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HIGHER REGULATORS AND VALUES OF L-FUNCTIONS

A. A. Beilinson uDC 512.7

In the work conjectures are formulated regarding the value of L-functions of mo-
tives and some computations are presented corroborating them.

INTRODUCTION

Let X be a complex algebraic manifold, and let K(X), Hi (X, Q) be its algebraic K-groups

and singulary cohomology, respectively. We consider the Chern character ch: K{(X)®Q-@.
H% ’(X Q). It is easy to see that there are the Hodge conditions on the image of ch: we

have ch (K;(X)) C@(WWHﬁ—’ (X, Q))r'](F‘HZ' j(X, C)), where W,, F° are the filtration giving the
mixed Hodge structure on /g (X). For example, if X is compact, then ch (Kj (X)) = 0 for
j > 0. It turns out that the Hodge conditions can be used, and, untangling them, it is pos-
sible to obtain finer analytic invariants of the elements of K, (X) than the usual cohomology
classes. For the case of Chow groups they are well known: they are the Abel—Jacobi—Griffiths
periods of an algebraic cycle. Apparently, these invariants are closely related to the values
of L-functions; we formulate conjectures and some computations corroborating them.

In Sec. 1 our main tool appears: the groups Hé(x,l(i)) of "topological cycles lying in
the i-th term of the Hodge filtration." These groups are written in a long exact sequence

—>Hj—l X C / N BT ] 4 1727 C
@ (X, C)=>Hgp (X, Z(i) +~ Ha (X, Z)oF'Hg (X, C)—....

On Hzp we construct a U -product such that &g becomes a ring morphism, and we show that
Hgp form a cohomology theory satisfying Poincaré duality. Therefore, it is possible to apply
the machinery of characteristic classes to Mz [22] and obtain a morphism ch g:K;(X)®
Q >®Hg / (X, Q). The corresponding constructions are recalled in Sec. 2. Let H2i—’(X

Q (i))cK;(X)8Q be the eigenspace of weight i relative to the Adams operator {2]; then chg
defines a regulator — a morphism I, H/ X, Q(l))—>H@(X Q(#). [1t is thought that for any
schemes there exists a universal cohomology theory H’ ‘e (X, Z(i)), satisfying Poincare duality
and related to Quillen's K-theory in the same way as in topology the singular cohomology is
related to K-theory; H'y, must be closely connected with the Milnor ring.] In the appendix
we study the connection between deformations of chg and Lie algebra cohomologies; as a
consequence we see that if X is a point, then our regulators coincide with Borel regulators.
There we present a formulation of a remarkable theory of Tsygan—Feigin regarding stable co-
homologies of algebras of flows. Finally, Sec. 3 contains formulations of the basic conjec-—
tures connecting regulators with the values of L-functions at integral points distinct from
the middle of the critical strip; the arithmetic intersection index defined in part 2.5 is
responsible for the behavior in the middle of the critical strip. From these conjectures
(more precisely, from the part of them that can be applied to any complex manifold) there
follow rather unexpected assertions regarding the connection of Hodge structures with alge-
braic cycles. The remainder of the work contains computations corroborating the conjectures
in Sec. 3. Thus, in Sec. 7 we prove these conjectures for the case of Dirichlet series;
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Sec. 5 contains a result giving a partial proof of the conjecture for values at two of L-
functions of curves uniformized by modular functions; Sec. 6 contains an analogous computa-
tion for the product of curves of this type.

This work arose from an attempt to understand the ideas and computations of S. Bloch.
Conversations with I. N. Bernshtein, P. Deligne, Yu. I. Manin, B. L. Feigin, and V. V. Shekht-
man were very useful to me. I am very grateful to them. I am also grateful to L. Titiova
for help with preparation of the manuscript for publication.

NOTATION

We shall use the standard language of cohomological algebra. If A is an Abelian cate-
gory, then D(A) is the derived category of A; DF(A) is the filtered derived category; C(A)
is the category of complexes; s is a functor assigning to a bicomplex the corresponding simple
complex; N:Ad + C(A) is the normalization functor (A} are the cosimplicial objects of A). If
X" is a complex, then the complex X1 coincides with X' in degrees 2i and is equal to zero in
degrees <i (the i-th term of the filtration group on X). We denote by [Y? » Y} » Y2 » ...]
the complex equal to zero in negative degrees and coinciding with Y' in positive degrees. If
T is the topology in & (T) ~ the category of sheaves of Abelian groups on T, then C(T) : =
C(FT)).

"An analytic space" is an analytic space over R; we denote by J4n the category of analy-
tic spaces equipped with the usual topology.

Let VéS#n. Then a sheaf & on V is a sheaf Fc¢ on V(C) equipped with the action of an
involution o of complex conjugation on V(C); the spectral sequence with second term HP(Z/2,
HY(V (C), F¢)) converges to the cohomologies " (V, %) (the Leray sequence of the structural
morphism V' —+SpecR); in particular, for a Q-sheaf we have H (V,F)=H (V (C), Fc)"

We denote by Cy or simply C the local system on V corresponding to a constant sheaf with
stalk C on V(C) with the action ¢ by means of complex conjugation. Identifying Cy with the
subsheaf of constant functions in the structural sheaf Oy, we obtain, if V is smooth, the
isomorphism ' (V,C)=Hgg (V). 1f KcC is a subgroup closed relative to conjugation, then

let Ky (or simply K) be the subsheaf of Cy with stalk K. We need the following subgroups of
this kind: for a subring AcCR and rEZ we set A(n):=(2ni)*A=A-Z(n)cC; then A(i)-A(j) =
A(1L + 3). 1f ¥ is a sheaf on V, then let F(n):=F®Z(n); it is clear that for a sheaf of
Cy-modules & the sheaf & (1) can be canonically identified with &.

If V is smooth, then let O,.D0y be the sheaf of functions of class C* on V, let

Q,,DQ, be the corresponding de Rham complex, and let Q;°°71£2f¥;£; let Sy be the subsheaf

of R-valued forms, Q;w==SL®(hn If X is an algebraic manifold over R, then we set Hagp(X,
R

An)=H (X,,, A(n)). For any cohomology theory H7 we denote by H;' the corresponding cohomol-
ogy groups (see 2.3).

CHAPTER 1. MAIN CONSTRUCTIONS AND CONJECTURES

1. @ -Cohomologies

1.1. @ -Cohomologies of Analytic Spaces. We fix a subring AcR.

Definition 1.1.1.% For i6Z we define a complex A () of sheaves on n by the formula

A (i) p: = Cone (F'® A (i) - Q) [—1].

Here Q' is the de Rham complex of holomorphic forms equipped with the filtrat?on group Fi:=
0?i; the arrow F'®A(i))—>Q is the difference of the obvious imbeddings F'~Q and A ()=

C-Q. B
Let ep, €5 be the natural morphisms of A (i)g into F(i), A(i), respectively. We have
the exact triangle

...—>Q'[——1]“—>A(i)mﬁi>F(i)®A(i)-»... (*)

*Apparently, these complexes were first considered by Deligne (see [8]).

2037



It is clear that for i<0e, is a quasiisomorphism. For i > 0, factoring A (i)g by
the cones id:F1 - F1, A(i) » A(i), we obtain the quasiisomorphisms

A@)p—>[A@)>0~>... >Q > [0>0/A@)>Q > ... >Q1].
In particular, since 0/2(1)%"0*, the complex Z(l)g coincides in D*(sfp) with O*[—1]. If

V is a smooth manifold, then the morphism ﬁV:C/A(i)[—l]—+A(i)Q in DY (V) connected with the
imbedding C/A (§)~0O/A (i), 1is a quasiisomorphism for i > dimV.

The complex A (f)gp determines a corresponding contravariant cohomological functor RI(.,
A(i)gp) on n with values in the derived category D*(A-mod). Applying to (*) the functor
Rl', we obtain the exact triangle of functors

.o Hg () [~ 1=~ RT (-, A()g)— R (-, FYORT (-, A (D) ... (%)

Generally, for any diagram G:]/->$n of analytic spaces its cohomologies RF(G,A(i)Q)Ie
D*(A-modl) are defined, and

RT (G, A()g): = RImRT (G, A (§)) €D* (A-mod).
We require cohomologies of simplicial spaces (I = A°) and relative cohomologies
(I =+ —-, %n' = Mor $#n, D (A-mod’)cDF (A-mod)).
If V, is a simplicial space, then to
H (V.. A()g)(: =HRI'(V.,, A(i)p))

there converges the spectral sequence with first term E{""=H'(V,, A(i)g). If £:U >V is a
morphism, then we have the exact triangle

.. —>RL(f, A(i)g)~RT(V, A ())g)>RT (U, A(D)g)—> ...

Remark 1.1.2. Let C'(V, ?) be the complex of singular cochains of class C” with coeffi-
cients in ? on V(C). This is a complex of presheaves on &n; let C°(?) be the complex of
sheaves corresponding to it. We set

Cxp (-, A()): =Cone (C>' (C) @A (i) ~C (C)) [—1],

where the arrow is the difference of the obvious imbeddings ¢l > ¢' and A(i) > C". Inte-

gration over chains gives the morphism S:A(i)@»C'Q,(A (i))- 1ts composition with the natural
projection

Cp(A@)—~[C(CrA@)IC> €CIAE]—1]

defines the morphisms

S’:Hf V., Al)g)—>HI" (V,CIA@) npu j<i
and
HY(V, A()g)—T (V, C- (C/ A (i))/aT (V, Cr).

. . . J . . .
If V is smooth and j < 1, then S are isomorphisms inverse to By.

1.2. Multiplication on 9 -Cohomologies.
Definition 1.2.1l. Let ofR. We define the mapping

UatA(D2®A(Np—~> A+ o

by the formula

FiUof)=FAf€F™, a,Uqa;=a,-agA (i),
@ Uaf)=ri1Ual)=0,Ua0;=0, f,Ua0,;=(—1)*a.fA06Q,
o,y afj=(l _a') mlAfJEQ.- a; a“)]=(l ‘—a) a,; -03,-69.,
o U aaj=“mi'a}€9.»
here f,6F', 0,62, a,6A (i),...
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LEMMA 1.2.2. a) U« is a morphism of complexes.

b) All Ua are homotopic to one another; we denote by U their common homotopy class.
c¢) The multiplication U is associative and commutative up to homotopy.

d) The cycle (1, 1)€f*(A(0)p) is a two-sided identity for 'U.

e) We define the morphisms A ()p®A(j)—>A(-+)), A(@)p®F/ —~F* , and A())gp®Q—+Q as
compositions of the natural multiplications on A(:), F*, and 8- with the morphisms €p, EF,
and € = €4 Vv ey, respectively. Then these multiplications together with U give a morphism
of triangles A (i)¢®(s)—(+) in the homotopy category.

Proof. b) The-homotopy between U« and Up is given by the formula m,®m1—>(_1)de¥“’l(a_
B) w;Aw;; the other components of it are equal to zero.

¢) Uo and U: are associative; if S:A()9®A(/)p—> A (/)p®A())p is the permutation of
factors, then UaS= U1 B

L
We have thus obtained a commutative and associative multiplication U:A())9®A (/)p— A (i+

j)_@ in the derived category; it defines a multiplication on & -cohomologies. It is clear
that €5, €f are morphisms of graded rings.

Remark 1.2.3. Let (Mg, F'Mp) be a differential, filtered (@', F')-module, let My be
a complex of A-modules, and let Mp ~ Mp be a morphism of complexes of A-modules. We set
M (i)g: = Cone (F'‘Mq®M 4 (i)~ Mg)[—1]. Formulas 1.2.1 give a natural pairing A ())g®M(f)p—>M @i+
f)g, converting M(.)p into a A(:)p -module.

1.2.4. We shall present a more convenient construction of the multiplication on T -
cohcmologies with coefficients in R. We assume that our manifolds are smooth.

The projection n,:C=R(i)®R(i4+1) - R(i) gives a morphism Q —»SgC—>SgR(i), which makes
it possible to define the complex R(i)5:=Ccne(n,:F'-~S@R(i—1))[—1] together with the mor-
Ehism p::R(i)@—>R(i)@; pilpi=1d, pi|r)y=0, Pilg-="i1- We define the multiplication D~I§(i)@®
R(/)p—>R(i+ j)gp by the formula f,Of, = fiAS;, S,~Usj=0,' f,Usj =(—1)d°g’ln,f,Asj, ssUf;=
SiAﬂ!l- ;» where JiEF, S,ES'®R(I:——1)CS.®C,...

LEMMA 1.2.5. a) pi is a homotopy equivalence.

b) U 1is a morphism of complexes, and Pi,;U 1is homotopic to U(2.®p)

Proof. b) The homotopy between py,;Ua and lj(p,@pj) is given by the formula

0,®0,— (— 1)**8° (00 ;10 A5 0,4+ (1 — @) M0, Am;40),
and the other components are 0. ®

Thus, real & -cohomologies can be computed in terms of R()@ —~complexes, and the U -
product on them can be computed in terms of U ~multiplication. For example, for i > 0 we
have H'(V, R(\)g)={fel'(V, S"'@R(i—1)):df =0+ 0, o (V)/dl'(V, S*2@R(i—1)); in particular,
H'(V, R(l)p) is the space of R-valued functions f of class C® on V such that d,f is a holo-
morphic differential; further, for such £, g we have fug=f-md,g—gmnd,feH*(V, R(2)gp)

Remark 1.2.6. 1If we have any diagram of differential graded rings, then there is the

Alexander—Whitney multiplication on its inverse homotopy limit. It is easy to see that the
U -product on A(+)g is the Alexander—Whitney multiplication corresponding to the diagram

A(s) > Q « F*.
1.3. 1In order to become accustomed to 2 -cohomologies, it is worthwhile to consider in
detail the multiplication U:HWV, Z(1)g)® H'(V, Z()g) ~H2(V, Z(2)g). We have H'(V, Z()g)=

.O*A(V)v H*(V,Z(Q9) = H'(V, O*dig Q) (1), so that U 0¥ (VY®0* (V) -HY\(V, 0*~QY)(1). This pairing

was constructed independently by Deligne and the author [19, 3, 11] and served as the point
of departure for the present work.

As Deligne noted, H!(V, 0*—Q!) is a group of isomorphism classes of invertible sheaves
with a connection, so that U assigns to a pair of invertible functions a sheaf with a connec-
tion; for dimV = 1 all connections are integrable, and HYW(V, O*~Q')=H'(V, C*). The next
lemma is left as an exercise for the reader.
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LEMMA 1.3.1. Let f, gfO*(V). Then

a. The curvature of fUg is dlcg fAdlogg.

b. The monodromy logarithm of fUg over a loop y is computed by the formula (j‘logfd x
1ogg—g(a,)j‘a’]ogg)eC/Z(2)':‘ here a is a point of y, logf, logg are branches of the

logarithm that are continuous off a,, and the integrals are taken over y beginning
at o.

c. Let £, g be functions on the punctured disk which are meromorphic at the exercised
point O. Then the monodromy of fUf over a loop about 0O coincides with the manual
symbol {f, glo at 0. ®m

COROLLARY 1.3.2. (the Steinberg identity). If £, 1—£€0*(V), then fU(1—¢)=0.

Indeed, by functoriality it suffices to verify the identity for t a parameter on V =

P'\{0, 1, }.. Then H2(V, Z(2p)=H'(V,C*(1)) , the group H1(V') is generated by loops about
0 and 1, and everything follows from c¢. and the Steinberg identity for the manual symbol. ®

COROLLARY 1.3.2. On the category of algebraic curves over R there is a unique morphism
of functors K2(X) + H'(Xan, C*(1)) taking {f, g} into fUg where fUg is given by formula
3.1.b.

Indeed, the Matsumoto theorem plus the preceding corollary define a morphism at a gen-
eral point n over the curve X. The morphism extends to all of X by means of a commutative
diagram with rows which are exact sequences of localization (the commutativity of the right
square is given by 3.1.1c)

K,y (X) K, (n) - ®C*
l xEX(C)

-
0 H1 (X, C* (1)) = H(n,, C* (1)) > ©C*
XGX(C)

The cohomologies constructed possess the following shortcoming: for open V they are
often infinite-dimensional [for example, A'(V, Z(1)@D)=C*(V) ]. 1In order to obtain a more
convenient theory for algebraic manifolds, we impose growth conditions at infinity. Before
doing this, however, we must present some definitions from general topology.

1.4. Relative Cohomologies. Let j:T -+ T be a topology morphism. With j there is con-
nected a new topology (T, T): sheaves on (T, T) are triples F=(Fr, Fr, Pg), Fr, Fr are

sheaves on T, T, Pz , and j is a morphism Fr—>Fr ; a morphism a:F-+Y is a pair of morphisms
ox:Fr—>9r, or:Fr->Yr such that o;Pgr=0Pgar. We define the left-exact functor I'(T, T, +):

C(T, T) - C(Ab) by the formula I'(T, T, &F):=Cone (O (T, Fz)>T(T, Fr))[—1] ; let RI(T, T, *):D*(T,
T) + D*(Ab) be the right derived functor. We have an exact triangle of functors on D*(T, T):

RM(T, T, F)>Rr (T, FF)—»RU (T, Fr)—>....

