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1 The Artin–Tate Conjecture

We recall here the statement of the Artin–Tate Conjecture. Let k be a finite field of
characteristic p, q = #k, G = Gal(k/k) the absolute Galois group of k, X a smooth proper
geometrically-connected surface over k, and X := X ⊗k k. We first review the definitions
of the various quantities appearing in the conjecture, recalling along the way to which
quantities in the Birch-Swinnerton-Dyer they are analogous.

Thanks to Grothendieck’s cohomological interpretation, the zeta function of X is given,
for ` 6= p, by the formula

ζ(X, s) =
P1(X, q

−s)P1(X, q
1−s)

(1− q−s)P2(X, q−s)(1− q2−s)

where Pi(X,T ) = det(1 − FT |Hi(X,Q`)) is the characteristic polynomial of geometric
Frobenius in G acting on the étale cohomology of X (Here we have replaced replaced the
variable in the usual definition of the zeta function by q−s.). By results of Deligne ([D],
Théorème 1.6), the Pi have integer coefficients independent of `. The polynomial P2 should
be thought of as an analogue to the L-function of the abelian variety in BSD.

The (cohomological) Brauer group Br(X) is H2(X,Gm). (All cohomology in these notes
is étale unless stated otherwise.). Thanks to a theorem of Grothendieck ([G], Corollaire
2.2), this is the same as the Azumaya Brauer group, though we will not use that. We
will, however, use the fact that Br(X) is torsion (as is seen by the fact that the restriction
map Br(X) → Br(k(X)) is injective, by Grothendieck’s results, and the Brauer group of
the function field is torsion since it is higher Galois cohomology). The group Br(X) is an
analogue of the Tate–Shafarevich group in BSD.

The Néron–Severi group NS(X) admits a couple of natural definitions for a variety over a
general field (not assumed algebraically closed). Fortunately over a finite field these notions
will be equivalent. To explain this, recall that we have an exact sequence of k-groups

0 −→ Pic0X/k −→ PicX/k −→ NSX/k −→ 0 (1.1)
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where Pic0X/k is the connected component of the identity inside PicX/k and the quotient
NSX/k is étale with group of k-points that is finitely generated. Note that Pic0X/k is geomet-
rically connected, since it is connected and possesses a rational point (namely the identity).
The two usual definitions of NS(X) are as follows:

(i) Pic(X)/Pic0(X),

(ii) NSX/k(k).

Here Pic0(X) is the group of line bundles on X that are algebraically equivalent to the
trivial bundle. (For a line bundle L to be algebraically equivalent to 0 means that there
is a connected scheme T and a line bundle M on XT such that the restriction of M to
one of the fibers of the map XT → T is L and to another is 0. This is the same as being
geometrically algebraically equivalent to 0, because Pic0X/k is geometrically connected.).

In general these two definitions need not agree. To understand the obstruction, note
that we always have an injective map

Pic(X)

Pic0(X)
↪→ NSX/k(k) (1.2)

via the composition
Pic(X)

Pic0(X)
↪→

PicX/k(k)

Pic0X/k(k)
↪→ NSX/k(k) (1.3)

When are both maps in this composition surjective?
Via the Leray spectral sequence for Gm relative to the structural morphism X →

Spec(k), we have an exact sequence (even for X over an arbitrary scheme S if we replace
Br(k) by Br(S) and replace the 0 on the left below with Pic(S))

0 −→ Pic(X) −→ PicX/k(k) −→ Br(k).

Hence, the first map in (1.3) is surjective if Br(k) = 0. Note that this holds if k is a finite
field.

Now assume that k is perfect (which is the case if k is finite). Then the sequence (1.1)
is exact as a sequence of étale sheaves (since ksep = k). Taking Galois cohomology of (1.1)
therefore yields an exact sequence

0 −→ Pic0X/k(k) −→ PicX/k(k) −→ NSX/k(k) −→ H1(k,Pic0X/k)

For any k-scheme Y of finite type we have Y (L) = Yred(L) for field extensions L/k, so
we may replace H1(k,Pic0X/k) with H1(k, (Pic0X/k)red). Hence, the second map in (1.3) is
surjective if H1(k, (Pic0X/k)red) = 0. This holds if k is finite by Lang’s Theorem.
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It follows that the canonical map (1.2) is an isomorphism if k is a finite field, and that
the two definitions (i) and (ii) above therefore agree in this case. As a useful corollary of
the definition (ii), we obtain the fact that

NS(X)G = NS(X). (1.4)

It is a classical theorem (the “Theorem of the Base”) due to Lang and Néron for smooth
projective varieties over an algebraically closed field that NS(X) is finitely-generated, so
likewise for NS(X). The group NS(X) should be thought of as an analogue of the Mordell–
Weil group in BSD. Let ρ(X) denote the rank of NS(X), and let {Di} denote a basis for
NS(X)/NS(X)tor. Finally, for D,D′ ∈ NS(X)/NS(X)tor, let D ·D′ denote their intersection
product.

