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Notes on elliptic curves. 11
By B. J. Birch at Manchester and H. P. F. Swinnerton-Dyer at Cambridge

To Gina

§ 1. Introduction

During the past six years, we have made extensive calculations on cubic curves
of the form

(1. 1) I': y?z =23 — Axz? — Bz®

where A, B are rational integers. In a previous paper [2], we have shown how —4, the
group of rational points on (1. 1), can conveniently be found on an electronic computer;
and we have given extensive tables. In this and subsequent papers, we put forward some
conjectures connecting it with other more accessible quantities, together with the nume-
rical evidence on which they are based.

We begin this paper with a history of our investigations. This may make the rest
of the paper more understandable; and it enables us to acknowledge the very considerable
help we have obtained from other workers in this field.

After the work of Siegel [19] on quadratic forms, it is natural to look at the product
(1.2) II Ny/p,

where N, is the number of rational points on the curve defined by (1. 1) over the finite
field of p elements. Write for convenience

f(P) =1II N,/p over all p < P.

In the autumn of 1958 we calculated, for a number of curves (1. 1), the behaviour
of f(P) as P increased. It turned out that the rate of increase of f(P) was fairly closely
correlated with the number of generators of infinite order of _4; and there was some
tendency for f(P) to be large when the generators of 4 (or more precisely the correspond-
ing values of z, y, z) were small. We were in fact able to predict the number of generators
of _A for specific curves I', with fairly consistent success, by examining the values of f(P).

Since the behaviour of f(P) as P — oo is at least formally linked to the behaviour
of {,(s) near s =1 (see §2 below), we were led to make the two linked conjectures:

(A) If g is the number of generators of —A of infinite order, then f(P) ~ C (log P)*

as P> oo, and Cp(s) ~ C'(s— 1)1 as s> 1, for some constants C, C' depending on I

At this point we ran into difficulties. The value of f(P) oscillates vigorously as P

increases, and there seems little hope of being able to find the constant C by this method
11*
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with an error of less than say 109/, (It takes O(p) operations to calculate IV,, so we
cannot let P become very big without spending an unreasonable amount of time.) Mo-
reover, the terms of the product (1. 2) corresponding to primes p dividing 6 (4 A3 — 27 B?)
are almost certainly the wrong ones; and it was not then known what the right ones
were. Thus, even if we had been able to find the value of C for a particular curve I
there would have been little prospect of identifying it; this difficulty has since been
removed by the work of Tamagawa [23]; see § 7 and later on in this introduction. We
hope to return to these direct calculations in a subsequent note.

For those curves I' which admit complex multiplication an alternative approach
is possible; for in this case it is known that {.(s) can be expressed in terms of the Riemann
zeta function ¢(s) and Hecke L-series. In particular, for the curve

(1. 3) I'=ry: y*z = 2® — Dxz?
(to which we confine ourselves for the rest of this paper) we have
_ L is—1)
(1. 4) Lr(s) = o)

where L) (s) is the Hecke L-series defined by (2. 7) below. Formally, L, (1) =II(N,/p)~".
In the summer of 1960 we found an approximation to L, (1) as a multiple of a reasonably
rapidly convergent series. In this way we were able with fair confidence to determine
whether L, (1) vanished or not; and obtained a good deal of evidence for the conjecture

(1. 5) L,(1) =0 if and only if g >0,

which is a weaker form of conjecture (A) above. However, when g = 0 we were still not
able to calculate L,(1) accurately enough to be able to interpret it.

At this point Davenport came to our rescue, by suggesting that it should be possible
to express L, (1) in finite form in terms of division values of the Weierstrass gp-function
defined by the equation

P =4hp’—4bp.

The details of this transformation are given in § 3 below. Exact (algebraic) evaluation
of the formulae given there in a few simple cases — together with a remark of Kneser
that ‘the answer should be an integer’ — suggested that

1
D%t w-0(D) for D >0,
(1.6) Ly(t) =

(—4D) 4w - o(D) for D <0,

where w is the real period of g(u) and o(D) is in general a small positive integer. We
prove in § 4, by means of class field theory, that ¢(D) is in general a rational integer;
but we can prove nothing about its sign. Using EDSAC 11, we calculated ¢ (D) from
these formulae in a large number of cases, obtaining the results given in Table 1.

~ To compare these results with our conjecture (1. 5) we needed to be able to find
the corresponding values of g. For large D the methods of our previous paper proved too
slow and we had to use a method tailored to our special curve (1. 3). This is described
in § 5: we do not regard it as novel, but have to describe it at length in the absence of
any satisfactory reference. All the results we have obtained are compatible with (1. 5);
but there are many curves for which we were not able to find the value of g.

The rest of this paper is concerned with the interpretation of the integer o (D)
when it does not vanish. We hoped from the beginning that this would turn out to be
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essentially the order of the Tate-Safarevi¢ group of I';, (for a concise popular exposition,
see for instance Cassels [6]), and this hope was supported by the fact that o(D) was
always a power of 2 times a square. (Cassels [5] has shown that if the Tate-Safarevi¢
group is finite, its order is a square.) But we found it difficult to get the details right;
the trouble is that if p | 2.D then N,/p is not usually the natural factor to take in (1. 2),
and it was not obvious what one should replace it by. Eventually, much helped by
prodding from Cassels, we realized that we should replace the product (1.2) by z(D),
the Tamagawa number of the curve I', (see [23]). This too is an infinite product, and
differs from (1.2) only in finitely many terms; the details are described in § 6. We
conjecture:

(B) If g = O then the order of the Tate-Safarevié group of I, is n2(D)/t(D), where
n(D) is the number of rational points on I';,.

We can almost interpret this in terms analogous to Tamagawa’s form of Siegel’s
theorem. For there is a natural group structure on the set of points lying on everywhere
locally soluble coverings, and its Tamagawa number is (D) times the ordcr of the Tate-
Safarevi¢ group — in other words, #2(D) according to our conjecture. That the factor
involved should be the square of the number of rational points rather than the number
of rational points seems a little odd; subsequently, this has been partly explained by
Cassels [7].

The tangible evidence for our conjecture (B) is not great, for unfortunately little
is known about the Tate-Safarevi¢ group — indeed there is not even any case in which
it has been proved to be finite. We have never computed more than its 2-component:
in every numerical case this at any rate has the order suggested by the conjecture. Thelabour
involved in finding any other component appears to us prohibitive. We note that in
our tables (D) is always a perfect square, as it must be in order to be consistent with
Cassels’ work. But at Stockholm we were informed that Safarevi¢ possessed results which,
in view of the values for 7(D) given in Table 2, seemed inconsistent with our conjectures.
Recently, Cassels [7] has given additional evidence which helps to confirm our conjecture;
and the analogy with the work of Ono [18] is very striking.

Certain cases of the function field analogue of (A) are known to be true [20]. In
particular, Mumford has shown that two elliptic curves over a finite field are isogenous
if and only if they have the same number of rational points (in the classical case, and in
older language, this must have been known to Weber; see § 113 of his Algebra [21];
see also Manin [26]); he deduced the analogue of (1. 5) for an elliptic curve with coeffi-
cients in a finite field %, considered over a function field of genus 1 over k. Tate [27] has
given conjectures concerning the zeta function of a variety over a finite field which
generalise this analogue, and which he has confirmed in many cases.