It is clear that RI(T, T, *) is also a right derived function of the functor r'x, x, )
taking the sheaf & into Ker(T'(T, Fz)->T (T, F7)-

We define a bifunctor tJ&:C(T, T)XCT,T)-»C(T,T) by the following formula. Let &,
GeC(T,T). We set (3‘"‘?59'),7:=3'7%®£9;T, (3"?59‘)7» is the shift by —1 of the cone of the morphism
Po-®id—id®%g: (/*F5+@Yr)D(Fr®j*%r) > Fr®9r, while the connecting morphism Prey is J*®Pg
P ®j*: Fr®Yr — (j*FrOYGr)O(Fr®j*%x). Let CL?:D*(T, TYxD*T,T)~ D*(T,T) be tj:he corresponding
ieft derived functor. We have the obvious morphism RI‘(T,T, 9')§RI‘ (7', T, fﬁ)—>RI‘(7‘, T, 9‘%359),

L
so that the pairing 9’?{9'—»%' induces a multiplication on the relative cohomologies.
Remark. If T =T, j = id, then (T, T) is the category of sheaf morphisms on T. We

define an exact functor I:C(T, T) + C(T) by the formula /(¥')=(Cone®g)[—1]; then RI'(7, T,
F)=RL (T, I (&), | F8F)=1F)8I (9).
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We now return to our main subject.

1.5. Complexes A (i) with Logarithmic Singularities. We consider the category Il of
pairs (V, V), where V is a smooth analytic space, j:VeV is an open subspace such that
V\V is a divisor with normal intersections on V. For a pair (V V) in II let Q(V 1)) be the
de Rham complex of holomorphlc forms on V with logarithmic singularities along V\V . We

filter the complex Q(V y) with the foolish filtration F“ » Q(’V'V)

We define a complex A (i) of sheaves on (V, V) by the formula

N1 1 . . .
) [A (D)ply: —F(VV), [A (D)p]v: =Cone (A (i)y - Sy),
the connecting the morphism [A ()gl,~'v—>[A(@)lv is the imbedding Fiy<-Q;,
We have thus constructed complexes A(i)p with logarithmic singularities along VNV.
It is clear that if V = V, then [(A())®) 1is the complex A(i)gy of part 1 (see the end of
the preceding subsection). For A = R we can thus define complexes R(i)@, quasiisomorphic to
R (see 1.2.2).

The complexes A (f)p depend functorially on (V,V)EH. As in part 1, we can define a
contravariant functor RT(V,V, A(i)p) . on Il or Iy, define the relative cohomology comnected
with the morphism, etc. We have the exact triangle

.>Hpga V)[—11-RI(V,V, A())g)—~> RT'(V, FH®RT (V, A (i)... . (%)

LEMMA 1.5.1. The formulas of Definitipn 1.2.1 give a morphism A (i)®A(N)gp—A(+/)®;

_— j
all other results of part 1.2 also obtain without change in the logarithmic situation. ®

We thus have a multiplication on & -cohomologies with logarithmic singularities. First
example: we note that the complex A (i) is quasiisomorphic to the complex F’(V,\7)—->[0v/A(i)—>
Q) —~...]. From this we obtain the following result.

LEMMA 1.5.2. H'(V, V, AQ1)) = {feT(V, Ov/A():df €T (V,Q, )}, H/(V,V, A(1)g)=0 for i< 0.m

1.6. & —Cohomologies of Algebraic Manifolds. We denote by IcJI the complete subcate-
gory consisting of those pairs (V, V) for which V is a (smooth) projective algebraic variety.
Let r or simply %" be the category of smooth quasiprojective schemes over R. According to
GAGA, we have the functor o¢:lI-%, taking (V, V) into V.

LEMMA 1.6.1. Let f:(U, U) > (V, V) be a morphism in I such that o(f) is an isomorphism.
Then f* defines an isomorphism of the triangles (*) in part 1.5.

Proof. It follows from [15] that f* gives an isomorphism of Ehe two extreme terms of the
triangles. Since the triangles are exact, f*:RI'(V,V, A(i)g) - RT (U, U, A())p) is also an iso-
morphism. ®

For X¢e7?¥ we shall find, according to Hironaka, (/\7, X)eﬁ. We set
H.@ (X A (‘) : =RP ()_(am KXams A (i)@),
H(X, F (@)): =RT (Xon, Fix 5, )» Hg(X, A@)): =RT (X0, A(D))-

According to 1.6.1, these complexes do not depend [in Db (A-mod)] on the choice of compactifi-
cation and define an exact triangle of functors on ¢*:

> Hgg (X) [—1[SHg (X, A @) T 2H (X, F(@)® Hg (X, A@)—>-.- *)

We have thus defined & -cohomologies Hg (X, A(f)) of smooth algebraic manifolds; T -
cohomologies of smooth simplicial schemes and the relative cohomologies corresponding to a
morphism of schemes are constructed in exactly the same way; the corresponding specttral se-
quences and exact triangles hold (see part 1).

We emphasize that for X€7” the natural morphism: Hg (X, A (i) = Rl (X,a, A(i)gp), generally
speaking, is not an isomorphism; however, it is an isomorphism if X is compact or i > dimX.

The next result follows from the triangle (*) and [16].

LEMMA 1.6.2. Let f:X. - Y. be a morphism of simplicial schemes such that f*:H"(Y.(C),
Z) > H (X.(C), Z) is an isomorphism. Then f* gives an isomorphism of the triangles (*)(X)
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and (*)(Y). 1In particular, f*:Hg(Y.,A@))>Hgp(X., A(@)) 1is an isomorphism. W
Exercise 1.6.3. Determine the exact triangles
. >Rl (X,,,C/A @) [—1]>Hgzn (X, A@)>H(X, F@)—~>.. (%)
. »(H@g/#"@ﬂ) (X)[—1]=-Hgp (X, A(Q))>~Hg (X, A@)—... (*%%)

Here F'Hgpg(X) 1is the i-th term of the Hodge—Deligne filtration on Hgg(X). B

1.6.4. According to 1.2 and 1.5, we obtain a U -product on & -cohomologies of schemes,
simplicial schemes, and relative cohomologies. The morphisms €A and ep commute with multi-
plications. Further, this multiplication is consistent with the triangle (*): we have a

morphism of triangles Hg(-, A(i))é(a)—»(.), in which the middle arrow is the U -product and

the two extreme arrows arise from the obvious structures of Hg -modules on Hgpg, Hg, and Hy by
replacement of the rings t,:Hp—>Hg (see 1.2.1.e).

1.6.5. In this subsection we show that Hg are cohomologies of certain complexes of
sheaves in the Zariski topology. This enables us to appeal to [22] for the definition of the
Chern character (see Sec. 2). Actually for our purposes the Hg already present on the
category of simplicial schemes is sufficient, since, generally speaking, part 1.6.5 is not
needed below.

We return to part 1.5. We note that the obvious functors of the direct and inverse
image corresponding to morphisms in II convert sheaves on the objects of II into a II-topology;
the corresponding topology of sections we denote by Sh(ll) (see SGA4Vbis). Its objects we
call sheaves on II. Thus, a sheaf 7 on Il is a collection of sheaves & (ry) on (V,V)ell and
morphisms f*:y(y'v)éf*f(g,u) for £:(U, U) » (V, V) in Il satisfying the conditions (fog)* =
g¥ef*, id* = id. For example, A(f)gp are complexes of sheaves on II.

We equip 9% with the Zariski topology. We note that for X€? the collection o *(X) of
all regular compactifications of X forms a directed family. To the sheaf # on Il we assign
the presheaf X— lim ro(X,,, X.., 7) on % ; we denote by 0,(F) the corresponding sheaf

(X, X)Go1(X)
on ? . Thus, we have obtained a left-exact functor ¢,:Sh(I)-Sh(?¥). Let Rox be its right
reduced functor; we set A ({)gpza: =R0,A ({()p€D* (7). From 1.6.2 applied to an open hypercovering

in the Zariski topology it follows that the canonical isomorphism RT (X, A (i)gzar)=Hgp (X, A ()
holds. Further, all other constructions also carry over to this language: it follows from

s L .
1.4 that there is the canonical commutative and associative multiplication A ())@zar®A (/)@zar—

A (i+ )pzar 35 the morphism ¢g:A > A (O)gpzar, €:0* [—1]>A(l)pzar  (see 1.5.2 and 1.7), etc.
Translate the results of 1.6 and 1.7 to this language.

1.6.6. We present still another pair of properties of Hgp. Let ADQ. From (*), [16,
(8.2.4)] and the Kiinneth formulas we obtain the following result.

LEMMA 1.6.6.1. Let X be a scheme. We assume that either i > min (7, dimX) or X = X' x
X", X' is compact, X" is affine, and I < 2i — dimX". Then s,AH&)(X,A(i))=O. [ ]

Suppose now that X, Y are schemes whereby Y is connected; g, 4,67 (R); a6Hg (X XY, A(i);
al,a2er,D(X, A(i)) are the restrictions of a to the stalks X x y1, X X y2, respectively.

LEMMA 1.6.6.2 (on rigidity). We assume that X is compact and I < 2i — 2 or X is arbi-
trary and either i > dimX + 1 or 1 > 7. Then a; = oz.

Proof. Replacing Y by a connected subscheme passing through yi1, y2, it may be assumed
that Y is a curve. The conditions of 1.6.6.1 are then satisfied and egp(a) = 0. Therefore,

from (***) it follows that a arose from a class Ecel-jg_}m (X XY). Since d1 = d, from the rigid-
ity of Hepg , it follows that a1 = az. ®

Remark 1.6.7. a. Let RCR be a subfield, let ﬁk be the category of pairs (X, X), where
X is a smooth projective variety over k, and XcX is the augmentation to a divisor with
normal intersections. For (X, X)ell, we can define a complex A(i)gp on (Xzar (X?R)),n, by

replacing in 1.5 the holomorphic complex Fxg@R.X®R),, by the algebraic complex F'Qix,x)/r

Exactly as above, we obtain a cohomology theory Hg(X/k) for smooth schemes over k included
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in the direct triangle -.-%HQQ(X/k)?R[—]]—)HQ(X/k, A(i)>Hg(XGR, A(i)OFHpg (X/B)>... .
If k = R, then by GAGA we have Hg (X /k)=Hg (X). All results of this and the next section
carry over to this situation.

b. Using [16, 29], it is possible to define 2 -cohomologies on a category of schemes
over R with any singularities by requiring that Lemma 1.6.2 be satisfied for them. However,
for special schemes it would be nice to have a finer theory. For example, it is desirable
that H{ (X, Z()=H1(X, Ox). In this work we shall not be interested in singularities with
the exception of the appendix to Sec. 2.

1.7. Chern Classes of Vector Bundles. According to 1.5.2, for X€%* there is defined
a canonical morphlsm O X)>HY (X, A(l}) (for A = Z this is an Lsomorphlsm) For a simplicial
scheme X there is defined a morphism of cosimplicial groups O*(X) - H'(Hgp (X. A1)  (see
part 1.1) whence (by 1.5.2) we obtain I'(X, 0*)[—1]-Hg (X, A(l)). Since cohomologies cam be
computed by means of hypercoverings, from 1.6.2 it follows that this morphism extends in a
unique manner to a functorial morphism .¢:R[(X., 0*)[—1]-+Hg(X., A(1)). The morphism of exact
triangles RI'(f,0*)[—1]=>Hg(f, A(l)) in the relative situation is defined analogously. All
these morphisms arise from the morphism ¢€;:0*[—1]->A(1)pzer (see 1.6.5).

In particular, for any invertible sheaf ZLE€H'(X.,, 0%) we obtain its Chern class ¢, (%)E
2
Hg(X., A1)

Exercise 1.7.1. Show that E,C(, (%?) is the usual Chern class in Betti cohomology. Show
that ¢:H'Y(X, O%) —>H@(X Z(1)) is an imbedding, and if X is compact it is an isomorphism.

We shall show that the usual theorem on cohomologies of projective space holds for Hg .
Namely, let E be an n-dimensional bundle over X, let m:P(E) » X be its projectivization, and
let (1) be the standard invertible sheaf on P(E).

Assertion 1.7.2. The mapping @c,(O())/Un*: _@ Hg (X, A(—))[2/]-HpP(E). A(H)is an
isomorphism. o< j<n—1

Proof. It is necessary to use the triangle (*) and the consistency with it of the U -
product (6.2); according to 7.3 the morphism of 7.4 is an isomorphism on the second extreme
terms of the triangle (by the usual theorem on cohomologies of projective space for Hgg and
Hg and by [15] for Hp).

Proceeding from 1.7.2 a theory of Chern classes of vector bundles satisfying the usual
formalism is comstructed in the manner of Grothendieck. In particular, we construct the Chern
character which is a morphism of ringsch: ky(X)—@®H? (X, A®Q({)). From 1.7.1 it follows that
gaci are the usual Chern classes in Betti cohomologies. We note that this fact uniquely de-
termines cj. Namely, we have the following result.

LEMMA 1.7.3. There exists a unique manner of assigning to each vector bundle E over
XEPs the class ¢,(E)EHzp(X., A(i)) so that the following conditions are satisfied:

a. For any morphism f:Y. + X. and E over X. we have f*cj(E) = cif*(E).
b. eac, (E)EH:‘%(X,, A (i) 1is the usual Chern class in Betti cohomologies.

Proof. Let G = GL,. We consider the classifying space of G — the simplicial scheme
B; (see, for example, [16]): for any X €7’ the morphisms from X into Bg are precisely the
isomorphisam classes of n-dimensional vector bundles on X. trivialized on Xo. Let Eyp be the
universal n-dimensional bundle on Bg_ . The cohomologies of Bg, and the Hodge structure on
them are known: f{]Bo.«D,44)==Z[ch.. ,Cn], where ci = cj(Eyy) have the pure weight (i, i).
It is evident from (*) that eA:f{ (Ba., A(O)—>f1 (Ba., A(f)) 1is an isomorphism; therefore,
condition b determines the Chern class of the universal bundle. From this it follows im-—
mediately that uniqueness holds: let E be any bundle over X,; we choose a hypercovering u:
X. + X. so that u*E is trivial on Xp; then u*E = f*Eyn for some f:X., > BGg,. Sinceu*:Hgp(X)—>
lhp()() is an isomorphism, cjE are determined by condition a. The direct proof of existence
and derivation of the product formula from the product formula for ordinary Chern classes
are leftr to the reader. ®

1.8, Homologies. In this subsection we construct a homology theory corresponding to
9 -cohomology. For a smooth analytic space V let ©Qf0 be the sheaf of (p, g)-forms of
—q

class C~ on V, and let Q;,‘L;" be the sheaf of distributions over Sy& These sheaves form

bicomplexes; let @, Q;,',, be the corresponding simple complexes. We filter them with the
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foolish filtration according to-p:f"Q&L::sQS£>ﬁ. The complex Q;w is a filtered dg~algebra;
the complex Q. is a filtered module over Q.. The natural imbedding (R, F)(Qr, F)eu(Q" x
[—2dim V], Fi+4™V) {5 a filtered quasiisomorphism.

We define the filtered complex (Q'-(V), I”Q’U/» =T (V, Qve, FiQu=)) — the complex of sec-
tions of Q' with compact support. We denote by C'i(V, A(J)) the group of singular i-chains
of class C” on V with coefficients in the local system A(j). The groups C''(V, A(j)) form a
complex and integration over chains gives a morphism C'*(V, A(j)) + Q'" (V). The complexes

C'"(V, A(j)) and (Q'°(V), FiQ'"(V)) are covariant functors of V, and the morphism between
them is a morphism of functors.

We now include logarithmic singularities. For (V,V)ell (see part 1.5) let QF
Q 7®e,Q0n,  FQUL:=Q, - @ FQLL.

(V.¥) ot

(V VJ°°

We set C(V, V, A@):=C"(V, A@)IC-(V\V, A(i)) — the
) FRV V=TV, FQy 7). Let

M4 be a subcategory of I, Oblly = Ob I, containing those morphisms f:(V, V) -+ (U, U) for which
F(V\V)cU\U. 1t is easy to see that C'® and (Q'‘, FiQ'"') are covariant functors on T,
and the arrow of the preceding paragraph defines a functorial morphism C' (V, V, A(i)) -
Q' (v, V).

we set Cq(V,V, A(i)):=Cone(FQ: (V,V)®C" (V,V,A (@) >+ (V, V), where the arrow is the
difference of the canonical imbeddings. This is a covariant functor on Ix; we have the func-
torial exact triangle

OV, V). Q- (V,VN[=1]>Cxp(V, V, A@)~ FQ (V, V)OC" (V, V, A (i)~

complex of relative singular chains, Q-(V,V):=IyV, Q,

. . ’ . . - .
As in part 1, we can define Cg -complexes of any diagram in Ilx; in particular, homol-
ogies of simplicial objects and relative homologies together with the corresponding spectral
and exact sequences are defined.

We proceed to algebraic varieties. Let Schy be the category of schemes of finite type
over R and of proper morphisms; let ?7,=Sch, be the complete subcategory of smooth quasi-

projective schemes; let fT'::ﬁJ]H (see part 6), and let o*'==0|—'ﬁ >,

LEMMA 1.8.1. We assume that f:(V,V).—»(U,U). in H*A induces an 1somorphlsm between the
Borel-Moore homologies V gp and U,gp. Then fg:(*)'(V, V) »> (*)'(U, U) is a quasiisomorphism.

Proof. Indeed, the extreme terwms of the triangle (*)'(V, V) are the de Rham homologies
of the scheme V, the i-th term of the Hodge—Deligne filtration on the de Rham homologies, and
the singular Borel-Moore homologies of the scheme V. The lemma follows from the strict con-
sistency of fix with the Hodge filtration and the exactness of the triangle (*)'. ®

From [29] we obtain the following result.

