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1. Introduction

Let K/k be an extension of fields, and assume that it is primary: the algebraic closure of k in K is
purely inseparable over k. The most interesting case in practice is when K/k is a regular extension: K/k
is separable and k is algebraically closed in K. Regularity is automatic if k is perfect. (For K/k finitely
generated, regularity is equivalent to K arising as the function field of a smooth and geometrically connected
k-scheme.)

In the theory of abelian varieties over finitely generated regular extensions K/k with respect to some field
of “constants” k, there is a generalization of the Mordell–Weil theorem, due to Néron [26] (in his thesis) and
Lang–Néron [19], and in this theorem a crucial role is played by the K/k-trace and the K/k-image of an
abelian variety A over K. These constructions are also ubiquitous in many problems concerning families of
abelian varieties. (The family is parameterized by a nice base V over k, and K = k(V ).) For an arbitrary
primary extension of fields K/k, the K/k-trace of A is a final object in the category of pairs (B, f) consisting
of an abelian variety B over k equipped with a K-map of abelian varieties f : BK → A, where BK denotes
the scalar extension B⊗k K; we write (TrK/k(A), τA,K/k) to denote such a final object (if it exists). Likewise,
the K/k-image of A is an initial object in the category of pairs (B, f) consisting of an abelian variety B over
k equipped with a K-map of abelian varieties f : A → BK ; we write (ImK/k(A), λA,K/k) to denote such an
object (if it exists). Roughly speaking, the K/k-image is the largest quotient of A that can be defined over
k, and the K/k-trace is the largest abelian subvariety of A that can be defined over k. A precise description
along these lines requires some care in positive characteristic. These concepts are due to Chow ([3], [4]).

Despite the importance of Chow’s K/k-trace and K/k-image and the Lang–Néron theorem in arithmetic
geometry, unfortunately no detailed general reference on these topics has been available entirely in the
language of schemes. The papers of Chow ([3], [4]) and the book on abelian varieties by Lang [18] discuss
the K/k-image and K/k-trace and develop their properties, but entirely in Weil’s framework [34]. Similarly,
in Lang’s modern book [20] the Lang–Néron theorem is proved in Weil’s language. In connection with my
work in [5], where the Lang-Néron theorem plays a crucial role, I was motivated to write this expository
account of a scheme-theoretic approach to Chow’s results and the Lang–Néron theorem. In some instances
the old and new methods are expressing similar ideas, but in other cases where we make extensive use
of infinitesimal or flat descent methods it is less clear how much overlap there is. For example, our use of
infinitesimal group schemes in the proof of the fundamental Chow regularity theorem (Theorem 5.5) replaces
the ineffective “sufficiently large” aspect of the original version of the theorem (as in [3, Cor. to Thm. 8] and
[18, VIII, Thm. 3]) with a simple explicit lower bound.

We begin in §2 with some intuition and examples related to Chow’s work and the Lang–Néron theorem
(including a precise statement of the latter). In §3 we summarize some background facts and terminology
from algebraic geometry (centered largely on Grothendieck’s descent theory and group schemes) and prove
some other additional results for convenient reference later; some of the topics discussed in §3 are used in
§2. In our development of the K/k-image in §4, we prove that the canonical map λA,K/k : A → ImK/k(A)K

is surjective with connected kernel that may be non-smooth in positive characteristic (Example 4.4). The
behavior of the K/k-image with respect to extension of the ground field k is treated in §5. The key result
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here is that the formation of the K/k-image commutes with linearly-disjoint extension on k when K/k is
regular. This is the most important fact in Chow’s theory, and it is also the hardest to prove.

In §6 we develop the dual theory of the K/k-trace τ = τA,K/k : TrK/k(A)K → A whose kernel is K-finite
with connected Cartier dual. We show by example (Example 6.3) that ker τ may not be connected in positive
characteristic, and we also prove the one fact that is not a trivial consequence of duality and the theory of
the K/k-image: if K/k is regular then ker τ is connected. In terms of the dual map λ = λA∨,K/k : A∨ →
ImK/k(A∨)K this means that kerλ has vanishing multiplicative part when K/k is regular. In §7 we prove
the Lang–Néron theorem, following some of the same reduction steps as in [20] and retaining the key idea
of exploiting the fact that certain Hom-schemes are quasi-compact (a result known in the pre-Grothendieck
era in the form of Chow coordinates). The reader is encouraged to begin with §2 and §7. We conclude in
§8–§10 with a scheme-theoretic development of the theory of Néron–Tate heights for abelian varieties over
rather general ground fields as in the context of the Lang–Néron theorem.

A nice application of the theory of the K/k-trace and the Lang–Néron theorem is Grothendieck’s spec-
tacular proof that an abelian variety of CM-type over an algebraically closed field must be isogenous to
an abelian variety defined over a finite extension of the prime field. (In characteristic zero we can replace
“isogenous” with “isomorphic”, but in positive characteristic this cannot be done and hence the result really
is non-trivial.) The key to constructing the right abelian variety over a finite extension of the prime field
is to form a suitable K/k-trace. We refer the reader to [27] for an exposition of Grothendieck’s proof. In
§3 of Raynaud’s Bourbaki report [28] on Grothendieck’s generalization of the Ogg–Shafarevich formula, the
reader can find some additional elegant applications of the Lang–Néron theorem. Some more recent papers
that apply the Lang–Néron theorem and discuss constructions of the K/k-image and K/k-trace for finitely
generated regular extensions K/k are [15] (which gives a construction of the K/k-image using Albanese
varieties) and [13] and [29] (which give Raynaud’s construction of the K/k-trace using Picard varieties).

