so G is geometrically
integral over k). Assume G is in the additive case. This exercise proves G is k-isomorphic to Ga.

(i) Let X denote its regular compactification over k. Prove that Xk is regular, so X is smooth (hint: k is
a direct limit of finite separable extensions of k, and unit discriminant is a sufficient test for integral closures
in the Dedekind setting). Deduce that X −G consists of a single physical point, say Spec k′.

(ii) Prove that k′ ⊗k k is reduced and in fact equal to k. Deduce k′ = k, and prove that X ' P1
k. Show

that G ' Ga as k-groups.

2. Let T be a torus of dimension r ≥ 1 over a field k (e.g., a 1-dimensional connected linear algebraic group
in the multiplicative case). This exercise proves that Tk′ ' Gr

m for some finite separable extension k′/k.
(i) Prove that it suffices to treat the case k = ks.
(ii) Assume k = ks. We constructed an isomorphism f : Tk′ ' Gr

m as k′-groups for some finite extension
k′/k. Let k′′ = k′⊗k k

′, and let p1, p2 : Spec k′′ ⇒ Spec k′ be the projections. Prove that k′′ is an artin local
ring with residue field k′, and deduce that the k′′-isomorphisms p∗i (f) : Tk′′ ' Gr

m coincide by comparing
them with f on the special fiber!

(iii) For any k-vector space V , prove that the only elements of k′ ⊗k V with equal images under both
maps to k′′ ⊗k V are the elements of V (hint: reduce to the case V = k and replace k′ with any k-vector
space W , and k′′ with W ⊗k W ). Deduce that f uniquely descends to a k-isomorphism.

3. Let X and Y be schemes over a field k, K/k an extension field, and f, g : X ⇒ Y two k-morphisms.
(i) Prove fK = gK if and only if f = g. (Use surjectivity of XK → X to aid in reducing to the affine case.)

Likewise prove that if Z,Z ′ ⊆ X are closed subschemes such that ZK = Z ′K inside of XK then Z = Z ′,
(ii) If fK is an isomorphism and X and Y are affine, prove f is an isomorphism. Then do the same

without affineness (may be really hard without Serre’s cohomological criterion for affineness).
(iii) Assume K/k is Galois, Γ = Gal(K/k). Prove that if a map F : XK → YK satisfies γ∗(F ) = F for

all γ ∈ Γ, then F = fK for a unique k-map f : X → Y . Likewise, if Z ′ ⊆ XK is a closed subscheme and
γ∗(Z ′) = Z ′ for all γ ∈ Γ then prove Z ′ = ZK for a unique closed subscheme Z ⊆ X. Do the same for open
subschemes.

4. Let q : V → k be a quadratic form on a finite-dimensional vector space V of dimension d ≥ 2, and let
Bq : V × V → k be the corresponding symmetric bilinear form. Let V ⊥ = {v ∈ V |Bq(v, ·) = 0}; we call
δq := dimV ⊥ the defect of q.

(i) Prove that Bq uniquely factors through a non-degenerate symmetric bilinear form on V/V ⊥, and Bq is
non-degenerate precisely when the defect is 0. Prove that if char(k) = 2 then Bq is alternating, and deduce
that δq ≡ dimV mod 2 for such k (so δq ≥ 1 if dimV is odd).

(ii) Prove that if δq = 0 then qk admits one of the following “standard forms”:
∑n

i=1 xixi+n if dimV = 2n
(n ≥ 1), and x20 +

∑n
i=1 xixi+n if dimV = 2n + 1 (n ≥ 1). Do the same if char(k) = 2 and δq = 1.

(Distinguish whether or not q|V ⊥ 6= 0.) How about the converse?
(iii) If char(k) 6= 2, prove δq = 0 if and only if q 6= 0 and (q = 0) ⊆ Pd−1 is smooth. If char(k) = 2 then

prove δq ≤ 1 with q|V ⊥ 6= 0 when δq = 1 if and only if q 6= 0 and the (q = 0) is smooth. (Hint: use (ii) to
simplify calculations.) We say q is non-degenerate when q 6= 0 and (q = 0) is smooth in Pd−1.

5. Learn about separability and Ω1 by reading in Matsumura’s CRT: §25 up to before 25.3 (this is better
than AG15.1–15.8 in Borel’s book), and read §26 up through and including Theorem 26.3.

(i) Do Exercises 25.3, 25.4 in Matsumura, and read AG17.1 in Borel’s book (noting he requires V to be
geometrically reduced over k!).

(ii) Use 26.2 in Matsumura to prove that a finite type reduced k-scheme X is smooth on a dense open if
and only if all functions fields of X (at its generic points) are separable over k.

(iii) Using separating transcendence bases, the primitive element theorem, and “denominator chasing”,
prove that if X is smooth on a dense open then X(ks) is Zariski-dense in Xks . (Hint: it suffices to prove
X(ks) is non-empty!)
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