LEMMA 1.8.2. Let C be a category. We call a functor F:Sch,a—C(G: H,A—+C) topological
if for any f:X. > Y. [respectively, g: (X, X). > (Y, Y).] inducing an isomorphism between the
Borel-Moore homologies X.apn and Y g, the morphism F(f) (G(g)) is an isomorphism. Then the
functor F~F-0, realizes an equivalence between the categories of topological functors on
Schip and Ixp. ®

We apply 1.8.2 to the situation of 1.8.1. We obtain an exact triangle of functors on
Schxp with values in D*(A-mod):

> Hp g (X)—Hyg, (X, A@)~> FiHy g (X)OH (X, A@D)~ ... (x1)
Here H_'@gg are the de Rham homologies, FIHlQ).%' is the i-th term of the Hodge—Deligne filtra-
tion on them, lf@(kﬁ,A(n) are the Borel-Moore homologies with coefficients in A(i), and

H.'@(X_,A(i)) are the desired % -homologies. In particular, we have defined 9 -homologies

of any schemes (as constant simplicial schemes). The relative % —homologies connected with
the proper morphism f:Y. - X, are defined in exactly the same way: it is necessary to choose
a morphism £:(V, V) -+ (U, U) in I, together with a commutative diagram of proper morphisms

o, (V,V).—»e,U, ),
b X
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in which the vertical arrows induce an isomorphism in the homologies; then H'@ f, A@E): =

Cone (f* C@ V.V, A(i) »C@(U U, A(f)); we have the "vrai" exact triangle (in the sense of
Deligne)

. —+H'@(V, A (i))—»H'@(U, A (i))»H'g)(f, A@E)—>...,

which does not depend on the arbitrariness in the choice of f and is functorial in f.

Exercise 1.8.3. Define the spectral sequence corresponding to the simplicial scheme.
[Here it is necessary to define a functor (H@A Sch,s—+D*(A-mods) ; for this it is necessary
to consider bisimplicial schemes.]

LEMMA 1.8.4. For any closed imbedding f:¥<X there is the canonical functorial morphism
Hy (f, A@)=H, '\ X, A (i)

Proof. We assume that X is smooth and Y is a divisor with normal intersections. We
compactify X so that (X\X)UY is a divisor with normal intersections on X; let Y be the
closure of ¥ in X. If we compute the homologies of Y by means of the usual "simplicial reso-
lution" of Y (i.e., taking for V.-V —Y the coskeleton of the normalization of Y), then
f*:sNC?g(V, v, A(i))»C'@(X, X, A(f) 1is an imbedding, and the natural mapping of the factor
into C'@(X\Y,j(, A@) is a homotopy equivalence (more precisely, an isomorphism on ' and
F1Q' and a homotopy equivalence on C$) In the smooth case everything has been proved. If

(X, Y) is arbitrary, then it is necessary to choose a smooth proper simplicial scheme U., an
open subscheme [/ cU. of it, and a proper morphism n:U,-X so that =t MU@ANU,) is a

divisor with normal intersections omn U. and the condition of cohomological descent is satis-
fied (surjectiveness of U,-Cosk,sk, U./X). Thus, everything reduces to a simplicial version

of the smooth situation. ®
LEMMA 1.8.5 (Poincaré duality). a) Let X be a smooth scheme, dimX = n. There is the
canonical isomorphism Hy, (X, A ({))=Hg(X, A (i+4n)) [2n].

b) Let X be as in a), let f:Y<X be a closed imbedding, and let j:U/:=X\Y<«X. There
is a canonical isomorphism in D(A-mod) of exact triangles of the relative homologies and co-
homologies

...>Hgp g}’, A(D)—~Hg (X%' A(D)~
1 )
-=>Hp(J, A(+n)[2n]>Hp (X, A(i+n) [2n]~
>Hg (U, A@)=""Hg(f, A@E)—>...
1
~Hgp U, A(@i+n)[2n]—>...,

in which the two right vertical isomorphisms come from a). If :ch‘YQL"Y, then these isomor-
phisms are consistent with the morphisms of triangles corresponding to (X, Y;) and (X, Y2).

Proof., a) Let (U, U)CI'I*, o, U, U)=X, J: U7, We consider. the complex of sheaves
C(u 7) (A (@) on U corresponding to the complex of presheaves V>C (U, A@yCO\UNV), AQ) .
It is clear that C'(U a)(A (L))_—_,t*j*C(U u)(A (?)) and j*Cw (A (L)) is the flabby resolvent of the
sheaf A(i + n)[2n] on U; moreover, the morphism C’(U,U, A(L))—>I‘(U C(u 7)(A(@) is a quasi-
isomorphism. Further, the obvious imbedding (Q(u u)'F)"(Q(U—)w[ —2n], F#*Q/[—2n]) is a filtered
quasiisomorphism, and all F!Q//F"Q’ are soft; therefore, RT (. U),F) =I{J, (SZ T E‘*“Q’)) X
[-2n]. We combine these two remarks into a single & -complex: we set Cop (A ((My,5)=Cone (FY®
C'(A () >@)[—1] 5 then

RT({U, U, A()g)=T (U, Cqpi—n)|[—21= Cop WU, U, A(i—n)[—2n].

To prove a) it remains to verify that this quasnsomorphlsm does not depend on the choice of

the compactification; this is an exercise for the reader.

b) We remark that it sufflces to construct a morphism of triangles; it will be a quasi-
isomorphism by a). If V is a divisor with normal intersections, then it is obtained by com-
bining a) and the beginning of the proof of 1.8.4. If V is arbitrary, then it is necessary
to proceed as at the end of 1.8.4. We obtain a simplicial scheme w: (T, U) » (X, X) and the
desired morphism of triangles arises from the morphisms
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A DD(x Fay > Lo (A Dy 77

and
QC@ (A (L)) (Uo\"‘o—lyy Uo)an'

) L ,
Exercise 1.8.6. a) Construct the exterior multiplication Hg(X)®Hg (Y)—>Hgp (X XY) and
show that it is consistent with the morphisms of the direct image and the Poincaré duality.

A (i)_@(un\ua—ly.m)an

b) We consider the category of schemes over a smooth scheme X and of proper morphisms.

L, . . . .
For any Y/X we define a [l -product Hg (X, A (i))®Hg (¥, A(j)~>Hgp (Y, A(j-+1i), consistent with
the morphisms of direct image (use 1.2.3). Show that under the isomorphism of the Poincaré
duality the N -product goes over into the U -product on the relative cohomologies.

1.9. Cycles. Let Y be an irreducible scheme of dimension n. Then 8‘4:H52"(Y, A(—n)—
H‘;?"(Y, A(—n))=A is an isomorphism; let c19Y6H52"(Y, A(—n)) correspond to 16A. From
this for any scheme X there arises a mapping clg:Z, (X)_>H52"(X, A (—n)), where Zp(X) is the
group of cycles of dimension n on X; cl g([Y]):=-i,(clp V) for an irreducible subscheme i:¥V<X.

It is clear that esclp=cly is the usual mapping assigning to a cycle its class of Betti

homologies. If X is smooth, then, passing to cohomologies by Poincaré duality, we obtain

a mapping CIQ:Z"(X)+H%(X,A(n)) , where Z0(X) are cycles of codimension n.

We now suppose that X is smooth and compact and A = Z. From the triangle (*) we then
have the exact sequence

09" (X)~Hg (X, Z (n)—Hdg" (X)-0,

where J"(X)=H»'(X,,, CY/H" " (X.n, L)+ F*H?™1(X,,, C) is the n-th Jacobian of Griffiths,
and Hdgn(X) is the Hodge group of integral cycles of type (um, n).

LEMMA 1.9.1. Let YeZ,(X). If clg;()’)eng"(X,Z(—n)) is equal to 0, then clg(Y) coin-
cides with the Abel—Jacobi—Griffiths periods of the cycle Y.

Proof. We consider the integral chain i,clgY. Integration over Y (or over i,clgl )
gives a distribution cl(Y)EF"Q"#(X). Then clg(Y) is the homology class of the cycle (cl= (1),
iyclgY, 0)6C3™" (X, Z(—n)). If clg(Y) is homologous to zero in X, then we choose seC’'™2~!(X,
Z(—m)) so that cls——zi*cl:z;}’. We subtract from (clg(Y), iyclg?, 0) the boundary (0, s, 0); we
find that clg(¥Y) is homologous to (cle(Y), O, s). This is precisely the definition of the
periods of the cycle Y: to compute them it is necessary to span Y by a film s and consider
integrals of smooth forms over s.

1.9.2. Finally, we note that the mapping clgp commutes with the outer direct product;
from 1.7 and 1.8.5b it follows that for a divisor Y on a smooth scheme X its class clgp(Y)
coincides with ¢ (O(Y)).

1.10. The Hodge < -Conjecture. Let X be a smooth, compact schéme, and let ¢ and b
be two integers. The following conjecture is a special case of Comjecture 3.10.

Conjecture 1.10.1. If a < 2b, then there is a closed subscheme i:Y<X such that dimx
Y < b — a and the factor of Hg(X, Z(b)) modulo the closure of the subgroup i*H‘ga) ¥, Z ()
is compact.

We clarify the meaning of the conjecture. We set
Jao: =HFG(X)IHG (X, Z(5)+F°H gz (X),
Hdg,,: =H § (X, Z(B) NF*H P g (X).
We have the exact sequence
0— Y, Hg (X, Z (b)) ~Hdg,, ~0.

It follows from the condition a < 2b that Hg ' (X, R(b))ﬂFbﬂéa (X)=0; therefore,
H;(X, Z(b)) is a separable topological group with connected component of the identity -
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If a # 2b, then 5ab=H5(X,Z(b)); if a = 2b, then J, is compact and 1.10.1 coincides with
the usual Hodge conjecture. If b > O, then 1.10.1 follows from the easy Lefschetz theorem.
We now suppose that a < 2b < 0. Then the factor of J,, by the maximal compact subgroup —

the image of Hg '(X,R(4) — coincides with Hgi(X, R(); therefore, in 1.10.1 it is possible
to replace Hg(X,Z(b)) by Hg(X,R(H). We note that the natural mappings

Hg ' (X, RE—D)NFrHGZ (X)~ Hg (X, R(6— 0))ine1FoH 33 (X) > HP (X, R(6))

are isomorphisms, so that 1.10.1 means that any (p, q)-cocycle with p, q 2 j is a linear
combination of cycles coming in the £ -sense from a subscheme of codimension j; cf. the
usual Hodge conjecture. For example, we consider the case a = 2b — 1. Then the conjecture

asserts that any cocycle in 'H:%—I(X,R(b—l)) is homologous to a linear combination of distri-

butions of the form [,; here Q=39 £®0*(n) is a collection of functions on general points of
(1 — b)-dimensional irreducible subschemes of X such that the b-dimensional cycle Zdive, is
equal to 0; [, 1is a closed distribution on X such that (1 — b, 1 —b)-forms w of class C*

on X we have Slw.m_—_—ESm-logl(PnL We remark that here the singularities of the support of ¢
non
are very crucial: if it is smooth, then all @y=const, and we obtain an ordinary algebraic
(1 — b, 1 —b)-cycle. '

Finally, we note that the following assertion ensues from 1.10.1: for any integers i,
j 2 0 there is a closed subscheme YcX, codimY=i—j+1 such that the image of Hf”gz\X)
in Hgg(X\Y) is contained in the sum of F/Hgg (X\Y) and the complex conjugate subspace
(use the exact sequence of relative ¢ ~cohomologies with coefficients in R).

I do not know how to prove this even in the case of surfaces: a nontrivial example is
the product of two modular curves treated in Sec. 6.

2. Regulators

2.1. Quillen's K-Theory. It is assumed that the reader is familiar with the basic con-
cepts of K-theory; in this subsection we shall make only some general remarks.

2.1.1. Quillen's K-functorK is a contravariant functor from the category of schemes to
the category of fibrant spectra. It can be extended in the usual way to a functor on any
diagrams of schemes: for the diagram I we have K(/):=holim K(X,). In particular, K-functors

of simplicial schemes are defined: K(X):=holimK(X,), and for a morphism £:X. * Y. of
simplicial schemes there is defined the relative K-functor K(f) = K(Y., X.) together with

the exact triangle ... .- K(f) —>K(Y_)’—->K(X.)—>... in the homotopy category of spectra. K-
groups are defined as the homotopy groups K:Ki(X) =~m{K(X); if X is a_scheme, then Kj(X) =0
for i < 0; for a simplicial scheme X. we have the spectral sequence E;’" converging to
K-p-q(X.) with ED-9 = HpK_q(Xp). Further, there is a multiplication on the K-functor: there
is a natural pairing of spectra {,}:K(X)AK(X) + K(X). It defines a multiplication {,} on the
K-groups of simplicial schemes and a multiplication {, }:K.(V)®K.(Y, X)—=K.(Y, X) in the
relative situation; this multiplication is (gradedly) commutative.

2.1.2. T shall not recall the construction of the spectra K(X); below we shall need
only one fact: if X is affine, then we have the canonical weak equivalence Ko(X) % Zo(Bg X
(X)) > (R(X))o. Here Ko(X) is the (discrete) Grothendieck group of vector bundles on X, Bg,
is the standard simplicial classifying space of the group G=I1imGL,, Z, is the Kan—Bousfield

functor [14], and (K(X))o is the null space of the spectrum K(X). From this for an affine
simplicial scheme X we have K,(X0)=n}holhlmZAm[BG.(X,)] for j > G.

2.1.3. There is still another homological K-functor K'(X) from the category of schemes
to the category of spectra which is contravariant relative %o flat morphisms and covariant
at least up to homotopy relative to proper morphisms.

For closed imbeddings {:X <Y the direct image i, is a genuine morphism of spectra (and
I3 . 3 ’
not only a homotopy class) and gives a canonica) exact triangle of localization K’ x>

K'(Y)I—.’K'(Y\X) in the homotopy category of spectra (here J:¥\XeV is an open imbedding).
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Remark. Actually the direct image relative to proper morphisms is also more or less a
genuine morphism of spectra; in particular, K'-functors of diagrams of proper morphisms are
defined (see [231]).

The homotopy groups of K' are the K'-groups of Quillen. Further K'(X) is equipped with
a natural structure of a K(X)-module: there is a pairing K(X)AK'(X) ~ K'(X) which is a map-
ping of covariant functors relative to flat morphisms and satisfying the projection formula
relative to proper morphisms.

There is the canonical morphism K(X) + K'(X). If X is regular, then this is an iso-
morphism (Poincare duality); therefore, for regular X and a closed imbedding VYe<X the exact
triangle of localization gives an isomorphism i, :K/(¥)—K(X, X\Y) in the homotopy category.
In particular, if Y is also regular there arises an exact triangle of localization K X

) l—‘>K(X)+K(X\Y) in K-theory. 1In Sec. 7 we require a version of it for relative K-func-
tors.

LEMMA 2.1.4. Let {:Y<X be a closed imbedding, and let S. > X be a simplicial scheme
over X. We set jill:=X\Y<X, Sy.:=V XS, Sy.:=U XS. We assume that all designated
x x

schemes are regular, and all morphisms Sy + X are Tor-independent of i. Then there is the
natural exact triangle of localization

K(¥, Sr)3K (X, S)LK U, Su).

Proof. From Quillen's theorem on the resolvent [29] it follows that K(X), K(Sk), K(X,
§.) can be defined proceeding from the exact category of sheaves on X and Sk which are flat
relative to any structural morphism Si » X, S{ > Sk. For the K(X, S.) so defined there is
the obvious morphism ix:K(Y, Sy ) > K(X, S.). The lemma now follows from the exact localiza-
tion triangles for Sy, <~S; and V<X and the fact that holim takes exact triangles into
exact triangles. ®

2.2. Adams Operators, & -Cohomologies. 1In [26, 31] Adams operators W, pEl* on K-
groups of quasiprojective schemes were defined. For affine X they are standard linear com—
binations of mappings Zy[Bg, (X)) » Zo[Bg, (X)] connected with the exterior degrees. For an
affine simplicial scheme X. the exterior degrees define a mapping of the cosimplicial systems
Zo[Bg, (X.) )5 according to 3.1.2, we obtain Adams operators on K; of affine simplicial schemes
for j > 0. We now define the action of YP on the K-groups of any regular scheme X: for this
we replace X by an affine hypercovering; the K-functor does not change by this. Adams opera-
tors on the relative K-groups are defined similarly. Properties of yP: they all commute with
one another; if Kf”(X)cK,(X)@Q is a subspace on which yP acts by multiplication by pl{iEZ,
i 2 0), then K.(l) (X) does not depend on p, and K.(X)®Q=®K,‘”(X) ; the same holds for rela-
tive K-groups.

a

) .2.1. Notation. Let X be a regular scheme or an affine (simplicial) scheme. We set

T X, QE) =K (x . 21— o ..

2 (X, QE): 2%-;(X), ch o K (X)-®H ;' (X, Qi) — a sum of projections. We proceed
similarly for relative cohomologies.

It is clear that on the & -cohomologies there is a natural multiplication such that
ch , 1is a ring isomorphism (we denote it by |J or {,}); there is a natural morphism H' (X,
0}) —>H;' (X,Q(1)), and the usual facts hold: the theorem on cohomologies of projective bundles,
the exact sequence of relative cohomologies, etc.

2.2.2. It is clear that for a scheme X H{%(X, Q(@)=0 for j > 2i (since Ky = 0 for
n < 0). If X is the spectrum of a field, then from [31] it follows that H{% (X, Q@) =0 for
j > 1i. Apparently, H;:=O for j < 0, but I have no proof. '

Remark. Recently V, V., Shekhtman defined the operation ¢P at the level of spectra.