Terminology and Notation. For any field k, a k-variety is a separated and geometrically integral
k-scheme of finite type. If V is a finite-dimensional vector space over a field k then P(V ) = Proj(SymV )
denotes the projective space classifying hyperplanes in V . The dual of an abelian variety A is denoted A∨.
For any scheme S and S-scheme X, if S′ → S is a map of schemes then XS′ and X/S′ denote X ×S S′

considered as an S′-scheme in the usual manner; we use similar notation for base change applied to S-maps
between S-schemes. If S′ = Spec A′ then we may write XA′ and X/A′ (and X ⊗A A′ if also S = Spec A)
rather than XS′ and X/S′ .

An extension of fields K/k is primary if k is separably closed in K, is separable if K is a direct limit
of finitely generated extensions that each admit a separating transcendence basis over k (one of several
equivalent definitions; see [22, Thm. 26.2]), and is regular if it is separable and primary (so in particular, k
is algebraically closed in any regular extension of k).

We indulge in one notational convention that should not cause too much confusion: if K/k is a primary
extension and E/k is an arbitrary extension, then EK denotes the fraction field of the domain (E ⊗k K)red
obtained by passing to the quotient of E⊗k K by its unique minimal prime ideal. Beware that if E and K are
given as subextensions of an ambient extension L/k, then the domain (E⊗k K)red maps to the compositum
of E and K inside of L but this map is an injection if and only if E and K are linearly disjoint over the
intersection of E ∩K with the algebraic closure of k in L (exercise!), in which case EK maps isomorphically
onto the compositum. We could alternatively speak throughout in the language of linear disjointness, but
this is too cumbersome. The property that makes the notation EK useful is that EK/E is again a primary
extension [7, IV2, 4.3.2] and if E′/E is an extension then E′(EK) = E′K. This allows us to use transitivity
arguments without having to think twice. Note also that if K/k is regular then EK/E is regular because
separability of K/k is inherited by EK/E.

2. Motivation and examples

The duality theory of abelian varieties shows that the concepts of K/k-image and K/k-trace are dual
to each other in an evident manner. It is not a requirement in the universal property that the universal
morphism τ : TrK/k(A)K → A be a closed immersion. Also, it is not a requirement in the universal property
that the universal morphism λ : A → ImK/k(A)K have connected (or smooth) kernel or be surjective. The
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behavior of the K/k-image and K/k-trace with respect to extension of the ground field and the reason for
their existence will depend in an essential way on the hypothesis that K/k is a primary extension.

If K/k is finitely generated and regular then there is a way to visualize the K/k-trace, as follows. Consider
an abelian variety A over K as an “algebraic family” of abelian varieties over k in the sense that K = k(V )
for a smooth k-variety V and (by shrinking V ) A is the generic fiber of an abelian scheme A over V . Each
fiber Av has a semisimple decomposition over k(v) in the sense of the Poincaré reducibility theorem, and the
K/k-trace is (roughly speaking) the part of these fibral decompositions that is “the same” across all fibers
(or, equivalently, is independent of the parameters in the base V ). For this reason, for any primary extension
K/k the abelian variety TrK/k(A) over k is called the fixed part of A relative to the extension K/k. The
scheme-theoretic image of TrK/k(A)K in A (for any primary K/k) is an abelian subvariety of A, called the
K/k-maximal abelian subvariety of A, but beware that in positive characteristic it is often not “defined over
k” (in contrast with TrK/k(A)K); see §6 for further discussion of this issue.

Suppose that A is an abelian variety over a field K that is finitely generated and regular over a field k,
so K = k(V ) for a smooth k-variety V . Consider the problem of whether or not A(K) is finitely generated.
Shrinking V if necessary, let A be an abelian scheme over V whose generic fiber is A. Since A is V -separated
and V -flat, A (V ) is naturally a subgroup of A(K). (In fact, since A is a smooth and proper group over
the normal base V , the valuative criterion for properness and an extension lemma of Weil [1, 4.4/1] ensure
that A(K) = A (V ), so all elements of A(K) may be identified with cross-sections to the structural map
A → V .) This makes it geometrically clear that if the family of abelian varieties Av has a “common isogeny
factor” A0 over k, which is to say that if A admits (A0)V as an isogeny factor over V , then A(K) contains
“constant sections” coming from A0(k) ⊆ (A0)V (V ). Such a subgroup A0(k) may be very large (e.g., if k
is algebraically closed). Algebraically, if A admits an isogeny factor (A0)K with A0 defined over k, then
A0(k) is a subgroup of A0(K) = (A0)K(K) and modulo a finite subgroup it injects into A(K). In this way,
we see that the existence of isogeny factors defined over k is a geometric obstruction to A(K) being finitely
generated when k algebraically closed. This motivates consideration of the quotient

(2.1) A(K)/τ(TrK/k(A)(k))

as a more reasonable group which one may hope to prove is finitely generated, where τ : TrK/k(A)K → A
is the canonical map. Since ker τ is an infinitesimal K-group when K/k is regular (Theorem 6.12), for such
K/k we can consider TrK/k(A)(k) as a subgroup of A(K) and so we omit τ from the notation in (2.1). The
reasonableness of considering (2.1) is confirmed by:

Theorem 2.1 (Lang–Néron). If K/k is a finitely generated regular extension and A is an abelian variety
over K, then A(K)/TrK/k(A)(k) is a finitely generated group.