In conclusion, we must apologise for our rather considerable delay in publication;
we hope that no harm has been done, since fairly detailed accounts of our results have
been publicised — in particular, Cassels was kind enough to describe our work in his
Stockholm talk [6], and one of the authors has given an account in a lecture delivered
in Pasadena [3]. The informed reader will recognise that this introduction is already
somewhat dated.

§ 2. The zeta-funetion of T'

Suppose that I"is defined over the rationals by (1. 1), and is a complete non-singular
curve of genus 1. For almost all p, the curve defined by (1. 1) over the finite field of p
elements retains these properties; and if it contains IV, points defined over this finite
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field, its zeta-function is

2. 1) Crp(s) =

1+ Np—p—1) p—*+p—*
(1—p=) (1 —p) '

The global zeta-function of I' is therefore

_ L) is—1)
(2.2) Ep(s) = IPI Crp(s) = __Lp(s)__’

where {(s) is the usual Riemann zeta-function,
(2. 3) Lp(s) = Ip]{j_ + (Ny—p—1)p—* + plﬁzs}—1

and finitely many factors in the product may not be the most natural ones. Formally

we have
Lp(1) =II(N,/p)7Y

but for general I" the product (2. 3) is only known to converge in R(s) >-§—, and it is
not known whether it can be continued analytically outside this region.

If I' (possibly defined over an algebraic number field) admits complex multi-
plication, Deuring [9] has shown that L, (s) can be analytically continued over the whole
plane and satisfies a functional equation. By this means he also found a natural form for
the missing factors in (2. 3), namely that which makes the functional equation as simple
as possible.

For the special curve

(2. 4) I'y: y?*z2 =28 — Dxz?

of this paper, it is simplest to use the known explicit formulae for V,. For convenience
we start by recalling some properties of the quartic residue symbol. Suppose that » is
an odd Gaussian prime and x any Gaussian integer prime to ». Then we define the quartic

residue symbol (%) to be that power of i which is congruent to
4

pS % mod p,

where NV stands for the norm. This is multiplicative in ux, and we extend it to be multi-

( lﬂ ) < 1”] ) ( L )
2/14 4 2/4

We also write (u/v), = 0 when u,» are not coprime. The principal properties we shall
need are that (u/v), == 1 for u,» coprime and real, and the law of reciprocity (see for
instance [12]). This latter says that if u, » are odd and congruent to 1 mod (2 + 2i) —
which can always be achieved by multiplication by a unit — then

(5) =+ (G,

where the sign is negative if both x4 and » are congruent to 3 4+ 2/ mod 4 and positive
otherwise.
Return now to the curve (2.4), and assume for convenience that p+ 2D. For
p = 3(mod 4) we have simply N, =p + 1. If p =1 (mod 4) we can factorize it in
Gaussian integers
p = nn with 7 =1 (mod 2 + 2i);
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then (see [8], [22]) we have
—(D D
2. == —— —_— pe— — .
(2.5) Ny=p+1 n(n)4 n(a'—z>4
Putting these results together we obtain

(2.6) Ly(s)= I (L+p ) II {1_5(2) p~a,n(_2> - +p1_2s}—1
?=3(4) T /4 T /4

p=1(4)

D x |
- gl
nzlgmi){ @ s (Nm)*|
where the product is taken over all relevant primes, real or complex, in the Gaussian

field Q(¢). Note that L, (s) differs rather trivially from L (s) in that it does not contain
factors corresponding to the primes which divide 2D. Hence finally

(2) o
o=1@+20\ 0 Js (No)s’

which is an orthodox Hecke L-series with Grofencharakter (see [15]).

(2.7) Ly(s) =

Over the rational field, the curve I'}, is 2-isogenous to
I, y*z2 =2+ 4Dxz?,

the isogeny arising from the rational 2-division point (0, 0, 1) on I'. It follows that the
two curves have the same value of g, the number of generators of infinite order of _A;
and since —4 = (1 + i)* they have the same N,, zeta-functions and L-series. However
they need not have the same Tate-Safarevi¢ group; for examples see [2], § 4.

Even though I';, is defined over the rational field Q, from certain points of view
its natural field of definition is the Gaussian field Q (7). This is the least field over which
the complex multiplication on I'}, is defined ; and it is the field of definition of the quartic
residue symbol. Over Q(i), I';, is birationally equivalent to I"_,; instead of merely iso-
genous. Suppose that —4; is the group of points on I';, defined over Q (i), where we still
assume D to be rational. In virtue of the complex multiplication on I';,, we can regard
A4; as a Z(i)-module; and it then has as many generators of infinite order as does A
regarded as a Z-module. We prove no relations between the various Tate-Safarevi¢
groups involved, though some are implicit in our conjectures; clearly the Tate-Safarevi¢
groups of I', and I'_,; can only differ in their 2-components.

It remains to consider the zeta-function of I" over Q(i); and here it costs nothing
to take D to be a Gaussian integer. If p = 3 (mod 4) is a rational prime then

D D
N. — p2 L1 z e I
p=PF +p<P>4+p(P)4’
if # =1 (mod 2 4 2i) is a complex prime then
Nn~=nﬁ+1——ﬁ(~l—)—) —n(g)
4 T /4

T

Arguing in much the same way as before, we find

_ Sow(8) Co (s — 1)
Cr,Q(i)(S) = Lo(s) L5 (s)
where (. (s) is the zeta-function of the field Q(i) and Lj(s) is still defined by (2. 7).
Thus in particular, when D is a rational integer (o () can easily be written in terms
of ¢ (s) and of well-known functions not involving I
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§ 3. Formulae for L, (1)

We have now to derive from (2. 7) an expression for L (s) which can be analytically
continued as far as s = 1 and is such that L,(1) can be written in finite form. Since
the extra generality costs us nothing, we shall assume only that D is a Gaussian integer;
however, the important case is when D is rational. We may also assume that D is fourth-
power free; for multiplying D by a fourth power only changes finitely many factors in
(2. 6), and changes those in an obvious way.

We write D = EF, where E =1 mod (2 4+ 2i) and F is the product of a power
of 1 + ¢ and a unit; and we define 4 to be the product of the distinct primes dividing E,
normalized so that 4 = 1 mod (2 + 2i). If D is rcal, so are E, F and 4. For
convenience we also write ¢ = (—1/E),, so that e = + 1if £ = 1 mod 4 and ¢ = —1
if E =3+ 2i mod 4. Remembering that ¢ = 1 mod (2 + 2i) where ¢ is the variable
of summation in (2. 7), and using the law of quartic reciprocity, we have

D E\ (F o\ (eF

0 EL-ELE-EUD.
Here the first factor on the right only depends on the residue class of ¢ modulo 4, and
the second factor on the class of ¢ modulo 16. Let K be such that (2 + 2i) | K, that
K | 16 and that (¢F/o), depends only on the residue class of ¢ modulo K. (We could
take K = 16 always, but a smaller value of K reduces the complexity of some of the
later formulae and so also the time taken in computation. We may for instance take
K =8if Figreal, and K =4 if F = 4+ 1.)

