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HIGHER REGULATORS AND VALUES OF L-FUNCTIONS 

A. A. Beilinson UDC 512.7 

In the work conjectures are formulated regarding the value of L-functions of mo- 
tives and some computations are presented corroborating them. 

INTRODUCTION 

Let X be a complex algebraic manifold, and let Kj(X), I@~(X,Q) be its algebraic K-groups 

and singulary cohomology, respectively. We consider the Chern character ch: Kj(X)| 
H~-J(x,Q). It is easy to see that there are the Hodge conditions on the image of ch: we 

have ch (Kj(X))c ~(~V2~I-f~-J(X, Q)) N(FIH~-J(X, C)), where W., F" are the filtration giving the 

mixed Hodge structure on H~(X). For example, if X is compact, then ch (Kj(X)) = 0 for 

j > 0. It turns out that the Hodge conditions can be used, and, untangling them, it is pos- 
sible to obtain finer analytic invariants of the elements of K.(X) than the usual cohomology 
classes. For the case of Chow groups they are well known: they are the Abel--Jacobi--Griffiths 
periods of an algebraic cycle. Apparently, these invariants are closely related to the values 
of L-functions; we formulate conjectures and some computations corroborating them. 

In Sec. 1 our main tool appears: the groups /-/~(x,Z(i)) of "topological cycles lying in 
the i-th term of the Hodge filtration." These groups are written in a long exact sequence 

. . .  (X,  (X,  - �9 z (i)) - (X,  Z)e 'H  (X,  . . . .  

On H ~  we c o n s t r u c t  a U - p r o d u c t  such  t h a t  g~  becomes  a r i n g  m o r p h i s m ,  and we show t h a t  
H ~  fo rm a cohomology  t h e o r y  s a t i s f y i n g  P o i n c a r 6  d u a l i t y .  T h e r e f o r e ,  i t  i s  p o s s i b l e  to  a p p l y  

the machinery of characteristic classes to H~ [22] and obtain a morphism ch~:Kj(X)| 

Q -+@ff~-J(X, Q(i)). The corresponding constructions are recalled in Sec. 2. Let l-l~-J(X, 
Q (~))cKj(X)~Q be the eigenspace of weight i relative to the Adams operator [2]; then ch~ 

defines a regulator- a morphism r~:HJs~(X,Q(i))-+I-I~(X,Q(i)). [It is thought that for any 

schemes there exists a universal cohomology theory H~(X, Z(i)), satisfying Poincare duality 

and related to Quillen's K-theory in the same way as in topology the singular cohomology is 
related to K-theory; /~ must be closely connected with the Milnor ring.] In the appendix 
we study the connection between deformations of ch~ and Lie algebra cohomologies; as a 
consequence we see that if X is a point, then our regulators coincide with Borel regulators. 
There we present a formulation of a remarkable theory of Tsygan--Feigin regarding stable co- 
homologies of algebras of flows. Finally, Sec. 3 contains formulations of the basic conjec- 
tures connecting regulators with the values of L-functions at integral points distinct from 
the middle of the critical strip; the arithmetic intersection index defined in part 2.5 is 
responsible for the behavior in the middle of the critical strip. From these conjectures 
(more precisely, from the part of them that can be applied to any complex manifold) there 
follow rather unexpected assertions regarding the connection of Hodge structures with alge- 
braic cycles. The remainder of the work contains computations corroborating the conjectures 
in Sec. 3. Thus, in Sec. 7 we prove these conjectures for the case of Dirichlet series; 
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Sec. 5 contains a result giving a partial proof of the conjecture for values at two of L- 
functions of curves uniformized by modular functions; Sec. 6 contains an analogous computa- 
tion for the product of curves of this type. 

This work arose from an attempt to understand the ideas and computations of S. Bloch. 
Conversations with I. N. Bernshtein, P. Deligne, Yu. I. Manin, B. L. Feigin, and V. V. Shekht- 
man were very useful to me. I am very grateful to them. I am also grateful to L. Titiova 
for help with preparation of the manuscript for publication. 

NOTATION 

We shall use th~ standard language of cohomological algebra. If A is an Abelian cate- 
gory, then D(A) is the derived category of A; DF(A) is the filtered derived category; C(A) 
is the category of complexes; s is a functor assigning to a bicomplex the corresponding simple 
complex; N:A & § C(A) is the normalization functor (A A are the cosimplicial objects of A). If 
X" is a complex, then the complex X ~i coincides with X" in degrees ~i and is equal to zero in 
degrees <i (the i-th term of the filtration group on X). We denote by [y0 § y1 § y2 § ...] 
the complex equal to zero in negative degrees and coinciding with Y" in positive degrees. If 
T is the topology in ~(T) - the category of sheaves of Abelian groups on T, then C(T) : = 

C(~'(T)). 
"An analytic space" is an analytic space over R; we denote by ~a the category of analy- 

tic spaces equipped with the usual topology. 

Let VEin. Then a sheaf ~ on V is a sheaf ~c on V(C) equipped with the action of an 
involution o of complex conjugation on V(C); the spectral sequence with second term HP(Z/2, 
I-P(V(C), 9rc)) converges to the cohomologies I-/'(V,9 r) (the Leray sequence of the structural 
morphism V-+SpecR); in particular, for a Q-sheaf we have ff'(V, gr)-----/-f'(V(C), 9rc) ~. 

We denote by C V or simply C the local system on V corresponding to a constant sheaf with 
stalk C on V(C) with the action ~ by means of complex conjugation. Identifying CV with the 
subsheaf of constant functions in the structural sheaf Or, we obtain, if V is smooth, the 
isomorphism /-]'(V, C)=I - ]~  (V). If KcC is a subgroup closed relative to conjugation, then 

let K V (or simply K) be the subsheaf of C V with stalk K. We need the following subgroups of 
this kind: for a subring AcR and nEZ we set A(n):=(2~i)nA----A'Z(a)cC; then A(i)'A(j) = 
A(i + j). If $- is a sheaf on V, then let ~(a):=gr| it is clear that for a sheaf of 
Cv-modules 9 ~ the sheaf 9r(n) can be canonically identified with 9 r. 

If V is smooth, then let Ov~Ov be the sheaf of functions of class C = on V, let 

" ~P'q" let S~ be the subsheaf ~v=~}, be the corresponding de Rham complex, and let Qv== ~ v=, 
p+q=n  

of R-valued forms, ~v~Sv| If X is an algebraic manifold over R, then we set f'f~(X, 
R 

A(~))=f-f'(Xan, A (~)). For any cohomology theory H~ we denote by H~" the corresponding cohomol- 

ogy groups (see 2.3). 

CHAPTER 1. MAIN CONSTRUCTIONS AND CONJECTURES 

1. ~) -Cohomologies 

1.1. ~-Cohomologies of Analytic Spaces. We fix a subring A c R .  

D e f i n i t i o n  1 . 1 . 1 .  1 For  i~Z we d e f i n e  a c omp l e x  A ( O ~  o f  s h e a v e s  on  ~ n  by  t h e  f o r m u l a  

A (i)m: =Cone ~Ft~A (0-+ ~')[--I]. 

Here 9" is the de Rham complex of holomorphic forms equipped with the f i l t r a t i o n  group FJ:= 
~/>J; the arrow FI@A(i)-+Q" is the difference of the obvious imbeddings Fic-f~" and A(i)~. 
C~-9". II 

Let eF, E A be the natural morphisms of A (i)~ into F(i) ,  A(i), respectively. We have 
the exact triangle 

~F+'A (,) 
. . .  -+ ~" [ -  I] =-+ A (i)~)J-+F (i) ~ A (i) - + . . .  

ZApparently, these complexes were f i r s t  considered by Deligne (see [8]). 
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It is clear that for t-.<0 ea is a quasiisomorphism. For i > O, factoring 
the cones id:F i + Fi, A(i) § A(i), we obtain the quasiisomorphisms 

A (i)~-+[A ( i ) - ~ - ~ . . .  -+~'-']-+[O--,.O/A(i)-+~'--,-... ~ ' - ' l .  

A (~)~) by 

In particular, since OIZ(1)~Po *, the complex Z(1)~ coincides in D*(~Cn) with O*[--I]. If 
V is a smooth manifold, then the morphism ~v:CIA(i)[--I]-+A(i)~ in D+(V) connected with the 
imbedding CIA{i)~OIA(i), is a quasiisomorphism for i > dimV. 

The complex A(i)~ determines a corresponding contravariant cohomological functor RP(., 
A(i)~) on ~q~n with values in the derived category D+(A-mod). Applying to (*) the functor 
RF, we obtain the exact triangle of functors 

EF+~ A 
�9 . . - + H ~ ( . ) [ - - 1 ] = - + R F ( . ,  A(i)~)  ~ R r ( . , F , ) e R r ( . ,  A(i))--+...  ( , )  

G e n e r a l l y ,  f o r  any d i ag ram O : l - + ~ r  of  a n a l y t i c  spaces  i t s  cohomolog ies  RF( G ,A( i ) ~ ) /E  
D+(A-mod I )  a r e  d e f i n e d ,  and 

RP (G, A (t)~) : = R lim RP (O, A (i)m)~ED + (A-mod). 

We r e q u i r e  cohomolog ies  of  s i m p l i c i a l  spaces  ( I  = A0) and r e l a t i v e  cohomolog ies  

(1 = .  -~ . ,  ~ n  z = M o r  ~ n ,  D (A-modt) c D F  (A-rood)). 

If V. is a simplicial space, then to 

H" (V., A (i)m) (: = H ' R I '  (V., A (i)m)) 

t h e r e  conve rges  t h e  s p e c t r a l  sequence  w i t h  f i r s t  t e r m  EP'q=Ha(Vp, A(i)~).  I f  f :U  + V i s  a 
morphism, then we have the exact triangle 

�9 . -+ RP ( f ,  A (i)~)-+ RF (V, A (i)~) -+ RF (U, A (i)~) - ~ . . .  

Remark 1 . 1 . 2 .  Le t  C ' (V,  ?) be t he  complex of  s i n g u l a r  c o c h a i n s  of  c l a s s  C ~ w i t h  c o e f f i -  
d e n t s  i n  ? on V(C). This  i s  a complex of  p r e s h e a v e s  on ~r l e t  C" (?) be t he  complex o f  
sheaves  c o r r e s p o n d i n g  to  i t .  We s e t  

C ~  (., A (i)): = C o n e  (C>' (C) ~ A  (i) -+ C" (C)) [--  1], 

where t h e  ar row i s  the  d i f f e r e n c e  of  the  obv ious  imbeddings  C ~>i + C" and A( i )  § C ' .  I n t e -  

g r a t i o n  over  c h a i n s  g i v e s  t he  morphism ~:A(i)~9.-+C'~(A(i)). I t s  c o m p o s i t i o n  w i t h  t he  n a t u r a l  
p r o j e c t i o n  

r 

C'~(A (i))-+[C'(C/A (i))/d >l (C/A (i))] [--1] 
d e f i n e s  t he  morphisms 

and 
I J :Hi  (V, A (i)m)-+ H j-~ (V, C /A (i)) npa ] < i 

H'(V, A ( i )~ )~r  (V, Or-, (C/ A (i))/ar (v, 0,-D. 

I f  V i s  smooth and j < i ,  t h e n  11 �9 a r e  i somorphisms  i n v e r s e  to BV. 

1 .2 .  M u l t i p l i c a t i o n  on ~ -Cohomolo$1es .  

D e f i n i t i o n  1 . 2 . 1 .  Le t  ~ R .  We de f •  t h e  mapping 

U = :A (i)~| (j)~-+ A (i--}-])~ 
by the formula 

f i  U=f l = f l A f ~ . F  t+l, ai O=aj=al.ajEA (i+j), 
aL U =f j = f ,  O =aj = to t U =o~j = O, f t U =% = ( -- 1)ae~/t~. f tA%~_ff, 

% O =f j=(1 --~) %AfjEf f ,  al IJ =o~1=(1 - -=)  at.o~jEfs 

h e r e  f t E F  t, (olEO" , arEA (i) . . . .  
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LEMMA 1.2.2. a) Us is a morphism of complexes. 

b) All U= are homotopic to one another; we denote by U their common homotopy class. 

c) The multiplication U is associative and commutative up to homotopy. 

d) The cycle (I, 1)6f-/0(A (0)~) is a two-sided identity for U. 

e) We define the morphisms A(i)m| A(i)m| ~+j, and A(i)~| as 

compositions of the natural multiplications on A('), F', andS" with the morphisms e A, e F, 
and eft = e A ~ e F, respectively. Then these multiplications together with U give a morphism 
of triangles A (i)~| in the homotopy category. 

~roof. b) The'homotopy between U= and U~ is given by the formula ~i| 
~)~iA~]; the other components of it are equal to zero. 

c) U0 and UI are associative; if S:A(i)~|174 is the permutation of 
factors, then U=S= UI_=.�9 

L 

We have thus obtained a commutative and associative multiplication U :A(i)~| (iq- 
j)~ in the derived category; it defines a multiplication on ~ -cohomologies. It is clear 

that CA, e F are morphisms of graded rings. 

Remark 1.2.3. Let (M~, F'M~) be a differential, filtered (fl', F')-module, let M A be 
a complex of A-modules, and let MA § M~ be a morphism of complexes of A-modules. We set 
3j(i)m:--_Cone(F~TWn| ]. Formulas 1.2.1 give a natural pairing A (i)~| 
J)m, converting 7W(.)m into a A (.)~ -module. 

1.2.4. We shall present a more convenient construction of the multiplication on ~ - 
cohomologies with coefficients in R. We assume that our manifolds are smooth. 

The projection ~l:C-----~(i)e~(i~-l)-+R(i) gives a morphism ~'-+S'|174 which makes 

it possible to define the complex R(i)m:=C0ne(~i_1:F~-+S'| together with the mor- 

phism pi:R(i)~-+R(i)~; ptl/=id, pila(o=0, pil~.-----~i-1. We define the multiplication U:R(i)~| 

R(y)~-~(iq-])m by the formula /~O/j=/~A/j, s~s~=O, /,bs,=(--D~~ s~OL = 
s~A~]/], where f~@F~, s~S'| (i-- I)cS'| .... 

LEMMA 1.2.5. a) Pi is a homotopy equivalence. 

b) 0 is a morphism of complexes, and p~+jU is homotopic to U(P~| 
Proof. b) The homotopy between p~+jU~ and U(PI| is given by the formula 

~ |  ~ ( - -  1) ~ (~. ~ _ , ~ A ~  + (1 --  ~) ~ , h ~ _ , ~ ) ,  

and  t h e  o t h e r  c o m p o n e n t s  a r e  O. �9 

T h u s ,  r e a l  ~ - c o h o m o l o g i e s  c a n  b e  c o m p u t e d  i n  t e r m s  o f  R ( . ) ~  - c o m p l e x e s ,  and  t h e  U - 

p r o d u c t  on  t h e m  c a n  b e  c o m p u t e d  i n  t e r m s  o f  U - m u l t i p l i c a t i o n .  F o r  e x a m p l e ,  f o r  i > 0 we 
have I-f ~ (V, R (i)~) ={/~P (V, S ~-~DR (i-- l)):d/---- m • ~, ms (V)IdF (V, S~-2| (i-- I)) ; in part icular, 

/-/~(V, ~(I)~) is the space of R-valued functions f of class C ~ on V such that dzf is a holo- 

morphic differential; further, for such f, g we have /Og-~-f'~ldzg--g~,dzf6]-I=(V, ~(2)m). 
Remark 1.2.6. If we have any diagram of differential graded rings, then there is the 

Alexander-q4hitney multiplication on its inverse homotopy limit. It is easy to see that the 
-product on A (*)~ is the Alexander--Whitney multiplication corresponding to the diagram 

A(*)-+ ~'+- F*. 
1.3. In order to become accustomed to ~ -cohomologies, it is worthwhile to consider in 

detail the multiplication ~:]-]~(V, Z(|)~)| Z(|)~)-+f-P(V, Z(2)~). We have ff~(V, Z(|)~)= 

�9 d l og  
~* (V), H 2(V, Z (2)~) =/-/, (V, ~* -+ ~*) (I), so that U :~* (V) | ~* (V) -+H' (V, ~*+~') (I). This pairing 

was constructed independently by Deligne and the author [19, 3, 11] and served as fhe point 
of departure for the present work. 

As Deligne noted, H~(V, ~*-+~) is a group of isomorphism classes of invertible sheaves 
with a connection, so that U assigns to a pair of invertible functions a sheaf with a connec- 
tion; for dimV = I all connections are integrable, and ,HI(V, ~._+fll) =HI(V, C*). The next 
lemma is left as an exercise for the reader. 
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LEMMA 1 . 3 . 1 .  L e t  f ,  gEO* (V). Then 

a .  The c u r v a t u r e  o f  lUg i s  dlogfAdlogg. 
b.  The monodromy l o g a r i t h m  o f  lug  o v e r  a l o o p  y i s  computed  by  t h e  f o r m u l a  ( ~ 1 0 g f d  x 

logg--g(=)Jdlogg)EC/Z(2)'., h e r e  ~ i s  a p o i n t  o f  T,  l o g  f ,  l o g g  a r e  b r a n c h e s  o f  t h e  

logarithm that are continuous off ~ , , a n d  the integrals are taken over y beginning 
at ~. 

c. Let f, g be functions on the punctured disk which are meromorphic at the exercised 
point 0. Then the monodromy of lUg over a loop about 0 coincides with the manual 
symbol {f, g}0 at 0. �9 

COROLLARY 1.3.2. (the Steinberg identity). If t I--tEO*(I/') then lU(l--t)=0. 

Indeed, by functoriality it suffices to verify the identity for t a parameter on V = 
Pl\{0, I, co}. Then f-f2(l/, Z(2)~))=HI(V, C*(1)) , the group HI(V') is generated by loops about 
0 and I, and everything follows from c. and the Steinberg identity for the manual symbol. �9 

COROLLARY 1.3.2. On the category of algebraic curves over R there is a unique morphism 
of functors K2(X) § HZ(Xan, C*(1)) taking (f, g} into fUg, where lUg is given by formula 
3.l.b. 

Indeed, the Matsumoto theorem plus the preceding corollary define a morphism at a gen- 
eral point q over the curve X. The morphism extends to all of X by means of a commutative 
diagram with #ows which are exact sequences of localization (the commutativity of the right 
square is given by 3.1.1c) 

K2 (x) -~K~ ( t O - - ,  ec* 
I [ ~ex(c )  
I 

O ~ H '  (X~n, C* O))~H'(n~., C* 0 ) ) ~  ~C* 
x(~x(c) 

The cohomologies cons t ruc ted  possess the f o l l o w i n g  shor tcoming:  f o r  open V they are 
often infinite-dimensional [for example, HI(V, Z(I)~g))=(Y*(V) ]. In order to obtain a more 
convenient theory for algebraic manifolds, we impose growth conditions at infinity. Before 
doing this, however, we must present some definitions from general topology. 

!.4. Relative Cohomologies. Let j:T § ~ be a topology morphism. With j there is con- 
nected a new topology (T, T): sheaves on (T, T) are triples lv=(~v~_, lvr, ~_), ~v~_, ~v r are 

sheaves on T, T, q~v , and j is a morphism ~v~--+~v r ; a morphism =:~v_+~ is a pair of morphisms 

=~_:~v~__+~_ o~r:~'r-+~r such that =r~-=q~$~y -. We define the left-exact functor F(T, T, .): 

C(~, T) § C(AD) by the formula r(T, T,~v):=Cone(r(T,~vy)-+r(T,~vr))[--l] ; let Rr(u T, "):D+(u 
T) § D+(Ab) be the.right derived functor. We have an exact triangle of functors on D+(T, T): 

R r  (?, T, ~ )  --,- R r  (T, ~rr) -~ RP (T, ~ r )  -+ . . . .  