We will prove Theorem 2.1 in §7.

Example 2.2. Let K/k be a finitely generated regular extension and let E be an elliptic curve over K. We
say E is constant (with respect to K/k) if E ' (E0)K for an elliptic curve E0 over k, and non-constant (with
respect to K/k) otherwise. A necessary condition for constancy is that j(E) ∈ K lies in k, but this is not
sufficient. In our development of the Chow trace we shall prove that the canonical map TrK/k(A)K → A is
an isomorphism for any abelian variety A over k, so the constant case of the Lang–Néron theorem for elliptic
curves is the assertion that E0(K)/E0(k) is finitely generated for any elliptic curve E0 over k.

Now suppose that E is non-constant. In this case we claim TrK/k(E) = 0, and so the Lang–Néron theorem
for E and K/k says that E(K) is finitely generated. Letting E0 = TrK/k(E), in the general theory of the
Chow trace we will see that the canonical map τ : (E0)K → E has finite kernel, and so if E0 6= 0 then E0

must be 1-dimensional and τ must be an isogeny. Thus, to prove TrK/k(E) = 0 for a non-constant elliptic
curve E over K, it suffices to show that a non-constant elliptic curve E over K cannot be K-isogenous to
an elliptic curve of the form E′

K with E′ an elliptic curve over k. Suppose otherwise, so there is an isogeny
f : E′

K → E. The kernel G ⊆ E′
K is a finite K-subgroup of E′

K , whence E′
K/G ' E and so to get a

contradiction it suffices to prove:

Theorem 2.3. Let K/k be a regular extension of fields, and let E′ be an elliptic curve over k. Every finite
K-subgroup G in E′

K is induced from a (necessarily unique) finite k-subgroup of E′.
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The main issue in the proof of this theorem is that the connected-étale sequence of G may be non-split
when K is not perfect. The connected-étale sequence and other background concerning group schemes are
discussed in §3. Note also that if we consider replacing elliptic curves in Theorem 2.3 with higher-dimensional
abelian varieties (such as a product of two supersingular elliptic curves) then there are counterexamples to
the k-descent conclusion when char(k) > 0 and G is not K-étale.

Proof. If the identity component G0 is the base change of a finite k-subgroup of E′ then passing to the
quotient by this subgroup would reduce us to the étale case. Hence, it is enough to separately treat the
cases of connected G and étale G. The connected case is trivial in characteristic 0. The étale case in any
characteristic is settled by Lemma 3.11 (taking H in this lemma to be E′[N ] for a nonzero integer N killing
G).

It remains to treat the connected case in characteristic p > 0. In this case G must have p-power order (Ex-
ample 3.10), say pn0 with n0 ≥ 0. The key point now is that an elliptic curve over a field with characteristic
p > 0 (unlike higher-dimensional abelian varieties) contains a unique infinitesimal subgroup of length pn for
each n ≥ 0. Indeed, for any regular curve over a field there is a unique infinitesimal closed subscheme with
any desired length supported at a rational point, and in the case of elliptic curves and subgroups supported
at the origin we use the kernel of the relative pn-Frobenius map (Definition 3.15) to settle the existence
aspect for order pn for each n ≥ 1. The unique infinitesimal subgroup of E′ with order pn0 therefore gives
the required descent from K to k. �

Example 2.4. Let K0 be a global field and let K = K0(t1, . . . , tn) with n ≥ 1. If A is an abelian variety
over K then A(K) is finitely generated by Theorem 2.1 because TrK/K0(A)(K0) is finitely generated (by the
usual Mordell–Weil theorem over K0), and there is a nonempty open U ⊆ Pn

K0
such that A extends to an

abelian scheme A over U . Thus, for all u0 ∈ U(K0) we get an abelian variety Au0 over K0 and there is a
natural map between finitely generated groups

ρu0 : A(K) = A (U) → Au0(K0).

If A has large rank over K and one can control the kernel of the specialization map at u0 then one can
hope to find fibers Au0 with large rank over K0. For example, it is a theorem of Silverman [30, Thm. C]
that if n = 1 and TrK/K0(A) = 0 then ker ρu0 = 0 for all but finitely many u0 ∈ U(K0); Silverman’s proof
requires characteristic 0, due to a use of resolution of singularities, but the argument can be modified to avoid
resolution and to thereby work in any characteristic (for n = 1). Néron [26] proved a weaker specialization
result for all n > 0: there are infinitely many u0 ∈ U(K0) for which ρu0 is injective.