Now let B be a set of representatives for the residue classes modulo 4, and let C
be a set of representatives for those residue classes mod K which are congruent to
1 mod (2 + 2¢). We can write

o=KAu+ KB+ Ay

where u is a Gaussian integer, § € B and y € C; and we can replace any sum over ¢ by
a triple sum over u, § and y. For convenience we write ¢ = Kg 4+ 4y. It follows that
we can rewrite (2.7) in the form

-2 Lot = 2(3), 2 et s oy
in which provided E #=1 we have
@9 (2)= (@) (2.5

We have next to find a more convenient expression for the inner sum in (3. 2).
For « not a Gaussian integer, we write

_ 3 3t i w1 —s)
@8 v =t 2R )

Since the expression in curly brackets is O(u~2*"'), this defines an analytic function

. 1 . N .
of sin R(s) >3 and since the series is uniformly convergent near s == 1 we have

1 1 o
e =g+ 2oL Al )

!
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where & is the Weierstrass zeta-function with periods 1,¢. On the other hand, if R(s)
is large we can rearrange the terms in (3. 4) to give

S — v )+ EL—s) 3
= p(a, s) + ba(l —s) oy ()3

for the other sums vanish on combining the terms arising from 4 u, -+ tu. This provides
an analytic continuation of the left hand side. Substituting into (3. 2) we obtain

{N%» {2<£)4“’(ng1 )+ —9) L) 2 m(“])‘)}'

In particular, since (s — 1) Ly (5) —>%n as s > 1, we have

(3.5) Lp(1) = Kidz(D) é:(K@A> ) (KA)ZQ<D)4

Since this expression does not depend on the particular choice of representatives g of the
residue classes mod KA, we see that

fu+1) =¢&@) +m, £+ 0) = &) —ai.

In particular, since & is odd it follows that

(3. 6) 5(%):%% 5(%i>=—~;—ni.

Provided that £ = 1, we can express the right hand side of (3. 5) in terms of the
Weierstrass g-function. In order to simplify the algebra later, it is convenient to make a
change of period. Throughout this paper, we shall therefore denote by g (u) the Weierstrass
p-function with periods w, tw, where

Ly(s) =

1

w=2Lme S II (1 — e ™% = 2.6220575 . . .
has been chosen so that p(u) satisfies the equation
3.7 Pt =4p*—4p.

The Weierstrass p-function with periods 1, ¢ is therefore w?p(wu); and (see [25]) we can
write the addition formula for &(u) in the form

B 900 —¢'(00)
3. 8) fluto) =@+ 80+ e 5o @

In this we write u = y/K, v = B[k, giving an expression for £(g/K 4) in terms of functions
with simpler arguments. If we substitute the resulting values in (3. 5) and add to this
the equation derived by writing —p8 for g throughout, many of the terms cancel. In view
of the shape of (3. 3), we split cases on the value of ¢ = (—1/E),.

If e = 41, then (D/p), is not affected by replacing § by —f and so we obtain

wot) =7 2o Ml 6) %)+ 253 () el = pparar

Journal fiir Mathematik. Bd. 218. 12
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In the first term on the right, the sum over g is effectively 2 (8/E), = 0, since E is not
a fourth power; hence this term vanishes and we have

e (D delK)
(3.9) LD(l)—m£<?)4 plyo/K)—p(fawl/d)’

If ¢ = —1, replacing f by —p changes the sign of (D/p), and we therefore obtain

1 D B B
3.10 Lo(1) = (*){ (_>_*_~_}
(3. 10) o) = g7 2 (7)1 (5)—
_ 2(_2) pold)
2kA 55\ e Japlyw/K)—p(Bold)
(Here the terms for which 8|4 are defined to be zero.) If ¢ F is not an exact fourth power,

then the sum over y in the first term on the right is effectively 2 (e F/y), = 0; hence
this term vanishes. If ¢ F is an exact fourth power, the first term on the right of (3. 10) is

O

since there are% K K values of y to sum over. Writing i for # and adding, we see that

(3. 11) vanishes if (i/E), = —i. If (i/E), = t we can evaluate (3. 11) by writing (1 + i) 8
for f and using

(3. 12) Eu+i)=>0—1&w + w(14+ ! Z;(Z):))

which is a special case of (3. 8). We find that (3. 11) is equal to

T o) R () S0e

In the excluded cases when E = 1, we can evaluate L, (1) directly from (3. 5);
for the values of £(u) needed can be obtained from (3. 6) and (3. 12).

For explicit numerical calculation on an electronic computer, it is expedient to
carry out the summation over y algebraically. We assume that D is a rational integer,
so that we have ¢ = 41, and that D is not divisible by a fourth power nor, since
L,,(1) = L_p(1), by 4. There are therefore four cases to consider. In each of them we
write for convenience p for p(Bw/4). The sums concerned are taken over all € B; but
it is enough to consider the g prime to 4 since the terms with g not prime to 4 each vanish.

Case 1: D =1 mod 4. Now we have E = D, F = 1. If we choose K = 4 we obtain
for D +1,

(3. 13) Ly(1) = -2‘;— 3 (%)4?)?:"2%17'

,

Alternatively, we may take K = 2 + 2; and obtain, still for D 1,

; 2 4+2i)) 1
(3. 14) LD(1)=—;%2(’3( = L))m—i'

1

For the excluded value D =1 we find L,(1) == 7
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Case 2: D = 3 mod 4. Now we have £ = —D, F = —1, K =4 and obtain for
D+ —1
1
3.15 Ly(l) =—2 ( P ) prt

For the excluded case D = —1 we find L_, (1) :%w l/§

Case 3: D =2 mod 8. Now we have E ——-é—D, F =2, K =8 and obtain for D 42

4,
_ o8 (B 2p (p*—1) (* +2p—1)
@16 Ly =2 3 () gt i e
For the excluded case D = 2 we find L,(1) = 0.

Case 4: D = 6 mod 8. Now we have E :—iD, F =2, K =8 and obtain for

D +—2 2

o2 (B) —1) 2P+ 1)+ @ +2p— )%
(3.17) Lp(1) = —Z—'—E(F)4 (@ —2p — 1)' — 3202 (p2—1)2

4,
For the excluded case D = —2 we find L_,(1) :% ) ]/2.

§ 4. Proof of integrity

It is well known [21] that the division values of g and p’ are in general algebraic
functions of g, and g;, and so in our particular case algebraic numbers. It follows from
the results of § 3 that w™ L, (1) is an algebraic number; in this section we consider how
nearly it is a rational integer. We deal only with the case when D is rational: but similar
arguments could be used in the Gaussian case. Our object is to prove

Theorem 1. Let D > 1 be a positive integer, fourth power free and not divisible by 4.
Then

(4D)iL_p(1)

w

and

DiLy(1)
w

are rational integers.

The theorem holds for D = 2, from the explicit values given at the end of § 3.
Setting aside this case, we may therefore make use of (3. 9) and its consequences (3. 13)
to (3. 17). The proof of the theorem now falls into two parts. The first part (Lemmas 1—D5)
is concerned with integrity and is entirely elementary; the second is concerned with
rationality and makes use of results from classical class field theory.

For convenience, in dealing with algebraic integers, we shall use ‘odd’ to mean
prime to 2, and ‘even’ to mean not odd.

Lemma 1. Let « be an odd Gaussian integer. Then
p(au) = P,(p()/Q:(p(w)),

where P, Q. are polynomials of degrees aa, %(a&—-—l) respectively with Gaussian integer

coefficients; Py has leading coefficient 1 and Q. has leading coefficient « and constant term
+1 or +1.

12*
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We know that @(au) is an even doubly-periodic function whose only singularities
in the period parallelogram are xa double poles at the «-division points. These include
the origin but none of the midpoints. It follows, by well-known results on doubly-periodic
functions, that we have

plau) = P,(p(w)Q%(p(u),

where P,, Q. are polynomials of degrees xa, é—(a&—h respectively. Moreover, the zeros

of Q4 are just the distinct finite values of p(u) at the «-division points, while the zeros
of P, are the values of p(u) at those (1 + i) a-division points that are not «-division
points, taken with their correct multiplicity.