2.2.3. We now proceed to jromologies. We fix a field k; let Schi be the category of
quasiprojective schemes over k and proper morphisms. For X¢Sch, on K (X)®Q it is possible
to define the Adams operations ¢/# astollows. Weimbed Xin a smooth scheme Y; then K'(X) = :
K{Y,Y\X). On K(,¥Y\X) there act the operators YP. We define the operator y/P on K’ (X)®Q
by the formula \p/P(l)—_—\pﬂ(z).e;‘ (Q’},/k)-; here - (9}1'/1&)61(0(}’) is the cannibal class of the sheaf
Q- It is easily seen that the y'P so defined does not depend on the imbedding X<V and
is a YP-morphism of the K. (X)-module K’.(X)®Q. Further, all ¢'P commute with one another

and with morphisms of direct image, and also with morphisms of inverse image for etale X + X.
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As before, K (X)®Q= ® K.')(X), where K" (X)(€Z) is the subspace corresponding to the eigen-
. 62

value pl of the operator ypP; we set H:é; (X, Q@): =K, (X), v iKY/ (X)®Q""(:9[7'2"—’(X, Qi) —

the tautological isomorphism. It is clear that on H'j there is a natural structure of a
H:” -module, and Ty is a ch ; -morphism of modules, Further, H:”‘ is a covariant functor

relative to proper morphisms and a contravariant functor relative to etale morphisms; there
is a long exact sequence of homologies for a closed imbedding.

2.2.4. The next fact follows from 2.2.2. Let X be a scheme, let @, b6Z , and let a€
Hl:# (X, Q(b). Then there is a closed subscheme i:Y<X such that dimY <b—a and ocEi*H;¢ v,

Q(b)). Cf. Conjecture 1.10.1.

2.2.5. We assign to an n-dimensional, irreducible, reduced subscheme Y<X the image
[Qy]GKo’ (X) in HS;?" (X, Q(—n)) ; the mapping cl:Z, (X)»H;Q” (X, Q(—n)) obtained identifies
H™™ (X, Q(—n)) with the Chow group CH,(X)®Q of n-dimensional cycles on X modulo rational
equivalence. Further, if X is an m-dimensional smooth scheme, then the morphism of H 4 (X) -

modules H (X, Q(*))—+H;¢_2”’ (X, Q(*—m)), taking 1 into < [X], is an isomorphism (Poincaré
duality).

2.3. Dealing with the "universal® case, we proceed to a sketch of the construction of
the Chern character and the Riemann—Roch theorem for concrete cohomological functors, for
example, for % -cohomologies. For details of the proofs we refer to [22] or to the unpub-
lished dissertation of V. V. Shekhtman.

Let ¥ be a categoryof schemes over k containing all smooth quasiprojective schemes
equipped with the Zariski topology. We fix a commutative ring A>DQ. We suppose that on %

there is given a collection of complexes of sheaves of A-modules I‘(i)GD\O(?}’, A), IGZ, and

L
morphisms -U:F(é)@F(})»P(i+j), gt A=T(0), ¢:0*[—1]->T(1) in D*(, A), satisfying the follow-

ing axioms:
a) the U -product is commutative and associative; co 1s the identity for U.
b) Let n€Z, n>0. We set E=c, (0 (1)eH?(P,", T(1)). Then the natural morphism @n:,,(&)iu
n}:l(gol‘ (J— 0 [—2i] > Rny,T (j)pn, , 18 an isomorphism for any X€? and jEL (here Tpn,
mx are the projections of P% x X onto the factors).

Following Grothendieck, for any bundle & over a scheme X (an ordinary or simplicial
scheme) we can define its Chern class «r(§)€/%X, I'({) and Chern character chp (§)E®@H*(X,
F(i)) satisfying the usual identities.

We now define the Chern character in higher K-theory: the morphism chr: K (X)->®H*/ x
(X, T(i)) which coincides with the ordinary chp on Ko (X). We note that for any pair X., Y.
of simplicial schemes we have a morphism A[Hom (Y., X))| -~RHom(RT (X., T (@) RT (., T()?) in
the derived category of A x A A-modules (here Hom(Y., X.) is considered as a AY x A-set;
A[Hom(Y., X.)] is the corresponding free A-module; RT (X_,I‘(i))AeD"(A-modA) are the sections
of T(i) considered as a cosimplicial group; RHom;D+(A.modA)0,><D'*(A-modA)O—> D*(A-modA"xA) is the
natural pairing). In particular, passing to normalizations, we obtain a morphism HI(X.,
I (i)) »~ Hom (sNA [Hom (Y, X)), RT'(Y, T ({))[/]). We apply this observation to the case X. = Bg..
To the Chern character of the universal bundle over X. there corresponds the morphism sN X
A [B.(Y)]=@RL (Y., T ()[2{]). If Y. is affine, then, combining this arrow with the canomnical
morphism holim Z [Bg. (¥.)] > holim A [Bg. (V.)], we obtain the desired morphism K,(¥y)=um;,holim x
Z.|Bo. (Y )] >@H2/(Y,T'({)) for j > 0. In order to define chp for an arbitrary, not neces-
sarily affine, scheme Y it is necessary to take an affine hypercovering Y. + Y and define

chy as the composition K;(¥)— K; V)~ ®@H? (Y., T @) <@H¥ I, T(i).
Assertion 2.3.1. The Chern character chr is a ring morphism, ch (K}”_(Y))CH'H-/(Y,

T'(). W
From this there arises a canonical ring morphism rr:Hrw Y., Q(¢)—=H*{Y,T'(-)) such that
chp = rp Ch.sd»; it is clear that on O*F (Y)®Q=H}S¢ . the morphism rp coincides with

c1. Of course, rp is the same as chp, but for us it will be more pleasant to deal with it.
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As an exercise it is suggested that chp, rp be defined for relative K-groups.

Remark 2.3.2. - Recently V. V. Shekhtman defined chp at the level of spectra.

We proceed to homologies and the Riemann—Roch theorem. Let I'(-) be a homology theory
on ¥, satisfying axioms a), b). We say that T'(-) satisfies Poincare duality if there exists
a collection of functors H/ (., I'({)):Sch,—D*(A-mod) together with the 1somorphlsms of Poincare
duality. H/(Y,T (§)) =RIy (X, T (i dim Y)[2d1mX]) for any pair Y<X , where X is smooth, Y is
a closed subscheme in X, and the following axioms are satisfied:

c) If Y,t-Yf-X are closed imbeddings and X is smooth, then the morphism H’(Y,, I'(-))—~
H (¥, I'(-)) goes over under Poincare duality into the canonical morphism RTy, (X, (+)) - Rly, (X,
(r()).

d) Let YcX be smooth, dimX — dimY = 1. Then the diagram
Z = RTy (X, 0% [1]
ic. €y
RT (¥, T O)~RTy (X, T (1)) [2

is commutative (the upper isomorphism is canonical, while the lower arises from Poincare
duality).

e) Let X be a smooth scheme, let X;, X; be smooth subschemes of X intersecting trans-
versally, and let YcX,; let N =dimX—dimX,. Then the diagram

Ry (X;z»l'(i)) =RTy (X, T (i+ N)[2N])
¥
RTyAx (XN Xy, T(@)=RTyqx, (X5, T ((+N)[2N])

is commutative.

f) Let f:X' > X be a proper morphism of smooth schemes, let YcX, Y':= f1(Y), N=dimX —
dimX'. Then the diagram

L L
RIy(X, (L) ® RI(X',F(j1) ——== Ry (X,M(L)@RF(X,(+N)L2N])

N

RI(Y,FE)@RA(X', I () RFy(X,F(i+j+N)[2N])

~ 7

RO (X', T(i+)

is commutative. By the way, we note that H' and the Poincare duality can be recovered uniquely
on the basis of I'(i).

Thus, let T(-) be a homology theory satisfying Poincare duality. We set H'YX,T(j):=
HYH/(X,T(j)). Then Co defines for any irreducible scheme Y of dimension N a morphism A +
H'-2N(Y, T (—N)), whence for any scheme X there arise the functorial morphisms cir:Z,(X)—
H-2 (X, T(—n) (cf. 1.9).

Suppose now Y is an arbitrary scheme. We imbed Y in a smooth n-dimensional scheme X as
a closed subscheme. Then K,/ (Y)=K;(X,X\Y). Using these identifications, we define the
morphism tp:K/(Y)>®H'%~/(V,T({)) by the formula tr(a): = chr(e)Td(X), whereTd(X)e®H2 (X,
I(i)) is the Todd genus of the scheme X.

Assertion 2.3.3. 1tr does not depend on the choice of X and commutes with morphisms of
direct image; we have tr (K'Y= H"2-/(T (i). M.

From this there arises a homology morphism rf:H';‘ YV, Q()=HYY.T'{(/)) such that r;\rd=
tr. If YcX, and X is smooth, then this is a rp-morphism of H'(X)-modules; moreover, r}.cld=
clr.

From the results of Sec. 1 it follows that Hg satisfies all the conditions of this
subsection; thus, for schemes over R we obtain natural transformations rQ:H;‘(X,Q(-))»
Hb(X,A(-)), ré);H;(X,Q(.))->H;,(X,A(-)); we call them regulators. Here is their first non-
trivial property.
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Assertion 2.3.4. We assume that the smooth scheme X is compact and 7 € 2i — 2 or X is
arbitrary and either i > dimX + 1 or I < i. Then the groups r@Hl“(X,Q(i))chQ (X, A() are
no more than countable.

Proof. It may be assumed that X is a scheme over C. We choose a countable algebraically
closed subfield kcC, over which X is defined, i.e., X=X,®C £for some Xy over k. We shall

show that r_@h"“ (X,Q(i)):r_;DH;‘ (Xo, Q(i)) 5 since the last group is countable, this will imply
3.4.4. 1Indeed, let aEwa (X, Q()). Then there is an algebra R of finite type over k, and
element ogif'y (X®R, Q(¥) , and ieSpec R(C) such that o=i*(a) (see [28]). We choose a k-

point i' in the same connected component of SpecR as i. According to 1.6.6.2, we have g (a)=
T (i* (@) =Tg (i’* (a%)), as required. ®
From part 5.2 we obtain the following result.

COROLLARY 2.3.5. For j > 1 the images of Borel regulators Kj (C) >~ R are countable
sets.

2.4. Cohomologies of Motifs. We shall show how to translate what has been said above
to the Ianguage of Grothendieck motifs; we recall the basic constructions [6, 18].

2.4.1. We fix a number field E; for a quasiprojective scheme X we set H‘d X, E(-):=
H.st (X, Q(-)®E . This is a bigraded E-algebra depending contravariantly on X. Let % be
the category of smooth projective schemes over k; by Poincare duality, H's‘ (X, E()) is also
a covariant functor of X€7”: We define the additive E-—category of correspondences C(k, E)

whose objects coincide with the objects of ?”, while the morphisms are defined as follows:
We denote by E[X] the object of C(k, E) corresponding to X€¥: then

Hom (E [X], E [Y]): = H*§™ (X XY, E (i)) =CH'"™ (X X V)®E;

composition of morphisms is defined as composition of correspondences: for feHom(E [Xi], E[X.]),
gcHom (E [X,]. E [X;5]) we have gof =pis.(P(f)UP3(8), where p, i XXXy, XX3—+X,;XX; are pro-
jections. We have the obvious functor ?",—C(%, E), which is the identity on objects and
assigns to a morphism the class of its graph. The functor H X, E(:)) on ?, extends to

an additive E-functor H‘d ? Q) on C(k, E):H" (EX], Q) ;=H'J(X, E(-)): for feéHom x
'(E [Xi], E [X.)). OLEH.&; (E[X;]) we have f*(a)=n.(fUm*(®)). The category of effective E-motifs
M (k, E) 1is defined as the pseudo-Abelian hull of C(k, E): to the objects of C(k, E) there
are formally added the images of idempotent endomorphisms; H'“ extends canonically to an
additive E-functor on A (k, E). On the category .. (k, E) there is a natural operation @,
induced by the direct product of manifolds over k; we note that H‘# does not commute with
the product: for the cohomologies H’“ there is no Kinneth formula. In the category J.(k,
E) we have the natural decomposition ,E[Pg]=E[Spec~k]@E(—l)k; E(—1), is called the Tate
motif. We define the category of E-motifs M (&, E)DM(k, E), by localizing M.y (k, E) with
respect to the functor M—>M®E (—1). Any motif has the form M(k):=M®E (k) for some ME
M, kGZ [where E (B): =FE (—1)®-#) ]; for M;, MyC MK and kEZ "we have Hom g . (Mi, M) =
Hom g (M, (k), M, (k). Since for k € 0 and MEA 4 we have H{aﬂ (M(—k), Q(i))=H;2”(M, Q(i—k)
(the formula for the cohomologies of P! x X), we can extend tht to a functor on . (k, E),
by requiring that this equality hold for all k6Z.

We have thus defined a functor H g on the category of E-motifs. Let T be a cohomology
theory in the sense of 2.3 which satisfies Poincare duality, and let A be the ring of coeffi-
cients of I'. Then on .M (k, E) there arises a functor M~H[ (M, A(-)) together with the natu-
ral transformation II‘ZH‘”»[{[': we set HI(E[X], A():=H*(X, I‘(-))@E... .

Thus, on J (k, E) the usual cohomology functors are defined on ‘Hapg M), HM, Q/(*)
and for k=R, Hz M, Q(*), Hgp M, A(*).

We note that the A®FE -modules H¥(M, A(*)) are always free (see [18], 2.5), so that it
is possible to speak of their dimension; we shall need this in Sec. 3.

2.4.2. In the next section we require the & -cohomologies corresponding to the "inte-
gral" part of the motif over Q. We shall try to determine them. Let X be a smooth projective
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scheme over Q. We assume that X admits a regular model Xz over Z. Then the 1mage of H‘9¢ (Xz,
Q(-)) in H.s# X, Q¢ )) does not depend on the choice of Xy. 1Indeed, suppose Xz is another

regular model. Let Xz be some third proper scheme over Z together with morphisms Xz<—Xz—>Xz,
which are isomorphic on each fiber; the assertion follows from the commutativity of the
diagram

K.(X) 2K, (Xz)—=K.(X; )-—K '(X3)=K.(X3)

K.(X)

In Sec. 3 we must either restrict ourselves to schemes over Q admitting regular models over
Z and their motifs or adopt the following conjecture.

Conjecture 2.4.2.1. Let X be a smooth projective scheme over Q, and let Xz be a proper
scheme over Z (possibly special) such that Xz®Q=X. Then the image of K’'(Xz)®Q in K' x
(X) ®Q=K (X)®Q does not depend on the choice of Xz and is invariant under the operations
Y and the morphisms of direct image. ®

If 2.4.2.1 is true, then we can define the groups Htsd Mz, Q(-)) for any E-motif M over
Q proceeding from the groups ch , (Im(K’ (Xz)®Q—>K(X)®Q)cH;¢ (X, Q()) for smooth projective
schemes X over Q.

Conjecture 2.4.2.2. Let F be a field of finite characteristic, charF = p. Then K,(F)®
Q=K (F)®Q, where K®(F) is the Milnor ring of the field F, and K,(F)®Q=0 for i>degtrF/
F,. =®

P
According to [30], 2.4.2.2 is equivalent to H° 2 (F Qb)) #0 only for 0<a=b<degtr F/F,.

If this conjecture is true, then for any scheme Y/Fp the groups H"; (Y Q(8))£0 only for b <
0 and b < b — g € dimY, and for any smooth projective X/Q we have H', (Xz, Q(i))=FH'y (X, Q(i)

except possibly for those (i, j) for which i <dimX + 1 and 1 € j € 21 — 1.

The following conjecture was once communicated to me by A. N. Parshin.

Conjecture 2.4.2.3. 1If Y is a smooth scheme over Fp, then K,)®Q=0 for i = 0.

From this conjecture it follows that H{;¢ (X, Q(i))/Hfsd (Xz, Q(i)) depends for j < 2i — 2
only on the degenerate fibers of Xz.

2.5. The Arithmetic Intersection Index. In this subsection we present a multidimen-
sional analogue of Arakelov's construction [1] of the Neron—Tate height of points on curves.

2.5.1. The Local Index at «. Let Xg = X be a smooth proper scheme over R of dimension
N, and let 2,6Z1(X)®A, i = 0, 1 be cycles on X. We suppose that [,+1, =N+1, Supp 2, supp 2, =

@ and the classes clg(Z; )6H2’i (X, A(l)) are equal to 0. We assign to them a class (2 z2))€
Hp (X, AN+1)=Hzg (X)IH% (X, A(N+1) and a number [2,N2]6R** as follows. Let Uj =
X\suppz,;:U,yU,=X. Since clpZ,=0 in Hg(X), there are tpieH;‘)t"(Ul, A(l)) such that 9,9,—
cl_@(zi)EH_?q')i (X, U;, A(l;)) 1in the exact sequence of pairs (X, U;). Then (2N2)e:=20(PUP),
where 0:Hg (UoNU,) -~H ™ (X) is the differential in Meyer—Vietoris sequence for {Uo, U.}.

We set {2y 2] : =n*(zoﬂ21)wéH'@(SpecR, A (1))=R*+ (where n:X—>SpecR is the structural mor-
phism).