The last quantity that we have to define is the strangest, as it is not clear to what (if
anything) it is analogous in BSD (It appears to be a purely characteristic p phenomenon,
as far as I can tell.). This is

α(X) := χ(X,OX)− 1 + dim(PicX/k).

It turns out that α(X) ≥ 0 (This is equivalent to the inequality q − s ≤ pG on page 73 in
chapter 5 of [B].).

For a finite set A, let [A] denote the size of A. The Artin–Tate conjecture is the following
statement.

Conjecture 1.1 (Artin–Tate Conjecture). The group Br(X) is finite, and

P2(X, q
−s) ∼ [Br(X)]|det(Di ·Dj)|

qα(X)[NS(X)tor]2
(1− q1−s)ρ(x) as s→ 1.

Note that the coefficient ratio in the conjecture must be an integer (if the conjecture
is true) since P (X, 0) ∈ Z. Much more can be said about this conjecture than for BSD.
Indeed, our goal in this talk is to discuss the proofs of the following two theorems.

Theorem 1.2 ((Tate) Rank Inequality). Let r denote the multiplicity of q−1 as a zero of
P2(X,T ). Then ρ(X) ≤ r.

We remark that one would philosophically expect this direction to be the easier one
to prove, since you are giving obstructions to the existence of divisors rather than actu-
ally having to produce them (the reverse inequality), which one would expect to be more
difficult.

For an abelian group A and a prime `, let A(`) denote the `-primary part of A; i.e.,
A(`) := ∪n≥1A[`n].

Theorem 1.3 (Tate–Milne). If Br(X)(`) is finite for some prime ` (even ` = p) then the
Artin–Tate conjecture (Conjecture 1.1) holds for X.
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The case ` 6= p, together with the “prime-to-p” part of Theorem 1.3, was proved by Tate
using `-adic cohomology, as we will discuss later. What was missing when Tate proved this
theorem was a good p-adic cohomology theory. The theorem “at p” was proved by Milne
using Tate’s methods together with suitable p-adic cohomology theories.

Of course, nothing remotely as strong as either of these two results is known for BSD
over number fields (but when applied to fibered surfaces they give results concerning BSD
for Jacobians over global function fields).

2 Proof of the Rank Inequality

Although it would be most efficient to embed the proof of Theorem 1.2 in the proof of
Theorem 1.3, we isolate it in this section to illustrate how shockingly simple it is (since in
the BSD case over number fields, or for general abelian varieties over global function fields,
the analogous result is completely out of reach!).

Let ` 6= p be prime. We begin with the Kummer sequence, an exact sequence of sheaves
on Xet:

0 −→ µ`n −→ Gm
`n−−→ Gm −→ 0.

From this we obtain an injection

0 −→ Pic(X)/`nPic(X) −→ H2(X,µ`n) (2.1)

Now we have an exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0,

from which we obtain an exact sequence

Pic0(X)/`nPic0(X) −→ Pic(X)/`nPic(X) −→ NS(X)/`nNS(X) −→ 0.

The group Pic0(X) is `-divisible since it equals the group of k-points of a smooth
connected commutative algebraic k-group. (Any such group has a filtration whose successive
quotients are abelian varieties, Gm’s, and Ga’s. Actually, since X is smooth, it follows from
the valuative criterion that Pic0

X/k
is proper, so its underlying reduced scheme is an abelian

variety.) Thus, we obtain an isomorphism

Pic(X)/`nPic(X) ' NS(X)/`nNS(X),

whence the injection (2.1) becomes

0 −→ NS(X)/`nNS(X) −→ H2(X,µ`n)

Now take the inverse limit over all n ≥ 1, and pass to G-invariants to obtain an injection

0 −→ (NS(X)⊗ Z`)
G −→ H2(X,Z`(1))

G;
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the fact that we have NS(X) ⊗ Z` on the left before taking invariants follows from the
Lang–Néron finiteness theorem that NS(X) is finitely-generated. (The map Z` ⊗ A →
lim←−
n

A/`nA is an isomorphism for any finitely generated Z-module A due to the compatibility

of completion and tensor product for finitely generated modules over noetherian rings.)
The group H2(X,Z`(1)) is defined to be lim←−

n

H2(X,µ`n), just as Hi(X,Z`) is defined to be

lim←−
n

Hi(X,Z/`nZ).