We now normalize so that Q, has leading coefficient «. Since for small u we have

2 2

, plan) ~a 0™,

p(u) ~u”

it follows that P, has leading coefficient 1. We shall prove the remaining statements in
the lemma by induction on the value of aa, since they obviously hold when « is a unit.
In the identity

_ e p(w)+1)*
(4 1) plo+ ) plo— u) = ELELIE L
we write v = au, w = (1 + i) u. Since
2(y) —
(4. 2) plu(t + i) = L2
we deduce

Poryi Payoa (¥ —1) P, + 2ipQ;)®
® —1) 0 —2ipP,[ "

Here the left hand side is in its lowest terms; for from the results above no P can have a
zero in common with a Q. But the numerator and denominator on the right have (after
squaring) the same degrees and leading coefficients as those on the left. Hence they are
equal, giving

2 2
a+1+iQa—-1—fi

P Pasi = {0 — 1) P, + 2ipQ0),

Qur141Qurs = @* —1) Q2 —2ip P,.
We have also the similar results obtained by writing -—i for i. Now therefore, if y =1,
—1, ior —1 and if the assertions of the lemma hold for « — 7 (1 + i) and for « — 275(1+41),
then they hold for «. But it is geometrically obvious that if « is an odd integer not a

unit then we can always choose % so that both « —#(1 + ¢) and «— 2n(1 + i) are
strictly smaller than «. The truth of the lemma now follows by induction.

Lemma 2. Let A4 be an odd square-free Gaussian integer, not a unit; and let f be a
Gaussian integer prime to A. Let
A4 it A s prime,

1 otherwrse.

o) =

Then ¢(4) p(Bw/A) is an algebraic unit.

Suppose first that 4 is prime. Then the p(fw/4) are just the roots of Q,(z) = 0.
Moreover they all generate the same field K over Q(i); for given any f,, §, prime to 4
we can find an odd « such that 8, = «f, mod 4, and so

#(Ba0/4) = p(xf10/4)



Birch and Swinnerton-Dyer, Notes on elliptic curves. 11 89

is a rational function of p(8,w/4) over Q(i), by Lemma 1. Since they are the roots of
Q4(xz) =0, the p(fw/4) each have numerator a unit and denominator a factor of 4;
and not all of them are integers. L.et q be a prime ideal in K which divides the deno-
minator of p(8;w/4) to exactly the rt power, where r > 0. For any 8, prime to 4 we
define o as before. Then o is prime to q and hence, using Lemma 1 again, q divides the
denominator of

p(Brw/A) = P (p(B,0/4))[Q%(p((B,w/4))

to exactly the r* power. It follows that all the g (Sw/4) must have the same denominator,

up to a unit; and hence this must be ¢(4), for there are —é—(AA———— 1) such denominators
and their product is 4.

Now suppose that 4 = 4,4,, where 4, and 4, are coprime and not units. Then
p(Bw/A) is a zero of Q4/Q,Q,,, which has integer coefficients the first and last of which
are units. Hence p(Bw/A4) is itself a unit. This completes the proof of the lemma.

Lemma 3. Let y,, y, be odd Gaussian integers, y, being square-free, and let r > 1
be a rational integer. Then p(y,o/y,(1 + i)") is an algebraic unit.

Without loss of generality, we may assume y,, y, coprime. We first prove that
@ (y1ofy.(1 4 1)) is an algebraic integer. If y, is a unit, then

p(riofy.(1 + 1)) = p(o/(1 + i) =0.

If not, we have
(4. 3) p(u) p(u + o/t + 1)) = —1
since, after (4.2), the roots of
(4. &) 22 —2izp(u(l +1i))—1 =0
are p(u) and p(u + w/(1 + i)). But if we write u == y,w/y,(1 4 i) then

w  o(y;+y.)
L IR | )

is an argument to which we can apply Lemma 2, with y, for 4. This and (4. 3) show that
p(y10/ys(1 + 1)) is @(y,) times an algebraic unit, and is therefore an algebraic integer.

The lemma now follows by induction on r; for since @ (u) is a root of (4. 4) we see
that @ (u) is an algebraic unit whenever p(u(1 + 7)) is an algebraic integer.

Lemma 4. Let r > 0 be a rational integer; and let B, y, A be Gaussian integers of
which A is odd, square-free and not a unit, p is prime to A and y is odd. Write A =1 —2'7,
and define ¢(A4) as in Lemma 2. Then

27 (4) {p(Bw/4) — p(yo/(1 + i))}

is an algebraic unit.

For r =1 we have 4 =0, p(yo/(1 + 7)) = 0, and the result is precisely that of
Lemma 2. We now proceed by induction on r. From (4. 2) we have

; R () —p ()} {p(v) p(w) +1
e O
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In this we write v = fw/4, w = yw/(1 + i), and assume the Lemma true for r — 1.
Write for convenience ¢ for an arbitrary algebraic unit, not necessarily the same from
one occurrence to the next. By the induction hypothesis we have

Pl + 1) —pwl + i) = 22" 9/p(4).

By Lemma 3 with y, =1 and Lemma 2 we have

2p(v) p(w) = 23/p(4).
By (4.1) and Lemma 3 with y, == 4 we have

p) p(w) + 1 = dp(r) — p(w)}.
Combining these three results with (4.5) we obtain
fp(0) — p(w)} = 249/g*(4),
and this proves the lemma.
Lemma 5. Let D be a rational integer, fourth power free and not divisible by 4. If
D = 41 then 2%.41 oL, (1) is an algebraic integer.

Here 4 is defined as in § 3. From the actual values of L, (1) we verify that the
Lemma is true for D = 4 2; thus we need only deal with the cases in which one of
(3. 13) to (3. 17) hold. As in the proof of Lemma 4 we shall write ¢ for an algebraic unit,
which need not be the same from one occurrence to the next. Now, using Lemma 4,

phdp—i=%—p@wﬂ%—p@w+%mﬂ=ﬁwww
and

1, i
p+1=p~pbuﬁ=%WMm-

7
Hence each term on the right of (3.13) or (3.15) is of the form wd¢(4)/214. But
in each of these sums the terms given by g and by —p are equal. Hence the right hand

s . . .
sides are wg(4)/2* 4 times algebraic integers, and since ¢(4) is an algebraic integer this
proves the lemma in these two cases.

In the cases given by (3. 16) and (3. 17) we argue similarly, using in addition the
facts that

(9° — 2p — 1)t — 32p% (9% — 1)* = 248/ (4)

since the left hand side is the product of eight terms of the form

{go—p(% yw)} with y odd;

that
Pt — 1 = 20/p2(4),
g+ 1 = 2B0jg2(4),
p—1 =2 3/p(d)
and

o+ 29— 1 = 29/g*(d),

all similarly derived from Lemma 4. The rest of the proof goes through exactly as before.
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Lemma 5 is the strongest result which we can obtain from elementary divisibility
arguments. We now turn to the question of rationality. Here we need to quote classical
results of class field theory over Q(i). The relevant part of the Kronecker Jugendtraum
(see Fueter [11] or Hasse [13]) is normally stated as follows:

Lemma 6. Let p be a Gaussian integer, not a unit. Then the strahlklass field mod u
over Q (1) is generated by p*(xw/u), where o is any Gaussian integer prime to u. If this field

is K, and if p is any Gaussian prime not dividing u, then the Artin symbol (m) is the
automorphism which takes p*(axw/u) into p?(apw/u). p

The fact that p is only defined up to a power of ¢ is irrelevant; for the value of p?
is not changed by multiplying its argument by a power of i. Unfortunately Lemma 6
is not in the most convenient form for us, since it deals with p? rather than with p. We
therefore rephrase the relevant special case of it as follows:

Lemma 7. Let A be an odd square-free Gaussian integer, not a unit. Then the strahl-
klass field mod 24 over Q () is generated by p(xw|A) where o is any Gaussian integer prime
to A. If this field is K, and tf p is any Gaussian prime not dividing 24, normalized so that
p =1 mod 2, then the Artin symbol (ﬂ@_@_
into p(apw/a). P

Let K be the strahlklass field mod 24 over Q(i). Since

(w<2a+A>)_ plaw/a)+1
24 T plew/d)—1°

the field generated by g (xw/4) over Q(t) contains p?(fw/24) for some g prime to 24,
and so contains K.