LEMMA 2.5.1. a) The class (z;N2)~ (and the number [2,N2]w ) depends only on z; and
not on the choice of ¢@,.

b) (20N 21)e=1(211 Zg)co-
c) Let §;:Suppz;-X be an imbedding. Then (20012)g =i, (i,*PNclz)), [20N Z1]eo =T, (i*Pg N €121).
d) We assume that Cld(zo)eHw"(XR,Q(lo)) is equal to 0. From the exact localization se-
quence there is a cpolg[-[”‘"" (U Q(lp)) such that 00Q)0=cld(zo)eH2’°(X Uy, Q(fg))- Then (2pN21)e=
r @i (01%P0 g4 Nl y21), [20N 2] =2 Tty (i1*PoN €l g 21)-

The proof of a) follows from the Meyer—Vietoris sequence for {Ug, Uil and the sequences
of pairs for (X, Uj); b) follows from the commutativity of U ; for c) we consider the morphism
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and exact sequences

H%LIG) OH Uy (UNU) SH X
_ || te
HU)————H’ (UonUx)—"H+l(Uo,UoﬂU1)

We have (zonz,)@=0(tpoutpl)=e51((poucp,)=e(q>0Uclzl)=i1*(il*cpon'clzl), q.e.d. Finally, d)
follows from c¢) and the fact that TIg is natural. =

2.5.2. The Local Index at Finite Points. We consider a regular flat projective scheme

Xz over Z of dimension N + i. Let zIEZl‘(Xz)- be cycles on Xz such that [,4+[,=N-+1 and
(supp z,supp 2Je=Xq is empty. We choose a finite set {p,)=SpecZ such that S:=suppz,N
suppzi=UX», of fibers of X over p;j; let U,=X\suppz, We set ZoNz1=2(2N21)p, = clzyUcl 26

H2Y (Xz, Ug UUL, QN 4= 1)) =H'%(S, QO)=H"(S,,, Q(0)); here ‘clz,EHQﬁ(Xz; U,Q()) ; finally,
{zoN zl]pl:z-npl*(zoﬂzl)pl (7p,;:Sp,~SpecZ/pZ - are the structural morphisms). It is clear that the
intersection index is commutative, and if i;suppz,-X, we have (z,N2) =i, (L*clz;Nz). We
now assume that clzg in 21"(’(2, Q) is equal to 0. Then there is a %wEHQl"—I(UQ; Q ()
such that ¢l2;=00%0 4. From the compatibility of the exact localization sequence with direct
images it follows that (2¢N2) =1, (d({,*PyN2)) and [Zoﬂzllp,=d(pl)ﬂ(p,)*(51*%ﬂzl) [here (pi) de-
notes localization outside -ﬂp, =0, d(p‘,):H' (SpecZ/(p), Q1)) - H?>(Spec Z/p,Z, Q) =Q, ey (o) >
Specl(pl) is the structural morphism; we note that F’(SpecZ,, Q(l))=Z'(p‘.)®Q and 3(pi) is

ord(pi)].
2.5.3. The Global Index. We suppose that we are in the situation of 5.2 and z; are

homologically equivalent to O on a general fiber; this means that the image of z; in H%‘(XR,

e
& . .
(R()) (_.H%(XR,R(Z[)) 1s equal to 0. If zj do not intersect on a general fiber, then accord-

ing to 5.1 and 5.2 we have the definition of numbers [z,2z].€ R*™ ', R and [2,n2],6Q for

PESpec Z, which are distinct from zero for a finite number p. We set [z;N2)]z: =[2)N2]w—

Zlnp[zoﬂc,]p. 1f CIZOEH?;;(XZ,Q(ZO)) is equal to O, then, choosing @, as in part 5.2, we
p

have, according to 5.2 and 5.1.2: [zN 2]z =(tp— Zlnp-ord p) n(p,y, (i,*PyN 2,) =0, since the morphism
rg—Zlnp- Ordp!'H‘(SpécQ Q(N)=Q*®Q—+R is equal to O by the product formula. From this,
since by the shift lemma any two classes in H” o (X7, Q)= CH”A(XZ)®Q can be represented by
cycles not intersecting on a general fiber, we obtain a symmetric pairing [ , ]z between sub-

groups HM (Xz, QU; ))OCH (Xz, Q(}), consisting of cycles homologous to O on a general fiber.
APPENDIX

DEFORMATIONS OF CHERN CLASSES

In this appendix we construct the tangential transformation to the Chern character — the
Chern character in additive K—-theory. A first consequence of this construction is that for
Spec R, Spec € our regulator coincides with the Borel regulator.

Al. Small Algebras. Let A be an Abelian tensor category. If R® is a cosimplicial
algebra, then the standard U -product gives on the N(R")-normalization the R'-structure of
a differential algebra. We note that if R® is commutative N(R') need not be. However there
is the following result.

Lemma—Definition Al. We call a cosimplicial algebra R’ with identity small if it 1is
commutative, generated by R’ and R, and (Ker s;)2cR! is equal to zero. We call a differen-
tial algebra Q" with identity small if it is commutative and generated by Q , Q1. Then N
establishes an equivalence of the categories of small cosimplicial and small differential

algebras. ®
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Below we shall be interested in two Abelian tensor categories: the category Vect(k) of
vector spaces over -a field k of characteristic O and the category of complexes c(k): = cb x
(Vect k)); Vect (k)=C(k)as a full subcategory of complexes equal to zero cutside degree 0. We
call cosimplicial algebras over Vect (k) (C(k)) c- (respectively, cd-) algebras; differential
graded algebras over Vect (k) (C(k)) are called d~ (respectively, dd-) algebras. Lemma Al
establishes an equivalence of the categories of small c- and d- (respectively, cd- and dd-~)
algebras.

For a small c-algebra R° let Q*(R*) be the universal small cd-algebra such that Q°(R") =
R* (it is clear that Q*(R") is a factor of Q*(R') by the cd-ideal generated by [KerS *:. Q% (RY) ~
Q*(RY2.). Similarly, for a small d~algebra Q we define the small ""—"Lgenra 9% (Q*); we have
Q*%(NR') = NQ*(R'). We note that the dd-algebra ©*(Q') is universal in the class of all com-
mutative dd-algebras: if A** is a commutative dd-algebra, then any morphism of d-algebras
Q" +~ A" extends uniquely to a morphism Q%(Q") - A**.

Below we shall identify compiexes cver C(k) with bicomplexes; to the bicomplex X*' there
corresponds the complex »X*° » X*! » over C{(k); correspondingly, normalization is carried
out according to the gradation. For X*'_ we denote by H'{X**) the cohomologies of the complex
with convolute gradation; we denote by X>1,* the i-th term of the foolish filtration with re-
spect to *,

A2. The Weyl Complex. Let & be a finite-dimensional Lie algebra over k. For a @ -
module V we denote by C-(8,V) the standard complex of cochains of @ with coefficients in
V.

We consider the complex C:(8):=C-(®. k) — cochains of the trivial representation.C:(8)
is a small d-algebra; we set W*:=Q*(C:'(8)). It is clear that W¥=S'6'QA/"'® (B’ is the
vector space dual to G), and the differential d*W¥ >Wi+..; is the Koshul' differential,
while d:W¥Wij+ is the differential of the complex C:(8, S!(®’)) of cochains of the i-th
symmetric power of the coadjoint representation. In particular, for j > 0 the complex W]
is d*-acyclic. This implies

LEMMA A2.1. HI(W*') = 0 for j #0; HoW*)=k; HW>)=S®"°. n

We now suppose that & is reductive; let Eg’q be the spectral sequence of W relative to
the filtration W2P»~

LEMMA A2.2. There is the canonical isomorphism compatible with multiplication Epl)’q =
H» (B)®S? (@')@.

Proof. Indeed, E{'7= :H%7(8,57(@")- But if .@ is reductive and V is a semisimple, fi-
nite-dimensional representation of @, then H: (8, V)=H: ©)eVve. m

A3. de Rham Cohomologies of Bg. Let G be a reductive group over k, let @ beits Lie al-
gebra, and let Bg be the classifying space of G (see 1.7.5).  We need the following list of
facts.

Assertion A3.1. a) There exists a canonical isomorphism H@g (G)-»]]q(G) proceeding
from the identification of the complex of cochains of @ with complex left-invariant forms
on G. :

b) There exists a unique ring morphism H%QQ(BO.) - S:(@")¢, which is functorial in G and
such that for G = Gm it identifies '@ =S'(®)® with the invariant differentials on G = Bg,.

This morphism is an isomorphism. Further, F‘Hzé)g (Bo.)=H%g (Ba.), F'”H%ﬂ (Ba.)=0 (FL is the
Hodge—Deligne filtration).

c) Let E;P’q be the Leray spectral sequence of de Rham cohomologies of the universal
G-bundle Ug, * Bg,. There is a canonical isomorphism between the spectral sequences E (A2.2)

and DecE'’ compatlble with multiplication and coinciding with a) on the terms E;P»9 and with
b) on the terms E,P:P.

d) The algebra Hgg (Q) is the exterior algebra spanning the primitive classes Prim’ x
(GQ)cHzpg(G). The algebra Hgg(Bs) is a free commutative algebra; let P'(Bg.)=H>"(Bq.)/

(H”°(Bg.))? be its generators. Transgression in the spectral sequence E' realizes an isomor-
phism

T:Prim?-1 (G) - P% (Bo.) B
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A4, Deformations of Chern Clasges. In this subsection k = R. Let X. = SpecR’ be the
spectrum of a small c-algebra, and let A(i)_@:=Cone(§§.’an®A(i)»Q}.an)[—l] be a complex on
X.an+ We assume that on X. there is given a G-torser which is trivial on Xg. We compute the
images of its Chern classes in H (X.,,, 4 (i)g)

It suffices to consider the universal situation: X ,=B§’):— the largest small subscheme
of Bg. Since B 1 is defined by the c-ideal JCOg;, generated by 1, where I, is the ideal
distinguished point s(€)€Bs;=Q , we have [NOB&”]’=@’=C‘ (8) and the following result.

LEMMA A4.1. N038,=c'(@5), |

Further, H/(B&h., A(i))=0 for j > 0; from A4.1 and A2.1 we find that H/(BE,,, Q)—
HI(BE,Q*)=0 for j > 0. Therefore, aF:HQ’(Bg.)an,T‘\(i)g)-—»H""(BS,’an, Q>!Y) is an isomorphism for

i > 0. We have the commutative diagram

eF
Hg(Ba., A ()~ H?Bg., F (i) = H2 4 (Ba.)
o ep oo '
H% B, A (i)g) = H* (BS!, @)= H2 (W>'").
We are interested in the left vertical arrow. To compute it it suffices to compute the right
arrow @,

THEOREM A4.2. The composition of @ with the isomorphism of A2.1 Hz’(W>'°)=S‘(©’)®
coincides with the isomorphism of A3, b).

Proof. Indeed, this composition satisfies all the conditions of A3, b). ®

A5. Comparison with Borel Regulators., From A4.2 and A3, c¢) it follows that jets of
Chern classes are canonical generators of f7 (8). Namely, we have the following result.

nz1
COROLLARY A5.1. For i 2 1 the composition H%a (Bs.) 1H21(W/>’-’) > -1 (\V"/W>l')—->

H2‘-I(W*'/w'>"')=ﬁﬂ-l(@)ni-"ﬂg,;; (G) coincides with the composition Hgg (Bs)—>P%(Bg.)5
Prim 21-'((})-»[—1%;!} (G). In particular, for G = GL, the images of the Chern classes c; are canon-
ical generators vj of the ring H'(6(,). B

COROLLARY A5.2. Let i:BoL“(c).eBGan be the morphism connected with the obvious mapping
of the discrete group G(C) into the algebraic group G. Then i* (c,)EH%(BoLn(C).R(i))=Hg9—' X
(Bor,(c)- R(i))=H%'(GL,(C), R(i)) coincides with the class of [12, 13] constructed by means of

continuous cohomologies. In particular, the Chern characters Ky 1 (C)»R(@E—1), Ky4,i (R)>R (2)
coincide with Borel regulators.

Proof. We consider B.(C) as a manifold of class C”; by definition, we have Heopnt (GLp(C),
R): = H (B.(C), S%). According to the theorem of van Est Héont (GLg(C), R) =H (8, (C), 1,, R) (the
relative cohomologies of real Lie algebras; ‘iI, is the unitary algebra). We recall the con-
struction of this isomorphism and of the Borel classes ({12, 9, 21].

Let I,5 be the ideal of the distinguished point e€B,, and let J.cS° be the cosimplicial
ideal generated by IZg. Then, as in A4.1,H (80//)=H (®,(C),R) ; the arrow S’ - S°/Jg defines
an imbedding Hipm (GL,(C), R)~H (81, (C), R) with image H (8!,(C), U,, R)cH (81,(C),R). This is the
desired isomorphism. By definition, the Borel class corresponds to the class (V)62 x
(8L, (C), U,, R(¢—1)). Since the morphism i* decomposes into the composition HZ (B, R(i))—~ H* (B,
R(i)g)—>H?1 (B.(C), S0 (i—1))>H?Y(GL,(C), R(i—1)) , the corollary follows from A5.1 and the commu-
tative diagram

LI
R@)p>R)p—>S @ —1)[—-1]
1 SO —1)/1,[—1]. m
P [—1]->0]-1]>0/J]-1)7
a1
A6. Cohomologies of Algebras of Flows — Additive K-Theory. We return to the situation

at the beginning of part 4 (now k is any field of characteristic 0). According to A4.1 and
Al we have the bijections {G-torsers on X. trivialized on Xo} = {morphisms of d-algebras
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C'®—>N(R) = {morphisms of dd-algebras W*' - N@*(R*)}. The Chern classes of the torser
are morphisms S*(@)%=H2-1 (% W>") > H*INQ* (R)/Q>' (R) (i>1). We can define @ -torsers on
any commutative dd-algebra C*' as morphisms C (8)—(Co or, equivalently, as morphisms W*" -
C**; to the ¥ -torsers there correspond their Chern classes... . '

Here is an important example. Let R be a commutative algebra. We consider the commu-
tative dd-algebra C (B®R,Q*(R/k) — the complex of cochains of ®®R considered as a Lie
algebra over k with coefficients in the trivial B®R -module Q*(R/k). On it there is a
canonical @ -torser taking [eC{®)=A!(@’) into [R6C!(BR, 1'?)=C"(@®R, QV(R)), Lr(@i®ry, ...
8®r)=L(g,...,g)®r ... r;. We assume that &=@j,; we chbtain the i-th Chern class of our tor-
ser: c,EHZ1(B®R, Q*(R)/Q”'(R)). It defines mappings c;;:H,(B®R, k)21 (Q* (R/k)IQ>' (RIk)).

We consider the stable situation ®&=1m®(,. Then H (8®R) is equipped in a natural way

with the structure of a Hopf algebra; we détlote by k2dd (R/k) its generators. This is an additive
analogue of Quillen's K-functor. Restricting cjj to Kkadd, ye obtain the morphism

ci K (R1k) ~ H-171 (@ (R1R) 197" (RI)).

Recently B. L. Zygan and B. L. Feigin proved the following remarkable theorem {for j = 2
this fact was established by Bloch [i1] for any rings with !/,6R; for R = k it is a corollary
of A5.1).

THEOREM. If R is a smooth ring, then @c,,:K?dd(R/k)—>®H2l-i-l (Q* (R)/Q>' (R)) is an iso-
morphism. @ ‘

. . . . . d
In conclusion we note that it would be very interesting to compare deformations of k¢ d

and K..

3. Values of L-Functions

We fix a number field E; let A =M (Q, £) be the category of Grothendieck E-motifs over

Q (see 2.4). To a motif MEA there correspond its L~functions LY (M,s): =L (H/(M®Q, Q),s) —~
E®C -valued analytic functions of complex argument s. We shall assume that the familiar

copgectures regarding analytic continuation and the functional equation are satisfied for
L), Thus, if LO(OJ)(M, s) and e(J)(M, s) are the e-multiples corresponding to L, then (Le®
LY (M, 5)=(e..-8)) (M, $) (Lo L) (M°, j+1—5) for some MOA ; we have E[(X]? = E[X] for X&%Pa.

We recall that e(j) have no zeros of poles, while LOEJ) has no zeros and its poles lie
among integral points <j/2; from the explicit form of the Leo—multiples we obtain the follow-
ing result.

LEMMA 3.1. The order of the pole of Lo(M", s) at the integral point s = n coincides
with the order of the pole of Lo(M%, s) for s = n and is equal to dimE®RHf@(M®R, R({j—n))/

) FInH g (MER). B
3.2, From the standard exact sequence
.~ Hlp (MGR, R (I —1))~ HZ " (MOR, R())) > F!HF g (MOR) - . ..
we find for n € j/Z the short exact sequence
0 F/*"n [0 (MOR)—~ Hip (MOR, R(j —n)) ~ HiF' (M®R, R(j —n+1))—0.
We note that there is an E-structure on the first two terms of this sequence: they coin-
cide with [Fjé'l—nHI@ﬂ (M)]®R and [H%(M@R, Q(/—n))|®R , respectively. Therefore, on

det H3" (MR, R(j —p+1)=det Hg-det™ F/"Hpg
there is the natural E-structure
L (Jj, n): =det Hlp (M®R, Q(j —n))-det™! (F/*'"tH gy (M)).
LEMMA 3.3. The order of a zero of L(j)(MO, s) at an integral point n < j/2 is equal to

d(j, n): =dim Hg"' (M®R, R(j +1—n)).

Proof. The Euler product for L(i) converges absolutely (and hence # 0) for Res > j/2 #
1 (the Weyl conjectures proved by Deligne + the conjectures regarding degenerate local
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multiples). Therefore, from the functional equation it follows that if n <';/2, then the
order of the zero of L(j) for s = n is equal to the order of the pole of LgJ The remainder
consists of Lemma 3.1 and the exact sequence of 3.2. B

We assume that n < j/2.

Conjecture 3.4. a) The morphism rgp®R: H"H Mz, Q(j+1—n)) ®R—>H’+'(M®R, R(/j4+1—n))
is an isomorphism.

b) Let ¢(/,n)6E ® R be a number such that LY (MO, s)=c(j, n)(s—nytm 4 o(s—n)d/m. Then
c(J,n)-Z (i, n)=detrg(H' ] (Mz, Q(j +1—n)).R

3.5. We note that for almostall, n (for example, for n=0) F/''""H}5a(M)=0. For such

n the conjecture contains the determinant of the matrix of periods of elements of H{J' over topolo-
gical cycles ("the intersection index of topological and algebraic cycles"). Is it possible, at

least hypothetically, to determine these matrices themselves on the basis of the L-function
(up to multiplication by rational numbers) and not only their determinants?