It is clear that RF(T, T, ") is also a right derived function of the functor F~ X, ") 
taking the sheaf ~v into Ker(r(T, ~v~-)-+r(T,~Vr)). 

We define a bifunctor | by the following formula. Let lv., 
7 

~'EC(T,T). We set (~v.~.)p_: =~vr| ' (r is the shift by --I of the cone of the morphism 

~5v|174174174174 while the connecting morphism ~9-| is J*| 

q~-|174 r -+(j*~v~|174 Let | D+(T, T)XD+(P, T)-+ D*(~, T) be the corresponding 
L L 

left derived functor. We have the obvious morphism RI~(T,T,~)| ~t'| 
7 

L 

so that the pairing ~v.| induces a multiplication on the relative cohomologies. 
7 

Remark. If T = T, j = id, then (T, T) is the category of sheaf morphisms on T. We 
define an exact functor I:C(T, T) § C(T) by the formula I(~v')-----(Cone~-)[--l]; then Rr(T, T, 

t r ' ) , = R r  ( r ,  z (st')), I (~v-~,9")=I (ge')| (~O'). 
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We now return to our main subject. 

1.5. Complexes A (i~. with Logarithmic Singularities. We consider the category ~ of 

pairs (V, V), where V is a smooth analytic space, ]:V~V is an open subspace such that 

V\V is a divisor with normal intersections_ on V. For a pair (V, V) in H let ~iV,V) be the 

de Rham complex of holomorphic forms on V with logarithmic singularities along V\V . We 

filter the complex ~iV,V) with the foolish filtration FW,~:--~W. ~. 

We define a complex A Ci)~ of sheaves on (V, V) by the formula 

[A (i)~]'V: ----F(v,V)l , [A (i)~]v: =Cone (A (i)v-+~), 

the connecting the morphism [A(i)~v-!v-+[A (i)]v is the imbedding Fi[v~ 

We have thus constructed complexes A(i)~ with logarithmic singularities along V\V . 

It is clear that if V = V, then f(ACi)~) is the complex A(i)~) of part I (see the end of 

the preceding subsection). For A = R we can thus define complexes R(i)~, quasiisomorphic to 
R(i)~ (see 1.2.2). 

The complexes A (i)~> depend functorially on (V, V)EN. As in part I, we can define a 

contravariant functor ~F(V,V, A(i)~) on H or KA, define the relative cohomology connected 
with the morphism, etc. We have the exact triangle 

. . .  - + n ~  CV) [ -  l l - + R r  CV, v ,  A (0~)-~ Rr  (~,  F ' ) ~ R r  (V, A (0) . . . .  (*) 

LEMMA 1.5.1. The formulas of Definition 1.2.1 give a morphism A (i)~@A (j)~-+A (iq-j)~; 

all other results of part 1.2 also obtain without change in the logarithmic situation. �9 

We thus have a multiplication on ~ -cohomologies with logarithmic singularities. First 

example: we note that the complex A (i)~ is quasiisomorphic to the complex FI(V, V)-+[Ov/A{i)-+ 
Q~-+...]. From this we obtain the following result. 

-- l ~/t LEMMA 1.5.2.H~(V, V, A(1))={fEP(V, Ov/A(1)):df6r(V,~v~)}, (V,V,A(1)~)=0 for i~ 0.�9 

1.6. ~ -Cohomologies of Algebraic Manifolds. We denote by HcH the complete subcate- 
gory consisting of those pairs (V, V) for which ~ is a (smooth) projective algebraic variety. 
Let ~R or simply ~7~be the category of smooth quasiprojective schemes over R. According to 
GAGA, we have the functor g:~-+~)~, taking (V, V) into V. 

LEMMA 1.6.1. Let f:(U, U) * (V, V) be a morphism in ~ such that o(f) is an isomorphism. 
Then f* defines an isomorphism of the triangles (*) in part 1.5. 

Proof. It follows from [15] that f* gives an isomorphism of the two extreme terms of the 
triangles. Since the triangles are exact, f*:~F(V, V, A (i)~)-+RP(~7, U, A (i)~) is also an igo- 
morphism. �9 

For X6~) ~ we shall find, according to Hironaka, (A~ X)~. We set 

n~CX, A C0): = R r  (2~., x , . ,  A q)~), 

n (X, F(0): = R r  (R.., F I~ ,~ .  ), n~(X, A (0): = R r  (X~., A (0). 

According to 1.6.1, these complexes do not depend [in Db(A-mod)] on the choice of compactifi- 
cation and define an exact triangle of functors on ~)~: 

eF+SA 
�9 . .  ~ n ~  (x) [ -  l l ~ n ~  CX, A Ci))- -~n CX, F (i))~ n m CX, A (i))-~. . .  ( , )  

We have thus defined ~ -cohomologies H~(X, A (i)) of smooth algebraic manifolds; ~ - 
cohomologies of smooth simplicial schemes and the relative cohomologies corresponding to a 
morphism of schemes are constructed in exactly the same way; the corresponding spectral se- 
quences and exact triangles hold (see part I). 

We emphasize that for X~ the natural morpNism, H~(X, A~(i))~RP(X~,, A(O~), generally 
speaking, is not an isomorphism; however, it is an isomorphism if X is compact or i > dimX. 

The next result follows from the triangle (*) and [16]. 

LEMMA 1.6.2. Let f:X. § Y. be a morphism of simplicial schemes such that f*:H'(Y.(C), 
Z) § H'(X.(C), Z) is an isomorphism. Then f* gives an isomorphism of the triangles (*)(X) 
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and (*)(Y). In particular, f*:H~(Y.. A(i))-+H~(X., A(i)) is an isomorphism. R 

Exercise 1.6.3. Determine the exact triangles 

�9 . ~ R F  (X~n, C / A  Ci))[--ll-+H~(X, A CO)-+K (X, P (0)-+.. (**) 

.-+ (x) [-11 (x, A (0)-+ {X, A (0)-+. . .  (***) 

Here F ~  (X) is the i-th term of the Hodge--Deligne filtration on H~(X). �9 

1.6.4. According to 1.2 and 1.5, we obtain a U -product on ~-cohomologies of schemes, 
simplicial schemes, and relative cohomologies. The morphisms eA and EF commute with multi- 
plications. Further, this multiplication is consistent with the triangle (*): we have a 

morphism of triangles H~(., A (i))@ (,)-+{.), in which the middle arrow is the U -product and 

the two extreme arrows arise from the obvious structures of M~ -modules on M~, H~, and H F by 
replacement of the rings 6A:H~-+H ~ (see 1.2.1.e). 

1.6.5. In this subsection We show that H~ are cohomologies of certain complexes of 

sheaves in the Zariski topology. This enables us to appeal to [22] for the definition of the 
Chern character (see Sec. 2). Actually for our purposes the H~ already present on the 
category of simplicial schemes is sufficient, since, generally speaking, part 1.6.5 is not 
needed below. 

We return to part 1.5. We note that the obvious functors of the direct and inverse 
image corresponding to morphisms in H convert sheaves on the objects of H into a H-topology; 
the corresponding topology of sections we denote by Sh(H) (see SGA4Vbis). Its objects we 
call sheaves on H. Thus, a sheaf ~ on ~ is a collection of sheave~ ~(~v) on (V, V)EH and 

morphisms f * : ~ ( ~ . v ) - - + f , ~ ( ~ . u )  for f:(U, U) § (V, V) in H satisfying the conditions (fog)* = 

g*of,, id* = id. For example, A (i)~ are complexes of sheaves on 9. 

We equip ~ with the Zariski topology. We note that for XE@Y the collection o-l(X) of 
all regular compactifications of X forms a directed family. To the sheaf ~ on H we assign 

the presheaf X-+ tim Fo(x~,X=~, ~) on @7 ; we denote by a,(~) the corresponding sheaf 
( x , x )~ - , ( x )  

on ~. Thus, we have obtained a left-exact functor a,:Sh(H)-+Sh(~). Let R~, be its right 
reduced functor; we set A(i)~zar:~---~.A(i)~ED+(~). From 1.6.2 applied to an open hypercovering 

in the Zarisk~ topology it follows that the canonical isomorphism RF(X, A (i)~Za0-~-~(X, A (i)) 

holds. Further, all other constructions also carry over to this language: it follows from 

1.4 that there is the canonical commutative and associative multiplication A {i)~z~r~A (])~z~r -+ 
A(i~-])~z~; the morphism c0:A->A(0)~zar, c~:~*[--l]-+A(1)~z~r (see 1.5.2 and 1.7), etc. 
'Translate the results of ~.6 and 1.7 to this language. 

1.6.6. We present still another pair of properties of ~. Let A~Q. From (*), [16, 
(8.2.4)] and the Kfinneth formulas we obtain the following result. 

LEMMA 1.6.6.1. Let X be a scheme. We assume that either i > min (~, dimX) or X = X' x 
X", X' is compact, X" is affine, and ~ < 2i -- dimX". Then sAH~{X,A(1))-~-O. �9 

Suppose now that X, Y are schemes whereby Y is connected; g~, g~Y(R); ~H~(X~Y, A(i)); 

~,=~I-/~(X, A(i)) are the restrictions of ~ to the stalks X • y~, X • y~, respectively. 

LEMMA 1.6.6.2 (on rigidity). We assume that X is compact and ~ ~ 2i -- 2 or X is arbi- 
trary and either i > dimX + I or i > Z. Then =~ = ~. 

Proof. Replacing Y by a connected subscheme passing through yx, y2, it may be assumed 
that Y is a curve. The conditions of 1.6.6.1 are then satisfied and ~A(~) = 0. Therefore, 

from (***) it follows that ~ arose from a class ~]-I~ (X X Y). Since ~ = ~2 from the rigid- 
ity of H~ , it follows that ~i = a2. �9 

Remark 1.6.7. a. Let ~R be a subfield, let ~k be the category of pairs (X, X),where 

is a smooth projective variety over k, and X~X is the augmentation to a divisor with 

normal intersections. For (X,X)~ we can define a complex A(i)~ on {Xz~r, (X~R))~n, by 

replacing in 1.5 the holomorphic complex ~(x|174 by the algebraic complex F~ix.~)/~" 

Exactly as above, we obtain a cohomology theory H~(X/~) for smooth schemes over k included 
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in the  d i r e c t  t r i a n g l e  . . .  -~H~D~{X/k)@R[--|]-+H~ (X/k, A (i))-+H~(X| A ( i ) ) ~ F I H ~  (X/k)--+ . . . .  
If k = R, then by GAGA we have H~(XIk)----H~(X). All results of this and the next section 
carry over to this situation. 

b. Using [16, 29], it is possible to define ~ -cohomologies on a category of schemes 
over R with any singularities by requiring that Lemma 1.6.2 be satisfied for them. However, 
for special schemes it would be nice to have a finer theory. For example, it is desirable 
that H~{X,Z{1))-----H]-1{X, Ox). In this work we shall not be interested in singularities with 
the exception of the appendix to Sec. 2. 

1.7. Chern Classes of Vector Bundles. According to 1.5.2, for Xe~ there is defined 
a canonical morphism .O* (X)-+ HI (X, A(|)) (for A = Z this is an isomorphism). For a simplicial 
scheme X there is defined a morphism of cosimplicial groups O*(X.) -+HI(H~(X., A([)) A) (see 
part 1.1) whence (by 1.5.2) we ohtain P(X~,O*)[--|]-+H~)(X.,A([)). Since cohomologies can be 

computed by means of hypercoverings, from 1.6.2 it follows that this morphism extends in a 

unique manner to a functorial morphism cI:RP(X.,O*)[--I]-+H~(X., A(])). The morphism of exact 

triangles RF(f,O')[--I]-+H~D(f,A(|)) in the relative situation is defined analogously. All 

these morphisms arise from the morphism cl:O*[--]]-+A(|)~zar (see 1.6.5). 

In particular, for any invertible sheaf ~eHl(X.,O *) we obtain its Chern class cI{~)E 

(X, A (1)) 
Exercise 1.7.1. Show that g~cl(~) is the usual Chern class in Betti cohomology. Show 

that c~:HI(X, O*)-+H~{X, Z(1)) is an imbedding, and if X is compact it is an isomorphism. 

We shall show that the usual theorem on cohomologies of projective space holds for H~ . 
Namely, let E be an n-dimensional bundle over X, let ~:P(E) § X be its projectivization, and 
let J(1) be the standard invertible sheaf on P(E). 

A s s e r t i o n  1 .7 .2 .  The mapping ~c,(O(1))Iu~* : ~ H~(X,  A(i- - j ) )[2j] -+H~(P(E) ,A( i ) ) i s  an o<j<n-1 
isomorphism. 

Proof. It is necessary to use the triangle (*) and the consistency with it of the U - 
product (6.2); according to 7.3 the morphism of 7.4 is an isomorphism on the second extreme 
terms of the triangle (by the usual theorem on cohomologies of projective space for H~ and 
H~ and by [15] for HF). 

Proceeding from 1.7.2 a theory of Chern classes of vector bundles satisfying the usual 
formalism is constructed in the manner of Grothendieck. In particular, we construct the Chern 
character which is a morphism of rings ch: ko(X)--~H~i(X,-A~Q(i)). From 1.7.1 it follows that 
eAC i are the usual Chern classes in Betti cohomologies. We note that this fact uniquely de- 
termines c i. Namely, we have the following result. 

LEMMA 1.7.3. There exists a unique manner of assigning to each vector bundle E over 

X.~2~ the class cI(E)EH~(X., A(i)) so that the following conditions are satisfied: 

a. For any morphism f:Y. § X. and E over X. we have f*ci(E) = cif*(E). 

b 21 �9 BAct(E)eH~ (X., A (i)) is the usual Chern class in Betti cohomologies. 

Proof. Let G = GL n. We consider the classifying space of G -- the simplicial scheme 
B G (see, for example, [16]): for any X.e~ P the morphisms from X into B G are precisely the 
isomorphism classes of n-dimensional vector bundles on X. trivialized on X~. Let Eun be the 
universal n-dimensional bundle on BG . The cohomologies of BG. and the Hodge structure on 
them are known: H'(Bo.(C),A)=Z[c~,..-,Cn], where c i = ci(Eun) have the pure weight (i, i). 

It is evident from (*) that 8A:/q~(B~., A(i))-+H2~(Bo., A(i)) is an isomorphism; therefore, 

condition b determines the Chern class of the universal bundle. From this it follows im- 
mediately that uniqueness holds: let E be any bundle over X.; we choose a hypercovering u: 
X. + X. so that u*E is trivial on X0; then u*E = f*Eun for some f:X. § BG.. Sincei=*:H~{X.) -+ 

H~()?.) is an isomorphism, ciE are determined by condition a. The direct proof of existence 
and derivation of the product formula from the product formula for ordinary Chern classes 
are left to the reader. �9 

1.8. Homologies~ In this subsection we construct a homology theory corresponding to 
-cohomology. For a smooth analytic space V let ~ be the sheaf of (p, q)-forms of 

class C = on V, and let ~r be the sheaf of distributions over ~{~'-e. These sheaves form 

bicomplexes; let ~v=, ~v~ be the corresponding simple complexes. We filter them with the 
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- ' = i o ( ' ) - - S ~ ( ' ) > l  The complex ~$~ is a filtered dg-algebra; foolish filtration according to p.~ ~=v~-- v~ . 

the complex ~ is a filtered module over ~v=. The natural imbedding (~v, Fl)~(~, fl)~(~,, x 

[--2dimV I, F t+d'mv) is a filtered quasiisomorphism. 

We define the filtered complex (~"(V), Fz~'(V)):--Fc(V,{Qv~, F~v~)) - the complex of sec- 
tions of ~' with compact support. We denote by c'i(v, A(j)) the group of singular i-chains 
of class C = on V with coefficients in the local system A(j). The groups C''(V, A(j)) form a 
complex and integration over chains gives a morphism C''(V, A(j)) + ~''(V). The complexes 
C''(V, A(j)) and (~''(V), Fi~''(V)) are covariant functors of V, and the morphism between 
them is a morphism of functors. 

('). . 

We now include logarithmic singularities. For (V, V)eH (see part 1.5) let Q(v.V)=.= 

fllv,~| ~, F~(')l  ,'~ ' = ~ i v , V )  ~ -~V r~i~('IMff~" We set C"(V, V, A (i)):=C" (V, A(i))IC"(V\V, A(i)) -- the 

complex of relative singular chains, fl"(V, V):=Pc(V, ~i~,~)~), Flfl"(V, ?):=raP, P%b~=). Let 

~. be a subcategory of H, ObH. = Ob ~, containing those morphisms f:(V, V) § (U, U) for which 

f(V\V)~U\U. It is easy to see that C'" and (~'', Fifl'') are covariant functors on ~., 
and the arrow of the preceding paragraph defines a functorial morphism C''(V, V, A(i)) § 
~'" (v, ~). 

We s e t  C ~ ( V , V ,  A ( i ) ) :=C0ne(Fi~  '. (V, P ) ~ C "  (V, ~7,A (i))-+~a'. {V, V-)), where  t h e  a r r o w  i s  t h e  
d i f f e r e n c e  o f  t h e  c a n o n i c a l  i m b e d d i n g s .  T h i s  i s  a c o v a r i a n t  f u n c t o r  on ~ , ;  we h a v e  t h e  f u n c -  
t o r i a l  e x a c t  t r i a n g l e  

(*)'(V, V)... -~ ~" (V, V)[-- 1]-+C~ (V, V, A (i))-~ F'fl' (V, V)@C'. (V, V, A (i))-,.... 
I 

As in  p a r t  1, we can  d e f i n e  C ~  - c o m p l e x e s  o f  any  d i a g r a m  in  ~ , ;  i n  p a r t i c u l a r ,  h o m o l -  
o g i e s  of  s i m p l i c i a l  o b j e c t s  and r e l a t i v e  h o m o l o g i e s  t o g e t h e r  w i t h  t he  c o r r e s p o n d i n g  s p e c t r a l  
and e x a c t  s e q u e n c e s  a r e  d e f i n e d .  

We p r o c e e d  to  a l g e b r a i c  v a r i e t i e s .  L e t  S c h ,  be t he  c a t e g o r y  o f  schemes o f  f i n i t e  t y p e  
o v e r  R and o f  p r o p e r  m o r p h i s m s ;  l e t  ? f f , ~ S c h ,  be  t he  c o m p l e t e  s u b c a t e g o r y  o f  smooth q u a s i -  

projective schemes; let ~.:=~nU, (see part 6), and let o,:=al~:H.-+~ff.. 

LEMMA 1.8.1. We assume that f:(~, V).~{~/, U). in H*A induces an isomorphism between the 
Borel--Moore homologies V.a n and U.an. Then f,:(*)'(V, V) § (*)'(U, U) is a quasiisomorphism. 

Proof. Indeed, the extreme terms of the triangle (*)'(V, V) are the de Rham homologies 
of the scheme V, the i-th term of the Hodge--Deligne filtration on the de Rham homologies, and 
the singular Borel--Moore homologies of the scheme V. The lemma follows from the strict con- 
sistency of f, with the Hodge filtration and the exactness of the triangle (*)' �9 

From [29] we obtain the following result. 