3. Some preliminary results

To make our arguments as self-contained as possible, we need to review some background facts and
terminology related to Grothendieck’s fpqc descent theory (which vastly generalizes classical Galois descent)
and group schemes over a base scheme (which vastly generalize classical group varieties over a field). We
also give proofs for some other results that will be needed in what follows.

An excellent introduction to Grothendieck’s descent theory is [1, Ch. 6] (along with [7, IV2, §2.2–2.7]). A
basic question in the theory is the following: given a faithfully flat and quasi-compact (fpqc) map of schemes
S′ → S, such as Spec(A′) → Spec(A) for a faithfully flat map of rings A → A′ (the main example for
us being an extension of fields k → K), can we identify the category of S-schemes as a full subcategory
of the category of S′-schemes? We also want to relate properties of an S-morphism f : X → Y (such
as properness, surjectivity, finiteness, smoothness, etc.) with the corresponding properties of the induced
S′-morphism fS′ : XS′ → YS′ , and to relate “structures” on an S-scheme X (such as quasi-coherent sheaves,
closed subschemes, group scheme structure, etc.) with corresponding “structures” on XS′ equipped with
suitable descent data with respect to S′ → S. See [1, Ch. 2] and the references therein for the fundamental
definitions and results related to smooth and étale morphisms of schemes.

In general the natural map HomS(X, Y ) → HomS′(XS′ , YS′) is injective, and one of the first important
results in fpqc descent theory is to characterize the image of this injection. To formulate the answer, we
introduce some notation: if Z ′ is an S′-scheme then we write p∗1(Z

′) and p∗2(Z
′) to denote the schemes over
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S′′ = S′ ×S S′ induced by base change along the projections p1, p2 : S′′ ⇒ S′. For example, consider a finite
Galois extension of fields k′/k with Galois group G, and take S′ → S to be Spec(k′) → Spec(k). The natural
map of k-algebras

(3.1) k′ ⊗k k′ →
∏
g∈G

k′

defined by a⊗ b 7→ (ag(b))g∈G is an isomorphism, and this identifies p∗1(Z
′) with the disjoint union

∐
g∈G Z ′

of copies of Z ′ indexed by G and it identifies p∗2(Z
′) with the disjoint union

∐
g∈G g∗(Z ′) of the various

“Galois twists” of the k′-scheme Z ′ with respect to the G-action on k′. The problem of descending objects
over k′ to objects over k was described by Weil and his contemporaries in terms of invariance with respect to
suitable Galois actions, and the preceding description of the p∗j (Z

′)’s as disjoint unions via (3.1) provides a
mechanism to translate such statements about Galois-invariance into statements concerning schemes over the
fiber product Spec k′×Spec k Spec k′. This makes Weil’s theory of Galois descent fit into the framework of the
following descent theorems with respect to general (not necessarily algebraic or separable) field extensions
and even general fpqc base change S′ → S.

If Z is an S-scheme, then for the S′-scheme Z ′ = ZS′ there is a canonical S′′-isomorphism ϕZ : p∗1(Z
′) '

p∗2(Z
′) via the common identification of each side with S′′ ×S Z. Using this ϕZ , the main result on descent

of morphisms is the following (see [1, 6.1/6(a)] for a proof):

Theorem 3.1 (Grothendieck). If S′ → S is faithfully flat and quasi-compact map of schemes and X and Y
are S-schemes then an S′-morphism f ′ : XS′ → YS′ has the form fS′ for a (necessarily unique) S-morphism
f : X → Y if and only if p∗1(f

′) = p∗2(f
′) in the sense that these maps correspond under the canonical

S′′-isomorphisms ϕX : p∗1(XS′) ' p∗2(XS′) and ϕY : p∗1(YS′) ' p∗2(YS′).

Example 3.2. If S′ → S corresponds to a finite Galois extension of fields k′/k, the isomorphism (3.1) converts
the criterion in Theorem 3.1 into the classical Galois-equivariance criterion for descending a k′-morphism to
a k-morphism. This is worked out in [1, 6.2/B]. In another direction, a diagram chase shows that if XS′ is
endowed with an S′-group scheme structure then this descends (necessarily uniquely) to an S-group scheme
structure on X if and only if the induced S′′-group scheme structures on p∗1(XS′) and p∗2(XS′) coincide via
the canonical S′′-isomorphism ϕX : p∗1(XS′) ' p∗2(XS′).

Remark 3.3. Even if one is only interested in Theorem 3.1 or other descent theorems for the special case
S′ = Spec K and S = Spec k corresponding to a field extension K/k, it is crucial in some proofs to apply the
descent machinery to the fpqc morphism T ′ = XS′ → X = T that is generally not a map between spectra of
fields. Thus, even for practical purposes it is useful to allow the generality of S′ → S as above.