) is the automorphism which takes p(aw/A)

To deduce Lemma 7 from Lemma 6, we have still to show that p(aw/4) is in K
and is correctly transformed by the Artin symbol. Since we can alter « by a multiple
of A, we may assume that « = 4 mod 2. We shall now prove — which is clearly sufficient
for our needs — that p(xw/4) can be written as a rational function of p*(axw/24), the
function being defined over Q (i) and being independent of «.

For any Gaussian integer », (v u) is a rational function of @ (u) defined over Q(i);
this follows from (4. 2) and Lemma 1. Moreover, it is an odd function; for writing iu
for u changes the signs of both p(u) and @(vu). Hence p?(vu) is a rational function of

@2 (u), defined over Q(i). Let y =%(cx-——A) and choose » so that 24+ v and 4 | (v—1).

Then p2(yw/4) = p*(vaw/24) is a rational function of p?(xw/24), defined over @ (i) and
independent of a. Moreover

2{p*(xw [24) + 1}{p*(yw/4) + 1}
peeld) = w24 — 1) [Py w]4) — 1}

Combining these results, we see that g(axw/4) can be written as a rational function of
@*(xw/24) defined over Q(i) and independent of « (since » is so). This completes the
deduction of Lemma 7.

Corollary. Let R (x) be a rational function of x defined over Q (i), and let D be a rational
integer. Then with the notation of § 3,

(4. 6) Bz ( %)4 R(p(Bw/4))
s in Q(1).
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For let K be defined as in the proof of the Lemma. Then E% is in K; for if p prime

to 2E is a Gaussian prime it splits in Q(i, E%)/Q(i) if and only if (E/p), = 1; and this
depends only on the residue class of p modulo 24, by the quartic reciprocity law and
the rationality of E£. Moreover, the general automorphism of K/Q(t) is that which takes
#(aw/4) into p(Aaxw/d) for each «, where 4 is prime to 4 and A =1 mod 2. By the

1
identification of the Artin symbol in Lemma 7, this also takes E* into (A/E)4E%, and
hence merely permutes the terms of (4.6). Thus this expression, being unchanged by
each automorphism of K/Q(i), must be in Q(i); and this proves the Corollary.

We can now return to the proof of Theorem 1. Let D be a rational integer, fourth
power free and not divisible by 4, but not necessarily positive, and suppose | D | > 2.
Then one of (3. 13), (3. 15), (3. 16) or (3. 17) is valid. It follows that L, (1) is real; for
the set B over which the sum is taken may be made to consist of real numbers and

1
complex conjugate pairs. Moreover D*w™ L, (1) is in Q (i), by the Corollary to Lemma 7.
Since —4 = (1 + i)4, it follows that the two expressions in the Theorem are rational
numbers. But by Lemma 5 they are algebraic numbers whose denominator is at most

8
(24)%. Since the only rational integers which divide this are 4+ 1, it follows that the
expressions in Theorem 1 are rational integers. This proves the Theorem.

§ 5. Estimation of g

In order to produce Table 1 below, we need also a method of estimating g, the
number of independent generators of infinite order of _4, the group of rational points
on I',. We cannot do this by the methods of our previous paper, since they would be
intolerably slow when D is large. Instead, we use the fact that multiplication by 2 can
be written as a product of isogenies. The arguments involved are well known, though
we cannot find them explicitly in the literature (compare the theses of Billing [1] and
Lind [17]): we have stated them in unusually pompous form to be able to use the an-
alogy with the work of Cassels [5].

We extend the definition of »-covering to the case where v: C; -> ( is an isogeny
of elliptic curves instead of an endomorphism. We assume that » is defined over the
rationals and is an n to 1 mapping; and we write o, o, for the zeros of C, (; con-
sidered as Abelian groups. There is an isogeny »,: C - (; such that the composite maps
vy, and »,» are multiplication by n on (, (, respectively; and », is also defined over
the rationals. We say that there is a »-covering of ( if there is a curve D defined over
the rationals and a commutative triangle

CG—C
1
¥
D /
with associated generic points
Ty — T =92,

e
X

where X -z is over the rationals and X <>z, over the complex numbers. Another
curve D’ and its associated mappings give the same »-covering if and only if there
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is a birational mapping X < X’ over the rationals and a point b, on (, with »d, = o
such that the diagram

X x4
(5. 1) I I
X' ez =1, + b,

is commutative. There is a natural law of composition of »-coverings inherited from the
law of composition of homogeneous spaces over (;; and under it they form an Abelian
group. We are interested in two subgroups: G,, the group of those coverings for which D
has a point in every p-adic field including the reals, and G, the group of those coverings
for which D actually has a rational point. If _4, _4, are the groups of rational points
on (C, (C, respectively, then G, is isomorphic to _A4/v._A1,.

For convenience of notation, when we use n as an endomorphism it will always
refer to the map (C - (. Now we have n = »;» and 8o, using square brackets for the order
of groups,
[AvA] [ A [v,A]

Number of cosets of »,A4 in _4, which meet »'p
[G,][G)]

[A ~vTlo ][4, A v lo]/[wA ~nto]’

[AfnA] =

(5. 2)

Here the denominator only depends on the rational n-division points on (, and so can
easily be calculated.

We can obtain this result, and somewhat more, by a different argument. Suppose
that D represents an n-covering of (; then we can find D, so that the extended diagram

CCC

(5. 3) e

DD,

is commutative. Here D -> D, and D, - ( are defined over the rationals, and C,; « D,
is over the complex numbers. For let X be a generic point on D and let ¢: D - (; be
the map (over the complex numbers) defined in the obvious way. The support of
¢ Hp(X)} is a divisor defined over Q(X). Let its exact field of definition be Q(X,);
then we may define D, as the curve whose generic point is X,, and now the assertions
above are obvious.

The right-hand part of the last diagram provides a »-covering of (; and it is easy
to show that this depends only on the original n-covering and not on its realisation.
Moreover, this process is compatible with the law of composition of coverings. Thus
we have homomorphisms G, G, and G, - G,; and the second of these is onto since
any D, which contains a rational point can be lifted back to a D.

We now find the kernels of these mappings. If D is in the kernel of G, > G,, then
we may take D, in (5. 3) to be (; and the map D, « (; to be the identity. Thus any
representation of an n-covering in Ker (G» > G,) is a representation of a »,-covering in
G, , and vice versa. Since the condition for two representations to give the same covering
is lstricter for »,-coverings than for n-coverings, there is a homomorphism G, -G, such
that G, -G, - G, is exact.