3.6. Using the functional equation, we can rewrite 3.4, b) as a conjecture regarding
the values of L-functions at integral points lying in the region of absolute convergence.
We use the following lemma.

LEMMA 3.6.1. Let m be an integer. Then

a) The product of any finite number of finite L-multiples L(J)

(M, m) belongs to E* if
it does not vanish. For m 2 (j + 1)/2 it is always flnlte

b) Let X be the E*-valued Dirichlet character with which Aut C acts on [detffuﬂ4®C
Q2)1(d3j/2) (where d = dimHi), and let et) (M, n)e(E®C)* be the constants in the func-
tional equation. Then oe(J)(M n) = (o)e(J)(M n) for any ofAutC and neZ.

c) Let [L(J)(W s So0)] be the leading term of the asymptotics of L(J)(M , 8) for s = sy.
Then for m > (j + 1)/2 we have LY'(M, my=c[LL (M, j+1—m)(ERCY* , and c€
(2m) M +=2m-d(M/2 s [here d,(M)=dim H% (M®R, Q(+1)), &(M)=dim Hgpg M).]
Proof. a) The finiteness of the L-multiples follows for nondegenerate multiples from
the Weyl conjectures; for degenerate multiples it is necessary to use the (unproved) conjec-—

tures regarding their weights. All the remaining is obvious. b) Use ([18], (5.4)). F¥or
more details see ([17], (5.5)). <c) See ([18], (5.4)). ®

For [, L,6(E®C)* we say that [~y if [;-[;"'€E* (see [18]). Thus 3.4, b) determines
c¢(j, n) up to equivalence. We note that 3.6.1, b) determines the equivalence class of e(M,
n); in particular, it does not depend on né€Z; we denote it by e(M). From the functional
equation we obtain the following assertion.

COROLLARY 3.6.2. ¢(j, j+ 1—m)~L"Y (M, m)-g (M) @ni) 'm0 +(=2mdins gy
We shall verify 3.4, b) precisely in this form (see Chap. 2).

3.7. Suppose now that j is even and n = j/2. We have the isomorphisms

7 (MR, R(n))_,anH (M®R, R (n))> H2”+‘ (M®R, R (n+1)).

Let £y, (M)= (M Q(n))/H (M, Q(n))* be cycles modulo homological equivalence; .rgy realizes
the imbedding

Zhe (M)~H 3 (MR, R (1)) H3(M3R, R(n)).

Conjecture 3.7,

a) The order of a zero of LU) (%, s) at s = n = j/2 is equal to d(j, n): =dm A (Mg,

Q(n + 1).

b) The mapping atrtgp+ Igp: .?he(M)®12@1"1'2"+l (Mz, Qn4-1)) '®R - HZ"' (M®R, R (24+1)) is an iso-
morphism. .

¢) Let ¢(j, n), as in 4.4, b), be the leading term of the asymptotics of L(J)(MO, s)

for s = n. Then c(j, n)-2(j, n) = det 1 (Lre (MOH ' (Mz, Q(n+1)). B

Remark. This conjecture as well as the ome following is closely connected with Tate's
conjectures regarding algebraic cycles [32].
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Conjectures 3.4 and 3.7 together with the functional equation determine, up to multi-
plication by an element of E*, the values of L-functions at any integral point with the ex-
ception of the middle of the critical strip. We now consider the middle, i.e., j = 2n — 1.
Here a conjecture will be formulated not for L-functions of motifs over Q but for L-functions
of schemes over Z.

Thus, let Xg be a regular, flat, projective scheme over Z, and let L(J)(Xz, s) be the
Euler product corresponding to the j-dimensional cohomologies of the reductions Xz . In part

2.5.3 we defined a pairing [ , ]:H:‘; (Xz, Q(n))°®H$""'XZ_")(Xz, Q(disz —n))—R. The exact
sequence of 4.2 for 2n = j + 1 becomes the isomorphism F"Hé,g(M)®R’—J>H‘/j9(M®R, Q(j—n))®R; let
p(/, n):=det Fil{ g (M) - det"'H% (MR, Q(j—n))€R*/Q*.

Conjecture 3.8. a) The order of zero of L(j)(XZ, s) at s = n is equal to dlmHi';(Xz,

Q(t_l))o. b) The pairing [ , ] is nondegenerate. c) The leading term of the asymptotics of
L(J)(Xz, s) at s = n is equal to p(j, n)det [ , ] up to multiplication by elements of Q*, ®

3.9. If our motif is the spectrum of a number field, then the conjectures are satis-
fied thanks to Borel's theorem and A5.2; in the case of Artin motifs the conjectures 3.4 and
3.7 coincide with the conjectures of Gross and Stark [24]. For the values at two of L-func-
tions of elliptic curves over Q this is Bloch's conjecture [9, 10, 3].

Conjecture 3.8 for the value at one of L-functions of curves is consistent with the
conjecture of Berch—Swinnerton-Dyer; this follows from the coincidence in the case of curves
of the intersection index [ , ] and the Arakelov construction of the Neron—Tate height. Con-
jecture 3.8.2 is due to Swinnerton-Dyer.

For some integral points n < j + 1‘/2 the order of the pole of Ly, at n is equal to zero;
these are critical points in the sense of [18]. For these points F’*""H&g(M)@R»H%(M@R,

Q (/—n))®R is an isomorphism. The conjectures then assert that the corresponding groups H g
are equal to 0 and L J)(MO, n) coincides, up to multiplication by an element of E*, with
the determinant of this isomorphism written in rational bases. Using Poincare duality, we

see that it coincides with the determinant of Hf@(M(’@R, Q(n))®R—->[prw(MO)/F"Hfﬂg(MO)]® R.
Thus, for critical n our conjecture reduces to the conjecture of Deligne [18].

Finally, we mention that part of the assertions of the conjectures can be formulated for
varieties over any fields kcR.

Conjecture 3.10. Let X be a smooth proper scheme over kcR. Then r@:H{” X, Q(—n)®
R +>Hp(X®R, R(j—n)) for n € (j — 1)/2 is an isomorphism. ®
3

From 2.2.3 it follows that for k = R conjecture 3.10 implies conjecture 1.10.1 (for
a # 2b).

CHAPTER 2. COMPUTATIONS

4. Ky for Curves — Formulas for the Regulator

Let X be a smooth affine curve over R, let XDOX be a smooth compactification of X, and
let P=X\X. We recall that Hb(X, R (1)) = {9eT(X OXM/R(I)):d‘PEQ}X.;)} ={feSO(X): f is sum-

mable, and if we consider f as a distribution on Xy we have d;dzf;z a6, where aR, &,
is the 6-function at the point x,EP} (here f=Re?®); H% X, R(2))=H'(Xan. R()cH (X g C)=
H'(Q,0(X,)); the U -product AHy—>Hg is given by the formula sug=r-m(d.g)—gm@.f)
(see 1.2, 1.5). Let F' be the Hodge filtration on Higpg; R[P]: =Ho(P, R)DR[P]° — cycles of
degree 0 on P.

LEMMA 4.1. @) H'(Xun, C)=H'(Xan, CRF (X)NFIX)), H'(Xan, R(1)=H"(X,n, RO)SH! (X
RN F(X)).

b) dimHg(X,R(1))=|P|, and the residue morphismdiv: Hig(X, R(1)) = R[P], given by the formula
div f =28 (Res,d, f) x, identifies Hg (X, R(1))/R with R[P]°.

¢) H' (X, RO)NF (X)=eHp (X, R(N={d.f, feHp (X, R(NcF (X)=2'(X, X).®

an?

an»
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Let U:H‘(Xa,,)—->H1(7(a,,) be the projection connected with the decomposition of 1, a).
Then 4.1, b) and c) define a pairing [, |:AR[P]° > H! ()?a,,, R (1)) such that I(fug)=[div f, divg].
We shall try to computeII(fUg) . According to 4.1, b) and c¢), the image I of the morphism
U:A2Hg (X, R(1))>Hyp (X, R@2)) =H"'(X4a: R(1)) decomposes into a direct sum ({(1Q(X)])ORU
ng)(X, R (1)), whereby the restriction of II to I coincides with t:he projection onto the first

T 2xi

factor. We consider the pairing given by the formula (o, y) -1 5 @Ay, WEF(X), YEQI(X>) is
X0

summable on X. On closed forms y of Q! (X*) this pairing coincides with the P01ncare duality;
it identifies H!'(Xg R(1) with Hom(F!'(X), R). We now note that all forms of I are measur-
able, and from Stokes formula it follows easily that (m,Ruﬁ‘@(X,R(l))) = 0. Therefore,

(o, 0(fug)) = S(oA(ng) From this we obtain the following assertionm.
Assertion 4.2. Let f, géHy (X, R(1)), @€F!(X)= Q' (X). Then (o, I(fUg) = (mno,
L(fU8)) =gy | /-digho.

X0

Proof. Since f and g have singularities at the points P of the form clog lzl, applying

Stokes' formula, we find ijd;(f-g): SmAd(f.g).—_- Sd(m.f.g)=0. Therefore

foafug= foalr1/2(@g—d;0)—g 1/2(d¢f—d;~f)]——ffmA1/2[gd;f—fd;g]= { fa-gro.m

Example 4.3. Let X be an elliptic curve, and let IP=H, (X4, Z). The Poincare duality
gives an isomorphism I'=Hom (T, Z(1)) - Hence X(C)=T®R/T'=Hom (I, R(1)/Z(l)) ; we denote by (,):
X(C)®I‘—>R(l)/Z(I)CC* the corresponding pairing. We fix a holomorphic differential w on X

such that ijt_n=1; it defines an imbedding I'«C and an isomorphism X(C) = C/T. Let o =

2a,;6,6R[P]°. We define the function gy on X(C) as the Fourier transform of the function y

w on I'. It is easy to see that gy is a summable function of class C* away from xj
TY
and dzd,ey = Zoidx;. Therefore, &,6Hg (X, R(1)) and divey = a. It is clear that dzey is the

X1 ?)A

Fourier transform of the function Y-’Ea'(? Finally, the integral of 4.2 can be evaluated

by convolution of the Fourier transforms:

(o, fa, B]) = ZW (4.3.1)

4.4, The formula of 4.2 enables us to compute Irg{p, ¢} for @, HeO*(X)({®, \p}EH;(X,
Q(2)cK,(X)®Q) : we have 15{?, ¥} —ln|€P|U1n|\p| However, to verify the conjectures of Sec. 3
we would like to have elements of H_#(X) rather than of Hd(X) We shall use the following

lemma of Bloch which provides an analogue of the decomposition 4.1, a) for H 4,

LEMMA 4.4.1. Let X be a curve over a field k such that all points P=X\X are de-
fined over k, and any of their pairwise differences have finite order on the Jacobian of X.
Then

a) K,(X)®Q is generated by the image of Kj X) and {K..1(R), O*(X)}-
b) H? (X, Q(2) decomposes into a sum of 'sz (X, Q2) and {&*(X), £*)®Q. The inter-
section of these subspaces is H; (Speck, Q(2)).

Proof. Since divO*(X)®Q=Q[P]’, it follows that the image of the arrow K (X)®Q—~
Ko (P)®Q K1 (®®Q[P] of the exact localization sequence coincides with Ki, (k) ®Q[P] (the
image is always contained in Q{P]°). The lemma now follows from the exactness of the local-
ization sequence. ®

Remark 4.4.2. Let X be any regular scheme, and let UUcX be an open subscheme. Then

}-{‘s¢ (X, Q(2))—->H (U,Q(@) is an imbedding. Indeed, by induction on dim(X\U) everything
reduces to the case where X\U=SpecK, K a field. From the exact localization sequence
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it follows then that the kernel of our arrow is the image of H";Z” {Spec K, Q{(2—n)), n=codim x
(X —U). It is easy to see that all these groups are equal to O [for n > 1 this is obvious;
if n = 1, then H(f;¢ (Spec K, Q(1))C K, (K)®Q. But Kz(K) is generated by symbols; hence K2 (K) =
H>, (K, Q) and H,(K,Q(1)=0] W

Therefore, in the situation of 4.4 there arises a canonical projection H:HQM (X,Q() —
H2 (X, Q@) HY, (k,Q2). It is clear that TIe{, }:0" (X)®0* (X)®Q~>H, (X, Q2)/H%, (£, Q(2)
passes through the arrow AQQ[P]°—>H1¢ (X,Q(2))/Hi,, (2, Q(2). If k is a number field, then

H';t (&, Q(2)cK, (k)®Q=0, and we obtain the pairing
{ .k AQIPP—H2, (X, Q(2). (4.4.3)
By definition, II{f, gt={div f,divg} for f, ge0*(X).
If kCR, then R.15{0* (X), k*}=F! (X?R)ﬂ.ﬁ‘ (X‘/fR) , so that rgpll=Irg and1gp{,}=[.].

Therefore, 4.2 makes it possible to compute the regulators of elements of the form T[1{x, B},

o, pEQ[PJe. In the next section we carry out these computations for a modular curve, while

now we shall say a fewwords regarding the case of an elliptic curve. Thus, let X be an elliptic
curve over Q, and let «a, BEQ [X(Q)to,s]O Then rg{e,p} can be computed by formula 4.3.1. 1If we
knew that O={a, B}EH“(XZ,Q(Q))CHM(X Q(2)) , then, according to conjecture 3.4, Hw(Xz,Q(Q))
must be generated by (o, B} and Igp{e, B}/L(X,2)6Q, i.e., the value of the L-function of X

at two coincides with the value of the Eisenstein—Kronecker series 4.3.1. If X admits com-
plex multiplication, then this fact is well known (the L-function itself coincides with such

a series), but for curves without complex multiplication this is surprising. Bloch and Gray-
son composed a program to compute TIgp{2, P} for Weyl curves. It was found that quite frequently
Tp{a, B}/L(X,2) to high accuracy does not belong to Q. Fortunately, however, Bloch and Grayson
showed that such {a, B} do not belong to H; ()?z,Q(Z)). We note that the integral condition
was omitted in the original formulation of the conjecture [9, 10, 3].

4.5. To verify the integral property of {a, B} on modular curves we use the following
version of 4.4.

Let S be a Dedekind ring with field fractions k; let Mg be a projective curve over S;
let PscMs be a closed subscheme; let Mg=Ms\ Ps; M=Ms®k%, ... . We assume that Mg is
regular, Pg/S is the disjoint union of several copies of Specs, all pairwise difference of
points in P have finite order on the Jacobian, and (PicSpecS)®@Q=0.

LEMMA 4.5.1. If for any closed point a£S and any feO*(M) the order of a zero of f
at general points of irreducible components of the fiber over o is constant (i.e., it depends

only on a and f), then {O* (M), O* (M)® QN H’, (M, Q(Q))CHLL (Ms, Q(2)) +{O0* (M), £*}-Q.
Proof. The condition of the lemma implies that OF (M)@Q=Fk*.0*(M;)®Q. Therefore, any

pairwise difference of divisors of Pg are divisors of elements of OF(Ms)®Q. The remainder
follows from the exact localization sequence of the pair (Mg, Pg). ®

COROLLARY 4.5.2. If S is the ring of integers J.n a field of algebraic numbers, then
under the conditions of 4.5 we have {Q[P]°, Q[P]O}cHﬂ(Ms,Q@))

5. Values at Two of L-Functions of Modular Curves

In this section for any curve over Q uniformized by modular functions we construct a
subgroup inK; whose image in the cohomologies satisfies Conjecture 3.4.

Standard notation: G = GLz, Z = Gm the center of G, A = R X Af adeles of the field Q,

z=x-+1y: 1‘{*:-—-PR\PI (R)Pg the half plane with the usual right action of G(R) (8% is an
analytic space over R).

5.1. Formulation of the Theorem. Let M/Q be a scheme of moduli of elliptic curves with
structures of all levels, let M be the compactification of M, and let P = M\ M. The group
acts G(AE)/2(Q) acts from the left on these schemes. The scheme M is the pro_';ectlve limit of
schemes of finite type K\ M, where K runs through open and compact subgroups in G(Af); the
same holds for M and P. We have the canonical isomorphism (M®R).=HXG(A') 1G(Q).
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If H is a contravariant functor on schemes of finite type over Q [for example, Hé(.@R)],
then we set F/ (M):=HlmH (K\M) ; the same goes for M and P; then G(Af) acts on H(M).
—

Let F be the union of cyclotomic fields, and let SCF be the ring of integers. Our
schemes are schemes over F in a natural way. They extend in a natural way to schemes Ms,
Pg, Mg = Mg\ Pg over S with an action of G(AL) — projective limits of regular proper schemes
of finite type over Z (see [20]).

According to 4.4.1, we have the imbeddings H"’” Ms, Q(2) CH; (/W,Q(?))CH; M, Q(2). We

set 7:=((0* (M), o* (MYQNH’, (M, QQ)=H\ (M, Q), H M, Q) NHY, M, Q(2)
THEOREM 5.1.1. P/, (Ms, Q(2).

For the proof see part 5.5.