LEMMA 1.8.2. Let C be a category._ We call _a functor F:Sch.~-+C(O:~.a-+C) topological 
if for any f:X. + Y. [respectively, g:(X, X). § (Y, Y).] inducing an isomorphism between the 
Borel--Moore homologies X.an and Y.an the morphism F(f)(G(g)) is an isomorphism. Then the 
functor ~F~F.o, realizes an equivalence between the categories of topological functors on 
Sch, A and H*A. [] 

We apply 1.8.2 to the situation of 1.8.1. We obtain an exact triangle of functors on 
Sch, A with values in D+(A-mod): 

. . .  + n ~  (x.) + ~ (x., A (~)) + ~ , . ~  (X.) + n x  (x., A (0) + . . .  ( , , )  

Here  H ~  a r e  t h e  de Rham h o m o l o g i e s ,  F I H ~  i s  t h e  i - t h  t e r m  o f  t h e  Hodge- -Del igne  f i l t r a -  

t i o n  on them, H~(X., A(i)) are the Borel-Moore homologies with coefficients in A(i), and 

H~(X.,A(i)) are the desired ~ -homologies. In particular, we have defined ~ -homologies 

of any schemes (as constant simplicial schemes). The relative ~ -homologies connected with 
the proper morp_hism f:Y. § X. are defined in exactly the same way: it is necessary to choose 
a morphism f:(V, V) § (U, U) in H, together with a commutative diagram of proper morphisms 

~, (~, v).- ,-~.  (O, u). 

~. + x  ~. , 
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in which the vertical arrows induce an isomorphism in the homologies; then H~(f, A(i)):= 

Cone (f.:e~(v,V, A{i))-+C~{U,U, A(i)); we have the "vrai" exact triangle (in the sense of 
De I igne ) 

... ~ H~ (v, A (0) ~ U~ (U, A (0) ~ U~ (f, A (0) ~ .... 

which does not depend on the arbitrariness in the choice of f and is functorial in f. 

Exercise 1.8.3. Define the spectral sequence corresponding to the simplicial scheme. 
[Here it is necessary to define a functor(~A:Sch.a-+D+(A-modA) ; for this it is necessary 
to consider bisimplicial schemes.] 

LEMMA 1.8.4. For any closed imbedding f:Yc-X there is the canonical functorial morphism 

H'~(/, A (i))=H'~(r\X, A (i)). 

Proof. We assume that X is smooth and Y is a divisor with normal intersections. We 

compactify X so that (}(\X)UY is a divisor with normal intersections on X; let ~ be the 
closure of Y in X. If we compute the homologies of Y by means of the usual "simplicial reso- 

lution" of Y (i.e., taking for V-~V-+Y the coskeleton of the normalization of Y), then 

f,:sge'~)(V,V, A(i))-+C'~(X,W, A(i)) is an imbedding, and the natural mapping of the factor 

into C'~D(X\Y,~(, A(i)) is a homotopy equivalence (more precisely, an isomorphism on fl' and 

Fi~ ' and a homotopy equivalence on C-~). In the smooth case everything has been proved. If 

(X, Y) is arbitrary, then it is necessary to choose a smooth proper simplicial scheme U., an 

open subscheme U.c~. of it, and a proper morphism m'U.-+X so that m-I{Y)u(U.\U.) is a 

divisor with normal intersections on U. and the condition of cohomological descent is satis- 
fied (surjectiveness of Un-+Cosknskn_iU./X). Thus, everything reduces to a simplicial version 
of the smooth situation. �9 

LEMMA 1.8.5 (Poincare duality), a) Let X be a smooth scheme, dimX = n. There is the 
canonical isomorphism H'~D(X. A (i))=H~D(X, A {i-~n))[2t~]. 

b) Let X be as in a), let f:Yc-X be a closed imbedding, and let j:U:=X\Yc-X. There 
is a canonical isomorphism in D(A-mod) of exact triangles of the relative homologies and co- 

homologies ... -+ H'~ (Y, A (1))-+ H'~D (X, A (1))-~ 

t l  t~ 
... -+ u~ (], A (i + n)) [re, l-* a| (X, A It + n)) 12nl-* 

-+H~(U, A (I))= c"8"'~H~(f, A ( t))~. . .  

- ~  n| (u, A (t + n) [2n] - +  . . . .  

in which the two right vertical isomorphisms come from a). If .Y~,-Y~,--X, then these isomor- 
phisms are consistent with the morphisms of triangles corresponding to (X, YI) and (X, Y2)- 

Proof. a) Let (U, U)cII,, a,~I,U)=X, j:U~-U.. We consider the complex of sheaves 

Ciu.u)(A(i)) on U corresponding to the complex of presheaves V-+Ct(~I,A(i))/C~(U\(UnV), A(i)) . 
It is clear that ~iu-~)(A(i))----],]*C(~,-~i(A(i)) and ]*Ciu-~)(A (i)) is the flabby resolvent of the 
sheaf A(i + n)[2n] on U; moreover, the morphism C'(U,U, A{ii)-+F(U, Ciu,~) {A (i))) is a quasi- 
isomorphism. Further, the obvious imbedding (~(u.~), Fl) r Ft+nnt[--~]) is a fi-ltered 

quasiisomorphism, and all F~f~'IFm~ ' are soft ; therefore, RP (Qiu,~), Fi) =F (U, (fl'(u.~),, F~+n~')) x 

[-2n]. We combine these two remarks into a single ~ -complex: we set C'~(A(i))(u.-o).~-Cone(F~f~'~ 
C'(A(i))-+f~')[--l] ; then 

RP (U, U, A (i)~)=r (U, C~ (i--n)) [--2hi 7- C'~ (U, 0, A (t--n)) [--2hi 

To prove a) i t  remains to verify that this quasiisomorphism does not depend on the choice of 
the compactification; this is an exercise fo~ the reader. 

b) We remark that i t  suffices to construct a morphism of triangles; i t  will be a quasi- 
isomorphism by a). If V is a divisor with normal intersections, then i t  is obtained by com- 
bining a) and the beginning of the proof of 1.8.4. If V is arbi t rary,  then i t  is necessary 
to proceed as at the end of 1.8.4. We obtain a simplicial scheme ~:(U, U) + (X, X) and the 
desired morphism of triangles arises from the morphisms 

2045 



and 
A (i)~)(x,-X),. ---> g.C~ (A (i))(u,Ts)~n 

A (i)~)(u.\.o,r,-#.)~" ~ C'~ (A (i)) (Uo\=o'Y, L/o)... 
L 

Exercise 1.8.6. a) Construct the exterior multiplication tI~(X)| and 
show that it is consistent with the morphisms of the direct image and the Poincar~ duality. 

b) We consider the category of schemes over a smooth scheme X and of proper morphisms. 
L 

For any Y/X we define a M -product H~)(X, A (i))| A(j))-+H'~D(Y, A (j-~-i)), consistent with 

the morphisms of direct image (use 1.2.3). Show that under the isomorphism of the Poincare 
duality the n -product goes over into the U -product on the relative cohomologies. 

1.9. Cycles. Let Y be an irreducible scheme of dimension n. Then 8A:/q~2n(Y, A(--tt))-+ 

H~n(Y, A(--rt))---=-A is an isomorphism; let cI~YEH~2n(Y, A(--n)) correspond to IEA. From 

this for any scheme X there arises a mapping cI~:Zn(X)-+H~2"(X, A(--tt)), where Zn(X) is the 

group of cycles of dimension n on X; cI~D([YI):==i.(cl~oY ) for an irreducible subscheme i:Y~X. 
It is clear that gacl~)=cl3# is the usual mapping assigning to a cycle its class of Betti 

homologies. If X is smooth, then, passing to cohomologies by Poincare duality, we obtain 

a mapping cI~D:Zn(X)-+H2~(X,A(tt)) , where zn(x) are cycles of codimension n. 

We now suppose that X is smooth and compact and A -- Z. From the triangle (*) we then 
have the exact sequence 

O--->O"(X).-->I-I~ (X, Z (n)) -+ Hdgn (X) ~ O, 

where ~In(X)=H ~n-l(Xan , C ) / H  2n-l(Xan, Z(n ) J+FnH2n- ' (Xan ,  C )  is the n-th Jacobian of Griffiths, 

and Hdgn(x) is the Hodge group of integral cycles of type (n, n). 

LEMMA 1.9.1. Let Y~Zn(X)'. If cl~(Y)EH~2~(X,Z(--n)) is equal to 0, then cI~(Y) coin- 

cides with the Abel--Jacobi-Griffiths periods of the cycle Y. 

Proof. We consider the integral chain i, cl~Y. Integration over Y (or over i,cl~Y ) 

gives a distribution cI(Y) EF-nfl'-=n(X). Then cl~p(Y ) is the homology class of the cycle (clp(Y), 

i ,  c l ~ } ' ,  0) EC~2n ()(, Z ( - - n ) ) .  I f  CI~(Y) i s  h o m o l o g o u s  to  z e r o  in  X, t h e n  we c h o o s e  s@C'-2n-z(X, 
Z(- -n) )  so t h a t  c l s= i ,  cl'~Y. We s u b t r a c t  f r o m  (clp(Y). i ,  c l ~ Y ,  0) t h e  b o u n d a r y  (0 ,  s ,  0 ) ;  we 
f i n d  t h a t  cl~)(Y) i s  homologous  t o  (ClF(Y), O, s). T h i s  i s  p r e c i s e l y  t h e  d e f i n i t i o n  o f  t h e  
p e r i o d s  o f  t h e  c y c l e  Y: t o  compute  them i t  i s  n e c e s s a r y  t o  span  Y by a f i l m  s and c o n s i d e r  
i n t e g r a l s  o f  smooth  fo rms  o v e r  s .  

1 . 9 . 2 .  F i n a l l y ,  we n o t e  t h a t  t h e  mapp ing  cl~o commutes w i t h  t h e  o u t e r  d i r e c t  p r o d u c t ;  
f r o m  1.7 and 1 . 8 . 5 b  i t  f o l l o w s  t h a t  f o r  a d i v i s o r  Y on a smooth  scheme X i t s  c l a s s  c l~(Y)  
coincides with ci (O(~). 

I. 10. The Hodge ~-Conjecture. Let X be a smooth, compact scheme, and let a and b 
be two integers. The following conjecture is a special case of Conjecture 3.10. 

Conjecture 1.10.1. If a ~< 2b, then there is a closed subscheme i:Yc-.X such that dim• 

Y ~< b --a and the factor of H~(X, Z(b)) modulo the closure of the subgroup i,H~ (Y, Z(b)) 
is compact. 

We clarify the meaning of the conjecture. We set 

' a - - I  ' a - - I  $a, o: = H ~  (X)/H~ (X, Z ( b ) ) + F ~  (X), 
Hdgab : -----/-/~ (X, Z (b)) 13 F b/-/.~.~ (X). 

We have the exact sequence 

0 H$ (X, Z 0)) Hdg b 0. 

It follows from the condition a ~< 2b that H'~-'(X, R(b))AF~H~(X)=0; therefore, 

H~(X, 7-(b)) is a separable topological group with connected component of the identity ,~ab. 
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If a ~ 2b, then Sab-~-f-f~(X, 7.(b)); if a = 2b, then Sab is compact and 1.10.1 coincides with 
the usual Hodge conjecture. If b > 0, then 1.10.1 follows from the easy Lefschetz theorem. 
We now suppose that a < 2b ~< 0. Then the factor of ~/~b by the maximal compact subgroup -- 

the image of I-I~-'(X, R(b)) -coincides with H~(X, R(b)); therefore, in 1.10.1 it is possible 

to replace f-f~(X, Z(b)) by H~{X,R(0)). We note that the natural mappings 

/ - / ~ -  ' ( X ,  R.(b - -  1)) n F~-~H~$7~ (X) -~ mi6-' (X, R (0 --  1))/,~o_,F ~ / - / ~  (X) ~ H ~  (X, R (a)) 

are isomorphisms, so that 1.10.1 means that any (p, q)-cocycle with p, q >I j is a linear 
combination of cycles coming in the ~ -sense from a subscheme of codimension j; cf. the 
usual Hodge conjecture. For example, we consider the case a = 2b -- I. Then the conjecture 

asserts that any cocycle in f-f~-l(X.R(b--l)) is homologous to a linear combination of distri- 

butions of the form l~; here ~=E~nE~C)*(N ) is a collection of functions on general points of 
(I --b)-dimensional 'irreducible subschemes of X such that the b-dimensional cycle >gdlv~ n is 
equal to 0; l~ is a closed distribution on X such that (I --b, I --b)-forms m of class C = 

on X we have ~l~.co=EIo.|ogl~pnl. We remark that here the singularities of the support of ~ 

are very crucial: if it is smooth, then all ~Pn=consi, and we obtain an ordinary algebraic 
(I -- b, I -- b)-cycle. 

Finally, we note that the following assertion ensues from 1.10.1: for any integers i, 
j >i 0 there is a closed subscheme Y~X, codlmY---.i--]q-1 such that the image of f-f~[~) 

in H~)~(X\Y) is contained in the sum of FJf-f~(X\Y) and the complex conjugate subspace 

(use the exact sequence of relative ~)-cohomologies with coefficients in R). 

I do not know how to prove this even in the case of surfaces: a nontrivial example is 
the product of two modular curves treated in Sec. 6. 

2. Regulators 

2.1. Quillen's K-Theory. It is assumed that the reader is familiar with the basic con- 
cepts of K-theory; in this subsection we shall make only some general remarks. 

2.1.1. Quillen's K-functorKisa contravariant functor from the category of schemes to 
the category of fibrant spectra. It can be extended in the usual way to a functor on any 
diagrams of schemes: for the diagram I we have K(1):=holim K(X~). In particular, K-functors 

4--- 

of simplicial schemes are defined: K(X.):-----holimK(Xi), and for a morphism f:X. § Y. of 
<__ 

simplicial schemes there is defined the relative K-functor K(f) -- K(Y., X.) together with 
f. 

the exact triangle .... -~K(f)-+K(Y.)-+K(X.)-~... in the homotopy category of spectra. K- 
groups are defined as the homotopy groups K:Ki(X) =~iK(X); if X is a scheme, then Ki(X) = 0 
for i < 0; for a simplicial scheme X. we have the spectral sequence EPr 'q converging to 
K-p-q(X.) with E~,q = HPK-q(Xp). Further, there is a multiplication on the K-functor: there 
zs a natural pairing of spectra {,}:K(X)AK(X) § K(X). It defines a multiplication {,} on the 
K-groups of simplicial schemes and a multiplication { , }:K.(Y)| X)-+K.(Y, X) in the 
relative situation; this multiplication is (gradedly) commutative. 

2.1.2. I shall not recall the construction of the spectra ~(X); below we shall need 
only one fact: if X is affine, then we have the canonical weak equivalence K0(X) • Z=(BG x 
(X)) + (K(X))0. Here K0(X) is the (discrete) Grothendieck group of vector bundles on X, BG. 
is the standard simplicial classifying space of the group O~-llmOLn, Z= i~ the Kan--Bousfield 

functor [14], and (K(X))0 is the null space of the spectrum K(X). From this for an affine 
simplicial scheme X we have K/(Xo)=~jho!ImZ=[Bo.(X.)] for j > 0. 

2.1.3. There is still another homological K-functor K'(X~ from the category of schemes 
to the category of spectra which is contravariant relative ~o flat morphisms and covariant 
at least up to homotopy relative to proper morphisms. 

For closed imbeddings l:Xc-Y the direct image i, is a genuine morphism of spectra (and 

not only a homotopy class) and gives a canonic&~ exact triangle of localization Kr{JO ~ 

K~(Y)J-~K'(Y\X) in the homotopy category of spectra (here j:Y\Xcf, y is an open imbedding). 
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Remark. Actually the direct image relative to proper morphisms is also more or less a 
genuine morphism of spectra; in particular, K'-functors of diagrams of proper morphisms are 
defined (see [23]). 

The homotopy groups of K' are the K'-groups of Quillen. Further K'(X) is equipped with 
a natural structure of a K(X)-module: there is a pairing K(X)AK'(X) § K'(X) which is a map- 
ping of covariant functors relative to flat morphisms and satisfying the projection formula 
relative to proper morphisms. 

There is the canonical morphism K(X) § K'(X). If X is regular, then this is an iso- 
morphism (Poincare duality); therefore, for regular X and a closed imbedding Y~-X the exact 
triangle of localization gives an isomorphism i,:K'(Y)-+K(X, X\Y) in the homotopy category. 
In particular, if Y is also regular there arises an exact triangle of localization K • 

(Y) !~K(X)-+K (X\Y) in K-theory. In Sec. 7 we require a version of it for relative K-func- 
tors. 

LEMMA 2.1.4. Let I:Fc-X be a closed imbedding, and let S. -> X be a simplicial scheme 
over X. We set j :U:-~X 'Nyr  Sy.:----Y~<S, S u . ' = 6 f X S . .  We assume that all designated 

x x 

schemes are regular, and all morphisms S k * X are Tor-independent of i. Then there is the 
natural exact triangle of localization 

t, j* 
K (Y, S t . ) - .  K (X, S.) - .  K (U, Sv) .  

P r o o f .  From Q u i l l e n ' s  t h e o r e m  on t h e  r e s o l v e n t  [29] i t  f o l l o w s  t h a t  K(X) ,  K ( S k ) ,  K(X, 
S . )  can  be d e f i n e d  p r o c e e d i n g  f rom t h e  e x a c t  c a t e g o r y  o f  s h e a v e s  on X and S k which  a r e  f l a t  
r e l a t i v e  t o  any s t r u c t u r a l  morph i sm S i + X, S i § S k .  Fo r  t h e  K(X, S . )  so d e f i n e d  t h e r e  i s  
t h e  o b v i o u s  morph i sm i , : K ( Y ,  S y . )  -~ K(X, S . ) .  The lenana now f o l l o w s  f rom t h e  e x a c t  l o c a l i z a -  
t i o n  triangles for Sy k r and Y ~ X  and the fact that holim takes exact triangles into 
exact triangles. �9 

2.2. Adams Operators, ~ -Cohomologies. in [26, 31] Adams operators ~P, p@Z + on K- 
groups of quasiprojective schemes were defined. For affine X they are standard linear com- 
binations of mappings Z=[BG.(X)] * Z=[BG.(X)] connected with the exterior degrees. For an 
affine simplicial scheme X. the exterior degrees define a mapping of the cosimplicial systems 
Zoo[BG.(X.)]; according to 3.1.2, we obtain Adams operators on Kj of affine simplicial schemes 
for j > 0. We now define the action of ~P on the K-groups of any regular scheme X: for this 
we replace X by an affine hypercovering; the K-functor does not change by this. Adams opera- 
tors on the relative K-groups are defined similarly. Properties of ~P: they all commute with 
one another; if /i'!i)(X)cf.(X)| is a subspace on which ~P acts by multiplication by pl(i6Z , 
i i> 0), then K!i)(x) does not depend on p, and K.(X)|176 ; the same holds for rela- 
tive K-groups. 

2.2.1. Notation. Let X be a regular scheme or an affine (simplicial) scheme. We set 

/-/~ (X, Q (i)) : =/~(/!j (X), ch ~:K I (X)-+ ~/_]~-t (X, Q (i)) - a sum of projections. We proceed 

similarly for relative cohomologies. 

It is clear that on the ~-cohomologies there is a natural multiplication such that 
ch~ is a ringisomorphism (we denote it by U or {,}); there is a natural morphism H'(X, 

O~)-+I-/~'(X, Q(I)), and the usual facts hold: the theorem on cohomologies of projective bundles, 
the exact sequence of relative cohomologies, etc. 

2.2.2. It is clear that for a scheme X /-/~(X,Q(i))-----0 for j > 2i (since Kn = 0 for 

n < 0). If X is the spectrum of a field, then from [31] it follows that /-/~(X,Q(i))---~O for 

j > i. Apparently, h'~=O for j < O, but I have no proof. 

