Algebraic Groups I. Homework 4

- 1. Let $T \subset \operatorname{Sp}_{2n}$ be the torus of points $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$ for diagonal $t \in \operatorname{GL}_n$. Prove $Z_G(T) = T$ (so T is a maximal torus!), and deduce $Z_{\operatorname{Sp}_{2n}} = \mu_2$. See the handout on orthogonal groups for a computation of $Z_{\operatorname{SO}(q)}$.
- 2. Prove that PGL_n is smooth using the infinitesimal criterion, and prove that it is connected by a suitable "action" argument. Then read the handout on smoothness and connectedness for orthogonal groups.
- 3. Let X be a scheme over a field k, and $x \in X(k)$. Recall that $\operatorname{Tan}_x(X)$ is identified as a set with the fiber of $X(k[\epsilon]) \to X(k)$ over x. Let $k[\epsilon, \epsilon'] = k[t, t']/(t, t')^2$, so this is 3-dimensional with basis $\{1, \epsilon, \epsilon'\}$.
- (i) For $c \in k$, consider the k-algebra endomorphism of $k[\epsilon]$ defined by $\epsilon \mapsto c\epsilon$. Show that the resulting endomorphism of $X(k[\epsilon])$ over X(k) restricts to scalar multiplication by c on the fiber $\operatorname{Tan}_x(X)$.
 - (ii) Using the two natural quotient maps $k[\epsilon, \epsilon'] \rightarrow k[\epsilon]$, define a natural map

$$X(k[\epsilon, \epsilon']) \to X(k[\epsilon]) \times_{X(k)} X(k[\epsilon])$$

and prove it is bijective. Using the natural quotient map $k[\epsilon, \epsilon'] \rightarrow k[\epsilon]$, show that the resulting map

$$X(k[\epsilon]) \times_{X(k)} X(k[\epsilon]) \stackrel{\sim}{\leftarrow} X(k[\epsilon, \epsilon']) \to X(k[\epsilon])$$

induces addition on $\operatorname{Tan}_x(X)$: the k-linear structure on $\operatorname{Tan}_x(X)$ is encoded by the functor of X!

- (iii) For (X,x)=(G,e) with a k-group G, relate addition on $\operatorname{Tan}_x(X)$ to the group law on G: for $m:G\times G\to G$, show that $\operatorname{Tan}_e(G)\times \operatorname{Tan}_e(G)=\operatorname{Tan}_{(e,e)}(G\times G)\to \operatorname{Tan}_e(G)$ is addition.
- 4. Let A be a finite-dimensional associative algebra over a field k. Define the ring functor \underline{A} on k-algebras by $\underline{A}(R) = A \otimes_k R$ and the group functor \underline{A}^{\times} by $\underline{A}^{\times}(R) = (A \otimes_k R)^{\times}$.
- (i) Prove that \underline{A} is represented by an affine space over k. Using the k-scheme map $N_{A/k} : \underline{A} \to \mathbf{A}_k^1$ defined functorially by $u \mapsto \det(m_u)$, where $m_u : A \otimes_k R \to A \otimes_k R$ is left multiplication by $u \in \underline{A}(R)$, prove that \underline{A}^{\times} is represented by the open affine subscheme $N_{A/k}^{-1}(\mathbf{G}_m)$. (This is often called " A^{\times} viewed as a k-group", a phrase that is, strictly speaking, meaningless, since A^{\times} does not encode the k-algebra A.)
- (ii) For $A = \operatorname{Mat}_n(k)$ show that $\underline{A}^{\times} = \operatorname{GL}_n$, and for $k = \mathbf{Q}$ and $A = \mathbf{Q}(\sqrt{d})$ identify it with an explicit \mathbf{Q} -subgroup of GL_2 (depending on d).
- (iii) How does the kernel of $N_{A/k} : \underline{A}^{\times} \to \mathbf{G}_m$ (the group of norm-1 units) relate to Exercise 4(iii) in HW1 as a special case? For $A = \operatorname{Mat}_n(k)$, show that this homomorphism is the nth power (!) of the determinant.
- 5. This exercise develops a very important special case of Exercise 4. Let A be a finite-dimensional central simple algebra over k. By general theory, this is exactly the condition that $A_{\overline{k}} \simeq \operatorname{Mat}_n(\overline{k})$ as \overline{k} -algebras (for some $n \geq 1$), and such an isomorphism is unique up to conjugation by a unit (Skolem-Noether theorem).
- (i) By a clever application of the Skolem-Noether theorem (see Exercise 30, Chapter 3 of the book by Farb/Dennis on non-commutative algebra), it is a classical fact that the linear derivations of a matrix algebra over a field are precisely the inner derivations (i.e., $x \mapsto yx xy$ for some y). Combining this with length-induction on artin local rings, prove the Skolem-Noether theorem for $\mathrm{Mat}_n(R)$ for any artin local ring R (i.e., all R-algebra automorphisms are conjugation by a unit).
- (ii) Construct an affine k-scheme I of finite type such that naturally $I(R) = \text{Isom}_R(A_R, \text{Mat}_n(R))$, the set of R-algebra isomorphisms. Note that $I(\overline{k})$ is non-empty! Prove I is smooth by checking the infinitesimal criterion for $I_{\overline{k}}$ with the help of (i). Deduce that $A_K \simeq \text{Mat}_n(K)$ for a finite separable extension K/k.
- (iii) By (ii), we can choose a finite Galois extension K/k and a K-algebra isomorphism $\theta: A_K \simeq \operatorname{Mat}_n(K)$, and by Skolem-Noether this is unique up to conjugation by a unit. Prove that for any choice of θ , the determinant map transfers to a multiplicative map $\underline{A}_K \to \mathbf{A}_K^1$ which is independent of θ . Deduce that it is $\operatorname{Gal}(K/k)$ -equivariant, and so descends to a multiplicative map $\operatorname{Nrd}_{A/k}: \underline{A} \to \mathbf{A}_k^1$ which "becomes" the determinant over any extension F/k for which $A_F \simeq \operatorname{Mat}_n(F)$. Prove that $\operatorname{Nrd}_{A/k}^n = \operatorname{N}_{A/k}$ (explaining the name reduced norm for $\operatorname{Nrd}_{A/k}$), and conclude that $\underline{A}^{\times} = \operatorname{Nrd}_{A/k}^{-1}(\mathbf{G}_m)$.
- (iv) Let SL(A) denote the scheme-theoretic kernel of $Nrd_{A/k}: \underline{A}^{\times} \to \mathbf{G}_m$. Prove that its formation commutes with any extension of the ground field, and that it becomes isomorphic to SL_n over \overline{k} . In particular, SL(A) is *smooth* and *connected*; it is a "twisted form" of SL_n . (This is false for $\ker N_{A/k}$ whenever $\operatorname{char}(k)|n!$)