Journal fiir Mathematik. Bd. 218. 13
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It remains to find the kernel of G, - G,,. If a representation of the trivial n-covering
of C is given by
C—Ci—C
t /!
/

//

D
then D contains a rational point and may therefore be taken to be a copy of C. Thus
we get just n? effectively distinct representations, the birational maps D < ( being
z < z + b for the n? distinct n-division points on (. A representation here gives rise to a
representation of a »;-covering if and only if the map D — (( is defined over the rationals;
that is, if »,d is rational. Two of them give rise to the same »,-covering if and only if
the difference of their d’s is the sum of a rational point and a »,-division point. Hence
the order of the kernel is

[«A, n v o]

number of cosets of 7o, in n'o which contain rational points

This is clearly just the denominator of (5. 2), and so we have

[6,1[6,,]

(5. 4) [Ga] = [A ~ v 0,] [A, ~ v 10]/[-A ~n 0]’

(The inequality sign here arises because the homomorphism G, - G, need not be onto.)
Similar arguments work for the groups G’; and since G, -G, is onto, we have (5. 2).

We now apply these arguments to the particular case that interests us, writing
C=Ty: y*2 =2%— Dxz%
Co=1T_,p: ¥z, =2 + 4Dz, 5.
We take n = 2, and define » as the map (, » (C given by
(@12 Y1, 2) > [22, (2] + 4D75), y, (2] — 4D3z]), 8aiz]
and », as that given by (z, y, 2) - [y%z, y(¢* + Dz?), 2%z]. Then we have

Lemma 8. There ts a natural isomorphism between the v-coverings of I'y and the
elements of Q*/Q*2. If (a) is any element of Q*/Q*?%, the corresponding curve D may be
taken to be

(5. 5) D: as® =a%t*— D.

We follow the proof of Lemma 4 of Cassels [5] II. Let z, = (x,, y,, 2,) be generic
on (C; and write

1
T = vz, t =y,/2acx,.

Then we have yi/2? = 4z/z = 4at®; and if D is the locus of (z,?) it follows that D is
defined over the rationals and is in birational correspondence with (; over the complex
numbers, and that the induced map D - ( maps (z, t) on . Hence we have a »-covering.
If we write y/z = ast then D takes the form (5. 5).

Conversely, let d be the point (0, 0, 1) on I, and let D be the curve of the »-covering
with generic point X corresponding to z,. The inverse image of 0™'d on D is rational
and linearly equivalent to zero; hence there is a function f(X) defined over the rationals
with this divisor; and since z/z has divisor (0™'b)? it follows that z/z = af?(X) for some
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rational «. The class of a in Q*/Q*2 does not depend on the choice of f; and it is easy to
show that the two correspondences we have set up are inverses. This proves the Lemma.

We note that if D is everywhere locally soluble then we may take a to be a factor
of D; for if p is a simple prime factor of ¢ not dividing D then the three terms in (5. 5)
are all divisible by different powers of p and so the equation is impossible. If @ | D then
we need only examine the solubility of (5. 5) in the reals and in those p-adic fields with
p|2D; for the other fields it is trivially soluble. Hence it is easy to find G,, and
similarly G, .

If, as in our previous paper, we write 2¢ for the number of elements of order 2 in
the Tate-Safarevi¢ group of I, so that 2! is the order of G,/G}, then we can express (5. 2)
and (b. 4) as follows:

Lemma 9. Write 2* for the order of G,, and define X', A, A,, similarly. Then we have
(5. 6) g=N 4 —2 gH1=A+h—2.

In proving this we have to split cases. If D is a rational square, the order of G,
is 27t'*% and the denominator of (5. 2) is 1; otherwise the order of G, is 27t**! and the
denominator of (5. 2) is 2. Similarly for (5. 4).

For historical reasons, A 4+ A, — 2 is called the number of first descents; it is easy
to show directly that it is non-negative. In general, there need not be equality in the
second equation (5. 6). We shall write GJ for the group of those »-coverings of I";, which
can be lifted back to everywhere locally soluble 2-coverings, and define A* by analogy
with A; similarly for Af. Then

g+t =%+ A —2,

and it may be shown by the methods of Cassels that A — A* is an even integer. Since
I'y and I'_,;, may have different Tate-Safarevi¢ groups, A — 2* and A, — ¥ need not be
equal; we have many examples of this phenomenon.

Most of the cases with g = 0 in Table 1 were obtained at once from Lemma 9;
but when ¢ > 0 for one of the curves I'}, or I"_,, it was necessary to do a further descent.
The next step is to find A*, and for this we use

Lemma 10. Let (5. 5) be a v-covering of I'y, which is everywhere locally soluble, and
let o, v be rational numbers such that

(5. 7) aoc? = a%*t®*— D.
Then there is a one-one correspondence between the elements of Q*|Q*% and the ways of

extending (5. 5) to a 2-covering of I'y; if (b) is any element of Q*|Q*2, the corresponding
curve D may be taken to be

(5. 8) as® = a*t*— D, aso — a*t*t + D = bu?.

We know that (5. 7) is soluble; for it is everywhere locally soluble by comparison
with (5. 5). Now let z, be generic on the left-hand copy of ( in the diagram

C—*(lh—-*C
/
q)/
13*
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and write z, = »,x,; retain otherwise the notation of Lemma 8. If we write

1 1 1
(aZcr—— ar)z(xg——ng — 2z,2,(a%0 + av)
u =
b 2Y22,

we may after some trouble verify that
asc — a®t?t + D = bu?.

The rest of the proof is analogous to that of Lemma 8, and is therefore omitted. We note
that the correspondence is not natural, that is, it depends on the choice of ¢ and z.

By eliminating s, we may replace the equations (5. 8) by the single equation
(5.9) b2ut + 2bu?(a2t®t — D) + Da2(t? — 1)2 = 0.

From this we may find necessary conditions on b for D to be everywhere locally soluble,
analogous to those for a which follow the proof of Lemma 8. We may assume b to be a
square free integer. Then if p is an odd prime which divides the denominators of o, 7 to
an odd power and does not divide D, it must divide b; and the only other primes that
may divide b are those that divide 2.D.

If we use Lemma 10 to find the 2-coverings of I, explicitly, some care is needed
to avoid duplication. In general, there are several essentially different ways of extending
a »;-covering to the same n-covering; the number is equal to the order of the kernel
of the map G, > G, described earlier. In our actual case, if D is not a square there are 2
distinct extensions giving rise to each 2-covering and they correspond to the values b,
and Db, for b. If D is a square, there is only one extension for each 2-covering.

If ¢ > 0 for both of the curves I'y, and I'_,;, then in order to find g it is necessary
to go on at least to the third descent. We have in fact worked out the formulae for this.
Unfortunately, mainly owing to machine development, we have not been able to use
these formulae, as we had intended, to fill in some of the gaps in Table 1. We therefore
omit all the details of the third descent; we will be happy to supply the formulae to any
intending computer. An alternative method is given in [10].

§ 6. The Tamagawa number

In this section we define the Tamagawa number that we use, and show how to
calculate it. Since we are dealing with an unusually simple particular case, we have
tried to make our description at least formally self-contained ; for a general account see [23].

Let V be a group-variety of dimension n, defined over the rationals. There exists
on V an nt order differential w which is defined over the rationals and invariant under
left translation; and  is unique up to multiplication by a non-zero rational. (This much
freedom does not matter, for the rational factor turns out to be self-cancelling.) If
Zy, ..., Z, are local coordinates at the origin on V, then we may write

o = gdz, - - - dz,.