The natural map
Z` ⊗NS(X)G → (NS(X)⊗ Z`)

G (2.2)

is an isomorphism, as AG = ker(σ − 1) for any Hausdorff topological G-module A, where
σ is a (topological) generator for G (so (2.2) boils down to the fact that for any map
f : A → B of abelian groups, ker(f ⊗ Z`) = ker(f) ⊗ Z` since Z` is a flat Z-module. We
have (NS(X))G = NS(X) since G-invariant k-points are k-points, so we obtain an injection

0 −→ NS(X)⊗ Z` −→ H2(X,Z`(1))
G

Now tensor up to Q`:

0 −→ NS(X)⊗Q` −→ H2(X,Q`(1))
G.

(That the superscript G can be pulled out of the tensor product follows similarly to the
argument above, since Q` is Z`-flat.) Thus,

ρ(X) ≤ dimH2(X,V`µ)
G ≤ r, (2.3)

where r is the multiplicity of 1 as a root of the characteristic polynomial of geometric
Frobenius F on H2(X,Q`(1)).

But G-equivariantly H2(X,Q`(1)) = H2(X,Q`)⊗Q`(1), where G acts onQ`(1) through
the cyclotomic character, on which F acts as multiplication by q−1 since F−1(ζ) = ζq for
any root of unity ζ ∈ k

×. Thus r coincides with the multiplicity of q as a root of the
characteristic polynomial of F acting on H2(X,Q`), which is to say the multiplicity of q−1

as a root of det(1− FT |H2(X,Q`)) = P2(X,T ). Hence, (2.3) yields Theorem 1.2.

Unimportant Remark/Example: For any ring A, we have a canonical map

Z` ⊗A
φ−−→ lim←−

n

A/`nA

We remarked earlier in this section that this map need not be either injective or surjective
in general. Here is an example. Let Q` be the algebraic closure of Q`, and let Z` be its
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ring of integers. Then I claim that for A = Z`, the map φ above is neither injective nor
surjective. Indeed, we have a commutative diagram

Z`

Z` ⊗ Z` lim←−
n

Z`/`
nZ`

βα

φ

where α, β are the obvious maps. It therefore suffices to show that α is not injective and
β is not surjective.

The map β is not surjective simply because Z` is not `-adically complete. (Exercise,
or see Proposition 5.1 in [W].) To see that α is not injective, let x ∈ Z` − Z be integral
over Z. (One can obtain such x by taking a monic f(T ) ∈ Z`[T ] with no integer roots such
that the reduction f(T ) ∈ F`[T ] has a root x0 of multiplicity one. Then x0 lifts to a root
of f in Z`, by Hensel’s Lemma. There are many f as above: For example, if ` 6= 2, take
f(T ) = X2 − n with ` - n ∈ Z a nonsquare that is a quadratic residue mod `, and if ` = 2
then take f(T ) = T 3 − 3.) Now we have an inclusion Z` ⊗ Z[x] ⊂ Z` ⊗ Z` because Z` is
flat over Z. It therefore suffices to show that the map

Z` ⊗ Z[x]
α′−−→ Z`

is not injective. Let f(T ) be the minimal polynomial of x over Z. Then the ring on the left
is just Z`[T ]/(f(T )), hence is a free Z`-module of rank greater than one. Thus the map α′

cannot be injective.
There are many other examples of such rings A, some with slightly simpler arguments

than the above, but I thought that the above example is good because the ring Z` is a
natural object.

3 Some Elementary Lemmas

The proof of Theorem 1.3 will require a few lemmas of an elementary nature, and we gather
these here. Let f : A→ B be a homomorphism of Z`-modules. The map f is said to be a
quasi-isomorphism if ker(f) and coker(f) are finite. In this case we define

z(f) := [ker(f)]/[coker(f)] = |[coker(f)]|`/|[ker(f)]|`

The equality holds because a finite Z`-module is necessarily an `-group. Note that if A,B
are finite then the exact sequence

0 −→ ker(f) −→ A
f−−→ B −→ coker(f) −→ 0

shows that z(f) = [A]/[B].
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Here are the lemmas that we will need. (Our numbering of these lemmas corresponds
to Tate’s for ease of cross-reference.)