Remark. Recently V. ~'. Shekhtman defined the operation ,P at the level of spectra. 

2.2.3. We now proceed to ~omologies. We fix a field k; let Sch, be the category of 
quasiprojective schemes over k an~ proper morphisms. For X6Sch, on K[(X)| it is possible 
to define the Adams operations ~Vp as follows. We imbed Xin a smooth scheme Y; then K' (X) = 
K(Y,Y\X). On K{Y,F\~ there act the operators ~P. We define the ooerator @/P on K'(X)| 

1 " . . - - " ,  " 

by the formula ~/P(1)=r h e r e  ~;(f~Y/k)6K0(Y) is the cannlbal class of the sheaf 
~.~/k" It is easil;y seen tha~ the ~ P so d~fi~ed does not depend on the imbedding X~Y and 
is a ~P-morphism of the K. (X)-module f'. (A0~Q~ ~"urther, all ~'P commute with one another 
and with morphisms of direct ima~ge~ a~d also wigh morp~hisms of inverse image for etale X + X. 
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As before, K'.(X)| ~zK~U)(X), where K '(1)(X)(iez) is the subspace corresponding to the eigen- 

value pi of the operator ~P; we set H~ (X, Q (i)): ----- K'21~I (X), x~:K{ (X)|174 Q(i)) - 

the tautological isomorphism. It is clear that on H'~ there is a natural structure of a 

/-/~-module, and ~ is a ch~ -morphism of modules. Further, H~ is a covariant functor 

relative to proper'morphisms and a contravariant functor relative to etale morphisms; there 
is a long exact sequence of homologies for a closed imbedding. 

2.2.4. The next fact follows from 2.2.2. Let X be a scheme, let a, b@7. , and let =E 
�9 ,a (y, /-/I~(X, Q(b)). Then there is a closed subscheme i:Y~X such that dimY~<b--a and ~@t./-/~ 

Q(b)). Cf. Conjecture 1.10.1. 

2.2.5. We assign to an n-dimensional, irreducible, reduced subscheme Y~X the image 

[O~]EK0~(X) in I[~2n(X, Qi--t~)); the mapping cl~:Zn(X)-+~'-2n'v~, Qi--n)) obtained identifies 

/-/'-2n(X, Q(--t~)) with the Chow group CMn(X)| of n-dimensional cycles on X modulo rational 

equivalence. Further, if X is an m-dimensional smooth scheme, then the morphism of /-/~(X) - 

modules /-/~(X, Q(*))-+H'~-2m(X, Q(*--m)), taking I into affiX ], is an isomorphism (Poincar~ 
duality). 

2.3. Dealing with the "universal" case, we proceed to a sketch of the construction of 
the Chert character and the Riemann--Roch theorem for concrete cohomological functors, for 
example, for ~)-cohomologies. For details of the proofs we refer to [22] or to the unpub- 
lished dissertation of V. V. Shekhtman. 

Let '~)~ be a categoryof schemes over k containing all smooth quasiprojective schemes 
equipped with the Zariski topology. We fix a commutative ring A~Q. We suppose that on ~ 

there is given a collection of complexes of sheaves of A-modules F(i)ED~~ A), i~Z, and 
L 

morphisms [J "I ~ (i)~I ~ (])-*P (i+j), c0:A ~ F (0), c,:O* [--11-+F (I) in D+(~]~, A), satisfying the follow- 
ing axioms: 

a) the U -product is commutative and associative; co is the identity for [J. 

b) Let tz~Z, t~>0. We set ~=r n, F(1)). Then the natural morphism @~;n(~)iU 
it 

~*,.: @p(j--i)[--2i]-+R~x,F(j)pn• is an isomorphism for any XE~ and jEZ (here ~pn, 
i=0 

~X are the projections of pn x X onto the factors). 

Following Grothendieck, for any bundle ~ over a scheme X (an ordinary or simplicial 
scheme) we can define its Chert class Clr(~EH~ and Chert character ch F ($)E~/-/-~ 
F(i)) satisfying the usual identities. 

We now define the Chert character in higher K-theory: the morphism chF: Ki(X)-+GH~ x 
(X, F(i)) which coincides with the ordinary ch F on Ko(X). We note that for any-pair X., Y. 
of simplicial schemes we have a morphism A[Hom(Y.,X.) I -+RHom(RF(X., F(i)) ~, RF(Y., F(i)) ~) in 
the derived category of A ~ x A A-modules (here Hom(Y., X.) is considered as a A ~ x A-set; 
A[Hom(Y., X.)] is the corresponding free A-module; RF(X.,I*(i))~D+(A-mod a) are the sections 
of F(i) considered as a cosimplicial group; ~Hom:D~(A-rnoda)0)<D+(A-mod~)0-+ D+(A-mod ~~ the 
natural pairing). In particular, passing to normalizations, we obtain a morphism HJ(X., 
I ~ (i)) -+ Hom(sNA [Horn(Y, X.)], RI~(Y., F(i))[j]). We apply this observation to the case X. = BG.. 
To the Chert character of the universal bundle over X. there corresponds the morphism sN x 
A IBo.(Y.)]->@RP(Y.,F(i)[2i]). If Y. is affine, then, combining this arrow with the canonical 
morphism holim Z~ [Bo. (Y.)]-+holim A [Bo. (F.)], we obtain the desired morphism Ki(Yo)-----~lhollrn x 
Z=[Bo.(Y.)]-+~H=~-7(Y,F(i)) for j > 0. In order to define ch F for an arbitrary, not neces- 
sarily affine, scheme Y it is necessary to take an affine hypercovering Y. § Y and define 

ch F as the composition /i'i(Y) -+ Ki(F.) -+ @H~-I(F., r(i)) U-~H~i-I(Y, r(i)). 

Assertion 2.3. I. The Chert character ch F is a ring morphism, ch (K~~ 
r (0). �9 

From this there arises a canonical ring morphism rr: H*~ (Y, O (. ))-+ H* (F, r (. )) such that 
ch F = r F ch~; it is clear that onO*(Y)| the morphism r F coincides with 

cl. Of course, r F is the same as ch F, but for us it will be more pleasant to deal with it. 
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As an exercise it is suggested that chr, r r be defined for relative K-groups. 

Remark 2.3.2. Recently V. V. Shekhtman defined ch r at the level of spectra. 

We proceed to homologies and the Riemann--Roch theorem. Let F(-) be a homology theory 
on ~, satisfying axioms a), b). We say that r(-) satisfies Poincare duality if there exists 
a collection of funetors H'(., r(i)):Sch,-+D§ together with the isomorphisms of Poincare 
duality H'(Y, r(i)) =Rrr(X, r(l+dlm .~) [2 dim X]) for any pair )'cX , where X is smooth, Y is 
a closed subscheme in X, and the following axioms are satisfied: 

I 

C) If Y,'-Y,,c-X are closed imbeddings and X is smooth, then the morphism H'(F,,F(.))~ 
H'(Y2, F(.)) goes over under Poincare duality into the canonical morphism RFr, (x, r (. )) -+ RFr, (X, 
(r( .)) .  

d) Let YcX be smooth, dimX- dimY = I. Then the diagram 

Z = R r r  (X, O*)[I  I 

(YC 'r r (l)) 121 
i s  c o m m u t a t i v e  ( t h e  u p p e r  i s o m o r p h i s m  i s  c a n o n i c a l ,  w h i l e  t h e  l o w e r  a r i s e s  f r o m  P o i n c a r e  
duality). 

e) Let X be a smooth scheme, let XI, X2 be smooth subschemes of X intersecting trans- 
versally, and let Y~X l ; let N =dimX--dimXl. Then the diagram 

(x,, r (0) -- (x, r + N)I2NI) 

Rr r nx, (x, fl x2, r(i))= Rr r nx, (x2, r (i +N)[2N]) 
is commutative. /~ 

f) Let f:X' § X be a proper morphism of smooth schemes, let Y~X, Y':-~f-*(Y), N-----dlmX-- 
dimX'. Then the diagram 

I, 
R r r (x  , r~t~) | Rr(x',r~io 

Rr(gra~!x',rs " 

,= Rrv(X,Fr174 Rr(X,FQ+N)rjN1) 

RFy(X,F(t +}*N)EZN3) 

i s  c o m m u t a t i v e .  By t h e  way,  we n o t e  t h a t  H v and t h e  F o i n c a r e  d u a l i t y  can  he r e c o v e r e d  u n i q u e l y  
on the basis of r(i). 

Thus, let r(-) be a homology theory satisfying Poincare duality. We set H'I(X,F(j)):~ - 
]-II(H'(X,F(j)). Then Co defines for any irreducible scheme Y of dimension N a morphism A + 
lq'-~v (y, r (--. N)), whence for any scheme X there arise the functorial morphisms clr:Zn(X)-+ 
H '-2" (X,r(--~)) (cf. 1.9). 

Suppose now Y is an arbitrary scheme. We imbed Y in a smooth n-dimensional scheme X as 
a closed subscheme. Then K/(Y)---Kj(X,X\Y). Using these identifications, we define the 

morph!sm xr:K/(Y)-+@H'21-J(Y, P(i)) by the formula ~r(a): = chr(~)Td(X), where Td(X)~eHuliX ' 
r(i)) is the Todd genus of the scheme X. 

Assertion 2.3.3. T r does not depend on the choice of X and commutes with morphisms of 

direct image; we have ~r(Kju))cH'21-1(F (i)). m. 
J 

' 'i (y,Q(j))_+H,I(y,p(j)) such that rrT~= From this there arises a homology morphism rF:/-/j# 

~F. If FoX, and X is smooth, then this is a rF-morphism of H'(X)-modules; moreover, r~cl~= 
cl F �9 

From the results of Sec. I it follows that ]-/~ satisfies all the conditions of this 

subsection; thus, for schemes over R we obtain natural transformations r~):/-/~(X, Q(.))-~ 

/-/~(X, A (.)), r~:/-/~(X, Q (. )) -+ H~ (X, A (-)); we call them regulators. Here is their first non- 

trivial property. 
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Assertion 2.3.4. We assume that the smooth scheme X is compact and ~ ~ 2i -- 2 or X is 

arbitrary and either i > dimX + I or I < i. Then the groups r~DH~(X,Q(i))cHt~9(X,A(i)) are 
no more than countable. 

Proof. It may be assumed that X is a scheme over C. We choose a countable algebraically 
closed subfield kc-C, over which X is defined, i.e., X----Xo| for some X0 over k. We shall 

show that ~h'~(X, Q(i))=r~DH ~ (Xo, Q(i)) ; since the last group is countable, this will imply 

3.4.4. Indeed, let =E[-[~ (X, Q(i)). Then there is an algebra R of finite type over k, and 

element =~H~(X~R, Q(i)) , and iESpecR(C) such that ~=i*(=0) (see [28]). We choose a k- 

point i' in the same connected component of SpecR as i. According to 1.6.6.2, we haver~(u)-~- 
r!D(i*(~0))=r~(i'*(~0) ), as required. �9 

From part 5.2 we obtain the following result. 

COROLLARY 2.3.5. For j > I the images of Borel regulators Kj(C) § R are countable 
sets. 

2.4. Cohomologies of Motifs. We shall show how to translate what has been said above 
to the language of GrothendiecK motifs; we recall the basic constructions [6, 18]. 

2.4.1. We fix a number field E; for a quasiprojective scheme X we set H~(X, E(-)):= 

H~(X, Q(.))| This is a bigraded E-algebra depending contravariantly on X. Let ~Fk be 

the category of smooth projective schemes over k; by Poincare duality, H~(X, E(.)) is also 

a covariant functor of XE~k. We define the additive E-category of correspondences C(k, E) 
whose objects coincide with the objects of ~, while the morphisms are defined as follows: 
We denote by E[X] the object of C(k, E) corresponding to XE~; then 

g42dlmY (X X Y) E (~)) ~- CH 2d!mY (X ~ Y)| Hom (E IXl, E [YI): = , ,  

composition of morphisms is defined as composition of correspondences: for fEHom(E[X~], E[X~]), 
~Hom(E[X2], E[X3]) we have gof=p~3,(p~2(f)UP~3(g)), where pII:XIXX2XXa-+XIXXj are pro- 

jections. We have the obvious functor ~)~k-+C(k, E), which is the identity on objects and 
assigns to a morphism the class of its graph. The functor H.~X, E(.)) on @J~k extends to 

an additive E-functor /4~(?, Q(.)} on C(k, E):H:(E[X], Q(.)):-----H'~(X, E(.)).'. for /~Hom x 

'rE [Xl], EIX~I), cx@H*~(E [X2I ) we have /* (=)=~, , ( /Unz*(=) ) .  The ca tegory  of e f f e c t i v e  E-mot i fs  
~,(k, E) is defined as the pseudo-Abelian hull of C(k, E): to the objects of C(k, E) there 

are formally added the images of idempotent endomorphisms; H'~ extends canonically to an 

additive E-functor on ~e~(~, E). On the category vfeff(~ , E) there is a natural operation | 

induced by the direct product of manifolds over k; we note that [-I'~ does not commute with 

the product: for the cohomologies H~ there is no K~nneth formula. In the category ~e,(~, 

E) we have the natural decomposition E[P#!]-----~[Spec~]~E(--l)~; E(--I)# is called the rate 

motif. We define the category of E-motifs ~/(~, E)D~,(~,E), by localizing vfe,(~,E ) with 

respect to the functor M-~4| Any motif has the form ~4(~):=M| for some ~46 

d~ef[, k~Z [where E (k): =E (--I)| ] ; for ~, A42C~el f and k~Z we have Hom~,(M~, M,)--- 

Hom~ (M, (~)," M= (k)). S inca for k ~< 0 and ~4~Xef I we have /-/~ (A4 (-- ~), Q (i)) = H ~2# (/%4, Q (i-- ~)) 

(the formula for the cohomologies of pl x X), we can extend /-/~ to a functor on .~[ (~, E), 
by requiring that this equality hold for all ~Z. 

We have thus defined a functor /-/~ on the category of E-motifs. Let F be a cohomology 

theory in the sense of 2.3 which satisfies Poincare duality, and let A be the ring of coeffi- 

cients of F. Then on ~#~(~, E) there arises a functor M-H'~(M, A(.)) together with the natu- 
ral transformation rp:Ha~ -+ fir: we set H~(E IX], A (.)): ~---H* (X, F (.))| 

O 

Thus, on ~[~,E) the usual cohomology functors are defined on H~R(A4), H'(A4, Qt(*)) 
and for ~---~-R, I-/~(A4, Q(*)), /-/~(/W0 A(.)). 

We note that the A| -modules H~.(M, A(*)) are always free (see [18], 2.5), so that it 
is possible to speak of their dimension; we shall need this in Sec. 3. 

2.4.2. In the next section we require the ~-cohomologies corresponding to the "inte- 
gral" part of the motif over ~. We shall try to determine them. Let X be a smooth projective 
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scheme over q. We assume that X admits a regular model X z over Z. Then the image of H~ (Xz, 

Q(-)) in H~(X, Q(.)) does not depend on the choice of X z. Indeed, suppose XZ is another 

r e g u l a r  mode l .  L e t  X Z be some t h i r d  p r o p e r  scheme o v e r  Z t o g e t h e r  w i t h  morph i sms  Xz~-Xz--+Xz, 
which are isomorphic on each fiber; the assertion follows from the commutativity of the 
diagram 

In  Sec .  3 we mus t  e i t h e r  r e s t r i c t  o u r s e l v e s  to  schemes  o v e r  Q a d m i t t i n g  r e g u l a r  mode l s  o v e r  
Z and t h e i r  m o t i f s  o r  a d o p t  t h e  f o l l o w i n g  c o n j e c t u r e .  

C o n j e c t u r e  2 . 4 . 2 . 1 .  L e t  X be  a smooth  p r o j e c t i v e  scheme o v e r  Q, and l e t  XZ be a p r o p e r  
scheme o v e r  Z ( p o s s i b l y  s p e c i a l )  such  t h a t  Xz| Then the  image o f  K ' (X 'z ) |  i n  K' x 
(X) | 1 7 4  does  n o t  depend  on t h e  c h o i c e  o f  X Z and i s  i n v a r i a n t  u n d e r  t h e  o p e r a t i o n s  
qJ and t h e  morph i sms  o f  d i r e c t  image .  �9 

I f  2 . 4 . 2 . 1  i s  t r u e ,  t h e n  we can  d e f i n e  t h e  g r o u p s  H ~ ( M z ,  Q( . ) )  f o r  any  E - m o t i f  M o v e r  
q proceeding from the groups c h ~ (Ira (l(' (Xz)|174162 (X, Q(.)) for smooth projective 
schemes X over Q. 

Conjecture 2.4.2.2. Let F be a field of finite characteristic, charF = p. Then /(i(F)| 

Q=l(fZ(F)| KIn(F) is the Milnor ring of the field F, and /(I(F)| for i>degtrF[ 
Fp. �9 

According to [30], 2.4.2.2 is equivalent to Hazg(F,Q(b))--/=O only for O..<ct=b..<degtrF/Fp. 
'a (y, Q(O))SA0 only for b ~< If this conjecture is true, then for any scheme Y/Fp the groups H~ 

0 and --b ~< b -- a < dimY, and for any smooth projective X/Q we have HJzc(Xz, Q(i))-~I-Ii~(X, Q(i)) 
except possibly for those (i, j) for which i ~<dimX + I and i ~< j < 2i -- I. 

The following conjecture was once communicated to me by A. N. Parshin. 

Conjecture 2.4.2.3. If Y is a smooth scheme over Fp, then /(i(Y)| for i ~ 0. 

From this conjecture it follows that Hi~c(X,Q(i))/H~(Xz, Q(i)) depends for j ~< 2i- 2 
only on the degenerate fibers of X Z. 

2.5. The Arithmetic Intersection Index. In this subsection we present a multidimen- 
sional analogue of Arakelov's construction [I] of the Neron--Tate height of points on curves. 

2.5. I. The Local Index at =. Let X R = X be a smooth proper scheme over R of dimension 

N, and let zieZZt (X)| A, i = 0, I be cycles on X. We suppose that [o~-Ii =N+I, suppz0nsuppz,= 

�9 � 9  t r and the classes cI~(Z~)G/v~) (X, A(ll) ) are equal to 0. We assign to them a class (z0Nzt)~6 
2N H~)+'(X, A(N-4-1))-~H~9~(X)/I-Ii~(x, A(N~-I)) and a number [z0Nzl]Gl~ *+ as follows. Let U i = 

-H 21i-' (U l, A such that X\suppz t :U~UU2=X.  Since c]~)Zt=O in H~)(X), there are wit ~9 (ll)) ~icPi -- - 
cl~(zi)EH~l(X, Ul, A(lt)) i n  t h e  e x a c t  s e q u e n c e  o f  p a i r s  (X, U i ) .  Then ( z 0 ~ z l ) ~ : = O ( ~ 0 U ~ , ) ,  

where O:H'~(Uof3UI)-+H+'(X) is the differential in Meyer--Vietoris sequence for {Uo, UI}. 

We set [z0Nzl]=: =~,(z0Nz,)=EH~(SpecR , A(1))=l~ *+ (where ~:X-+SpecR is the structural mor- 
phism). 