For any prime p, including infinity, let V, be the set of points of ¥ defined over the
p-adic numbers; then V, is a topological group and w induces on it a Haar measure

wp = | g |p(dzy)p + * * (dzn)p
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invariant under left translation. Here | g | is the normal p-adic valuation, and for finite
p we normalise (dz), by the condition

[(dz), =1,

%p

the integral being taken over the ring of p-adic integers; we note that this is equivalent to

—1
(d), = 2.
units p

Suppose now for simplicity that V is complete. We may define the ‘adé¢le variety’
Vi to be IPI Vp, the product being taken over all primes including infinity; then
ws=1II w, is a measure on V,. Since II |a|,=1 for non-zero rational @, w, remains
invariant when o is multiplied by a non-zero rational. Write V, for the subgroup of
points of ¥ with rational coordinates; there is a natural imbedding of V, into V. The
Tamagawa number may be defined by

(6. 1) tV) = [ w4

V4TV

In the more usual case, V is not complete and one must proceed with more care; see [23].
Tamagawa and others have shown that for the classical groups the Tamagawa number
is a small positive integer. For example, the orthogonal group of a quadratic form not
representing zero has Tamagawa number 2; and this fact is equivalent to Siegel’s theorem,
see for instance [24].

In our particular case, V is the elliptic curve [, with differential

o =dzly.

In the main case we consider, I';, has only finitely many rational points. We have found
it more convenient not to factor them out, so we define formally

(6. 2) 2(D) =1IT [ w,,
» l'p

where the product is over all primes including infinity and I", is the p-adic completion
of the projective curve I'p.

Various difficulties may arise in interpreting a product like (6.2). It may be
necessary to insert convergence factors, one to each term of the product; we do not do
this here, but expect that we shall need to do so when discussing curves I', with g > 0.
Whether or not this has been done, there are now three useful possibilities for the infinite
product. It may converge absolutely, or it may converge conditionally provided the
factors are taken in their natural order. Both these cases occur in the work of Tamagawa.
Failing these, it is necessary to ascribe a value to the product (6.2) by a suitable
summation method; and this we have to do here. Formally, the product (6.2) differs
only in finitely many factors from that for [Lp(1)]17?, by Lemma 12 below; and we can
therefore deduce a value for t(D) from that of Lj,(1). More rigorously, we regard the
infinite product in (6. 2) as the formal value of the Euler product form of a Dirichlet
series at s = 1, and ascribe to it the value at s =1 of the underlying function. This
gives rise to a satisfactory summation method, closely allied to that of Abel.

There are no difficulties of principle in calculating the separate integrals in (6. 2),
though the details are tedious. For convenience we shall as usual assume that D is fourth
power free; however we allow D to be divisible by 4 since 7(D) is not invariant under

isogeny.
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Lemma 11. If p is odd and p | D then [ o, =2 unless p*|| D and D is a p-adic
square, in which case [ w, = 4.
Suppose first that p || D; then we have

V,= U F,u U G,,
n=0 n=0

where F, is the set of points with p***1 || z, p"*' || y and G, is the set of points with
p~® ||z, p™||y. The point (z,y) can belong to F, only if — Dz is a p-adic square,
and to each such z correspond two values of y; hence the contribution to the integral
from F, is p"*(p -~ 1)/p®*2. Similarly, (z, y) can belong to G, only if z is a p-adic square,
and to each such z correspond two values of y; hence the contribution to the integral from
G, is (p —1)/p"**. Adding all these together, we find that [ w, = 2.

The case p®|| D is similar; we have
Vo= U F,v U G,
n=1 n=0

where G, is as before but F, is the set of points with p>** || z, p"*® || y. Now the contri-
bution to the integral from F, is (p — 1)/p"; and adding up as before we find that [ w, = 2.

Finally, suppose that p2?|| D. Then we have
Vo= U F,v U G,v U H,,
n=1 n=20 n=2

where F, is the set of points with p* || z, p"*' ||y, G, is as before and H, is the set of
points with p ||z, p* || y. The contribution to the integral from F, is (p —1)/p", and
that from G, is as usual (p — 1)/p"**. H, is null unless D is a p-adic square. If D = ¢?
then the point (z, y) can belong to H, only if p**2||(z + ¢) and 2(x 4 ¢) is a p-adic
square; and to each such z correspond two values of y. Hence in this case the contri-
bution to the integral from H, is 2(p — 1)/p™*. Adding everything up, we obtain the
result stated in the lemma.

Lemma 12. If p is odd and p 4 D then [w, = N,/p.

This is a special case of Theorem 2. 2. 5 of [23]; alternatively it may be proved in
the same way as Lemma 11, remembering that in finding NV, we include the point at
infinity.

Lemma 13. If D =3 mod 4 then fwa =—é—; if D=4,12,36 or 60 mod 64 then
[y =:2; in every other case [w,=1.

We omit the proof of the lemma, which is similar to that of Lemma 11. It is

necessary to consider a very large number of distinct cases, and though none of them
individually presents much difficulty, the succession becomes wearisome.

Lemma 14.
1
boD* for D >0,

Jou =

1
bo(—4D) * for D < 0.

In the statement and proof of this lemma, w denotes the real period of p(u) as
defined in § 3. If D > 0 we have

[oumd [+ )i

= 4wD

D:z:)
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if D <0 we have

-1
4

fwm :2le/(731i~—£_l—)x—_):4w(—4D) .

Here the factor 2 arises because there are two values of y for each acceptable z; for the
evaluation of the elliptic integrals see [4], formulae 233.00, 237.00 and 239.00.

We can now express the Tamagawa number v (D) in terms of ¢(D) which we have
already shown how to compute. By Lemma 12 and the results of § 2, we have formally

(6.3) II [ w, = IT (N,/p) = [Lp()17,

where the products are taken over all finite primes not dividing 2D. Define o(D) by
(1. 6) even when 4| D, so that we have

6(—4D) = 20a(D) for D >0,
o(—4D) = o(D) for D < 0.
Then by (1.6), (6.3) and Lemma 14
(6. 4) 7(D) 06(D) = 411 [ w,,

where the product is taken over the finitely many primes which divide 2D. The right
hand side of (6. 4) can be evaluated in any particular case by Lemmas 11 and 13.

We can similarly ascribe a Tamagawa number to any elliptic curve with finitely
many rational points; and it is in each case a computable multiple of the formal product
(1. 2). The analogues of Lemmas 11 and 13 are very messy, and we have in general no
neat way of evaluating the formal product.

§ 7. The numerical evidence

In this section we describe the calculations that we have actually carried out on
EDSAC 2, and the extent to which they confirin our conjectures. Let D be a positive
integer not divisible by a fourth power or by 4; define o(D) by (1.6) and 4 as in § 3.
After Theorem 1, we know that ¢(D) is a rational integer for | D | > 1; by means of
the formulae (3.13) to (3.17) we have computed its value whenever | 4| < 108 or
| 4| = 113, 165, 195, 231.

The details of the calculation are of little interest, except for one point of organi-
sation. Each of the 4% terms in the formula used involves a quartic residue and a value
of p(u); and nearly all the time taken by the computation is spent in evaluating these.
We therefore gain efficiency by calculating o (D) simultaneously for all D corresponding
to a given A. If | 4 | is a prime p then we obtain the 12 cases

D = :1:2an (@=0,1; b =1,2,3);

if | 4| is a product of two or three primes, we obtain respectively 36 or 108 cases. For
a given value of 4, the complete run took about A%/20 seconds. There is an automatic
check against machine (or program) error, in that the final value of o(D) has to be an
integer to within the accuracy of the calculation.