We wish to compute the mapping of the regulator on #. TFor this we decompose the motif
Q[M] by the action G(A/):Q[/W]=[/T’I]O@[M]‘@L/_VI]?,[/1_/1]°=Q_[SpecF],[M]2=[_M]O(_l),[ﬁ]]l=2MV®V , where
V runs through all irreducible parabolic Q-representations of G(Af) of weight 2. Since %
is a G(Af)-submodule of H% (M,Q(2) of weight 2, we have PRQ—=IPyOV, PvcH, (My, Q(2)).
We recall that to each automorphic irreducible C-representation of the = group
G(AY) there corresponds its L-function L(w, s), the e-multiple e(m, s), and the Le-multiple
Lw(m, s); we orthonormalize them so that the functional equation has the form (Le°L)(m, s) =
e(m, s)(Le'L)(w*, 2 —s). If V is an irreducible, automorphic Q-representation of G (Afy,
then V is defined over some field E which is finite over Q, V=V,_.-£@Q, We define the L-func-

tion of V as an E®QCcQ®C -valued function whose components corresponding to the imbeddings
i:F<C, are L(VFG;)C,S) ; €(V, s) and L,(V, s) are defined similarly. For sufficiently large

Re s the L-function is given by the Euler product L(V, s) = ]'[LP(V, s). We assume that V is
parabolic of weight 2. Then L(V, s) = IlLp(V, s) for Res > 1.5 and Lo(V, s) = (2m)78r(s).

d
Since the e-multiple never vanishes, we have L (V,0)=0, lo(V)I=EL(V.S)I:=07-’—“O-

THEOREM 5.1.2. T (P =L (V) - H'g (My®R, Q(1)) cHyg (My®R, R (1))=Hgp (My®R, R (2)).

For the proof see part 5.5.

We recall that L(My, s) = L(V*, s) (Eichler, Schmidt, Deligne,...) and that dimH}g?(Mv®
R, Q(1)) = t (the theorem on multiplicity one of the spectrum). From5.1.1and5.1.2 it there-
fore follows that sz (Myz, Q(2)) contains a subgroup satisfying Conjecture 3.4; of course,
the same holds for any motifs decomposing into a sum of motifs of the form My.

5.2. In this subsection we reduce 5.1.2 to the computation of certain integrals. The

scheme M is the projective limit of schemes of finite type; we shall explain how to integrate
M(C). Let @ be a 2-form of class C° on M(C), and let U be an open subset of M(C). If KC

G(AL) is such that ¢ and U are K-invariant, then ¢ is 2 2-form on K\ M(C); we set jcpz-
b
_6-1X(K\M(C))"5‘(P. The normalization is chosen so that under the identification of M(C)
kU

with H¥(C) x G(Af)/G(Q) the preimage of this measure on HE(C) x G(AL) coincides with ¢Xdu/,

where duf is a Haar measure on G(Af) such that “S.‘dp,/=1, The canonical isomorphism 5‘:H.%(,/1_71®R,
G(i) ' - —
Q(1)3Q; is defined similarly; if afHz(K\M®R, Q(1)), then ja:='—6"x(K\M)“5a. It gives
the Poincare duality — the isomorphism of G(Af)—modul'es'Hlﬂ (M®R, Q(1))* &'H‘IQ (M@R, Q).
We shall deal with (Q®C)* -valued functions on the set of irreducible, par&bolic_ Q-
representations of weight 2 [i.e., on the set of irreducible components of H%(M@R. Q) or

Q! (M)@Q], for example, with the values of L-functiens or e-functions. We say that two func-

tions 73 and l» are equivalent, I ~ L2, if 11-17' takes values in Q*. TFor example, for

2/6Z (A/) the value of the central character w(V) on zf, i.e., w(V)(zf) is equivalent to ome.
We denote by 7; the equivalence class of functions such that Q! My) =L (V)-Hg My, Q)

under the period isomorphism ! (MV)®RﬁH:9(MV, R) [we recall that Q! (My) and H:Q(MV,Q)
are one—-dimensional Q-spaces].
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According to Manin—Drinfel'd, we find ourselves in the situation of 4.4. Using 4.2,
we can reformulate 5.1.2 as follows.

THEOREM 5.1.2'. Let VcQ!(M)®Q be an irreducible representation. Then for J, gEO* (M)
and vCV we have ‘

(2ni) [ log|fldTog gAvely (V*)-1 (V)-QcQOC;
(C)

for some £, g, and v it belongs to (Q®C)*.

We rewrite 5.1.2 again. Let 8:AutC>7* be the character of the action on the roots of
unity.

We recall (see 3.6) that for a Q-valued character x of the group Aut FLZ* — Ar*,Q**
e(X)E(Q®C)*/Q* denotes the equivalence class of &(y,n), n€Z, the e-multiple corresponding to X.

LEMMA 5.2.1. a) Let n¢€Z. Then g(V, n)~e@(V)).

b) If L(V, 1) = 0, then L(V, 1) ~ 71(V); for any V there is an even x such that L(V®:
x (det), 1)+£0.

c) For even X we have I, (V®y(det)~e(x)-I (V).

The proof of a) follows, for example, from e(V, S) = e(Myx, S) and w(V) = det Myx and
3.6; however, it is simpler to use the identity ep(V P(bx)) = w(V) (b)ep(V, Y(X)) for the
local constants directly.

b) is well known (the connection of the values of L-functions at one with periods; see,
for example [18]).

c) We decompose the motif (M]° = QLF] by the action of AutF =A’*/Q**: [M]O——@[x] ; the
sum goes over all Q-valued characters. From the definition it is evident that G(A ) acts on
[x] by means of x"!(det). Therefore, the canonical pairing [M]°® x [M]! » [M]1 gives an iso-—
morphism [X7[X My 5 My@y(det). If X is an even character, then Hegg ([x)=F'Hpg (1)), Hy *
([X]®R Q) are one-dimensional Q—spaces Hence, if for a critical motif N we denote by P(N)
its period matrix, we always have P (N [x])=P (N)-P([x])- Since P([x])~e(x) (see [18]), every-
thing has been proved. ®

We return to 5.1.2. The functional equation and 5.2.1, a) give [(V*)~nZ(a(V)'-L(V,?2).
We choose an even X so that L(V ®y(det), 1)¢(Q®C)*; then by 5.2.1, b), c) we have [ (V)~
L(V ®y (det), 1)-e(x)"". Therefore, [j(V*).l;(V)~n2g(0(V)x)" L(V ®y(det), )L (V, 2), and we can rewrite
5.1.2 in the following form.

THEOREM 5.1.2". Let VcQ!(M)@Q be an irreducible Q-representation. We choose some
even X so that L(V®x(det), NEC®Q)*. Then for f,geO*(M) and vEV we have

(2ni)! j log | f]d log gAv€En-% (0 (V)-x)-1- L (V @y (dei), 1) L(V, 2)-QcC®Q,

and for some f, g. and v the integral belongs t0'(C®Q)*.

5.3. Eisenstein Series of @* and (M). In this subsection we show that the factors
under the integral sign in 5.1.2' coincide with the Eisenstein—Kronecker series. We need

the following subgroups of G:B={(: 8)}, D={((1) 2)}, U={(l (]))}. B(Q)>B(Q") ={geB (Q):det g>0}.

LEMMA 5.3.1. We have P(C)=G(A/)/B(Q")U(A/) as G(Af)-sets. The action of ofAutC on
)eD (Zym

P(C) in this notation is multiplication on the right by (0 8(0)

If X is a compact, topological G(Af)-space and V is a vector Q-space, then G(Af) acts
on V-valued measures and V-valued functions on X. We denote by Ay (X) and Fy(X) , respec-

tively, the algebraic parts of these representations; let J(X): =Ker(§. ./IIV(X)—->V) Suppose

for brevity that Jy:=—= .4y (P(C)), 9rv — &, (P(C)), Ay — Ay (Aut C\ P(C)) = A0AN g, gbuah 1 s
clear that My=uMBV, F,=Mys..

We define the G(Af)—morphlsm Res: QI (M, M)®Q->./Il° as follows (cf. the beginning of part
2). Let veQ'(M, M)®Q and the sufficiently small open subgroup KcG(A/) be such that v is
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K-invariant, i.e., o€Q'(K\ M)®Q. Then ERes V= —8&(K\M)! Resx.rv 1is the residue at
K.x

the point K'x on K\ M. This formula uniquely determines the measure Resv.

We have the exact sequence of representations 0—Q!(M)®Q-—Q! (M, M)®Q—>./I!° -0, admitting
a unique G(Af)-decomposition — the Eisenstein series. It coincides with dlogO"' (M®Q)®—Q:
by the Manin—Drinfel'd theorem Resdlog O* (M®Q)=JIIQ ; hence, since Kerd log = Ker Res d log,
we have Q' (M, M)@Q=Q" (M)®Q&d log 0* (MOQ)®Q.

LEMMA 5.3.2. a) Resdlog0*(M)®Q= g =M (G(A)/B(Q) (D-U)(AY). b) dlog0* (M)®Q=
@Exc (M, M)®Q : the sum is over all even Dirichlet characters x; here E, is the space of
Eisenstein series with eigenvalues 1 + x(p)+p of the Hecke operators Tp.

Proof. Since
Resd log oO* (M)= [Res d log O* (M@c—l)],\ufﬁ
by Hilbert's theorem 90, part a) follows from 5.3.1. Part b) follows from a. ®

We have thus identified dlog g in the integral 5.2.3 with an Eisenstein series. We shall
show that log!fl is a (nonholomorphic) Eisenstein—Kronecker series.

)t

(@:€A/%), R(1)=1; v is a left invariant measure on G(A/)/U(A/): pr/U(G(z)/U(z))=l . If pedAr,
then we set ¢/—=q/p/ . This is a function on G(Af) /u(af) such that ¢//p is right B(Q™)-

Let h be a left G(Z) invariant function on G(Af) such that h( (

invariant. Let ¢=:H*C)—~R coincide with —27my on H' and be equal to zero on H™(C). For
o6R the function @,(z, g/):=y-0h(gf)—°-§J°°(z)-C§(g/) on H*(C)XG(A’) is right B(Q*)-invariant.
We set &g, o:= 2 Ps((2,g/)8). 1If o > 0, then the series converges absolutely and gives a
660(Q)/B(Q+)

function éé’w,U:Hf(C)xG(Af)/G(Q)—>R, If cpeﬂ?;, then the limit &,:=1im&; ¢ exists; we have
Ego=g8, for gEG(AY) [4]. o0

LEMMA 5.3.3. If fEO¥(M®C), then log!fl is equal to &resstogf uUp to a constant.

Proof. It is clear that Resd,&,=9%, and hence everything follows from the fact that &g
is real. ®

5.4. Rankin's Method. We recall (see [25]) that to each pair Vi, Vz of irreducible
automorphic Q—representatlons of G(Af) there corresponds a Q®C -valued L-function L(Vy x
V2, s). 1If V2 is the space of Eisenstein series of weight (x, x'), then L(V XV, s)=
L(V,®y(det), s)x L (V,®y’ (det),s); if both Vi are parabolic, then L(V1XV2,S)=L(2) (My X My, S).

THEOREM 5.4.1 (see [25]). Let V,cQ(M®Q, V,CQ(M, M®Q be two irreducible Q-
representations of G(AL) with central characters wj, whereby V FVo*. Then L(V ®V,, 2 o ,
and for w6V, 9eAy a right D(Af)-invariant measure on P(C) we have (2111:)'158@’01/\526;‘[‘23 x

(0,0) L(V X Vs, 2)-QcQ®C. If L(V,XV,, 2)6(6@(3)* , then for some @, v,, ¥, the integral be-
longs to (Q®C)*. W

5.5. Proof of 5.1.2. According to 5.1.2", 5.3.2, and 5.3.3 it suffices for us to prove
the following. Let ,'VCQl (M)@Q- be an irreducible Q-representation of G(Af), and let Ey be
as in 5.3.2, b). Then for any cpe‘/i%, 0,6V, v,6Ey we have '(2ni)"S$¢le52En‘Qs(x-m(V))‘l-L(x, 1)

L(V,2)-Qc(3®C , and if L(x, 1) = 0, then for some @, v, v, the integral is nonzero. This
follows directly from 5.4.

Proof of 5.1.1. We shall show that we are in the situation of 4.5. It is evident from
[20] that all conditions of the beginning of part 4.5 are satisfied. It remains to verify
the condition of Lemma 4.5.

G(Af) acts on Mg, and the restriction of this action to SLz(Af) commutes with projection
onto S. If «6S has characteristic p, then SL;(Af) — the set of components of the fiber
over o — coincides with P? (Q ) equipped with the obvious action of SL,(A") in terms of pro-
jection onto SL2(Qp).
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We define the SL,(Af)-morphism ordy:0* (MYRQ—> Fo (P! (Q.)) by the formula ordy{(f)(x)=
«d,f-ord7'p [(this means the following: take KcG(A/) such that fEO*(K\M®Q and find
the order of the zero ordyf in the component of the fiber on K\ M corresponding to x; the
number ordyf/ordxp does not depend on the choice of K]. We must show that the image of ordy
is QC@Q(P‘(Q 5)) — the constant funetioms. If this were not so, there would arise a nonzero
SL2 (Af)-morphism ©* (MBQ—~Fq(P'(Q,))/Q. But the representation on Fo(P'(Q,)/Q 1is irre-
ducible and nonautomorphic [since SLz(Af) acts by projection onto SL2(Qp)], while o* (M)B®Q
is automorphic. Contradiction.

6. Values at Two of the L-Functions of the Product of Two

Modular Curves

For all notation see Sec. 5. Here we shall construct explicitly a large subgroup in

H (MXM, QQ2)cK,(MXMZTQ, and compute the mapping of the regulator on it by Rankin's
method. The idea of the section is due to S. Bloch, who considered the case of the surface
Xo(37) x Xa(37) (a letter to the author of March 19, 1982).

6.1. For (@, PP X P, a#p, let CopTMXM  be union of the diagonal, o x M, and_ﬁ x B.
Then for each open compact KcG(A/) the image of gCyg of the curve Cyp in K X K\M x M is a
curve of finite type over Q; we denote by Rcf-l (Q[M)(M] Q(2)) the submodule generated over
Q(G(AL)?] by the images of H (KGaE,Q(O)) in

H' (KX K\MXM, QO)cHYy (MXM, Q@)
where (a, B) runs through all pairs of distinct parabolic points.

We decompose the motif Q[M] by the action of G(Af) (see 5 1) and consider the corre~
sponding decomposition Q[M x M]. The parts contributing to H? are [M]OX[M]?®[’VI]2 [M]f)@
[M)' X [M]'. The first two terms are motifs of cyclotomic fields; regarding them, see Sec. 7.
We consider [M]'X[M]'=2 My, X My)BV OV ,=2EMyxv,8V 8V, 1f V=V,8y(det) for some char-
acter x, then My yv, decomposes into a sum of motifs of the form [x](1) and a critical motif,

We henceforth assume that V, %V ,8y(det). Let vaxv,CH:_; Myv.xve, Q(2)) be the V@V, -
component of R; let

Dy, xv,: =FHpg (Myv.xv,)=F'Hpg (My)OF Hapg (My)),
dim Qy,xy,=1.
The space HU@((MV «v)®R,R(l)} is two-dimensional; therefore, H((Mv.xv)®R, R2)=H% RN/

O®R is one-dimensional. On Hg) there is a natural Q-structure (see 3.1): if we set Ly xv,=
detH?B(Q(l))-(D*', then H%_EZ’®R. We recall that L(Vy x V2, s) is a holomorphic function of

s, LV XV, S)=L( vixvy S); LV, XVy1)=0, but [ (V, X V):i= %L(levi, 3) |s=1E(QOR)*.

THEOREM 6.1.1. We have Ry,yp,CHyy (Myixv)z Q(2)(see 2.4) and o (Rvixv) =L (Vi X V,)-Lv.xv,C
Hp(My,xv,, R(2).

Thus, Ha:w ((Mv,xv)z, Q(2)) contains a subspace for which in Hy% Conjecture 3.7 is satis-
fied: L(V XV $)=L (M, XM, 8).

We shall prove the theorem. We first show that Rv,xv,CH;g((MV,xV,)Zr Q2)).

Indeed, elements of H;(K\Cuﬁ, Q(0)) are triples of functions @=(9,, Py, Pg) on K\ M
such that ¢eO* (K\ M \{a, p})@Q and 0rde®y=-—orda®,, ordgPs= —ordg®e, ordgPy = —ord,pp. From
this it is evident that Hw(K\CaB,Q(O)) decomposes into a sum of the subspace spanned by
constant functionms and a subspace generated by a triple (9, 971, @), ord.®=1, ordﬁtp__]_ Ac-
cording to 5.5, we may assume that ¢ and (9,9"!, ) came from a standard proper model over Z,
therefore, such elements belong to H ((M><M)z, Q(2)) The subspace spanned by constant func-
tions goes over into zero under pro;ectlon onto H&t(MV’XV,, Q(2), V,#V,@y (det).

We now compute the regulators. Let o,6Q (My;), v;#0. Then =, ('UI®'D_2)EH?$(MV,.X;,,-®R,

R(1))=H%(Mv.xv,®R, R(1))*, is a generator of (Zv_xv,®R)*=(Hfg;(lexv,®R. R(1))/®v,xv,®R)*.
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Theorem 6.1 now follows from the next lemma and 3.6.2 [since det H?(My,%y,®Q, Q) is o(V,)2-
AEEE

LEMMA 6.1.2.

a) {1gpRv,xva 31(@x®52) Y =m0V )V )Y 'LV XV, 2) XQCQ@C,

b) { Lvxvs W (0,87y) ) =e(0 (V) 0(V,) QcQeC.