LEMMA 2.5. I. a) The class (z0~z~)~ (and the number [z0Nz~]~ ) depends only on z i and 
not on the choice of q~. 

b) (Zo~Z,)~=(z,~Zo)~. 
c) L e t  i~:Suppz,~-X be an i m b e d d i n g .  Then (ZoNZO~=i~,(it*~of3clzO, [zof]Z~]~--n,(i*CPof3clzO" 

. H~,,.X d) We assume that cl~(zo)(~ ..~( R,Q(/o)) is equal to 0. From the exact localization se- 

v'~'-'~to-~(Uo, Q(/o) ) such that C)o~o=cl~t(Zo)6H~(X, Uo, Q(ls)). Then (ZoNZ,)~---- quence  t h e r e  i s  a w o a t t ~ t  

r ~ i ~ ,  (i~*r ~t f'l cl ~r [Zo f3 z l ] ~ - - r ~ n ,  (6*% fl cl ~r 

The proof of a) follows from the Meyer--Vietoris sequence for {U0, UI} and the sequences 
of pairs for (X, Ui); b) follows from the commutativity of U ; for c) we consider the morphism 
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and exact sequences 
0 

(Uo)~H" (Ur) ~ H'(Uo Fl UO -+ H "+' (X) 
~' II ~, "I 'e 

H" (Uo) .H" (Uo N U0-+ H "+~ (Uo, Uo N U0. 

We have  (ZoNZO~=O(tPoUePO=e-Ol(%UePO=e(~oUClZO =il,(il*rPoNclzO, q . e . d .  F i n a l l y ,  d) 
f o i l o w s  f rom c) and t h e  f a c t  t h a t  r~) i s  n a t u r a l .  �9 

2.5.2. The Local Index at Finite Points. We consider a regular flat projective scheme 

X z over Z of dimension N + i. Lct zi@Zt~(Xz) �9 be cycles on X z such that f0+/l=N+1 and 
(suppz0nsuppz0Q~XQ is empty. We choose a finite set {p~}cSpecZ such that S:=suppzon 
suppzl~UXp l of fibers of X over Pi; let Ui=X\suppzt. We set Zof]ZI=Y.(ZoDZl)pI=CIZoUCIzI6 

21 l H~ +NI) (Xz, U0 u'UI, Q (A/+ I)) -----H'~ Q(0))=H '0 (S&, Q(O)) ; here cl z:~H~ ()(z, Ui, Q(/i)) ; finally, 
[ZoFlZl]&:==np~.(Zof)ZOpt(s~&:S&~SpecZ/pZ are the structural morphisms). It is clear that the 

intersection index is commutative, and if i,:suppzlc-X, we have (z0Nzl)=il.(i,*clza~z,). We 

now assume that cl z0 in H~(Xz, Q(10) ) is equal to 0. Then there is a %~t6/d'~z~ Q(10)) 

such that clz0=d0%~t. From the compatibility of the exact localization sequence with direct 

images it follows that (z0.Qz0=i,.(a0(i,*~0Nz,)) and [ZonZ,]pi~-d(pt)~(a~).(i,*~poNZ,) [here (Pi) de- 

notes localization outside Iipl = 0, #(v~):/]~ (SpecZ/(pt), Q(1)) -~/-f0(SpecZ/piZ, Q) =Q, ~(&):?(&)-+ 

SpecZ(a~) is the structural morphism; we note that H'(SpecZ(~), Q(1))=Z~pi)| and ~(Pi) is 

ord (pi) ] �9 

2.5.3. The Global Index. We suppose that we are in the situation of 5.2 and z i are 

homologically equivalent to 0 on a general fiber; this means that the image of z i in H~(XR, 
e~ 

(R([i)) e-.I-I~(XR, R([t)) is equal to 0. If z i do not intersect on a general fiber, then accord- 

ing to 5.1 and 5.2 we have the definition of numbers [z0~z~]=fi R *+ m-~I~ and [z0~z,lp@Q for 

~p6SpecZ, which are distinct from zero for a finite number p. We set [z0~z~]z:=[z0Nz,] ~- 

~lnp[z0~C~]p. If clz0@/]~(Xz, Q(10) ) is equal to 0, then, choosing %~t as in part 5.2, we 
P 

have, according to 5.2 and 5.1.2: [ZoflZ~]z=(r~)--Elnp.ordpi)~(a,).(i,*epoflzO=O, since the morphism 
r~)--Y, lnp'ord&:H~(SpecQ, Q(1))=Q*| is equal to 0 by the product formula. From this, 

since by the shift lemma any two classes in ff~(X~,Q(/~))=CHt/(Xz)| can be represented by 

cycles not intersecting on a general fiber, we obtain a symmetric pairing [ , ]Z between sub- 

groups  / - I~  (Xz, 0 ~ Q(I~)) cH~t(Xz, Q(I~)), c o n s i s t i n g  o f  c y c l e s  homologous  to  0 on a g e n e r a l  f i b e r .  

APPENDIX 

DEFORMATIONS OF CHERN CLASSES 

In this appendix we construct the tangential transformation to the Chern character -- the 
Chern character in additive K-theory. A first consequence of this construction is that for 
Spec R, SpecC our regulator coincides with the Borel regulator. 

At. Small Algebras. Let A be an Abelian tensor category. If R" is a cosimplicial 
algebra, then the standard U -product gives on the N(R')-normalization the R'-structure of 
a differential algebra. We note that if R" is commutative N(R') need not be. However there 
is the following result. 

Lemma-Definition AI. We call a cosimplicial algebra R" with identity small if it is 
commutative, generated by R ~ and R z, and (Kers0=cR ~ is equal to zero. We call a differen- 
tial algebra Q" with identity small if it is commutative and generated by Q0, Qz. Then N 
establishes an equivalence of the categories of small cosimplicial and small differential 
algebras. �9 
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Below we shall be interested in two Abelian tensor categories: the category Vect (k) of 
vector spaces over a field k of characteristic 0 and the category of complexes C(k): = C b • 

t . . 11  (Vect k))" Vect(k)cC(k)as a fu~ subcategory of complexes equal to zeco outside degree 0. We 
call cosimplicial algebras over Vect (k) (C(k)) c- (respectively, cd-) algebras; differential 
graded algebras over Vect (k) (C(k)) are called d- (respectively, dd-) algebras. Lemma AI 
establishes an equivalence of the categories of small c- and d- (respectively, cd- and dd-) 
algebras. 

For a small c-algebra R" let ~*(R') be the universal small cd-algebra such that ~(R') = 
R" (it is clear that ~*(R') is a factor of ~*(R') by the cd-ideal generated b~ [KerSl*:~*(Rx)-+ 
~*{~0)]2 ). Similarly, for a small d-algebra Q we define the small dd-algebra ~(Q'); we have 
~*(NR') = N~*(R'). We note that the dd-aigebra ~*(Q') is universal in the class of all com- 
mutative dd-algebras: if A*" is a commutative dd-algebra, then any morphism of d-algebras 
Q" § A ~ exte,u~ uniquely to a morphism ~*(Q') § A*'. 

Below we shall identify complexes over C(k) with bicomplexes; to the bicomplex X*" there 
corresponds the complex § *~ + X *I § over C(k); correspondingly, normalization is carried 
out according to the gradation. For X*" we denote by H~(X *') the cohomoiogies of the complex 
with convolute gradation; we denote by x~i, " the i-th term of the foolish filtration with re- 
spect to *. 

A2. The Weyl Complex~ Let @ be a finite-dimensional Lie algebra over k, For a @ - 
module V we denote by C'(~, V) the standard complex of cochains of @ with coefficients in 
V. 

We consider the complex C'(~):=C'(~. k) -- cochains of the trivial representation. C'(~) 
is a small d-algebra; we set ~*':=~*{C'(@)). It is clear that |~17~-Si@~| ~ (@' is the 
vector space dual to @), and the differential d*l~I]-+l~l+J.J is the Koshul' differential, 
while d:~/lJ--+|V~.J+ I is the differential of the complex C'(~,$~(@t)) of cochains of the i-th 
symmetric power of the coadjoint representation. In particular, for j > 0 the complex w*J 
is d*-acyclic. This implies 

LEMMA A2.1. Hi(w*') = 0 for j =/=0; HO(W*.)=k; H21(W>J,')----S*(O') ~. I 

We now suppose that ~ is reductive; let E~ 'q be the spectral sequence of W relative to 
the filtration ~P'" 

LEMMA A2.2~ There is the canonical isomorphism compatible with multiplication E~ 'q = 
/-/q-p (~)| (~')~. 

Proof. Indeed, Ef'q==Hq-p(~,Sp~(~t)) �9 But if .~ is reductive and V is a semisimple, fi- 
nite-dimensional representation of @, then /-/'(@, V)----/-/'(@)| | �9 

A3. de Rham Cohomologies of BG. Let G be a reductive group over k, let @ be its Lie al- 
gebra, and let B G be the classifying space of G (see 1.7.5). We need the following list of 
facts. 

Assertion A3.1. a) There exists a canonical isomorphism 1-/~ (O)~l'lr proceeding 
from the identification of the complex of cochains of @ with Complex left-invariant forms 
on G. 

b) There exists a unique ring morphism ]-/2~{Bo.) -+$.(~)o which is functorial in G and 
such that for G = Gm it identifies @t---~Sl(G~)~ with the invariant differentials on G = BGz. 

This morphism is an isomorphism. Further, ~]-]~ ~ (Bo.)=/-/~ (Bo), F~+~f~ (~o.)=0 (F i is the 
Hodge--Deligne filtration). 

c) Let ESP,q be the Leray spectral sequence of de Rham cohomologies of the universal 
G-bundle UG. § BG.. There is a canonical isomorphism between the spectral sequences E (A2.2) 
and DecE' compatible with multiplication and coinciding with a) on the terms E~P,q and with 

p. b) on the terms E2P' 

d) The algebra /-/~(O) is the exterior algebra spanning the primitive classes Prim" x 
(O)~/q~{O). The algebra '/-/~(Bo.) is a free commutative algebra; let ~'(Bo.)=/-/>~ 

(/-/>~ be its generators. Transgression in the spectral sequence E' realizes an isomor- 
phism 

T:Prlm ~-x (O)-+P 2*(BO.) �9 
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A4. Deformations of Chern Classes. In this subsection k = R. Let X. = SpecR" be the 

spectrum of a small c-algebra, and let A{i)g>:-----Cone(~an~A{i)-+~X.an)[--1} be a complex on 
X.a n. We assume that on X. there is given a G-torser which is trivial on X0. We compute the 
images of its Chern classes in H'{X.an, A{i)~). 

It suffices to consider the universal situation: X.~-B~ol):= the largest small subscheme 
of B G. Since B~I ) is defined by the c-ideal JcOso., generated by 112, where 11 is the ideal 

distinguished point s{e)EBol-----O , we have [NOB~I)]x=@~'=CI{@~) and the following result. 

LEMMA A4. I. NOBel. )-C'(@), �9 

Further, H/(B~')an, A (i))----0 for j > O; from A4. ~ and A2. I we find that HJ(B~[~a,, ~*n)-- 

HJ{B~I),~*)=0 for j > 0. Therefore, eF:H21(B~l)an, A(i)~D)-§ ) is an isomorphism for 

i > 0. We have the commutative diagram 

eF 

H~) (Bo., A (i)) -~ H"  (Bo., F (i)) = H ~  (Bo.) 

H ~' (Bg~,, A (0~) ~ H2' (Bg ~ , ~>') = H '~' (UZ>" ). 

We are interested in  the l e f t  v e r t i c a l  arrow. To compute i t  i t  suf f ices to compute the r i gh t  
arrow ~. 

THEOREM A4.2. The composition of ~ with the isomorphism of A2. I ]-/2t(~/>l')=Si(@~')@ 
coincides with the isomorphism of A3, b). 

Proof. Indeed, this composition satisfies all the conditions of A3, b). �9 

A5. Comparison with Borel Regulators. From A4.2 and A3, c) it follows that jets of 
Chern classes are canonical generators of H'(~). Namely, we have the following result. 

q) I12, I 
COROLLARY A5.1. For i I> I the composition H~(Bo.) -+H21(W>I')-+H~I-'(IV"/W'>I)-+ 

II3.a 
H2~-I (%V*'/~/:>I") =~-]21-I (~) = ]-]~! (O) coincides with the composition H~ (Bo.)-+P=~(Bo.)~ ' 

Prim 21-1(G) -+ I-f~1(G). �9 In particular, for G = GL n the images of the Chern classes c i are canon- 

ical generators v i of the ring H'(@~[,). �9 

COROLLARY A5.2. Let i:BoL,(c)-+BoL,c be the morphism connected with the obvious mapping 
of the discrete group G(C) into the algebraic group G. Then i*(cl)s (BoLn(C),R(t)). -----H~21-' x 

(Bot,(c)., R(i))=H2H(OL,(C), R(i)) coincides with the class of [12, 13] constructed by means of 

continuous cohomologies. In particular, the Chern characters K2~_, (C) -+ R (i -- I), K4~+~(R)-+R(PJ) 
coincide with Borel regulators. 

Proof. We consider B.(C) as a manifold of class C~; by definition, we have Hcont(GLn(C) , 
R) : = H" (B. (C), S~ According to the theorem of van Est Hcont(GLn(C) , R) =H'(@~I,(C), 11,, R) (the 
relative cohomologies of real Lie algebras; II, is the unitary algebra). We recall the con- 
struction of this isomorphism and of the Borel classes [|2, 9, 21]. 

Let Ils be the ideal of the distinguished point e@B~, and let J;cS 0 be the cosimplicial 
ideal generated by ll~s . Then, as in A4.I,J~'(SO/I~)=H'(g~I,(C),R) ; the arrow S O § S~ defines 

an imbedding Hco,t(OL,(C), R) -+ H" (@I. (C), R) with image H'(~[,(C), 11,, R)CH'(@~In(C), R). This is the 
desired isomorphism. By definition, the Borel class corresponds to the class ~i_~(vl)~f-[2~-~ x 

7-/~ 'B ~(@I,(C), tl,, R(i--I)). Since the morphism i* decomposes into the composition ~., R(i))-+H=~(B., 
l~(i)m)-~H =~-!(B.(C),So(i-I))-~H=!-'(OL.(C), R (i-- I)) , the corollary follows from A5. I and the commu- 
tative diagram 

Pl _ 

R ( i ) ~  ~ R ( i ) ~  ~ S~ (i - -  D [ - -  q" .SO (i _ D / L [ _ ~ ] �9 

a* I--11 ~O[--  1]-§ 1]f 
1-1 

A6. Cohomologles of  Algebras of Flows - - A d d i t i v e  K-The.ory. We r e t u r n  to the  s i t u a t i o n  
a t  the  beg inn ing  of p a r t  4 (now k is  any f i e l d  of  c h a r a c t e r i s t i c  0) .  According to A4.1 and 
A1 we have the  b i j e c t i o n s  {G- to r se r s  on X. t r i v i a l i z e d  on X0} -- {morphisms of  d - a lgeb ra s  
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C'(@)-+N(R')} = {morphisms of  d d - a l g e b r a s  W*" § N-~*(R')}. The Chern c l a s s e s  of  the  t o r s e r  

are morphisms SI(O')a=I-IIH(W*'/W>t')-+Hll-tN~*(R')I~>I(R ") (i>I). We can define @ -torsers on 
any commutative dd-algebra C*" as morphisms C'(~)-+C o" or, equivalently, as morphisms W*" § 
C*'; to the ~ -torsers there correspond their Chern classes .... 

Here is an important example. Let R he a commutative algebra. We consider the commu- 

tative dd-algebra C'(~| -- the complex of cochains of ~| considered as a Lie 

algebra over k with coefficients in the trivial ~| -module ~*(R/k). On it there is a 

canonical ~ -torser taking 16Cl(@)=Al(@ ') into IRs174 ~)=CQ~R, ~O(R)), lR(g,| ... 
g~|174 We assume that ~=8[,; we obtain the i-th Chern class of our tor- 

ser: c,eHl~'(~eR, ~*(R)I~>~(R)). It defines mappings cq:Hj(@eR, k).-+H~-"J(fl*(RIk)l~>'(RIk)). 
We consider the stable situation ~ = l t m ~ . .  Then f-/.(~| is equipped in a natural way 

with the structure of a Hopf algebra; we de~ote by K9 dd (R/k) its generators. This is an additive 
analogue of Quillen's K-functor. Restricting cij to K add, we obtain the morphism 

c,~:^~'m~ (R/~) --,- H ~'-j-' (~* (R / ~) / e  >' (R / ~)). 

Recently B. L. Zygan and B. L. Feigin proved the following remarkable theorem (for j = 2 
this f~ct was established by Bloch [i~] for any rings with t/2~R ; for R = k it is a corollary 
of A5.1). 

THEOREM. If R is a smooth ring, then @cq:K~dd(R/k)-+| is an iso- 
morphism. [] 

In conclusion we note that it would be very interesting to compare deformations of K~ dd 
and K.. 

3. Values of L-Functions 

We fix a number field E; let JK----df(Q,E) be the category of Grothendieck E-motifs over 

Q (see 2.4). To a motif /~JQJK there correspond its L-functions LiJr(DI, s):=L(I-IJ(DI~Q, Qt),s) - 
E| -valued analytic functions of complex argument s. We shall assume that the familiar 
conjectures regarding analytic continuation and the functional equation are satisfied for 
L(J). Thus, if L~J)(M, s) and e(J)(M, s) are the e-multiples corresponding to L, then (L=" 

L) (j) (]14, s)=(s~.8)(J){/[4, S).(L~.L)(J~(3J o, j-I-l--s) fo r  some JI4~ ; we have E[X] 0 = E[X] f o r  XE~Q. 

We recall that e(J) have no zeros of poles, while L~ j) has no zeros and its poles lie 
among integral points ~j/2; from the explicit form of the L~-multiples we obtain the follow- 
ing result. 

LEb~VlA 3.1. The order of the pole of L=(M 0, s) at the integral point s = n coincides 
with the order of the pole of Loo(M ~ s) for s = n and is equal to dime|174 R(j--n))/ 
=j_.Fr"-,'H~ (M| �9 

3.2. From the standard exact sequence 

Hj+~ . . .  ~H~(M| R(l--O)--. ~ (M| R(O)~ ~'H~ (M| 

we find for n < j/2 the short exact sequence 

O--*FJ+'-"H~ (M|174 R(y--n))~ J+' H ~  (M| R ( j - - n + l ) ) ~ O .  

We note that there is an E-structure on the first two terms of this sequence: they coin- 

cide with [F/+I-nI-I~(DI)]| and [/-/~(/W| Q(j--n))]| , respectively. Therefore, on 

det H ~  ~ (M| R (j - -~  + 1))= det H ~ .  det -~ FI+t-nH~ 
there is the natural E-structure 

(j,  n): = det H ~  (M| Q (j --n)). det -1 (FJ+~nH~ (M)). 

LEMMA 3.3 .  The o rde r  of  a zero of  L(J)(M ~ s) a t  an i n t e g r a l  po in t  n < j / 2  i s  equal  to  

d (j, n): = dim H ~  ~ (M| R (j + 1 --n)). 

Proof .  The Euler  product  f o r  L(3) converges a b s o l u t e l y  (and hence = 0) f o r  Res > j /2 § 
1 ( the  Weyl c o n j e c t u r e s  proved by Del igne + the  c o n j e c t u r e s  r ega rd ing  degene ra t e  l o c a l  
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multiples). Therefore, from the functional equation it follows that if n < j/2, then the 
order of the zero of L(J) for s = n is equal to the order of the pole of L(J). The remainder 
consists of Lemma 3.1 and the exact sequence of 3.2. �9 

We assume that n < j/2. 

Conjecture 3.4. a) The morphism r~| I(Mz,Q(j+l-n)) |174 
is an isomorphism. 

b) Let c(j ,n)EE| be a number such that L(J)(Mo, s)----c(j, tz)(s--lz)a(i.n)+o(s--lz)a(J,'O. Then 

c ( j ,  n). s ( j ,  n) - -  det r ~ ( H  j +1 (Mz, Q (j  + 1 - - n ) ) ) . .  

