Algebraic Groups I. Homework 3

- 1. Let $k[x_{ij}]$ be the polynomial ring in variables x_{ij} with $1 \le i, j \le n$. Observe that the localization $k[x_{ij}]_{\text{det}}$ has a natural **Z**-grading, since $\det \in k[x_{ij}]$ is homogeneous. Let $k[x_{ij}]_{(\text{det})}$ denote the degree-0 part (i.e., fractions f/\det^e with f homogeneous of degree $e \deg(\det) = en$, for $e \ge 0$).
- (i) Define $\operatorname{PGL}_n = \operatorname{Spec}(k[x_{ij}]_{(\det)})$. Identify this with the open affine $\{\det \neq 0\}$ in \mathbf{P}^{n^2-1} , and construct an injective map of sets $\operatorname{GL}_n(R)/R^{\times} \to \operatorname{PGL}_n(R) := \operatorname{Hom}_k(\operatorname{Spec} R, \operatorname{PGL}_n)$ naturally in k-algebras R.
- (ii) For any R and any $m \in \operatorname{PGL}_n(R)$, show that there is an affine open covering $\{\operatorname{Spec} R_i\}$ of $\operatorname{Spec} R$ such that $m|_{R_i} \in \operatorname{GL}_n(R_i)/R_i^{\times}$. Deduce that $\operatorname{PGL}_n(R)$ is the *sheafification* of the presheaf $U \mapsto \operatorname{GL}_n(U)/\operatorname{GL}_1(U)$ on $\operatorname{Spec} U$, and that PGL_n has a unique k-group structure such that $\operatorname{GL}_n \to \operatorname{PGL}_n$ is a k-homomorphism.
- (iii) Prove that if R is local then $GL_n(R)/R^{\times} = PGL_n(R)$, and construct a counterexample with n = 2 for any Dedekind domain R whose class group has nontrivial 2-torsion. (Hint: $I \oplus I \simeq R^2$ when I is 2-torsion.)
 - (iv) Write out the effect of multiplication and inversion on PGL_n at the level of coordinate rings.
- 2. The scheme-theoretic kernel of a k-homomorphism $f: G' \to G$ between k-group schemes is the scheme-theoretic fiber $f^{-1}(e)$ (with $e: \operatorname{Spec} k \to G$ the identity). It is denoted ker f.
- (i) Prove that if R is any k-algebra then $(\ker f)(R) = \ker(G'(R) \to G(R))$ as subgroups of G'(R); deduce that $\ker f$ is a normal k-subgroup of G'.
- (ii) Prove that the homomorphism $GL_n \to PGL_n$ constructed in Exercise 1 is surjective with scheme-theoretic kernel equal to the k-subgroup $D \simeq GL_1$ of scalar diagonal matrices.
- (iii) Let $\mu_n = \ker(t^n : \mathbf{G}_m \to \mathbf{G}_m) = \operatorname{Spec}(k[t, 1/t]/(t^n 1))$. Identify $\mu_n(R)$ with the group of nth roots of unity in R^{\times} naturally in any k-algebra R, and prove that the homomorphism $\operatorname{SL}_n \to \operatorname{PGL}_n$ obtained by restriction of the map in (ii) to SL_n is surjective, with kernel μ_n .
- 3. Let G be a k-group of finite type equipped with an action on k-scheme V of finite type. Let $W, W' \subseteq V$ be closed subschemes. Define the functorial centralizer $\underline{Z}_G(W)$ and functorial transporter $\underline{\operatorname{Tran}}_G(W, W')$ as follows: for any k-scheme S, $\underline{Z}_G(W)(S)$ is the subgroup of points $g \in G(S)$ such that the g-action on V_S is trivial, and $\underline{\operatorname{Tran}}_G(W, W')(S)$ is the subset of points $g \in G(S)$ such that $g.(W_S) \subseteq W'_S$ (as closed subschemes of V_S). The functorial normalizer $N_G(W)$ is $\underline{\operatorname{Tran}}_G(W, W)$.

These are of most interest when W is a smooth closed k-subgroup of V = G equipped with the left translation action. Below, assume W is geometrically reduced and separated over k.

- (i) Prove W is smooth on a dense open, so $W(k_s)$ is Zariski-dense in W_{k_s} (by Exercise 5(iii), HW2). Hint: if $k = k_s$ then $W_{\overline{k}} \to W$ is a homeomorphism, and in general use Galois descent (as in Exercise 3(iii), HW2).
- (ii) For each $w \in W(k)$, let $\alpha_w : G \to W$ be the orbit map $g \mapsto g.w$. Define $Z_G(w) = \alpha_w^{-1}(w)$. Prove that $Z_G(w)(S)$ is the subgroup of points $g \in G(S)$ such that $g.w_S = w_S$ in W(S).
- (iii) If $k = k_s$ prove $\bigcap_{w \in W(k)} Z_G(w)$ represents $\underline{Z}_G(W)$. (You need to use separatedness.) For general k apply Galois descent to $Z_{G_{k_s}}(W_{k_s})$; the representing scheme is denoted $Z_G(W)$.
- (iv) If $k = k_s$, prove that $\cap_{w \in W(k)} \alpha_w^{-1}(W')$ represents $\underline{\operatorname{Tran}}_G(W, W')$. Then use Galois descent to prove representability by a closed subscheme $\operatorname{Tran}_G(W, W')$ for any k. The representing scheme is denoted $\operatorname{Tran}_G(W, W)$, so $N_G(W) := \operatorname{Tran}_G(W, W)$ represents $\underline{N}_G(W)$.
- (v) Prove that for any k-algebra R and $g \in N_G(W)(R)$, the g-action $V_R \simeq V_R$ carries W_R isomorphically onto itself, and deduce that $N_G(W)$ is a k-subgroup of G. (Hint: reduce to artin local R and $k = \overline{k}$.)
- 4. Let G be a k-group of finite type. This exercise builds on the previous one. Note G is separated: $\Delta_{G/k}$ is a base change of $e : \operatorname{Spec} k \to G!$ If G is smooth then the scheme-theoretic center of G is $Z_G := Z_G(G)$.
- (i) Let G be SL_n or GL_n or PGL_n , and let T be the diagonal k-torus in each case. Prove that $Z_G(T) = T$ (as subschemes of G, not just at the level of geometric points!). Hint: to deduce the PGL_n -case from the GL_n -case, prove that the diagonal k-torus in GL_n is the scheme-theoretic preimage of the one in PGL_n .
 - (ii) Using (i), prove $Z_{SL_n} = \mu_n$, $Z_{PGL_n} = 1$, and Z_{GL_n} is the k-subgroup of scalar diagonal matrices.
- (iii) Prove that for a smooth closed subscheme V in G, the formation of $Z_G(V)$ and $N_G(V)$ commutes with any extension of the ground field. (Hint: use the functorial characterizations, not the explicit constructions.) This applies to Z_G when G is smooth.