As we have noted already, in practice one does not just want to (uniquely) descend morphisms but also
quasi-coherent sheaves (from XS′ to X), closed subschemes, properties of morphisms, etc. For many standard
properties P of morphisms of schemes (such as properness, surjectivity, finiteness, smoothness, etc.; see [7,
IV2, 2.7.1] and [7, IV4, 17.7.3(ii)] for typical properties) one has that an S-map f : X → Y satisfies P if and
only if fS′ : XS′ → YS′ does. The problem of descent of an S′-scheme to an S-scheme in general is a subtle
one, even for finite Galois extensions of fields, but in a special case we have a simple criterion that notably
applies to abelian varieties (and is a special case of a general criterion of Grothendieck [1, 6.1/6(b)]):

Corollary 3.4. Let k′/k be a finite Galois extension of fields and let X ′ be a quasi-projective k′-scheme. Let
G = Gal(k′/k). To specify a k-scheme X equipped with a k′-isomorphism Xk′ ' X is equivalent to giving
the data of k′-isomorphisms αg : g∗(X ′) ' X ′ satisfying the cocycle condition αg1g2 = αg1 ◦ g∗1(αg2) for all
g1, g2 ∈ G. Such an X is necessarily quasi-projective over k.

A k′-group scheme structure on X ′ descends to a k-group scheme structure on such an X if and only if
each αg is a k′-group scheme map.

To functorially descend a quasi-coherent sheaf on XS′ to one on X there is a necessary and sufficient
criterion that is natural generalization of a classical Galois-action criterion (see [1, 6.1/4], applied to the fpqc
morphism XS′ → X). In the case of quasi-coherent ideal sheaves this leads to the following key fact that we
will often use without comment:
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Theorem 3.5. Let S′ → S be faithfully flat and quasi-compact, and let X be an S-scheme. The map
Z 7→ ZS′ from the set of closed subschemes of X to the set of closed subschemes of XS′ is injective, and a
closed subscheme Z ′ ↪→ XS′ descends (necessarily uniquely) to a closed subscheme Z ↪→ X if and only if
p∗1(Z

′) = p∗2(Z
′) as closed subschemes of p∗1(XS′) ' p∗2(XS′).

In particular, if X is an S-group scheme and Z is a closed subscheme of X then Z is an S-subgroup
scheme of X if and only if ZS′ is an S′-subgroup scheme of XS′ .

Example 3.6. If k′/k is a finite Galois extension of fields and X is a k-scheme then the theorem says that a
closed subscheme Z ′ in Xk′ descends to one in X if and only if the natural isomorphism g∗(Xk′) ' Xk′ for
each g ∈ Gal(k′/k) carries g∗(Z ′) to Z ′; this is the classical Galois-stability criterion. If K/k is an arbitrary
extension of fields, A is an abelian variety over k, and B′ ⊆ AK is an abelian subvariety over K that descends
to a closed subscheme B ⊆ A then B is necessarily an abelian subvariety of A.

In the theory of group schemes, the main results that we require take place in the category of group
schemes of finite type over a field k. We will sometimes have to work with possibly disconnected k-group
schemes, but in the connected case over k there is never disconnectedness arising from extension of the base
field because a connected k-scheme X with X(k) 6= ∅ is geometrically connected over k (i.e., X ⊗k K is
connected for any extension field K/k); this geometric connectivity is a special case of [7, IV2, 4.5.13].

Theorem 3.7. Let k be a field, and let G be a k-group scheme of finite type. For any closed k-subgroup
scheme H in G there is a unique H-invariant faithfully flat k-map π : G → G/H to a separated finite
type k-scheme such that the action map G × H → G ×G/H G is an isomorphism, and π is initial for H-
invariant morphisms from G to other schemes. In particular, if K/k is an extension field then the natural
map GK/HK → (G/H)K is an isomorphism.

If G is a smooth k-group then G/H is k-smooth, and if in addition H is normal in G in the sense that
the action map G × H → G via (g, h) 7→ ghg−1 factors through H ↪→ G then G/H has a unique k-group
structure compatible with that on G.

Proof. This follows from [12, IVA, 3.2] and Theorem 3.1. In the special case that H is a k-finite commutative
group scheme, these results are special cases of [25, Thm. 1, p.111]. �

Example 3.8. If f : G → G′ is a k-group morphism between finite type k-group schemes then G/(ker f)
is naturally a k-group scheme of finite type and G/(ker f) → G′ is monic, hence a closed immersion [12,
VIB, Cor. 1.4.2]. That is, G/(ker f) is naturally a closed k-subgroup of G′. In particular, if f is surjective
and G′ is smooth then G/(ker f) ' G′. As a special case, if f : A → B is a map between abelian varieties
over a field k then A/(ker f) is an abelian variety and so it is naturally an abelian subvariety of B.

Example 3.9. If G is a finite commutative group scheme over a field k and H ⊆ G is a closed k-subgroup
then #G = #H ·#(G/H) where the order #X of a finite k-scheme X is the k-dimension of its coordinate
ring. Indeed, since G×H ' G×G/H G we just have to check that the finite flat map G → G/H has constant
fibral degree equal to #H, and this equality is clear because its geometric fibers are isomorphic to H via
translation. As a simple consequence, we see that if G has prime order then H = 0 or H = G.