3 . 5 .  We n o t e  t h a t  f o r  a l m o s t a l l ,  n ( f o r  example ,  f o r  n ~ 0 )  FJ§ For  such  

n the conjecture contains the determinant of the matrix of periods of elements of /_/~l over topolo- 
gical cycles ("the intersection index of topological and algebraic cycles"). Is it possible, at 

least hypothetically, to determine these matrices themselves on the basis of the L-function 
(up to multiplication by rational numbers) and not only their determinants? 

3.6. Using the functional equation, we can rewrite 3.4, b) as a conjecture regarding 
the values of L-functions at integral points lying in the region of absolute convergence. 
We use the following lemma. 

LEMMA 3.6. I. Let m be an integer. Then 

a) The product of any finite number of finite L-multiples L~J)(M," m) belongs to E* if 
it does not vanish. For m >~ (j + I)/2 it is always finite. 

b) Let X be the E*-valued Dirichlet character with which Aut C acts on [detHi(M| 
Ql)](dj/2) (where d = dimHJ), and let 8U)(M, tz)E(E| be the constants in the func- 
tional equation. Then oe(J)(M, n) = X(o)E(j)(M, n) for any oEAutC and tzEZ. 

c) Let [L(J)(M ~ so)] be the leading term of the asymptotics of L(J)(M~ s) for s = So. 

Then for m >i (j + I)/2 we have LU)(M, m)=c[L~)(Mo, j+I--m)]E(E| , and c@ 

(2~)e~ M)/2. Q,. [ h e r e  dt (114) = d i m  H~(M| Q (l+ 1)), d (/14) = d i m  H _ ~  (M). ] 

Proof. a) The finiteness of the L-multiples follows for nondegenerate multiples from 
the Weyl conjectures; for degenerate multiples it is necessary to use the (unproved) conjec- 
tures regarding their weights. All the remaining is obvious, b) Use ([18], (5.4)). For 
more details see ([17], (5.5)). c) See ([18], (5.4)). �9 

For lt, 126(E| we say that l,~12, if ll.12-t6E * (see [18]). Thus 3.4, b) determines 
c(j, n) up to equivalence. We note that 3.6.1, b) determines the equivalence class of E(M, 
n); in particular, it does not depend on n6Z; we denote it by e(M). From the functional 
equation we obtain the following assertion. 

COROLLARY 3.6 .2 .  c (7, J + 1 --ra)~L (j) (M, m).8 (M) -1 (.2~i) am(m)+li-2ra)a(M)/2. [] 

We shall verify 3.4, b) precisely in this form (see Chap. 2). 

3.7. Suppose now that j is even and n = j/2. We have the isomorphisms 

~R H ~  c~ 2 /-/~ (M| R (n ) ) - - ,F  n f~ (M| R (n))=, H~ +' (M| R (n + 1)). 

Let ~he(M)=H~(M, Q(rL))/H~(M, Q(n)) ~ be cycles modulo homological equivalence; r~o realizes 
the imbedding 

.~'~ (M)~H~ (/V/| R (~))~H~"(M| R(n)). 

Conjecture 3.7, 

a) The order of a zero of L(J)(M ~ s) at s = n = j/2 is equ'al to d(], t~): =ulm~a=n+l(Mz, 
Q(n + I). 

b) The mapping c~sRr~)-~ r~):~e(M)| Q(tz+I))'|174 R(n+l)) is an iso- 
mo rph ism. 

c) Let c(j, n), as in 4.4, b), be the leading term of the asymptotics of L(J)(M ~ s) 
n " 2 n + 1  

f o r  s = n.  Then c(,j, n)..iP(j, n )=detr~(E 'h , (M)@tt  a (Mz, Q(n+l))). M 

Remark. This conjecture as well as the one following is closely connected with Tate's 
conje'ctures regarding algebraic cycles [32]. 
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Conjectures 3.4 and 3.7 together with the functional equation determine, up to multi- 
plication by an element of E*, the values of L-functions at any integral point with the ex- 
ception of the middle of the critical strip. We now consider the middle, i.e., j = 2n -- I. 
Here a conjecture will be formulated not for L-functions of motifs over Q but for L-functions 
of schemes over Z. 

Thus, let X z be a regular, flat, projective scheme over Z, and let L(J)(xz,- s) be the 
Euler product corresponding to the j-dimensional cohomologies of the reductions X Z �9 In part 

2.5.3 we defined a pairing [ , ]:H~(Xz, Q(n))~174 Q(dimXz--n))~ The exact 

sequence of 4.2 for 2n = j + I becomes the isomorphism F"H~(M)|174 Q(j--~))| let 

p(J, n): =detF"H~(M). d e t ' t H ~ ( M |  Q(j-n))ER*IQ*. 
2. (Xz, C o n j e c t u r e  3 . 8 .  a)  The o r d e r  o f  z e r o  o f  L ( J ) ( X z ,  s )  a t  s = n i s  e q u a l  t o  d l m / - / ~  

Q ( n ) )  ~ b)  The p a i r i n g  [ , ] i s  n o n d e g e n e r a t e ,  c) The l e a d i n g  t e r m  of  t h e  a s y m p t o t i c s  o f  
L ( J ) ( X z ,  s )  a t  s = n i s  e q u a l  t o  p ( j ,  n)  d e t  [ , ] up t o  m u l t i p l i c a t i o n  by  e l e m e n t s  o f  Q*. �9 

3 . 9 .  I f  o u r  m o t i f  i s  t h e  s p e c t r u m  o f  a number  f i e l d ,  t h e n  t h e  c o n j e c t u r e s  a r e  s a t i s -  
f i e d  thanks to Borel's theorem and A5.2; in the case of Artin motifs the conjectures 3.4 and 
3.7 coincide with the conjectures of Gross and Stark [24]. For the values at two of L-func- 
tions of elliptic curves over Q this is Bloch's conjecture [9, 10, 3]. 

Conjecture 3.8 for the value at one of L-functions of curves is consistent with the 
conjecture of Berch--Swinnerton-Dyer; this follows from the coincidence in the case of curves 
of the intersection index [ , ] and the Arakelov construction of the Neron--Tate height. Con- 
jecture 3.8.2 is due to Swinnerton-Dyer. 

For some integral points n ~ j + I/2 the order of the pole of L= at n is equal to zero; 
these are critical points in the sense of [18]. For these points FJ+I-nH~(M)|174 
Q (j--n))eR is an isomorphism. The conjectures then assert that the corresponding groupsH~ 
are equal to 0 and L(J)(M ~ n) coincides, up to multiplication by an element of E*, with 
the determinant of this isomorphism written in rational bases. Using Poincare duality, we 

see that it coincides with the determinant of H~(M0| Q(n))|174 R. 
Thus, for critical n our conjecture reduces to the conjecture of Deligne [18]. 

Finally, we mention that part of the assertions of the conjectures can be formulated for 
varieties over any fields kcR. 

Conjecture 3.10. Let X be a smooth proper scheme over kcR. Then r~:HI~(X,Q(j--n))| 
R-~H~(XeR, R(Y--n))for n < (j -- I)/2 is an isomorphism. �9 

k 

From 2.2.3 it follows that for k = R conjecture 3.10 implies conjecture 1.10.1 (for 
a ~ 2b). 

CHAPTER 2. COMPUTATIONS 

4. K2 for Curves- Formulas for the Regulator 

Let X be a smooth affine curve over R, let XDX be a smooth compactification of X, and 

let P=X\X. We recall that H~(X, R(1))~-{cP~.F(Xan,OXan/R(1)):d~Ef~I(x,~-)! ={/s176 is sum- 

mable, and if we consider f as a distribution on ~n we have d~dzf=~=i6xt, where =i~R, 6x l 

is the S-function at the point xiEP} (here f=Re~); H~(X, R(2))=H'(Xa, ' R(1))Cf-fl(Xa,. C)= 
H'(f~'x~(.Va,)); the U -product A2H~-+f-f~ is given by the formula /Og=y.n,(d,g!--gu,(dzf) 

I (see 1.2, 1.5). Let F I be the Hodge filtration on H~)~, R[P]:-----f-f0(P, R)~R[P] ~ -cycles of 
degree 0 on P. 

LEMMA 4 . 1 .  a)  Ht(Xan, C)=H'(Ran, C)@(F'(X)f'IFX(X)), H'(Xa., R(1))=Hi(A'a., R(1))@(H'(X=., 
R (1))fl F' (X)). 

b) dlmH~(X, R(1))=IPI, and the residue morphismdlv:H~(X, R(1))-+R[P], given by the formula 
dlv/=2E(Resxdz/)x, identifies H~(X, R (1))/R with R[P] 0 

e) H'(X,,, R(1))flF'(X)----sH'~(X, R(i))={d,/, /6H'm(X,R(1))}cF*(X)=S'(X, X).ll 
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Let [[:/-]l(Xan)-+Hl{~(an ) be the projection connected with the decomposition of I, a). 

Then 4.1, b) and c) define a pairing [ , ]:A2R[P]0-+HI(p(an , R(1)) such that ll(fug)=[dlvf , dIvg]. 

We shall try to computell{fUg) . According to 4.1, b) and c), the image I of the morphism 

U:A2H~(X, R{I))-+H~(X, R(2))=Hi(X=n, R(1)) decomposes into a direct sum (/[~x~(X)cl)(D(RU 

HInD(X, R(])), whereby the restriction of H to I coincides with the projection onto the first 
'S f a c t o r .  We c o n s i d e r  t h e  p a i r i n g  g i v e n  by t h e  f o r m u l a  .(co, 7> ~ co.\y, ~EFZ(2), ~E~(X ~) i s  

XIC) 

s u ~ a b l e  on X. On c l o s e d  forms  y o f  ~1(~o)  t h i s  p a i r i n g  c o i n c i d e s  w i t h  t h e  P o i n c a r e  d u a l i t y ;  
it identifies Hl(Xan, R(I)) with Hom(FI(X), R). We now note that all forms of I are measur- 

able, and from Stokes' formula it follows easily that (CO, RUf/~(X,R(1))) = 0. Therefore, 

<co, li(fUg)> ~---~I IcoA{fUg). From this we obtain the following assertion. 

Assertion 4.2. Let f, gEHig~(X, R(1)), co~Fi(X)= ~(X). Then <co, If(lUg)> -~- <~0co, 

Proof. Since f and g have singularities at the points P of the form clog [z[, applying 

Stokes' formula, we find S coAdr(f.g)~_ I' coAti(f .g)--= S d (to.f .g) = O. Therefore 

coA ( i  ug)= S coA l i '1,2 (d=g--drg)--g" ll2(d,i--drf)l= Sco.t' 12lgdJ--i%gl= S 
Example 4.3. Let X be an elliptic curve, and let P=HI(X'=~, Z). The Poincare duality 

gives an isomorphism P=Mom(r, Z(1)) �9 Hence .~'(C)=P| R(1)/Z(1)) ; we denote by ( , ): 

X(C)| the corresponding pairing. We fix a holomorphic differential ~ on 

such that S~A~=I ; it defines an imbedding I~-C and an isomorphism X(C) = C/F. Let = = 

E=ixi~R[P] 0. We define the function r on X(C) as the Fourier transform of the function y § 

E=i(xl. V) on P. It is easy to see that e~ is a summable function of class C = away from x i 
YY 

and dEdze = = E=i6xi. Therefore, 8=@Hi~{X, R(I)) 

Fourier transform of the function y_+~l(x~, V! . 
Y 

by convolution of the Fourier transforms: 

< co, [=, P] > ( 4 . 3 . 1 )  
i,j u 

4.4. The formula of 4.2 enables us to compute llr~{~, ~} for (p, ~es ~}eH~(X, 
Q(2))~Ki(X)| we have rgp{~,~}=Ini~iUlni~ I. However, to verify the conjectures of Sec. 3 

we would like to have elements of H~(X), rather than of H~(X). We shall use the following 

lemma of Bloch which provides an analogue of the decomposition 4.1, a) for H~. 

LEMMA 4.4. I. Let X be a curve over a field k such that all points ~-~-X\X are de- 
fined over k, and any of their pairwise differences have finite order on the Jacobian of X. 
Then 

a) KI(X)| is generated by the image of Ki(X) and {Ki_i(k), O* {X)}. 

b) H'z~(X, Q(9)) decomposes into a sum of H~{X, Q(2)) and {O*(X), #~*}| The inter- 

section of these subspaces is H~(Speck, Q(2)). 

Proof. Since dlvOi(X)| ~ , it follows that the image of the arrow KI(X)| 
Ki_, (P)| (#r174 of the exact localization sequence coincides with Ki-i (#r | (the 

image is always contained in Q[P] 0). The lemma now follows from the exactness of the local- 
ization sequence. �9 

Remark 4.4.2. Let X be any regular scheme, and let U~X be an open subscheme. Then 

H~ i (X, Q(~) '~H~ (U, Q (9)) is an imbedding. Indeed, by induction on dim (X\U) everything 

reduces to the case where X\U=SpecK, K a field. From the exact localization sequence 

and dive a = ~. It is clear that dEe~ is the 

Finally, the integral of 4.2 can be evaluated 
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it follows then that the kernel of our arrow is the image of T-f=-="(SpecK, Q(2--n)), n=codim x 

(X - U). It is easy to see that all these groups are equal to 0 [for n > I this is obvious; 

if n = I, then H~(SpecK, Q(1))cK2(A0| But K2(K) is generated by symbols; hence K2(K) = 
2 0 H ~ ( K ,  q(2)) and / - / ~ ( K ,  q(]))=0] �9 

Therefore, in the situation of 4.4 there arises a canonical projection H:/-f~(X,Q(2))-+ 

H~(Y,Q(2))/H~(k,Q(2)). It is clear that n~ }:O*(X)| 
2 passes through the arrow A2Q[P]~ If k is a number field, then 

f-f~(k,Q(2))cK2(k)| and we obtain the pairing 

,{ , }: A2Q[P ]~  (X, q(2)) .  (4.4.3) 

By definition, H{f , g}={div f , div g} for f , g60* (X). 

I f  k cR ,  then R.rD{O*(X),k*}----F'(X~R)MF'(XfR), so t ha t  rDN-----~rD and r ~ {  , } = [  , ] �9 

There fo re ,  4.2 makes i t  poss ib l e  to compute the r e g u l a t o r s  of  elements of  the form ~{~,~}: ,  
~,~EQIP]0. In the next section we carry out these computations for a modular c_urve, while 
now we shall saya few words regarding the case of an elliptic curve. Thus, let X be an elliptic 

curve over Q, and let ~,~6Q[~V(Q),orsl0. Then r~{~,~} can be computed by formula 4.3.1. If we 
2 

knew that 0#{~,~}E/-f~()(z,Q(2))cH~(X, Q(2)) , then, according to conjecture 3.4, ]-]~(Xz, Q(2)) 

must be generated by (~, 8} and r~{=,~}/L(X, 2)EQ, i.e., the value of the L-function of X 

at two coincides with the value of the Eisenstein-Kronecker series 4.3.1. If X admits com- 
plex multiplication, then this fact is well known (the L-function itself coincides with such 
a series), but for curves without complex multiplication this is surprising. Bloch and Gray- 
son composed a program to compute r~{~,~} for Weyl curves. It was found that quite frequently 

r~{~,~}/L(.~,2) to high accuracy does not belong to Q. Fortunately, however, Bloch and Grayson 

showed that such {a, 8} do not belong to H~()(z,Q(2)). We note that the integral condition 

was omitted in the original formulation of the conjecture [9, 10, 3]. 

4.5. To verify the integral property of {e, B} on modular curves we use the following 
version of 4.4. 

Let S be a Dedekind ring with field fractions k; let M S be a projective curve over S; 

let PsC/Ws be a closed subscheme; let Ms----~s\Ps;~----/~s| ... �9 We assume that MS is 
regular, Ps/S is the disjoint union of several copies of SpecS, all pairwise difference of 
points in P have finite order on the Jacobian, and (PicSpecS)| 

LEMMA 4.5.1. If for any closed point ~ES and any /@O*(M) the order of a zero of f 
at general points of irreducible components of the fiber over ~ is constant (i.e., it depends 

(M, Q (2))cH~ (A4s, Q(2)) +{�9 (M), k*}.Q. only on a and f), then {0*(,44), �9174 
Proof. The condition of the lemma implies that O*(M)|174 Therefore, any 

pairwise difference of divisors of PS are divisors of elements of O*(Ms)| The remainder 
follows from the exact localization sequence of the pair (Ms, PS). m 

COROLLARY 4.5.2. If S is the ring of integers in a field of algebraic numbers, then 
under the conditions of 4.5 we have {Q[p]0, Q[pio}cH~(~4s, Q(2)). �9 

5. Values at Two of L-Functions of Modular Curves 

In this section for any curve over Q uniformized by modular functions we construct a 
subgroup inK2 whose image in the cohomologies satisfies Conjecture 3.4. 

Standard notation: G = GL2, Z = Gm the center of G, A = R x A f adeles of the field Q, 

z=xq-iy:H• the half plane with the usual right action of G(R) (H i is an 
analytic space over R). 

5.1. Formulation of the Theorem. Let M/Q be a scheme of moduli of elliptic curves with 
structures of all levels, let M be the compactification of M, and let P = M\M. The group 
acts G(Af)/Z(Q) acts from the left on these schemes. The scheme M is the projective limit of 
schemes of finite type K\M, where K runs through open and compact subgroups in G(Af); the 
same holds for M and P. We have the canonical isomorphism (~4~R)an=H• �9 
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If H is a contravariant functor on schemes of finite type over Q [for example, H~(.| 

then we setH(M):----limH(fCkM) ; the same goes for M and P; then G(A f) acts on H(M). 
---> 

Let F be the union of cyclotomic fields, and let ScF be the ring of integers. Our 
schemes are schemes over F in a natural way. They extend in a natural way to schemes MS, 
PS, MS = MS \ PS over S with an action of G(A f) -- projective limits of regular proper schemes 
of finite type over Z (see [20]). 

2 (,Ms, Q(2)) cH~(/W, Q(2))cH~(M, Q(2)). We According to 4.4.1, we have the imbeddings H a 

2 (~. Q (2)). set .~:=({O*(~0, O* (M)} Q) n H ~  (M, QC2))={H~(M, q(1)), H~CM, Q(1))} nHa 

THEOREM 5. I.I. ~c/f~ (/~s, Q (2)). 

For the proof see part 5.5. 

We wish to compute the mapping o.f the regulator on 2. For this we decompose the motif 

Q[M] by the ac t ion  O(A/):Q[M]=[M]~174 where 
V runs through all irreducible parabolic Q--representations of G(A f) of weight 2. Since 

= (M, Q(2)) of weight 2 we have ~|174 ~vcH~ (My, (](2)). is a G(Af)-submodule of H a 

We recall that to each automorphic irreducible C-representation of the ~ group 
G(A f) there corresponds its L-function L(~, s), the e-multiple e(~, s), and the L=-multiple 
Loo(n, s); we orthonormalize them so that the functional equation has the form (L~'L)(n, s) = 
e(n, s)(Loo'L)(~*, 2 -- s). If V is an irreducible, automorphic Q-representation of G(Af), 
then V is defined over some field E which is finite over Q, V=V~Q. We define the L-func- 

tion of V as an E|174 -valued function whose components corresponding to the imbeddings 
i:E~-C, are s ; e(V, s) and Loo(V, s) are defined similarly. For sufficiently large 

Res the L-function is given by the Euler product L(V, s) = HLp(V, s). We assume that V is 
parabolic of weight 2. Then L(V, s) = HLp(V, s) for Res > 1.5 and Loo(V, s) = (2~)-SF(s). 

