Algebraic Groups I. Homework 5

- 1. Let k be a field, U_n the standard strictly upper-triangular unipotent k-subgroup of GL_n . Prove that no nontrivial k-group scheme is isomorphic to closed k-subgroups of G_a and G_m . (If $\operatorname{char}(k) = p > 0$, the key is to prove that μ_p is not a k-subgroup of G_a .) Deduce that $T \cap U_n = 1$ for any k-torus T in GL_n .
- 2. Let a smooth finite type k-group G act linearly on a finite-dimensional V. Let \underline{V} denote the affine space whose A-points are V_A . Define $\underline{V}^G(A)$ to be the set of $v \in V_A$ on which G_A acts trivially.
- (i) Prove that \underline{V}^G is represented by the closed subscheme associated to a k-subspace of V (denoted of course as V^G). Hint: use Galois descent to reduce to the case $k = k_s$, and then show $V^{G(k)}$ works.
 - (ii) For an extension field K/k, prove that $(V_K)^{G_K} = (V^G)_K$ inside of V_K .
- 3. This exercise develops the important concept of Weil restriction of scalars in the affine case. It is an analogue of viewing a complex manifold as a real manifold with twice the dimension (and "complex points" become "real points"). Let k be a field, k' a finite commutative k-algebra (not necessarily a field!), and K' an affine k'-scheme of finite type. Consider the functor $R_{k'/k}(X'): A \leadsto X'(k' \otimes_k A)$ on k-algebras.
- (i) By considering $X' = \mathbf{A}_{k'}^n$ and then any X' via a closed immersion into an affine space, prove that this functor is represented by an affine k-scheme of finite type, again denoted $R_{k'/k}(X')$. Prove its formation naturally commutes with products in X', and compute $R_{k'/k}(\mathbf{G}_m)$ inside $R_{k'/k}(\mathbf{A}_{k'}^1)$. What if k' = 0?
 - (ii) Prove $R_{k'/k}(\operatorname{Spec} k') = \operatorname{Spec} k$, and explain why $R_{k'/k}(X')$ is naturally a k-group when X' is a k'-group.
- (iii) For an extension field K/k, prove that $R_{k'/k}(X')_K \simeq R_{K'/K}(X'_{K'})$ for $K' = k' \otimes_k K$. Taking $K = \overline{k}$, use the infinitesimal criterion to prove that if k' is a field then $R_{k'/k}(X')$ is k-smooth when X' is k'-smooth. (Can you see it directly from the construction?) Warning: if k'/k is not separable then $R_{k'/k}(X')$ can be empty (resp. disconnected) when X' is non-empty (resp. geometrically integral)!
- (iv) If k'/k is a separable extension field, prove $R_{k'/k}(X')_{k_s} \simeq \prod_{\sigma} \sigma^*(X')$ with σ varying through $\operatorname{Hom}_k(k',k_s)$. Transfer the natural $\operatorname{Gal}(k_s/k)$ -action on the left over to the right and describe it.
- 4. Let $\Gamma = \operatorname{Gal}(k_s/k)$. For any k-torus T, define the character group $X(T) = \operatorname{Hom}_{k_s}(T_{k_s}, \mathbf{G}_m)$. A Γ -lattice is a finite free **Z**-module equipped with a Γ -action making an open subgroup act trivially.
 - (i) Prove X(T) is a finite free **Z**-module of rank dim T. Describe a natural Γ -lattice structure on X(T).
- (ii) For a Γ -lattice Λ , prove $R \leadsto \operatorname{Hom}(\Lambda, R_{k_s}^{\times})^{\Gamma}$ is represented by a k-torus $D_k(\Lambda)$, the dual of Λ . (Hint: use finite Galois descent to reduce to Λ with trivial Γ -action.) Prove $\Lambda \simeq \operatorname{X}(D_k(\Lambda))$ naturally as Γ -lattices.
- (iii) Prove $T \simeq D_k(X(T))$ naturally as k-tori, so the category of k-tori is anti-equivalent to the category of Γ -lattices. Describe scalar extension in such terms, and prove T is k-split if and only if $X(T) = X(T)^{\Gamma}$.
- (iv) Prove a map of k-tori $T' \to T$ is surjective if and only if $X(T) \to X(T')$ is injective. Prove $\ker(T' \to T)$ is a k-torus (resp. finite, resp. 0) if and only if $\operatorname{coker}(X(T) \to X(T'))$ is torsion-free (resp. finite, resp. 0). Inducting on $\dim T$, prove smooth *connected* k-subgroups M of T are k-tori. (Hint: prove $M(\overline{k})$ is divisible.)
- (v) If k'/k is a finite separable subextension of k_s , prove that $R_{k'/k}(T')$ is a k-torus if T' is a k'-torus. (For $T' = \mathbf{G}_m$, this is "k'" viewed as a k-group".) By functorial considerations, prove $X(R_{k'/k}(T')) = \operatorname{Ind}_{\Gamma'}^{\Gamma}(X(T))$ with Γ' the open subgroup corresponding to k'. For every k-torus T, construct a surjective k-homomorphism $\prod_i \operatorname{Res}_{k'_i/k}(\mathbf{G}_m) \twoheadrightarrow T$ for finite separable extensions k'_i/k . Conclude that k-tori are unirational over k.
- (vi) (optional) For a finite extension field k'/k, define a norm map $N_{k'/k} : R_{k'/k}(\mathbf{G}_m) \to \mathbf{G}_m$. Prove its kernel is a torus when k'/k is separable (e.g., $k = \mathbf{R}!$), and relate to HW1, Exercise 4(iii) for imperfect k.
- 5. Consider a k-torus $T \subset GL(V)$, with k infinite. Let $A_T \subset End(V)$ be the commutative k-subalgebra generated by T(k) (Zariski-dense in T since k is infinite, due to unirationality from Exercise 4(iv)).
 - (i) Using Jordan decomposition, prove that all elements of $T(\overline{k})$ are semisimple in $\operatorname{End}(V_{\overline{k}})$.
 - (ii) Assume $k = k_s$. Prove A_T is a product of copies of k, and $T(k) = A_T^{\times}$ when T is maximal.
- (iii) Using Galois descent and the end of $4(\mathbf{v})$, prove $(A_T)_{k_s} = A_{T_{k_s}}$, and deduce $T(k) = A_T^{\times}$ for maximal T. Show naturally $T \simeq \operatorname{Res}_{A_T/k}(\mathbf{G}_m)$, and that maximal k-subtori in $\operatorname{GL}(V)$ and maximal étale commutative k-subalgebras of $\operatorname{End}(V)$ are in bijective correspondence. Generalize to *finite* k with another definition of A_T , and to central simple algebras in place of $\operatorname{End}(V)$ (hint: use HW4 Exercise 5(ii) and Galois descent).
- (iv) For any (possibly finite) k, prove a smooth connected *commutative* k-group is a torus if and only if its \overline{k} -points are semisimple. (Use the end of Exercise 4(iv).)