For comparison with our main conjecture (1.5), we have also found the value
of g for as many of the curves as we conveniently could. For each curve we have carried
out the first descent by the methods of § 5, and where necessary the second descent
also; we had hoped to carry out the third descent, but as explained in § 5 we were unable
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to do so. The calculations are straightforward except for the recurrent need to solve
equations of the form

(7. 1) ax? 4+ by? + ¢cz2 =0

over the rationals. One of Lagrange’s proofs of his theorem [16] gives a constructive
method of solving (7. 1) when it is possible. Alternatively we may search for a solution,
since Holzer [14] has shown that we need only examnine the region

2 < |bel, < |cal, 2= |abl.

The local solubility of the coverings was checked by methods similar to those described
in our previous paper. In searching for rational points on the coverings we considered
only relatively small values of the variables; for we have found that time spent on
extending such a search is only meagrely rewarded.

For each of the values of D considered, we give in Table 1 the corresponding values
of g, g, 2 and 4,, the last two being the numbers of first descents defined in § 5. These
are also the values of o, g, 4, and 4 respectively corresponding to —4D. Let v be the
Tamagawa number of I';, as defined in § 7; and let (D) be the number of rational points
on I', of finite order. (Thus within the limits of our table # = 4 when D is —4 or a
square, and = 2 otherwise.) Rather than take up space printing the values of 7 (D)
and 7(—4D), we have marked the value of ¢ with an asterisk whenever o # 0 and
t(D) += n?(D) or v(—4D) + n?(—4D). These cases are further described in Table 2;
according to our conjectures they are just those in which g =0 and the Tate-Safarevi¢
group is non-trivial; Table 2 is possibly less reliable than Table 1.

We have given the value of g whenever we know it. A gap instead of the value
of g indicates that we do not know it, and indeed have no information beyond that given
by the general inequality

0=<g<si+ 4 —2.

An entry such as ‘1— indicates that (because of the second descent) we know that
g < 1; in these cases there is a non-trivial Tate-Safarevi¢ group. An entry such as ‘1 4’
indicates that we know that g = 1 since we have actually found a generator.

In Table 1 we have packed onto each line the entries corresponding to four linked
values of D. In each line the first column gives an odd positive integer D,. The re-
maining sixteen columns form four groups of four. The first group gives the values
of 0,8, A and 4, for D = D,; and the other three groups correspond to the cases
D =—D,, D=2D, and D = —2D, in that order.

Let us write ¥ = n?/7r; then the main conjectures of this paper are that y = 0 if
and only if g = 0, and that in this case y is the order of the Tate-Safarevi¢ group. The
first part of this agrees with our calculations whenever we know g. Moreover, the work
of Cassels [5] strongly suggests that g should have the parity of 4 4+ 4;; and in our tables

= 0 whenever 4 + 4, is odd. For the second part of the conjecture, we note that in
our tables y is always a square; and Cassels has shown that when the order of the Tate-
Safarevi¢ group is finite it is a square. We have made no attempt to calculate p-coverings
for any prime p > 2; and the practical difficulties appear to us formidable. But we do
known the 2-component of the Tate-Safarevi¢ group in every case for which we know
that g = 0; and this yields always the correct power of 2 in y. (The few cases where -
y = 0 but we do not know that g = 0 are ones in which the second descent is indecisive;
it is further corroboration of the conjecture that in these cases y is divisible by a high
power of 2.)



Birch and Swinnerton-Dyer, Notes on elliptic curves. 11 101

In the course of these calculations, we observed another identity which we con-
jectured to hold always; this is

(7. 2) 1(—4&D)/r (D) = 2M74;

in fact, without some such identity our conjectures for v(—4D) and (D) could hardly

be consistent. This relation need not be confined to the case y 4 0, for the left hand

side may be written as a finite product. In fact we deduce from the results of § 6 that
t(—4D)x(D) = II g,

p|2D o

where, for each p, g, is short for pr/ pr, and may be read off explicitly from
Lemmas 11, 13 and 14. Ip T4

We are glad to say that Cassels [7] has been able to prove a more general theorem
including (7. 2), which gives our conjectures considerable support. The identity has also
been verified more directly by E. Forrest [10].

Table 1
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Table 2
We write y(D) = 5*(D)/z(D) as in § 7. Then in the range of Table 1
y(D) = y(—4D) =0 or 1,

except in the cases marked by asterisks. In the exceptional cases, y takes the following
values: —

(1) y(D) =1, y(—4D) =4
for D = 98, 198, 414, 1058, 1078, 1694, 2166,
2250, 3174, 10082, 13230, 19494, 21218, 23958, 28566,

29250, 30870, 45125, 45738, 83006, 130438, 167706, 219006,
330750, 380250, 439002, 494325, 771750, 2241162, 4943250, 821759%;

and for —D = 35574, 54450.
(1) y(D) = 4, y(—4D) =1 for D = 289, 5329, 7921, 9409;

and for —D = 17, 41, 57, 97, 117, 297, 441, 605,
1089, 1587, 1625, 2625, 3087, 3249, 3267, 3993, 4913, 5145,
7425, 8649, 9702, 10985, 15125, 19773, 23625, 45375, 46305, 61731,
65219, 68921, 99825, 165375, 185193, 912673, 1497375.

(iii) (D) = y(—4D) =4
for D = 113, 3773, 4563, 4913, 6534, 33275, 123462, 274625, 328509, 1442897;

and for — D = 62, 82, 142, 146, 194, 686, 1026,
1242, 1681, 5329, 7546, 7921, 7986, 9522, 9747, 9826,
15842, 18634, 24334, 34295, 59319, 59582, 65910, 71874, 73002,
87750, 166375, 228150, 370386, 593190, 778034, 2185454, 14829750.

(iv) (D) = 4, y(—4D) =16 for D = 4418, 88434, 249018, 598950,
(v) y(D) = 16, y(—4D) = 4 for D = 12769, 41503, 109503:

and for —D = 20577, 35937, 45125, 274625, 494325, 1157625, 1173942.

(vi) (D) = y(—4D) =16 for —D = 137842, 913066, 986078.
(vii) y(D) = 64, y(—4&D) = 16 for —D = 389017, 1442897.
(viii) y(D) = y(—4D) = 64 for —D = 1409938.
(ix) y(D) = y(—4D) = 9
for D= 1849, 2523, 6859, 7803, 8978, 11449, 13778, 15379,

22898, 42875, 506563, 51894, 89373, 107653, 160083, 205379, 391314,
571787, 1030301, 4492125, 7414875;

and for —D = 1682, 2662, 7442, 12167, 13182, 18522, 20402,
55902, 132651, 257250, 265302, 297754, 342950, 357911, 549250,
601526, 998250, 1120581, 1228250, 1714750, 2450086, 2965950, 7414875,
12326391, 24652782.
(ix) y(D) = y(—4D) = 36 for D = 912673.
(x) y(D) = y(—4D) =81 for D = 1225043
(xi) y(D) = y(—4D) =25 for D = 536238;
and for —D = 571787, 1317006, 1507142, 2060602, 4108797.
(xii) y(D) = y(—4D) = 49 for D = 300763;
and for —D = 453962, 1092727.
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