Since the e-multiple never vanishes, we have L (V, 0) =0, 10iV): = ~ L (V, s) Is=0@0. 

THEOREM 5. I. 2. r59 (#~v) =/0 (V) �9 /-/~ (My| Q (I)) cHl~ (Mv| R (I)) = H~ (IWv| R (2)). 
For the proof see part 5.5. 

We recall that L(M V, s) = L(V*, s) (Eichler, Schmidt, Deligne,...) and that dimH~9(Mv| 
R, Q(1)) = I (the theorem on multiplicity one of the spectrum). From5.1.1andS.1.2 it there- 

fore follows that J-/~(Mvz, Q(2)) contains a subgroup satisfying Conjecture 3.4; of course, 

the same holds for any motifs decomposing into a sum of motifs of the form M v. 

5.2. In this subsection we reduce 5.1.2 to the computation of certain integrals. The 
scheme M is the projective limit of schemes of finite type; we shall explain how to integrate 
M(C). Let ~ be a 2-form of c!a.qs C ~ on M(C), and let U be an open subset of M(C). If K C 

G(A f) is such that q~ and U are K-invariant, then ~ is a 2-form on K\M(C); we set ]~= 
U 

__6-,%(K\M(C)) -L ~. The normalization is chosen so that under the identification of M(C) 
K\U 

with H+(C) x G(Af)/G(Q) the pre~mage of this measure on Hi(C) x G(A f) coincides with ~Xd~ 1, 
�9 9 

where dv f is a Hear measure on G(A f) such that S dill= I. The canonical isomorphism J ./-/~(YW| 
o(f) , 

is defined s im i la r l y ;  i f  then gives 

the l:'olncare dual i ty  -- the isomorphism of G(Af)-modules H~(~Z| Q0))* ~H.~(M|  Q). 

We shall deal with (Q| -valued functions on the set of irreducible, parabolic Q- 

representations of weight 2 [i.e., on the set of irreducible components of H~(7~| Q) or 

~I(.44)| for example, with the values of L-functions or e-functions. We say that two func- 
tions ZI and Z2 are equivalent, ZI ~ Z2, if ~I"Z~ I takes values in Q*. For example, for 
z/6Z(A/) the value of the central character re(V) on z f~, i.e., m(V)(z f) is equivalent to one. 

We denote by Zl the equivalence class of functions such that .QX(Mv)----I,(V).H~(Mv, Q) 
under the period isomorphism f~(Mv)| R) [we recall that ~I(M V) and ]-f~(]Wv, Q) 
are one-dimensional Q-spaces]. 
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According to Manin--Drinfel'd, we find ourselves in the situation of 4.4. 
we can reformulate 5.1.2 as follows. 

THEOREM 5.|.2' 
and ~V we have 

Using 4.2, 

Let Vc~t(]kl)| be an irreducible representation. Then for f, gm~O*(~ 

(~z)-l~c ~ -  log Iflg log gavel0 (V*). I~ (V). Qc Q| 

for some f, g, and v it belongs to (Q| 

We rewrite 5.1.2 again. Let e:A,atC-+Z* be the character of the action on the roots of 
unity. 

We recall (see 3.6) that for a Q-valued character • of the group AuIFe-~_Z*=A/*/Q *+ 

8{Z)C(Q| denotes the equivalence class of 6(X,n),neZ , the E-multiple corresponding to X. 

LEMMA 5.2.1. a) Let n EZ. Then s(V, n)~s(~(V))-_ 
b) If L(V, I) ~ O, then L(V, I) ~ If(V); for any V there is an even X such that L(V| 
X (det), 1)~-0. 
c) For even X we have l I (V | (det))~8(X).II (V). 

The proof of a) follows, for example, from e(V, S) = e(Mv*, S) and m(V) = detMv, and 
3.6; however, it is simpler to use the identity ep(V, ~(bx)) = 0J(V)(b)ep(V, ~(X)) for the 
local constants directly. 

b) is well known (the connection of the values of L-functions at one with periods; see, 
for example [18]). 

c) We decompos_e the motif [~]0 = ~[F] by the action of AutF=A/*IQ*§ ; the 
sum goes over all Q-valued characters. From the definition it is-evident that G(A f) acts on 
[X] by means of X-l(det). Therefore, the canonical pairing [~]0 x [~]i + [~]i gives an iso- 
morphism [%-l]X/~v-%]~v| If X is an even character, then /-f~([%])=F0/-f~([%]), /-/~ x 

([~]| are one-dimensional Q-spaces. Hence, if for a critical motif N we denote by P(N) 
its period matrix, we always have P(N[%])-~-P(N).P([%]). Since P([%])~(%) (see [18]), every- 
thing has been proved. �9 

We return to 5.1.2. The functional equation and 5.2.1, a) give Io(V*)~-2e(co(V))".L(V,2). 
We choose an even X so that L{V| |~(Q| ; then by 5.2.1, b), c) we have I,(V)~ 
L(V| 1).s(X)-L The re fo re ,  lo (V*) . l l (V)~-~ .8(o(V)%)  -' L(V| 1)L(V, 2), and we can r ewr i t e  
5.1.2 in the following form. 

THEOREM 5.1.2". Let Vc~I(M)| be an irreducible Q-representation. We choose some 

even X so that L(V| I)~{C| Then for f,g~O*(]~) and ~EV we have 

(2~0-' f log Ifla log gA~e~-~ (~ (v). z)-'. L ( V ~  (det), 1) L (V, 2). ~cC |  

and for some f, g. and v the integral belongs to (C| 

5.3. Eisenstein Series of Q* and (M). In this subsection we show that the factors 
under the integral sign in 5.1.2' coincide with the Eisenstein--Kronecker series. We need 

the following subgroups of G: B={(:  O)}, D----{(~ 0,)}, U__{(1, ~)}, B(Q)DB(Q§ 

LEMMA 5.3. I. We have P(C)=O{A/)/B(Q~)U(A/) as G(Af)-sets. The action of oEAutC on 

P(C) in this notation is multiplication on the right by (~ 0 m o(~))e (2.) �9 
If X is a compact, topological G(Af)-space and V is a vector Q-space, then G(A f) acts 

on V-valued measures and V-valued functions on X. We denote by ~v(X) and ~v(X) , respec- 

tively, the algebraic parts of these representations; let ~(X):=Ker(.[:~v(X)-+V). Suppose 

for brevity that ~v:=~fv(P(C)), ~'v:=~'v{P(C)),~fv----~fv(AuIC\P(C))=~ ~̂ /~, ~'v=~ "D~f~. It is 
clear that .~fv=~f0| ~v=~f~* .... 

We define the G(&f)-morphism Res:~(7~l,~)| as follows (cf. the beginning of part 

2). Let ~Q~(~,~)| and the sufficiently small open subgroup K~O(A 0 be such that v is 
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K-invariant, i.e., ~)E~I{K\/M)| Then ~ Res~:------~-IE(K\M) -l ReSKxV is the residue at 
~x 

the point K-x on K\M. This formula uniquely determines the measure Resv. 
- -  - - R e s  0 

We have the exact sequence of representations .O-~I(.M)|174 admitting 

a unique G(Af)-decomposition -- the Eisenstein series. It coincides with dlogO*{M|174 

by the Manin--Drinfel'd theorem I~esdlogO*{M| ; hence, since Kerd log = KerRes dlog, 

we have ~ (M, M)| ~ (M)| log O* (M|174 

LEMMA 5 .3 .2 .  a) RescllogO*(M)OQ--_.~=d(~ b) dlogO*(M)OQ= 
OEzcf~I(M, A4)| ; the sum is over all even Dirichlet characters X; here E X is the space of 
Eisenstein series with eigenvalues I + X(P)'P of the Hecke operators Tp. 

Proof. Since 

Res d log O* (M) = [Resd log O* (M| aut~ 

by Hilbert's theorem 90, part a) follows from 5.3.1. Part b) follows from a. �9 

We have thus identified d log g in the integral 5.2.3 with an Eisenstein series. We shall 
show that loglfl is a (nonholomorphic) Eisenstein--Kronecker series. 

( o//_ Let h be a left G(Z)-invariant function on G(A f) such that h x . \ .  ct2])--/z(.:c).la,/ctll.f, 

(aiEA/*), h(1)=1; ~o/v is a left invariant measure on O(A/)/U(AO: pfo/u(O(~)/U(~))----I . If ~Y/fR, 

then we set cp/=cp/ixfo/u. This is a function on G(Af)/U(A f) such that ff///z is right B(Q+) - 

invariant. Let ff=:I-/• coincide with --2~y on H + and be equal to zero on H-(C). For 

oER the function fro(z, g/):.~.y-ah(g/)-cf.~P='(z).~(g/) on H• is right B(Q+)-invariant. 

We set ,~fv.a:= ~ ~((z,g/)6). If o > 0, then the series converges absolutely and gives a 
6Eo(O)/B(Q+) 

f u n c t i o n  ~~177 I f  ~EJ/~, then the l i m i t  ~ : = l i r n F ~ , a  e x i s t s ;  we have 
~g==gF~ for gEO(AI) [4]. o~0 

LEMMA 5.3.3. If fEO*(/~I| then loglfl is equal to ~aese]0~f up to a constant. 

Proof. It is clear that Resdz~o-~, and hence everything follows from the fact that ~ 
is real. �9 

5.4. Rankin's Method. We recall (see [25]) that to each pair VI, V2 of irreducible 
automorphic Q-representations of G(Af) there corresponds a Q| -valued L-function L(VI x 
V2, s). If V2 is the space of Eisenstein series of weight (X, X'), then L(V~XVo_,s)--~ 
L(V~| s)XL(V~| (det), s); if both V i are parabolic, then L(V, X V~, s)----L (~) (Mv,*XMv,*, s). 

THEOREM 5.4.1 (see 125]).. Let'V~cf~'(M)| V2 c~](M,M)| be two irreducible Q- 
representations of G(A f) with central characters mi, whereby V~V~*. Then L(Vt| 2)=/=oo , 
and for vi@V,, cp6~ a right D(Af)-invariant measure on P(C) we have (2~ti)-~S~)~/%~oQ~--"e x 

((01602)-I L(V] X V=, 2).QcQ| If L(V~• V=, 2)6(Q| , then for some ~, ~0~, ~0= the integral be- 

longs to (Q| �9 

5.5. Proof of 5.1.2. According to 5.1.2", 5.3.2, and 5.3.3 it suffices for us to prove 

the following. Let /V~2*(M)| . be an irreducible Q-representation of G(Af), and let E X be 

�9 S - as in 5.3.2, b). Then for any q~, ~QV, ~@Ez we have (2rti) -~ ~tA~)=~-2e(X'o(V))-~.L(%,I) �9 

L(V, 2).~cQ| and if L(X, I) x 0, then for some ~, ~)~, ~o the integral is nonzero. This 
follows directly from 5.4. 

Proof of 5. I.I. We shall show that we are in the situation of 4.5. It is evident from 
[20] that all conditions of the beginning of part 4.5 are satisfied. It remains to verify 
the condition of Lemma 4.5. 

G(A f) acts on Ms, and the restriction of this action to SLz(A f) commutes with projection 
onto S. If =OS has characteristic p, then SL2(A f) -- the set of components of the fiber 
over a- coincides with PZ(Qp) equipped with the obvious action of SLa(A s in terms of pro- 
jection onto SL2 (Qp) �9 
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We define the SLa(Af)-morphism otd=:O*(M}| by the formula ord= (f) (x)= 
o:d.f.ordT'p [this means the following: take /(~O(A 0 such that feO*(K\M)| and find 
the order of the zero ordxf in the component of the fiber on K\ M corresponding to x; the 
number ordxf/ordxp does not depend on the choice of K]. We must show that the image of 6rd~ 
is Q~Q(p~(Q~)) - the constant functions. If this were not so, there would arise a nonzero 
SL2(A~)-morphism O*(M)NQ-*~Q(P~(Q~))IQ. But the representation on ~rQ(p'(Q~))/Q is irre- 
ducible and nonautomorphic [since SLz(A f) acts by projection onto SLz(Qp)], while O*(M)| 
is automorphic. Contradiction. 

6. Values at Two of the L-Functions of the Product of Two 

Modular Curves 

For all notation see Sec. 5. Here we shall construct explicitly a large subgroup in 

H~(TPIXM, Q(2))cK,(MXTPI)| and compute the mapping of the regulator on it by Rankin's 
method. The idea of the section is due to S. Bloch, who considered the case of the surface 
X0(37) • X0(37) (a letter to the author of March 19, 1982). 

6.1. For (~,~)~PXP, ~=J=~, let C~c/~XI~ be union of the diagonal, ~ x M, and M x B. 
Then for each open compact /(cO{A/) the image of KC~B of the curve C~B in K x K\M x M is a 

curve of finite type over Q; we denote by Rc/I~(QI/P/XTk/],Q(2)) the submodule generated over 
q[G(Af) 2] by the images of H~ I(KO=~,Q(O)) in 

H~ (KX KNMX M, Q(0))cH~ (Mx M, Q(2)), 

where (~, B) runs through all pairs of distinct parabolic points. 

We decompose the motif Q[M] by the action of G(A f) (see 5.1) and consider the corre- 

sponding decomposition Q[M • M--]. The parts contributing to H 2 are [~]0X[J~]2~)[~]2X[~]0~) 

[7P/]~X[/~/] r. The first two terms are motifs of cyclotomic fields; regarding them, see Sec. 7. 

We consider [/~I' X [/~P =Y. (7Plv, X I~]v.)@Vt| xv.|174 If Vff'V~| (det) for some char- 

acter X, then MVIxV 2 decomposes into a sum of motifs of the form [X](1) and a critical motif. 

We henceforth assume that V1~V:| Let Rv, xv, cH~t(Mv,• be the V,@V2 - 
component of R; let 

q)v, xv,: F 2 H ~  l ~ ' , l = (Mv, xv,) =F H~O ~ (Mv,)| H ~  (My,), 
dim Ov, xv, = 1. 

The space J~. ~((Mv,•174 R(1)} is two-dimensional; therefore, I-']b((Mv,•174 , R(2))=H~(R(1))/ 
~)| is one-dimensional. On H~ there is a natural Q-structure (see 3. I): if we set ~v, xv, "~ 
detH~(Q(1)).q)*, then /-/~=~| We recall that L(VI x V2, s) is a holomorphic function of 

s, L(V, XV~_,s)=L(Mv;xv;,s ), L(V~ X V2, I) =0 ,  but It(V, X V~_):=@L(V, xI/'~,s) I.=,E({~I| *. 

THEOREM 6. 1. 1. We have Rv, xv, CH~ ((MV, XV,)Z, Q(2))(see 2 .4 )  and'~)(Rv,• XV2)'.~v, xv, C 
H~(mv, xv,, r (2)). 

Thus, /-/~((/~/v,xv,)z, Q(2)) contains a subspaee for which in H~ Conjecture 3.7 is satis- 

fied: L(V, XV:,s)----L(M*v XMv,,S). 
We s h a l l  prove  the  theorem.  We f i r s t  show t h a t  Rv,• c H ~ ( ( M v ,  xv,)z, Q(2)). 

I nd e e d ,  e l ements  of  H ~ ( K \ C ~ ,  Q(0)) a re  t r i p l e s  of  f u n c t i o n s  ~ ( ~ a ,  ~. ,  ~ )  on K \ M  

such t h a t  ~ O *  ( K \ / ~  \ {a ,  ~})| and o r d u r e =  ~ o r d ~ = ,  o r d ~ a = - - o r d ~ ,  o r d ~  = - - o r d ~ .  From 

t h i s  i t  i s  e v i d e n t  t h a t  H ~ ( K \ C a ~ , Q ( O ) )  decomposes i n to  a sum of  the  subspace  spanned by 

c o n s t a n t  f u n c t i o n s  and a subspace  g e n e r a t e d  by a t r i p l e  (~, ~-~, ~), o r d . ~ l ,  o r d ~ - ~ l .  Ac- 

c o r d i n g  to  5 . 5 ,  we may assume t h a t  ~ and (~,~-~,~) came from a s t a n d a r d  p r o p e r  model over  Z, 

t h e r e f o r e ,  such e lements  be long  to  H ~ ( { / ~ X M ) z ,  Q(2)). The subspace  spanned by c o n s t a n t  f unc -  
t i o n s  goes ove r  i n t o  ze ro  under  p r o j e c t i o n  onto  H ~ ( M v ,  xv,, Q(2)), V ~ V ~ |  

We now compute the regulators. Let ~2,~'(Mv~), ~i=J=O. Then ~,(v,|174 

II(1))=H~(Mv,xv,| R(1))*. is a generator of ($v,xv,|174 R(1))lq)v,xv,| 
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Theorem 6. I now follows from the next lemma and 3.6.2 [since det /-/2{/~4v~xv,~Q, Qt) is c~{V1) -2. 
(V~) -2 ]. 

LEMMA 6 . 1 . 2 .  

a) ( r~)Rv',• ~('o~| > -= n%CCOCv o~cV~))-'L(V~ X V~, 2) X ~c~| 
b) < ~v,  xv,, ~ (v~ |  = s  (co (V)" co (V=))" Q c Q |  

Proof. a) Let CPv,xv ' be the projection onto H3v~(Mv,xv ,, Q(2)) of the element corre- 

sponding to  ~P=(~PA, ~ ,  ~Pr Then ( r~o~v,xv,, ~(v~| > _--- (2~i)-~ j" log ~A "vaA~=Ea-"~(co (V 0 co (V=))-' . 
M(c) 

L(V~XV~, 2)-Q, according to 1.8 and 5.4. Since for distinct ~, ~, K functions of the form ~ 

generate all of �9 and L(V~)<V~, 2)~(Q| everything follows from 5.4. 

0 
b) We carry out the computation. Let e i be a generator of /-/~(/~vt, Q), and let e~ be a 

g e n e r a t o r  o f  H~(IVIvi, Q(I ) ) ;  l e t  e~ vi*' Q)' e ] ' ~ . . ,  be such t h a t  ( ei 0, e l ' )  ~--- < e ~ el ~ ) -----1; 

l e t  u~=~Oe~O+~e~' be a g e n e r a t o r  of  f~(Mvi )~Ha(Mv~|  Then ~(U~| = ( c z : 0 ~ ) x  

.(ep|176174 ~ i s  a g e n e r a t o r  o f  Ov, x v, and l=(=,~.=.,6)-~'e~~174215 i s  a g e n e r a -  

t o r  o f  ~v , •  We now r e c a l l  t h a t  V*~U|  whence A/Iv, N M v  X[~(V)] ,  t h e r e f o r e ,  v i = 

s(co(VO).(a~Oe~;'+a#ey) i s  a g e n e r a t o r  o f  fl~(Mv~ ) [ s ee  t h e  p r o o f  o f  5 . 2 . 1 ,  c ) ] .  F i n a l l y ,  we 

have  ( l, ~ (v~ |  ~ (co (V0)-~ (co (V~))~s (co (V 0 .co (V~)). �9 

7. Cyclotomic Fields 

In this section we construct an explicit basis in ]f~t(F, Q(tz~-l))=/i'2n+l(F)| for 

cyclotomic F and compute the regulator mapping. We thus prove the conjecture of Sec. 3 for 
values of Dirichlet L-functions (this conjecture coincides with Gross's conjecture). The 
construction presented below is a generalization of Bloch's construction [9, 24] of a basis 
in K~. 