Proof. a) Let @,y y, be the projection onto H:;z (My,xv,» Q(2) of the element corre-

sponding to @=(Pa, 95, 9g). Then (rgPrxv, M (v,®,) ). = (2ni)! 5 log [@a]- v, AvsEn 2% (0 (V) 0 (Vo)) ! -
_ M(C)

LV XV, 2)-Q, according to 1.8 and 5.4._ Since for distinct @, B, K functions of the form g,

generate all of O*(M) and L(V, XV, 26(QgC)* everything follows from 5.4,

b) We carry out the computation. Let eg be a generator of H,‘@(Mvi, Q), and let ei be a
generator of H‘I@(ler Q(1); let €Y€Hg (Mv" Q), el'é... be such that (ep e}') = (e¥, ¢!y =1;
i
let u;=aef+a;le! be a generator of Q! (Myi)CHl(MV:®R, C){a/€R). Then = (U®U,) = (a0a,!) *
(e°®ey)) 4 (- (e)! ® &) is a generator of Dy,xy, and I=(x' .0 " ,°®e' moddy,xy, is a genera-
tor of Py,xv.. We now recall that Vi~U®w(V)'(det), whence Myps==M, X[o(V)], therefore, vi =
e(@ (V) (a0 +a'el) is a generator of Qt (MV*) [see the proof of 5.2.1, c¢)]. Finally, we

i

have (!, m, (m@v';) y =g (V) -e@V))=¢e@(V,) oy B

7. Cyclotomic Fields

In this section we construct an explicit basis in le F, Qu+1)=Ky (F)®Q for
cyclotomic F and compute the regulator mapping. We thus prove the conjecture of Sec. 3 for
values of Dirichlet L-functions (this conjecture coincides with Gross's conjecture). The
construction presented below is a generalization of Bloch's construction [9, 24] of a basis
in Ks.

7.0. The symbols <...,...> (see [27]). We first define a "universal" symbol. The

localization exact sequence gives isomorphisms K (Z[Xg ..., Xp (1— X5 .. X)7'], (X)) 5 Ki(Z{xg, ...,
X2]1(1 — X, .-+, Xn))- We denote by ( xg, «+-- Xy ) €K1 (Z[Xgs + oy Xy (L—X0 -+« %), (x%0)) the preimage
of the element {Xi, ..., X 6K, (Z[Xg, ..., Xa]/(1— X5 ... X,)) 5 for n = 0 let <x¢> be the preimage of 1.
Suppose now that A is a commutative ring, /c A is an ideal, aq,...,an are elements
of A with @€/ , and the element 1 — ag ... an is invertible in A. There arises the morphism
prZ (X, ey Xn (1— X0 %)= 4, p(x)=2a,, p((x))Cl; we denote by (@, ..., ) €K, (A, ) the image
of ( Xy, +.-, Xp under the morphism p. It is clear that Y2 ( Xg, cea, Xp ) =P Xy o0ey £, ) -
LEMMA 7.0.1. We assume that all aj for i > 1 are invertible; we have a€K,(A) for i 2
1, 1—ay... a,6K (A, I). Then (@, ...,a,) coincides with the symbol {l—a,...a, a, ..., a,)€
K. (A, D).
Proof. It suffices to consider the universal case A=Z[x, X', ..., x&!, (1—xp...x,)7"],

I = (xp). Localization again gives an isomorphism K,,+1(A,1)3K,,(A/(1—x0....x,,)A), which takes
both our symbols into the same element.l

We can thus use the following notation. Let f, @,...,q,6A and the ideal /T A be such
that £ is invertible in A, ai are not zero divisors, and the element g¢:=(l—f)ar!...qa;!
belongs to [fCA. We set

(fo, oo @y =g, @y, .., @ ) EH' S (A, 1, Qe+ 1))C Koy (A, 1)OQ.

We carry out all computations of regulators for Z -cohomologies with rational coeffi-
clents.

LEMMA 7.0.2. Let A be a ring of functions on a smooth, affine variety over R, letY:=
SpecA/IcX , and let Z be a relative cycle on X(R) modulo Y(R). We assume that there is
a branch logf of the logarithm' f such that log f is single-valued on % and is equal to U on

0%. Then |1o{f. @i ...,a={logfdlogain ... Adloga,
£ A
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The proof is an exercise to 1.1, 1.2, ®

7.1, The Main Theorem, Let A=Q[f, ..., %], I=(¢;(1—£))CA. Thus, Spec A = A" and Spec
A/l cA® 1is the union of the hyperplanes tj = 0 and tj = 1. We denote by S./A" a rela-
tive simplicial scheme — "the resolution of singularities' of the scheme S/A®: this scheme
S./AN is the coskeleton S./AmR of the normalization of S. As usual, if F is a field, then
Af:=A"®F,... ; if f is a rational function on A?., then AfjCAF is the complement to the

divisor f.

The next result follows immediately from the spectral sequence connected with a simpli-
cial scheme, the compatibility of the regulator with it, and Borel's theorem.

LEMMA 7.1.1. a) For any field F we have K,(Af, S.fr)=Kn(F), H&(A';‘,S.F.Q(b))= . (F,
Q(b)).
b) Let ¥E={(¢,...,t)|t€R, 0<¢,<1JCR* be a relative cycle on R® modulo S(R). If f€
H'% ' (AE, S.c, Q(n+1)) corresponds to f€Ky, (C)®Q=H',(C,Q(z41)), then rg(f) =ir_q,(f)ec/
2ni)1Q. W ‘
c) If F is a number field, then the mapping H';"(A?:, S.F, Q(n+1))—>HC/(2ni)n+l Q, ‘taking
!

vy into gfgi (Y)), where i runs through all C-points of the field F, is an imbedding; more-

over, the composition of this mapping with the product of the projections C/(2ri)**''Q—+R of
taking the real and imaginary parts is an imbedding. ®

The plan of what follows is to construct many elements of H'f;l (AF, S.r, Q(n41)) with
the help of symbols and compute their regulators. By the lemma we then will have elements
of H:’(F,Q(n-}-l)) together with their regulators.

We fix a cyclotomic field F. Let WEF, ®z=1 be a root of 1. If two collections (aij),
(bjk) of positive integers are given and the index i runs through the values 1,...,n, then

we set fg(0): = H(l —oll tf’i)H (1 ——coHtf"’)'! ~ a rational function on AII}.
J ¢ R H

LEMMA 7.1.2. For any n, w there are collections (a), (b) such that
L (1—fas @) IL£7%61- Ap 3

2 Cos: = Il ai— X I o3 #0.
J ¢ R

For the proof see part 7.2,

We choose a, b as in the lemma and set [y, (0): =Ca {f, ¢, ..., LJEH S (AR, Spin, Qr+1)) 5
we denote by the same symbol the preimage of I, p(w) under the canonical morphism S.p¢/AFp —
Sen ! AR

" d;..EMMA 7.1.3. The canonical morphism H"}'(Asg, S.F, Q(n_].]))r——}esH";l(A;(f).S-F(f)v Q(r+1) is an
imbedding.

Proof. It is easy to see that for any C-point i of the field F the cycle ¥ lies in

o on. Therefore, |Igpi(y)=\Ipi(tesy) for yeH"f', and the lemma follows from 7.1.1, c). ®
Ac(if) ) YEH

LEMMA 7.1.4. a) The element 7, p(w) lies in the image of the imbedding
H'G' (AR, S.p, Qa+1)=H' (AR () S-rey. Qln+1)).

b) I4,p(w) depends only on w (and does not depend on the choice of g and b in Lemma
7.1.2).

c) For any C-point i of the field F we have
s ik .
S rpil (0) =3 -nr€C/(2niy*'Q.
z

k> 1
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Proof. c¢) By Lemma 7.0.2 grmila‘b(m)=C-1§logfdlogt1A...Adlogt,,=glog(1—mt1...t,.) x
& &

dlog tiA ... Adlog t, (here the branch of the logarithm is equal to O for t; =...=ty = 0).
j

Making the change of variables P,==IIt,, we obtain the usual integral representation of the
polylogarithm. =1

a) will be proved in part 7.2.
b) follows from a), ¢), and 7.1.1, ¢c). B

1 We have thus comstructed a mapping l: (roots of 1 in F)\{l}~H"}' (A%, S.r, Q(r+1))=
HY, (F, Qn4-1)).
THEOREM 7.1.5. The mapping I possesses the following properties:

a) For any g€GalF/Q we have Il(gw) = gl(w).
b) L(w) = (—1)"1(w).

c) For any C-point i of the field F we have

Tpil (0) =2 -’%ﬁ'—ff €2ni)*RcC/ (2ri)*'Q.

k>l

Proof. a) follows from the naturality of all constructions; c) follows from 7.1.4, c).
Part b) follows from c¢) and 7.1.1, c), since replacement of w by w™! changes rg into the
complex conjugate quantity and hence multiplies Re(Im)rgy by %1; it remains to use injectiv-
ity.

By the way, from b) there follows the well known
COROLLARY. For any root of unity weC we have

> soc€2ni)* (Q+iR). W

COROLLARY 7.1.6. Let F = Q(w), w 2 1, and let ¢¢GalF/Q be complex conjugationm.

a) The mapping @,:Q[GalF/Q]/(1~(—1)"c)-Q[Gal F/Q] -H'y(F, Q(r+1) =Ko, (FI®Q, Pu(g)=
gl(w) is an isomorphism.

b) We decompose the motif Q{F] by the action of Gal F/Q:Q[F]=@®[x]. Then dimH;([X].
Q(n + 1)) is equal to 1 if x(c) = (1) and to 0 if y(c) = (—1)®*1. The element @, y:=—
Sx ' (@)Po(g) is a generator of H'y([x], Q(r+1). We have

rg®o, 2€Q* (2 5 L (1, $)lsm—n CCOQ/(211)™Q.

In particular, for the motif [x] Conjecture 3.4 is satisfied.

The proof follows immediately from 7.1.5: we first compute I®%Py x. If w is the primi-
tive root of degree f and ¥ is primitive, then

ar —_
o= 3 1 @m= 1" @R o LB o )Lt nt DEQ @) 1L (1, omon
aG(2/f7), 1

If glf and ¢ is a primitive character modulo g, then

1%, x=(g/ F)*! IT a—x)-p™y TP f/ey
mnpfe

From the obvious nonvanishing of the L-function at n + 1 it follows that @, xs<0, if x(C) =
(—=1)™., Hence, ¢, is a monomorphism and hence an isomorphism, since the dimensions are the
same (Borel's theorem). ®

7.2. Proof of Lemmas 7.1.2 and 7.1.4, a). We begin with Lemma 7.1.2.

LEMMA 7.2.1. There is a pair of integral matrices (aij), (bij) of dimension n x 2071
such that
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1) all aij, bij 2 2;

2) for any ig there is a permutation ¢;6Z,n-1 such that a;;=big;j) for any i = ig;
3) Z(H aT;'—HbT,‘):,éO
J N 1

Derivation of 7.1.2 from 7.2.1. Condition 1) ensures that (1— f)II¢;1€ll¢,- A, condition
2) that (1—f)ell(1—¢)A,, and hence from 1) and 2) we obtain condition 1.2.1. Condition 3)
is 1.2.2.

We prove 7.2.1. Let di1,...,0p, Bi,...,8, be collections of integers with aj, Bj 2 2,
ai = B; for any i. We construct the desired matrices aij = aij (01y+4.,00), bij = bij(Bl,---,
Bn) by induction on n. If n = 1, we set @33 = 01, b11 = B1. Suppose now that n > 1, We
define the matrices aijs bij by the formula

{an, j<om Bar J <20,
a, = . b=
J ﬁnr ./ > 2’1—2’ "] {a,,, ] > 2,'_21

for 1 < n

L T #EY J <282,
=bi=\b6, s Bre - Bac), S> 202
It is easy to see that 1) and 2) hold and the number of part 3) is H(ai—]— i_l)?éo- ]

i

7.2.2. Proof of Lemma 7.1.4, a). Let n = 1. The localization exact sequence

H4(AL, Sk, Q(2) ~ H ' Ar, SF(f)Q(Q))—>?H15¢ (Fo, Q(1))

(in the sum v runs over all zeros and poles of f) shows that the image of the first arrow
coincides with the intersection of the kernels of the manual symbols at the points v. Now
all manual symbols {f, t}y are equal to zero by the Steinberg identity, as required.

Suppose now that n 2 2.

Step A. We introduce notation. We set Al = A% T = A"(t;...ty) is the complement to
the union of the coordinate planes ¢;=0; Sf=SNTr=yT{"' (Ti™' 1is given by the equation

t=1); T""={(t1,. vt
corresponding Meyer—Vietoris exact sequence shows that
Im (H'' (A", S, Qe+ 1))>H i (Ah.S.m, Q+1))D
SKer (H"3' (A%, .y, Qe+ 1) = H (T, STn.Qr+1)))-

mHti=1}‘éT"; Un=Tn\T""; Sg=8"NU». Then Ar=Ap»"UT", and the

Therefore, it suffices to prove that the restriction of 7, p(w) to (T?f), S%(f)_) is equal to
zZero.

Step B. We note that t{ are invertible on T! and equal to 1 on T‘]} 1odile., tEH”(T”
T7™', Q(1)). Therefore, {f,,... JESEH (T, uTT Q(n))=H‘9¢(T",ST,Q(n)) is defined.

Ve use the following fact: if «, peH (X,Y), a, _ﬁ are the images of o, B in H(X), then
{o, By ={ot, B}={w, BYEH (X, ¥). We apply it to a=j,,(@EH, (U Sh, Q1) p={t,. ., i} €H "y (T,
SR, Q(n)). The restriction of (w) to (Tr(lf), SrTl(f)) is by 0.1 the symbol {q, ﬁ}={a ﬁ} C! x
(2 {1— o, {tl,,,_,tn}}—-z{l-—u)ﬂt?ik, {t,,..,,t,,}})_ Each term {l—oI¢it,{¢,..., ¢,}}=1a;; {l—a)Htall,

- X

{¢tf,... tani}}  is the preimage of the symbol {l—w[it, {¢,..., t}6H 5" (U™ Sb, Q(n-+1)) under the
mapping ty > tqij .

tep C. It remains to show that the symbol is equal to zero. Let S'T =S} uyT=1, §t.=.
we con51der TP ! as a torus with coordinates ti,...,tp-1. Then S*O7T"1= S%7!  and this in-
tersection is transversal. According to 2.1.4, there is the exact localization sequence
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LS HG T S5Q D) > H G (U, S, Qe 1) > Hig (7, S5 Q). From it and the
monomorph1c1ty of the restriction H";”(T",S';., Q(n—l—l))—»H';l(U", Q(n+1)) (which follows, as
in 7.1.3, from the argument with regulators) it follows that the morphism H'g'(U" Sj..
Qr+1)>H% T, $27Y, Q)@H S (U, Q(r+1) is an imbedding. It is clear that the restric-
tion of our symbol to U is equal to O (the Steinberg identity), and its image in H*(I"7,

$77Y, Q(n)) coincides with i,*({f1,..., ta)), where i,*:H o (T", Sp)-»H o (", S2-1).  Thus, it re-

L% .
mains to show that in = 0. We use regulators: we shall first prove that the cohomological

arrow is equal to O and then use injectivity (Borel's theorem).

Step D. The morphism ig is included in the long exact sequence ...»f o (7", §;-)'*H.s¢ 7n,

*

ill o~
S;_)»HM(T"",S';TI);-there is an analogous exact sequence for the other cohomologies; these

sequences are connected by the morphism r.

LEMMA 7.2.2.1. H g, (T", S2) 1is a free H..9¢ (F) -module with generator {ti,...,tp}. An
analogous fact holds for the other cohomologies.

The next result follows from Borel's theorem.
COROLLARY 7.2.2.2, The morphism 1g:H (T, S7.)>Hp(T"@R, S7.@R) is an imbedding.
LEMMA 7.2.2.3. For an imbedding Fe.C we consider the manifolds T¢=T"QC ,... . We

have Hg (Té, Sfc, Q) =Q@Q(—1)® ... ©Q(—n) as mixed Hodge structures; the other gl = 0. The
morphism in Betti cohomologies is equal to O.

Proof. 1Indeed, H% (T¢, St Q Q)=Q(—n)=Q-rg{t), ..., ¢} the other Hi = 0. From this and
the exact sequence 2.2.4.0 for cohomologies we obtain by induction on n that Hg; (Tc, Ste, Q)=

0 for i # n, 1}*\ is equal to O in the cohomologies, and the factors in the weighted filtrationm
on H':@(T?;,gfc, Q) are Q(—i), 0 € i € n. It remains to prove that the weighted filtration on
HD is decomposable. By induction it suffices to verify that the term F% in the Hodge filtra-
tion is defined over Q. A generator of F? is the form (2ni)*dlog ¢, A ... Ndlog?, . We shall

ni

show that its periods over all cycles are rational. Let ®=exp — 2 We consider the unit

cube in R® and decompose it into n + 1 pieces by the hyperplanes Zx,=j+kl, j=0,...,n—1.
1

The images of these pieces under the mapping tj = exp2mix7 form a basis in Hn(TE, S%c, Q).
The integrals of our form over them coincide with the volumes of the pieces. They are ra-
tional, as required. ®

The lemma can be reformulated as follows: in the exact sequence of mixed Hodge struc-—
. 1,* = ]
tures > Hy (T, S?.)-—>H"ﬂ (T, S?.)—'LH:” (771, §7') ... the morphism i; is equal to 0 and the
remaining short exact sequence splits. From this we obtain

COROLLARY 7.2.2.4. The morphism i; for ‘& -cohomologies is equal to O. [}

The last step: by induction on n we show that Igm:H 4 (7", S7.)>Hg (T"®R, S7.®R) is an
imbedding and the morphism i:; for & -theory is equal to O. Suppose we know this for n — 1.

For the commutativity of rg and 1: and 7.2.2.4 we have Ign—0i,*=0. But r@,,_ is 1in-
jective, and hence 1:‘1 = 0. Injectiveness of Ig®s now follows from the commutativity of the
diagram

0—H (T, Sn- N>H 4 (T", S")—>H.¢ 7, Sm->0
¥ Dn—1 V' Dn V' Dy
O0—Hg (T, SN Hg (T7, Sty Hg (T?, S7) >0

and the injectivity of Ig, ;, and Ig, (induction + 7.2.2.2). ®
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