Lemma z.1. Let A, B be finitely-generated Z`-modules of the same rank, and let {ai},
{bi} be bases for A/Ator, B/Btor, respectively. Suppose we have f : A → B, and let
f : A/Ator → B/Btor be the map induced by f . Then f is a quasi-isomorphism if and only
if det(f) 6= 0, in which case

z(f) =
[Ator]| det(f)|`

[Btor]

Lemma z.2. Suppose we have maps f : A→ B, g : B → C. If any two of the maps f, g, gf
is a quasi-isomorphism then so is the third, and then we have z(gf) = z(g)z(f).

Lemma z.3. Let A∗ = HomZ`
(A,Q`/Z`). Then f : A→ B is a quasi-isomorphism if and

only if f∗ : B∗ → A∗ is, in which case z(f)z(f∗) = 1.

Lemma z.4. Suppose θ is an endomorphism of a finitely-generated Z`-module A, and let
θ ⊗ 1 denote the corresponding endomorphism of A ⊗Z`

Q`. Let f : ker(θ) → coker(θ) be
the map induced by the identity A → A. Then f is a quasi-isomorphism if and only if
det(T − θ ⊗ 1) = T ρR(T ), with ρ = rankZ`

ker(θ) and R(0) 6= 0, in which case we have
z(f) = |R(0)|`.

Proof of Lemma z.1. We have a commutative diagram with exact rows

0 Ator A A/Ator 0

0 Btor B B/Btor 0

ftor f f

The snake lemma therefore yields an exact sequence

0→ ker(ftor)→ ker(f)→ ker(f)→ coker(ftor)→ coker(f)→ coker(f)→ 0

It follows immediately from this sequence that f is a quasi-isomorphism if and only if f is
(since Ator, Btor are finite), in which case

z(f) = z(f)z(ftor) = z(f)[Ator]/[Btor]

the last equation coming from the fact that Ator, Btor are finite. Thus, renaming Ator as A
and Btor as B, we may assume that A,B are free Z`-modules of finite rank. In this case, it
is a standard fact (valid over any PID, not just Z`) that by choosing suitable bases for A,B,
the matrix of f is diagonal, and in this case the assertion of the lemma is a straightforward
computation.
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Proof of Lemma z.2. The lemma follows immediately from the following exact sequence
(We leave the check that this is exact to the reader.):

0→ ker(f)→ ker(gf)
f−→ ker(g)→ coker(f)

g−→ coker(gf)→ coker(g)→ 0

Here all of the unmarked maps are those induced by the identity.

Proof of Lemma z.3. Q`/Z` is an injective Z`-module. Indeed, a Z`-module is injective if
and only if it’s `-divisible (same proof as for modules over Z). Thus A 7→ A∗ is an exact
functor. Therefore, applying ∗ to the exact sequence

0 −→ ker(f) −→ A
f−−→ B −→ coker(f) −→ 0

yields an exact sequence

0 −→ coker(f)∗ −→ B∗
f∗−−→ A∗ −→ ker(f)∗ −→ 0

The lemma therefore follows immediately from the following claim: For any Z`-module X,
X is finite if and only if X∗ is finite, in which case [X] = [X∗].

The equality claim is well-known and standard, and the same goes for the implication
X finite =⇒ X∗ finite. The reverse implication can be proved as follows. We have as usual
a natural map X → X∗∗. I claim that this map is injective. This will prove the claim,
since then X∗ finite =⇒ X∗∗ finite =⇒ X finite. The desired injectivity is equivalent to
the claim that for any 0 6= x ∈ X, there exists φ ∈ X∗ such that φ(x) 6= 0. We first note
that this is true for a cyclic Z`-module and x a generator, since any such is isomorphic
to either Z` or Z/`nZ (with x = 1 in both cases), for which the assertion can be checked
directly. Thus, letting 〈x〉 denote the submodule generated by x ∈ X, we have φ′ ∈ 〈x〉∗
with φ(x) 6= 0. Since Q`/Z` is an injective Z`-module, φ′ extends to an element φ ∈ X∗,
and of course φ(x) = φ′(x) 6= 0. This proves the desired injectivity.