7.0. The symbols <...~...> (see [27]). We first define a "universal" symbol. The 
localization exact sequence gives isomorphisms /i'i+i (Z Ix0 .... , xn, (l--x0... xn)-'], {;c0))-%/(J (Z Ix 0 ..... 

xn]/(1 -- x0 ..... Xn))- We denote by < x0, -.-. xn >E/i'n+l(Z[x0 .... , x,, (l--x0... Xn)-1], (X0)) the preimage 

of the element {xl,...,x,}EKn(Z[xo,...,xn]/(I--Xo... x,)) ; for n = 0 let <x0> be the preimage of I. 

Suppose now that A is a commutative ring, ICA is an ideal, a0,...,a n are elements 
of A with aoEf , and the element I -- a0 ... an is invertible in A. There arises the morphism 

p:Z[xo , . . . ,Xn , (1- -Xo; .Xn) - l ] -+A,  p(xt)~---a/, 9( (Xo))c l ;  we d e n o t e  by ( ao  . . . . .  an) Et(n+I (A, [) t h e  image 
o f  ( xo . . . . .  xn u n d e r  t he  morphism 0. I t  i s  c l e a r  t h a t  ~P < xo . . . .  , x~ ) =p "+ '  ( x0, . . . ,  x~ ) .  

LEMI~A 7.0.1. We assume that all a i for i >i I are invertible; we have aiEKI(A) for i i> 
I, l--a 0... an@/(1(A, f). Then (a 0 ..... an) coincides with the symbol ~1--om...an, al ..... an}@ 

K.., (A, O. 
P r o o f .  I t  s u f f i c e s  to  c o n s i d e r  t h e  u n i v e r s a l  c a se  A = Z [ x o ,  X~ 1, . . . ,x~ln , ( l ~ x o . . . x , ) - l ] ,  

I = ( x 0 ) .  L o c a l i z a t i o n  a g a i n  g i v e s  an i somorph i sm /(n+l(A, l)-~Iftz(Al(1--xo... .xn)A), which t a k e s  
both our symbols into the same element.l 

We can thus use the following notation. Let f, al .... ,anEA and the ideal ICA be such 
that f is invertible in A, a i are not zero divisors, and the element a0:-~-(l--f)a~l...a~ I 
belongs to [cA. We set 

�9 . , �9 . �9 , ~ / r . / n + I  t / l  { f ,  al, �9 a,}: = ( ao, al, an > ~: sr ~"~, I ,  Q ( n + l ) ) c  Kn+t(A, I)|  

We carry out all computations of regulators for ~ -cohomologies with rational coeffi- 

c ient s. 

LEMMA 7.0.2. Let A be a ring of functions on a smooth, affine variety over R, letY:= 
SpecA/Ic% , and let Z be a relative cycle on X(R) modulo Y(R). We assume that there is 
a branch log f of the logarithm i f such that log f is single-valued on ~ and is equal to 0 on 

0~.  Then S r ~ { f ,  al . . . . .  a n } = S l o g f d l o g a l A  . . . A d l o g a , ,  
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The proof is an exercise to 1.1, 1.2. �9 

7.1. The Main Theorem. Let A-~Q[t, ..... t,], l-=(Ht~(l--t~))cA. Thus, Spec A = A n and ~pec 
A/[CA, is the union of the hyperplanes t i = 0 and t i = 1. We denote by S./A n a rela- 
tive simpliclal scheme -- "the resolution of singularities" of the scheme S/An: this scheme 
S./A n is the coskeleton S./A n of the normalization of S. As usual, if F is a field, then 
A~:-----A"| .... ; if f is a rational function on A~., then A~ncAF is the complement to the 
divisor f. 

The next result follows immediately from the spectral sequence connected with a simpli- 
cial scheme, the compatibility of the regulator with it, and Borel's theorem. 

. a . ~-" (F, LEMMA 7.1.1. a) For any field F we have Kt(AF, S.e)=Kj,,(F), ]-/~(Ap, S mQ(b))=H~ 
Q(b)). 

b) Let ~={(t I ..... t,)Iti6R, 0-.<tl~<l)CR n be a relative cycle on R n modulo S(R). If /E 

j# ~c,S.c,Q(?z+I)) corresponds to f6K~n+x(C)@Q=H~(C,Q(nq-I)), then r~D(/) rm(/'7)(~C/ 

(2#i) "+' Q. �9 

c) If F is a number field, then the mapping r_rn+1,~, S.p, Q(rz-~-l))-+]~Cl(2~zi),+IQ, taking 
l 

y into (~r~)i(y)), where i runs through all C-points of the field F, is an imbedding; more- 

over, the composition of this mapping with the product of the projections C/(2~i)"+IQ-+R of 
taking the real and imaginary parts is an imbedding, m 

;4n+ ! . The plan of what follows is to construct many elements of "'a~ (Ap, S,F, Q(n.q-|)) with 

the help of symbols and compute their regulators. By the lemma we then will have elements 
of H~(F,Q(nq-I)) together with their regulators�9 

We fix a cyclotomic field F. Let o)6F,, o)§ be a root of i. If two collections (aij), 
(bik) of positive integers are given and the index i runs through the values 1,..�9 then 

we set /a,b(e):= l~(l--o [[,:~i) I-[ (I--.nt?~k) -' -- a rational function on ~. 
j i k l 

LEMMA 7.1.2. For any n, ~ there are collections (a), (b) such that 

1. (I --/~,b (o~))I~tT'el. At, (,); 
2. co,: II0 '§ 

J t k l 

For t he  p r o o f  see  p a r t  7 .2 .  

We choose  a ,  b as  in  t he  lemma and s e t  lab(o~):=C-~{/,tl . . . .  ,tn~H~1(A~(o, SI, ff),Q(?t_F1)); 
we denote by the same symbol the preimage of Za,b(m) under the canonical morphism , 
S,~ff) lAb(f). 

LEMMA 7 1.3. The canonical morphism "+~ �9 l-la~ (A"e, S4,, Q(g-~l))i~]-/"~ ~ (A~ff), S.~(O, Q(gq-l)) is an 
imbedding. 

Proof. It is easy to see that for any C-point i of the field F the cycle ~ lies in 

4(if)" Therefore, [r~i(y)~-~-[r~)i(res y) for yc~'~u"+t�9 , and the lemma follows from 7 I. .I, c). �9 

LEMMA 7.1.4. a) The element Za,b(m) lies in the image of the imbedding 

1_],+11~, ~ . ,  S.e, Q (n q= I ) ) ~ H ~  I (A~ (n, S.F(.O, Q (n q- I)). 

b) Za,b(m) depends  o n l y  on m (and does no t  depend on the  c h o i c e  of  a and b in  Lemma 
7.1.2). 

c) For any C-point i of the field F we have 

I rmiZ (o~)=~ ~C/ (2n ip+~Q.  
.~ *> l  
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P r o o f .  c ) B y  Lemma 7 . 0 . 2  I r~ila, b(to)--.C-l~logfdloglzA...Adlogln--_~log(l__tolt...tn) x 

d l o g  t l A . . .  A d l o g  t n ( h e r e  t h e  b r a n c h  of  t h e  l o g a r i t h m  i s  e q u a l  to  0 f o r  t z  = . . .  = t n = 0 ) .  
1 

Making t h e  c h a n g e  of  v a r i a b l e s  pj-~I~ti, we o b t a i n  t h e  u s u a l  i n t e g r a l  r e p r e s e n t a t i o n  o f  t h e  
polylogarithm, l=t 

a) will be proved in part 7.2. 

b) follows from a), c), and 7.1.1, c). �9 

We have thus comstructed a mapping l: (roots of I in n+z n F) \{1}-+/ - /~r  (AF, S.e, Q ( n + l ) ) =  
1 

H a (F, Q ( n +  1)). 

THEOREM 7 . 1 . 5 .  The mapp ing  ~ p o s s e s s e s  t h e  f o l l o w i n g  p r o p e r t i e s :  

a)  For  any  gEOalFIQ we h a v e  l (gm)  = g~(03). 

b) ~(-z) = (_1)nz(m). 

c) For any C-point i of the field F we have 

Proof. a) follows from the naturality of all constructions; c) follows from 7.1.4, c). 
Part b) follows from c) and 7.1.1, c), since replacement of m by m-z changes r~ into the 
complex conjugate quantity and hence multiplies Re(Im)r~ by • it remains to use injectiv- 
ity. 

By the way, from b) there follows the well known 

COROLLARY. For any root of unity ~EC we have 

r 
kL--v , (2 0 (q+m). �9 

COROLLARY 7.1.6. Let F = Q(m), m ~ I, and let cO]alFIQ be complex conjugation. 

a) The m a p p i n g  ~o:Q[GalF /Q]I(1--(--1)nc).Q [ O a l F / Q ]  --+H~(F, Q(n + I))=K2.+,(F)| ~o(~--- 
gZ(~)  i s  an i s o m o r p h i s m .  

b)  We decompose  t h e  m o t i f  Q[F] by t h e  a c t i o n  o f  OalF/Q:Q[FI=e[X]. Then dimH~([X], 
Q(n + 1))  i s  e q u a l  t o  1 i f  X(C) = ( - 1 )  n and to  0 i f  •  = (--1) n + l .  The e l e m e n t  ~ o . x : =  
ZX-Z(g)~o(g) is a generator of I-/~([%1, Q(~+I)). We have 

xe *. L (x, s)l.--n 

In particular, for the motif [X] Conjecture 3.4 is satisfied. 

The proof follows immediately from 7.1.5: we first compute r~o.x. 
tive root of degree f and X is primitive, then 

If m is the primi- 

(o ak *tgT~ r~Wox= ~ %-'(a)~=~%-'(ak)~=kX(k) 8(%).L(%_z, ) ( ) f d  �9 k--~----" n+I_6Q*..2ai:~-L.x, S)ls--n. 
aE(z/fz). ~>x 

If glf and ~ is a primitive character modulo g, then 

r~o ,  x=(g/ f )  n§ 1-[ (1 - - X ( p ) . p  n~l) r ~ j / g  x. 
Plf. P~g 

From the obvious nonvanishing of the L-function at n + I it follows that ~.x=#O, if • = 
(--I) n. Hence, ~ is a monomorphism and hence an isomorphism, since the dimensions are the 
same (Borel's theorem). �9 

7,2. Proof of Lemmas 7.1.2 and 7.1.4, a). We begin with Lemma 7.1.2. 

LEMMA 7.2.1. There is a pair of integral matrices (aij), (bij) of dimension n x 2 n-z 
such that 
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~) all aij, bij i> 2; 

2) for any i0 there is a permutation o~,6Y.~,-, such that (tij..~-bw(j) for any i z i0; 

a,/ - - ~  b,j )---~O. 

D e r i v a t i o n  o f  7 . 1 . 2  f r o m  7 . 2 . 1 .  C o n d i t i o n  1) e n s u r e s  t h a t  ( 1 - - f ) t I t ~ - ~ E I I t ~ . A / ,  c o n d i t i o n  

2)  t h a t  (1- - f )6 I I (1- - t t )An .  and  h e n c e  f r o m  1) a n d  2)  we o b t a i n  c o n d i t i o n  1 . 2 . 1 .  C o n d i t i o n  3) 
i s  1 .2 .2 .  �9 

We p r o v e  7 . 2 . 1 .  L e t  ~l , . . . ,C~n ,  8 1 , . . . , 8 n  be  c o l i e c t i o n s  o f  i n t e g e r s  w i t h  a i ,  gi ) 2, 
e~i ~ 8 i  f o r  a n y  i .  We c o n s t r u c t  t h e  d e s i r e d  m a t r i c e s  a i j  = a i j ( a  1 . . . .  ,an) ,  b i j  = b i j ( 8 ~ , . . . ,  
gn) b y  i n d u c t i o n  on n .  I f  n = ~,  we s e t  a l ~  = a l ,  b l l  = g l .  S u p p o s e  now t h a t  n > 1. We 
d e f i n e  t h e  m a t r i c e s  a i j ,  b i j  b y  t h e  f o r m u l a  

[~,, J'-< 2"-~ 

a,,~ = (~., ] > 2~_~ ' 

[15,,, J ~< 2.-~, 
b, u / 

ta,, j > 2"-~; 

for i < n 

an i = btj'= [at j  (~1 . . . . .  o~._1), j ~< 2 n-2, 
tb,.j_2.-, (~, . . . . .  ~,,-t), J > 2"-2. 

It is easy to see that I) and 2) hold and the number of part 3) is II(~TI--~T')=I~O. �9 
i 

7.2.2. Proof of Lemma 7.1.4, a). Let n = I. The localization exact sequence 

2 I H~(A~, SF,  Q(2)) -~Ha (As(t), SF(t)Q(2))-+~I-I~ (F~, Q (I)) 

(in the sum v runs over all zeros and poles of f) shows that the image of the first arrow 
coincides with the intersection of the kernels of the manual symbols at the points v. Now 
all manual symbols {f, t} v are equal to zero by the Steinberg identity, as required. 

Suppose now that n i> 2. 

Step A. We introduce notation. We set A n = A~, T n = An(tl ... t n) is the complement to 

the union of the coordinate planes ti~--O; S ~ S D T  n-~- uTT-'  (T7 -~ is given by the equation 

tt----1); T n - l =  (tl . . . . .  t.) co t~=1 cT";  U"=T"\T"-~;  S u = S " N U " .  Then  An----A(t)"uT ", and  t h e  

corresponding Meyer--Vietoris exact sequence shows that 

Im (//'j~ (A", S., Q(n+ I)) -+ ~r (A"(t),SIt) , Q(n+ I))D 

DKer (I-l~' (A"(f), S.q), Q(nH- I)) -+~"+' (T;t), S~(/).Q (n + I))). 

Therefore, i t  suffices to prove that the restr ict ion of la,b(t0) to (T~f), n ST(f) " ) is equal to 
zero. 

T n - 1  i . e .  t i 6 H ~ ( T  n, We note that t i are invertible on T n and equal to I on i ' 
n - - 1  n n Ti , Q(1)). Therefore, {If' "'', l,:}6[-[n~r ( Tn, OTi"-1, Q (n))=/-/~r (T", ST, Q(n)) is defined. 

We use the following fact: if ~,~E/-/.(X,)Z), s, ~ are the images of ~, B in H(X), then 

(o~,~}=~,[5}={cx,~}eH'(X, Y). We apply it to (~=fa,a(o)6I"I~(U" Snu, O(1)), [3-----{tl . . . . .  t " ,,} 6 H ~  (T., 
S~, Q(n)). The restriction of Z(~) to (T~f), S~(f)) is by 0.1 the symbol {04 ~)={=,~}=C-' x 

(~ {l--0J[It? If, {t I ..... in}}--~ {l--o)[It~/ik, {t I ..... t,}}l. Each term {l--0)[It~ii,{tl ..... tn}}~-I/a~/.l{l--(0[It~t/~ 

\'7" k ! 

{t~,i ..... tani}} is the preimage of the symbol {l--t0~]ti, {t~ .... ,~n}}QI-f~'(Un, S~I, Q(t~-~])) under the 

mapping t i + taij. 

Step C. It remains to show that the symbol is equal to zero. Let S~ =S~ UT "-i, ST.=...; 
we consider T n-I as a torus with coordinates tl,. tn-l. Then S"~T "-~ -"-~ �9 ., =ST , and this in- 
tersection is transversal. According to 2.1.4, there is the exact localization sequence 
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" ~'"+' " Q(tz-}-I))--,.H"c(T.-I, ~71 Q(tz))-+. From it and the (r . ,  ST., Q ( n +  1)) (U.,  s . . ,  , . .  

,.,+1 monomorphicity of the restriction ..I4"+1~ (T n,Snr., Q(n+l))-~Hs~ (U n, Q(n+l)) (which follows, as 

in 7.1.3, from the argument with regulators) it follows that the morphism Iq~'(U n, S~., 

Q (n + I)) -+ H% (T"-', S~7', Q(o))eH~'(U., Q(n+l)) is an imbedding. It is clear that the restric- 

tion of our symbol to U is equal to 0 (the Steinberg identity), and its image in H"(T n-l, 

S~-', Q(/z)) coincides with i,*({l, ..... In}), where i,*:H'~(T n, S~..)-+H~T n-~, S~7~). Thus, it re- 

mains to show that i*. = O. We use regulators: we shall first prove that the cohomological 
arrow is equal to 0 and then use injectivity (Borel's theorem). 

Step D. The morphism z n is included in the long exact sequence ...-~H~(T n,g~.)-+Hm((Tn , 

S~.)-+H~(T, -I,S~71); there is an analogous exact sequence for the other cohomologies; these 

sequences are connected by the morphism r. 

LEMMA 7.2.2.1. H'~(T n, S~.) is a free H's~{F) -module with generator {tl,...,tn}. An 
analogous fact holds for the other cohomologies. 

The next result follows from Borel's theorem. 

COROLLARY 7.2.2.2. The morphism r~):H'~(Tn, S~..)-+H~)(Tn@QR, S~| is an imbedding. 

LEMMA 7.2.2.3. For an imbedding F~.C we consider the manifolds T~=Tn@pC , ..... We 
. n H i have 1-I~ (Tc, -" ... STc, Q)~-Q@Q(--I)@ ~)Q(--n) as mixed Hodge structures; the other = 0. The 

morphism in Betti cohomologies is equal to O. 

Proof. Indeed, H~ (T~,S~,Q)=Q(--/z)=Q.r~{tl ..... in} the other Hi = 0. From this and 

the exact sequence 2.2.4.0 for cohomologies we obtain by induction on n that H~8(Tc,~ Sr.c,-" Q)---- 
"* is equal to 0 in the cohomologies, and the factors in the weighted filtration 0 for i z n, z n 

~'" :T" -n on n~ c, Src, Q) are Q(-i) 0 ~< i ~< n. It remains to prove that the weighted filtration on 

H n is decomposable. By induction it suffices to verify that the term F n in the Hodge filtra- 

tion is defined over Q. A generator of F n is the form (2Xi)-ndlogtl/k... Ad|ogt,. We shall 

show that its periods over all cycles are rational. Let ~=exp-f-. We consider the unit 

cube in R n and decompose it into n + I pieces by the hyperplanes ~xt=]~ -I, ]=0 .... ,/z--1. 
l 

The images of these pieces under the mapping t i = exp2~ix~ form a basis in Hn(T~, SOC, Q). 
The integrals of our form over them coincide with the volumes of the pieces. They are ra- 
tional, as required. �9 

The lemma can be reformulated as follows: in the exact sequence of mixed Hodge strut- 

t *  .~ 
tures--~H'~(Tn, S~-.)-+H'~(T", S~'.)~-~H'~(T"-I,S~'71) -+. . .  the morphism i n is equal to 0 and the 

remaining short exact sequence splits. From this we obtain 

COROLLARY 7.2.2.4. The morphism z n for ~ -cohomologies is equal to 0.~ 

The last step: by induction on n we show that ST| is an 

imbedding and the morphism i n for ~-theory is equal to 0. Suppose we know this for n -- I. 

For the commutativity of t~) and in* and 7.2.2.4 we have r~,-~otn*=0. But r~),_, is in- 
jective, and hence i* n = 0. Injectiveness of ,r~n now follows from the commutativity of the 

diagram 

O---> H ~ (T"-', g"-')-+ H ~ (T", S")---> H ~ (T", S")-+O 

O~ H~) (T n-', S,,-')-+ I-I~ (T", S")-+ H~(T" ,  S")-->O 

and the  i n j e c t i v i t y  of  r~ ._ ,  and r~(.) ( i n d u c t i o n  + 7 . 2 . 2 . 2 ) .  �9 
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