Example 3.10. Let G be a finite commutative group scheme over a field k, and let G0 be its identity
component; this is geometrically connected over k and (for topological reasons) is a subgroup scheme of G.
Since the formation of the finite commutative k-group G/G0 is compatible with extension on k, by extending
scalars to an algebraic closure k of k and using that each connected component of Gk contains a unique
k-rational point we see that Gk is uniquely and functorially the product of G0

k
and a constant group (that in

turn is canonically identified with Gk/G0
k
' (G/G0)k). Hence, G/G0 is k-étale. By [8, Ch. I, 9.1, 9.5/2], the

case G0 6= 0 can only occur in characteristic p > 0, in which case G0 ' Spec(k[x1, . . . , xN ]/(xpe1

1 , . . . , xpeN

N ))
as pointed k-schemes for some N ≥ 0 and e1, . . . , eN > 0, so the order of G0 is a power of p.

We call the diagram
0 → G0 → G → G/G0 → 0
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the connected-étale sequence of G and we call G/G0 the étale part of G and denote it Gét; the formation
of this diagram is functorial in G and commutes with any field extension on k. We have just seen that the
connected-étale sequence uniquely and functorially splits over an algebraic closure k, so by Galois descent it
uniquely and functorially splits when k is perfect (i.e., when k/k is Galois). This sequence can fail to split
when k is imperfect, and this possibility will arise in a crucial step in our proof of an important result of
Chow (Theorem 5.5). For this purpose, the following descent lemma (along with Lemma 3.14) will be useful.

Lemma 3.11. Let K/k be a regular extension of fields and let H be a finite commutative k-group. If G ⊆ HK

is an étale K-subgroup then it arises by base change from a unique étale k-subgroup of H.

Note that the regularity of K/k is a crucial hypothesis in this lemma. Indeed, one gets many counterex-
amples in characteristic p > 0 for purely inseparable K/k by taking K = k(a1/p) for a ∈ k× not a pth power
in k and H equal to the non-split p-torsion extension of Z/pZ by µp classified by the non-trivial element
a mod (k×)p ∈ k×/(k×)p as in [16, 8.7.1]. In any characteristic, another source of counterexamples in the
absence of a regularity hypothesis is k-étale H and K/k a finite Galois splitting field for H.

Proof. The uniqueness is clear by Theorem 3.5. Pick a separable closure k′ of k, and let K ′ = k′ ⊗k K.
Since k is separably closed in K we see that K ′ is a field and K ′/K is Galois with the same Galois group as
k′/k. Hence, if we can solve the descent problem for K ′/k′ then the k′-descent Γ′ of GK′ ⊆ HK′ in Hk′ is a
Gal(k′/k)-stable k′-subgroup because of the uniqueness of descent and the fact that Γ′⊗k′ K

′ = GK′ ⊆ HK′

is visibly Gal(K ′/K)-stable. Using Galois descent with respect to k′/k, the k′-descent Γ′ in Hk′ then must
descend to a k-subgroup Γ of H that solves the original problem: Γ has K-fiber in HK that coincides with
G because its K ′-fiber in HK′ is GK′ by construction. This shows that it suffices to treat the case when k
is separably closed, so we now assume k to be separably closed. In particular, H ét = H/H0 is a constant
k-group. By expressing K as a direct limit of finitely generated regular extensions of k we can assume that
K/k is finitely generated. Hence, K = k(V ) for a smooth k-variety V .

The composite map G → HK → H ét
K has kernel G∩H0

K that vanishes since G is K-étale, so G is identified
with a closed K-subgroup of H ét

K . But H ét is constant, so each closed K-subgroup of H ét
K arises by base

change from a unique closed k-subgroup of H ét. By replacing H with the preimage of this latter k-subgroup
under the quotient map H → H ét we can assume that G maps isomorphically to H ét

K . In other words, the
data of G amounts to a splitting of the connected-étale sequence of HK , and we wish to prove that this
forces the connected-étale sequence of H to be split. More generally, if

0 → H ′ → H → H ′′ → 0

is a short exact sequence of finite commutative k-groups (i.e., H ′ is closed in H and H/H ′ ' H ′′) and if
there is a splitting after extending scalars to K = k(V ) then we claim that there is a splitting over k. By
“smearing out” from the generic point Spec K of V , a K-splitting extends to a V0-splitting of the diagram

0 → H ′
V0
→ HV0 → H ′′

V0
→ 0

for a suitable dense open V0 ⊆ V . The set V0(k) is non-empty since V0 is smooth over the separably closed
field k, so specializing a V0-splitting at any v0 ∈ V0(k) gives a splitting of the original exact sequence over
k. �

The methods in [25, §14] show that if k is a field and G is a finite commutative k-group then the
functor S 7→ HomGp/S(GS ,Gm,S) on k-schemes (where Gp/S denotes the category of group schemes over
S) is represented by a finite commutative k-group D(G), the Cartier dual of G, and the canonical map
G → D(D(G)) is an isomorphism (“double duality isomorphism”). For example, D(Z/nZ) = Gm[n] = µn.
The same methods work over any base ring, so for any base scheme S0 and any finite locally free commutative
group scheme G over S0 there is a finite locally free commutative group scheme D(G) representing the functor
S 7→ HomGp/S(GS ,Gm,S) on the category of S0-schemes, and G ' D(D(G)). If S′0 → S0 is any S0-scheme,
then we have naturally D(G)S′0

' D(GS′0
) as S′0-groups. In the special case that the base S0 is Spec k for a

field k, since an inclusion between Hopf algebras over a field is faithfully flat [33, 14.1] it follows that that a
map f : G′ → G between finite commutative k-groups is a closed immersion (resp. faithfully flat) if and only
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if D(f) is faithfully flat (resp. a closed immersion). Using Nakayama’s Lemma on fibers and fibral flatness
criteria [7, IV3, 11.3.10], the same assertion carries over to maps between finite locally free commutative
group schemes over any base scheme S0.