Proof of Lemma z.4. Let θ1 : Im(θ)→ Im(θ) denote the restriction of θ. We have ker(f) =
ker(θ) ∩ Im(θ) = ker(θ1), and coker(f) = A/(ker(θ) + Im(θ)) ' coker(θ1) the last isomor-
phism being induced by θ. Therefore f is a quasi-isomorphism if and only if θ1 is, in which
case we have z(f) = z(θ1).

For any endomorphism g : B → B of a finitely generated Z`-module B, Lemma z.1
implies that g is a quasi-isomorphism if and only if the endomorphism g⊗ 1 of B⊗Z`

Q` is,
in which case z(g) = z(g) = det(g ⊗ 1), in the notation of that lemma (We make use here
of the fact that B ⊗Z`

Q` = (B/Btor)⊗Z`
Q`.). It therefore suffices to show that θ1 ⊗ 1 is

an isomorphism if and only if R(T ) as in the lemma doesn’t vanish at T = 0, in which case
|det(θ1 ⊗ 1)|` = |R(0)|`.
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We have a commutative diagram with exact rows

0 ker(θ)⊗Z`
Q` A⊗Z`

Q` Im(θ)⊗Z`
Q` 0

0 ker(θ)⊗Z`
Q` A⊗Z`

Q` Im(θ)⊗Z`
Q` 0

0 θ⊗1 θ1⊗1

Since characteristic polynomials are multiplicative in exact sequences, we therefore obtain

det(T − θ ⊗ 1) = T ρ det(T − θ1 ⊗ 1)

Thus R(T ) = det(T − θ1⊗ 1), hence θ1 is an isomorphism if and only if R(0) 6= 0, in which
case |det(θ ⊗ 1)|` = |R(0)|`, as desired.

4 The Prime-to-p Part of Theorem 1.3

In this section we prove Theorem 1.3 away from p. More precisely, we will show that if for
some prime ` 6= p the `-primary part Br(X)(`) is finite then Br(X)(non-p) is finite (where
Br(X)(non-p) :=

⊕
` 6=pBr(X)(`)) and there exists n ∈ Z such that

P2(X, q
−s) ∼ pn [Br(X)]| det(Di ·Dj)|

qα(X)[NS(X)tor]2
(1− q1−s)ρ(x), as s→ 1.

(The factor pn renders the qα(X) superfluous, but we include it in order to emphasize the
connection with the Artin–Tate conjecture.)

The proof rests upon the following commutative exact diagram of finite groups, valid
for any positive integer m coprime to p. (By an exact diagram, we mean one in which every
row and column is exact.)

0 0

0 Pic(X)/mPic(X) (NS(X)/mNS(X))G

0 H1(X,µm)G H2(X,µm) H2(X,µm)
G 0

(Pic(X)[m])G Br(X)[m]

0 0
(4.1)
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Here, for a G-module A, AG denotes the G-invariants and AG denotes the coinvariants.
(The finiteness of the groups on the left and right of the middle row follows from standard
finiteness theorems in étale cohomology, and the finiteness of all other groups then follows.)

Let’s explain where this diagram comes from. The columns come from the Kummer
sequence on Xet and Xet:

0 −→ µm −→ Gm
m−−→ Gm −→ 0

The first and third columns are then obtained by taking G-coinvariants and invariants,
respectively. The map in the first row is the obvious one. For the middle row, we use the
Hochschild–Serre spectral sequence

Hp(G,Hq(X,µm)) =⇒ Hp+q(X,µm)

together with the calculation of the Galois cohomology of finite fields (or more generally,
of cyclic profinite groups) with coefficients in a torsion module:

Hi(G,A) =


AG i = 0

AG i = 1

0 i > 1

(See page 104 of [MF], or many other references on group cohomology.)
Now taking the direct limit of diagram (4.1) with m = `n yields

0 0 0

NS(X)⊗Q`/Z` (NS(X)⊗ (Q`/Z`))
G

0 H1(X,µ(`))G H2(X,µ(`)) H2(X,µ(`))G 0

(Pic(X)(`))G Br(X)(`)

0

g

'

(4.2)
(Direct limits commute with invariants and coinvariants because lim−→ is an exact functor.)
The main point that bears mentioning here is that the replacement of Pic(X) by NS(X)
in the first row follows from the fact that Pic0(X) is finite (as it coincides with the the set
Pic0X/k(k) of rational points of a scheme of finite type over the finite field k).
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Taking the inverse limit of diagram (4.1) with m = `n yields

0 0

Pic(X)⊗ Z` NS(X)⊗ Z` 0

0 H1(X,Z`(1))G H2(X,Z`(1)) H2(X,Z`(1))
G 0

T`Pic(X)G T`Br(X)

0

h

'

(4.3)

(Since all groups appearing in diagram (4.1) are finite, lim←−
n

preserves exactness.)