Example 3.12. A finite commutative group scheme G over a field k is multiplicative if D(G) is étale over k.
If k is separably closed then this says that D(G) is constant, or equivalently (by double duality) that G is a
finite product of groups of the form D(Z/nZ) ' µn (hence the terminology). In particular, if k has positive
characteristic p then a multiplicative group is connected if and only if it has p-power order. In the case
of perfect k with characteristic p > 0, we may apply Cartier duality to the uniquely and functorially split
connected-étale sequence of G to uniquely decompose G into a product of four kinds of finite commutative k-
groups: étale with étale dual (this is the prime-to-p part of Gét), étale with connected dual (this is Gét[p∞]),
connected with étale dual (this is D(D(G0)ét), the multiplicative part of G), and connected with connected
dual (this is D(D(G0)0), the local-local part of G). These four factors are respectively denoted Grr, Grl,
Glr, and Gll since a finite scheme over a perfect field is étale if and only if it is reduced. In the case of
algebraically closed k, this is all worked out in [25, p. 136].

Example 3.13. If f : A → B is an isogeny between abelian varieties over a field k and f∨ : B∨ → A∨ is
the dual isogeny then the finite commutative k-groups ker f and ker f∨ are each canonically isomorphic to
the Cartier dual of the other (in a manner respecting extension of the base field). This is stated over an
algebraically closed field in [25, §15, Thm. 1], but the proof there works without restriction on the base field.
There are more refined questions that one can ask concerning double duality for finite k-groups and abelian
varieties over k, but we do not need to address such matters for our purposes.

Lemma 3.14. Let k be a perfect field with characteristic p > 0 and let H be a finite commutative k-group
with associated four-fold decomposition

H = Hrr ×Hrl ×Hlr ×Hll

as at the end of Example 3.12. For any extension field K/k and any closed K-subgroup G ⊆ HK , the natural
map

(3.2) (G ∩ (Hrr)K)× (G ∩ (Hrl)K)× (G ∩ (Hlr)K)× (G ∩ (Hll)K) → G

is an isomorphism.

Proof. If K is perfect then we have (Hrr)K = (HK)rr and similarly for the other three factors of H, so the
functoriality of the four-fold decomposition over K (applied also to G) gives the result in this case. For
general K, since the formation of G∩ (Hrr)K , . . . , G∩ (Hll)K commute with arbitrary extension on K we see
that the map (3.2) between finite commutative K-groups becomes an isomorphism after extension of scalars
to the perfect closure of K. Hence, it is an isomorphism. �

The final general concepts that we shall review from the theory of group schemes are the relative Frobenius
and Verschiebung morphisms. Fix a prime p and consider Fp-schemes. For any Fp-scheme S, let FS : S → S
be the absolute Frobenius morphism (identity on underlying topological spaces, the pth-power map on OS);
this is functorial with respect to arbitrary maps of Fp-schemes. For any S-scheme X and n ≥ 0, we let X(pn)

denote the S-scheme S ×F n
S ,S X obtained from X by base change through Fn

S . Roughly speaking, X(pn)

is obtained from X by replacing coefficients in the “defining equations” of X over S by their pnth powers.
This is well-behaved with respect to base change in the sense that if S′ → S is a map of Fp-schemes then
there is a natural S′-isomorphism (XS′)(p

n) ' (X(pn))S′ due to the functoriality of FS and FS′ with respect
to the map S′ → S. If f : X → Y is an S-morphism then f (pn) : X(pn) → Y (pn) denotes the induced map
after base change.

Definition 3.15. For n ≥ 0, the relative pn-Frobenius morphism FX/S,n : X → X(pn) is the unique S-map
whose composite with the projection X(pn) → X (over Fn

S : S → S) is Fn
X . For n = 1 we also use the

notation FX/S , and this is called the relative Frobenius morphism for X over S.
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This definition makes sense since the absolute Frobenius morphisms FX and FS are compatible via the
structure map X → S. Note that FX/S,n is an S-map whereas Fn

X is generally not (unless Fn
S is the identity,

such as for S = Spec κ with κ a finite field satisfying [κ : Fp]|n). Roughly speaking, FX/S,n is the map
induced by raising “coordinates” (over S) to the pnth power. Explicitly, for n ≥ 1,

(3.3) FX/S,n = FX(pn−1)/S ◦ · · · ◦ FX/S .