That we obtain the relevant groups tensored with Z` in the first row of (4.3) follows
from the fact that the relevant groups are finitely generated (see the parenthetical remark
just before (2.2)). The only thing that bears mentioning here is why we may replace
(NS(X) ⊗ Z`)

G in the top right of the diagram by NS(X) ⊗ Z`. This was explained in
section 2, but we explain it again here for the reader’s convenience.

For any Hausdorff topological G-module A we have AG = ker(σ − 1), where σ is a
(topological) generator for G, so

(NS(X)⊗ Z`)
G = NS(X)G ⊗ Z`

because for any map f : A→ B of abelian groups, ker(f ⊗ Z`) = ker(f)⊗ Z` since Z` is a
flat Z-module. Now by (1.4) we have NS(X)G = NS(X), so (NS(X)⊗Z`)

G = NS(X)⊗Z`.
We are now ready to prove the following, which implies Theorem 1.3 away from p.

Theorem 4.1 (Tate). Let ρ(X) = rank(NS(X)), and let ` 6= p be a prime. The following
are equivalent:

(i) Br(X)(`) is finite,

(ii) the map h in diagram (4.3) is an isomorphism,

(iii) ρ(X) = rankZ`
H2(X,Z`(1))

G,

(iv) ρ(X) is the multiplicity of q as a reciprocal root of P2(X,T ).

Moreover, if these statements hold for one ` 6= p then Br(X)(non-p) is finite and the Artin–
Tate conjecture holds away from p:

P2(X, q
−s) ∼ pn [Br(X)]| det(Di ·Dj)|

qα(X)[NS(X)tor]2
(1− q1−s)ρ(x), as s→ 1
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for some n = nX ∈ Z.

The rest of this section is devoted to the proof. First, I claim that

T`Pic(X)G is finite. (4.4)

Indeed, T`Pic(X) is a finitely-generated Z`-module because it is an extension of T`Pic0(X)
by T`NS(X); the former is finitely-generated because Pic0(X) is the group of k-points of an
algebraic k-group (even an abelian variety), and the latter is 0 because NS(X)(`) is finite.

Now T`Pic(X)G is the cokernel of the Z`-module map

σ − 1 : T`Pic(X) −→ T`Pic(X),

so to show that this is finite it is enough to show that the kernel vanishes. But the kernel
equals T`Pic(X)G = T`Pic(X) = 0 because Pic(X)(`) is finite (Again, sandwich it between
Pic0 and NS.). For the first equality, we need the fact that Pic(X)G = Pic(X). This holds
because Pic(X) = PicX/k(k) (See discussion of NS(X) in section 1.).

Now the point of (4.4) is that it yields an exact sequence coming from (4.3):

0 −→ NS(X)⊗ Z`
h−−→ H2(X,Z`(1))

G −→ T`Br(X) −→ 0 (4.5)

The map on the right is defined by lifting α ∈ H2(X,Z`(1))
G to an element of H2(X,Z`(1)),

and then sending this to its image in T`Br(X). That this is well-defined boils down to the
fact that the map (T`Pic(X)G ') H1(X,Z`(1))G → T`Br(X) is 0. This holds because the
former group is torsion (because it is finite), and the latter is torsion-free.

The equivalence of (i), (ii), and (iii) in Theorem 4.1 follows immediately from the
sequence (4.5); the fact that Br(X)(`) is finite if and only if T`Br(X) = 0; and the fact that
coker(h) = T`Br(X) is torsion-free.

Now suppose that (iv) holds. We have

P2(X,T ) = det(1− FT |H2(X,Q`)),

where F is the geometric Frobenius, and further H2(X,Z`(1)) = H2(X,Q`)⊗Z`(1). Since
F acts on Z`(1) via multiplication by q−1, it follows that the multiplicity of q as a re-
ciprocal root of P2 is the same as the multiplicity of 1 as an eigenvalue of F acting
on H2(X,Z`(1)), and this is clearly at least the rank of H2(X,Z`(1))

G. Thus, by (iv),
ρ(X) ≥ rankZ`

H2(X,Z`(1))
G. Since the reverse inequality ρ(X) ≤ rankZ`

H2(X,Z`(1))
G

follows from (4.5), we deduce (iii).
Finally, suppose that (i), (ii), (iii) hold, and we’ll deduce (iv) and the other conclusions

of the theorem. We have a commutative diagram

NS(X)⊗ Z` Hom(NS(X),Z`) HomZ`
(NS(X)⊗Q`/Z`,Q`/Z`)

H2(X,Z`(1))
G H2(X,Z`(1))G HomZ`

(H2(X,µ(`))G,Q`/Z`)

e

h

'

f '

g∗ (4.6)
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where we now describe the maps. The map e comes from the intersection pairing on X, the
isomorphism in the top row is the obvious one, h is the map in (4.3), f is the map induced
by the identity on H2(X,Z`(1)), g∗ is the dual to the map g in diagram (4.2), and the
isomorphism in the bottom row is induced by Poincaré duality on X. That (4.6) commutes
is a consequence (indeed, is the statement, if we remove the G subscript and superscript)
of the compatibility of Poincaré duality with the intersection pairing.

I claim that e is a quasi-isomorphism. Indeed, this would follow from (and is equivalent
to) the nondegeneracy of the intersection pairing on NS(X)/NS(X)tor. That in turn is
a consequence of the non-degeneracy of the intersection pairing on NS(X)/NS(X)tor, as
follows. Let a ∈ NS(X) be such that a · b = 0 for all b ∈ NS(X). Then I claim that a · c = 0
for all c ∈ NS(X), which will prove the claim.

Let σ be a (topological) generator for G. Then σNc = c for some N > 0, and
then

∑N−1
i=0 σic ∈ NS(X)G = NS(X). Therefore, since the intersection pairing is Galois-

invariant, 0 = a · (
∑N−1

i=0 σic) = N(a · c) =⇒ a · c = 0, as desired. By Lemma z.1,

z(e) =
| det(Di ·Dj)|`
|[NS(X)tor]|`

Now I claim that
|Pic(X)(`)G|` = |[NS(X)(`)]|` (4.7)

Indeed, we have a commutative diagram with exact rows

0 Pic0(X) Pic(X) NS(X) 0

0 Pic0(X) Pic(X) NS(X) 0

`n `n `n

Since Pic0(X) is divisible, applying the snake lemma yields an exact sequence

0 −→ Pic0(X)[`n] −→ Pic(X)[`n] −→ NS(X)[`n] −→ 0. (4.8)

Take the direct limit over all n and pass to coinvariants to get

Pic0(X)(`)G −→ Pic(X)(`)G −→ NS(X)(`)G −→ 0.

Now I claim that
Pic0(X)(`)G = 0. (4.9)

Assuming this, we obtain an isomorphism Pic(X)(`)G
∼−→ NS(X)(`)G. But NS(X)(`) is

finite, hence |Pic(X)(`)G|` = |NS(X)(`)G|` = |NS(X)(`)G|` = |NS(X)(`)|`, which proves
(4.7).

The vanishing in (4.9) is a consequence of (4.4). Indeed, I first claim that T`(Pic0(X))G '
T`(Pic(X))G, and so is in particular finite. This follows by taking the inverse limit of

13



(4.8) and using the fact that NS(X)(`) is finite, forcing T`NS(X) = 0 (Alternatively,
this can be shown directly just as the finiteness of T`Pic(X)G was shown.). Now sup-
pose that `n kills T`(Pic0(X))G. Choose a ∈ Pic0(X)(`), say a ∈ Pic0(X)[`r]. Let
br = a, and for all m > r inductively choose bm ∈ Pic0(X) such that lbm = bm−1. Then
(bm)m≥r ∈ T`Pic0(X), so (`nbm)m≥r = σα− α for some α = (αn)n≥0 ∈ T`Pic0(X). There-
fore a = `nbn+r = σαn+r − αn+r. Since a ∈ Pic0(X)(`) was arbitrary, this shows that
(σ − 1) : Pic0(X)(`)→ Pic0(X)(`) is surjective; i.e. Pic0(X)(`)G = 0.

The point of (4.7) is that by Lemma z.2, diagram (4.2) (going down and then right),
and (i), we see that g is a quasi-isomorphism with

z(g) =
|[Br(X)(`)]|`
|[NS(X)(`)]|`

;

hence, by Lemma z.3, g∗ is a quasi-isomoprhism and

z(g∗) =
|[NS(X)(`)]|`
|[Br(X)(`)]|`

.

It follows again by Lemma z.3 that f is a quasi-isomorphism and

z(f) = z(e)/z(g∗) =

∣∣∣∣det(Di ·Dj)[Br(X)(`)]

[NS(X)tor]2

∣∣∣∣
`

(4.10)

Now apply Lemma z.4 with A = H2(X,Z`(1)) and θ = σ − 1. We get by (iii) that
(iv) holds (via the usual interpretation of the multiplicity of q−1 as a root of P2 as the
multiplicity of 1 as an eigenvalue of F acting on H2(X,Z`(1))). Further, we have that

z(f) = |(R(q−1)|` (4.11)

where R(T ) := P2(X,T )/(1−qT )ρ(X). The two expressions (4.10) and (4.11) for z(f) imply
the `-part of Theorem 4.1. In sum, we have shown for every ` the equivalence of (i) -(iv),
and that these imply the `-part of the Artin–Tate conjecture.

Now suppose that (i)-(iv) hold for some ` 6= p. Then since (iv) is independent of `, they
hold for all ` 6= p, and thus the `-part of the Artin–Tate conjecture holds for all ` 6= p. But
the equality

|R(q−1)|` =
∣∣∣∣det(Di ·Dj)[Br(X)(`)]

[NS(X)tor]2

∣∣∣∣
`

(4.12)

then implies that Br(X)(`) = 0 for all but finitely many ` 6= p. Thus, since Br(X) is torsion,
we conclude that Br(X) is finite, Since (4.12) holds for all ` 6= p, it holds up to a factor of
±pn for some n ∈ Z.

To see that the “+” case holds, we need to check that (−1)ρ(X)P2(X,T ) > 0 as T → q−1

from the right. Since, by the Riemann Hypothesis, all roots of P2 have absolute value q−1,
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P2 has no roots to the right of q−1. Hence, it’s enough to show that (−1)ρ(X)P2(X,T ) > 0
as T →∞.

Write P2(X,T ) =
∏
(1 − αiT ). By Poincaré duality, α 7→ q2/α is a permutation of

the αi. Pairing the αi and q2/αi terms, we get a contributing factor of q2 to the leading
coefficient of P2 whenever α 6= ±q. It follows that the sign of the leading coefficient of P2 is
(−1)ρ′ , where ρ′ is the multiplicity of q as a reciprocal root of P2. But we’ve already shown
that ρ′ = ρ(X) (this is (iv)), so the “+” sign holds. This completes the proof of Theorem
4.1.

5 Some brief remarks on the p-part of the conjecture

We will not prove the p-part of Theorem 1.3 here, but we would like to at least say something
(rather vague) about what goes into the proof. For full details, see Milne’s paper [M].

The broad outline of the proof is basically the same as the proof of Theorem 4.1 above.
There are essentially three main differences/additional ingredients that we’ll mention here.

(i) The étale cohomology groups are replaced by flat cohomology groups. This is so that
one still has the Kummer sequence, which plays an essential role in the proof above. Milne
also makes use of a flat duality theorem of his for surfaces, which plays the role of Poincaré
duality.

(ii) At one point Milne has to compute the size of the group H3(X,Tp(Gm))
G (Lemma

5.2 in [M]). This is accomplished by invoking results of his that relate this flat cohomology
group to the points of a certain unipotent k-group, whose point count is then related to its
dimension.

(iii) The main new feature arising at p is the presence of the term qα(X), which of course
plays no role in the proof above for the prime-to-p result. This is accomplished by relating
the Frobenius action on the flat cohomology groups to certain Witt vector and crystalline
cohomology groups, and then proving a general lemma (Lemma 7.2 in [M], to be applied
to the Witt vector cohomology) about modules over the ring W [V ], where W is the ring
of Witt vectors over k and V w = wσ

−1
V for w ∈ W (where σ : W → W is the Frobenius

map). (The element V is a version of the Verschiebung.)
One then relates the Witt vector cohomology groups back to the coherent cohomology

groups of OX to finish the proof.
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