The map FX/S,n is functorial in the S-scheme X, is compatible with the formation of products in X over
S, and is compatible with any base change S′ → S in the sense that (FX/S,n)S′ = FXS′/S′,n via the natural
isomorphism (X(pn))S′ ' (XS′)(p

n). In particular, for an S-group scheme G the map FG/S,n is a morphism
of S-groups and F

(pm)
G/S,n = FG(pm)/S,n for any m ≥ 1.

For an S-group G that is commutative and S-flat, there is a canonical S-group map VG/S : G(p) → G [12,
VIIA, 4.2–4.3] called the relative Verschiebung morphism that satisfies VG/S ◦ FG/S = [p]G. The formation
of VG/S commutes with any base change on S and it is functorial in the S-group G. If G is a finite locally
free commutative group scheme over S then VG/S = D(FD(G)/S) [12, VIIA, 4.3.3]. For n ≥ 1, we define the
S-group map

VG/S,n
def= VG/S ◦ · · · ◦ VG(pn−1)/S : G(pn) → G,

so VG/S,n ◦ FG/S,n = [pn]G. In particular, [pn]G = 0 if FG/S,n = 0, and so by Examples 3.9 and 3.10 we see
that any finite commutative group scheme over a field is killed by its order.

Example 3.16. The map VGa,S/S vanishes because FGa,S/S is faithfully flat and [p]Ga,S
= 0. The subgroup

αp,S = kerFGa,S/S = SpecS(OS [T ]/(T p)) ⊆ Ga,S is the S-group scheme of pth roots of 0 (with additive
group structure), and it is a tautology that Fαp,S/S = 0 whereas Vαp,S/S = 0 due to the vanishing of VGa,S/S .

Example 3.17. By working over an algebraic closure k of k and using the explicit description of the relative
Frobenius in terms of pth-power maps, we see that (i) FG/k is an isomorphism if and only if G is étale over k,
and (ii) FG/k,n = 0 for large n if and only if G is connected. Hence, by (3.3) we can filter the connected part
G0 by kernels of successive iterates of relative Frobenius so that the successive quotients in the filtration have
vanishing relative Frobenius. On the maximal local-local quotient of G0 (the Cartier dual to D(G0)0) we can
apply the same procedure and then refine it further by using kernels of iterates of the relative Verschiebung
morphism (i.e., we form kernels of Frobenius iterates on the Cartier dual, and then dualize back). In this
way we can filter the local-local part of G with successive quotients whose relative Frobenius and relative
Verschiebung morphisms both vanish.

This motivates the question of describing all finite commutative k-groups G for which FG/k and VG/k

vanish. In case k is perfect (e.g., algebraically closed), such G’s are precisely products of finitely many copies
of the k-group scheme αp. Indeed, by Dieudonné theory over k [8, Ch. III, 1.4, 3.2, 3.3] the category of G’s
with FG/k = 0 and VG/k = 0 is antiequivalent to the category of finite-dimensional k-vector spaces, with G
of order pr going over to a vector space of k-dimension r, and the k-group αp of order p corresponds to a
1-dimensional k-vector space under this anti-equivalence. (As a special case, D(αp) ' αp over Spec(Fp) and
hence over any Fp-scheme by base change.) A useful consequence of this classification is the following result
that will be used in our proof of Chow’s regularity theorem.

Theorem 3.18. Let k be a perfect field of characteristic p > 0 and let G be a finite commutative k-group
such that FG/k and VG/k vanish. For any extension field E/k, the operation H 7→ T0(H) is a bijection from
the set of closed E-subgroups of GE to the set of E-subspaces of T0(GE). Moreover, H1 ⊆ H2 if and only if
T0(H1) ⊆ T0(H2).

Proof. Since k is perfect, we may and do fix an isomorphism G ' αn
p ⊆ Gn

a over k and then we claim (with
slight abuse of notation) that the operations W 7→ W ∩ αn

p,E and H 7→ T0(H) ⊆ T0(Gn
a,E) ' Gn

a,E are
inverse bijections between the set of vector subgroups of Gn

a,E and the set of closed E-subgroups of αn
p,E ;

this claim certainly implies the theorem. It suffices to check this general claim over an arbitrary algebraically
closed extension field E/k. Every closed E-subgroup of αn

p,E for such E is a product of copies of αp,E , and
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HomE(αp,E , αp,E) = E via the scaling action, so we easily get that the two operations are inverse to each
other. �

This concludes our background review of descent theory and group schemes, and now we provide proofs for
a few other necessary results. Let us begin with a crucial result due to Chow (see [3] or [18, Ch. II, Thm. 5]),
for which we give a Grothendieck-style proof via descent theory.

Theorem 3.19 (Chow). Let A and B be abelian varieties over a field k and let K/k be a primary exten-
sion. Any map of abelian varieties f : AK → BK is defined over k in the sense that the injective map
Homk(A,B) → HomK(AK , BK) is bijective.

This theorem is especially useful for separably closed k, in which case every extension K/k is primary.
In the proof of Theorem 3.19 and throughout later sections we will find it useful to invoke some elementary
concepts related to abelian schemes (i.e., smooth proper group schemes with geometrically connected fibers).
In [24, Ch. 6] there is given a systematic treatment of the basics (and much more) concerning abelian schemes.

Proof. Let K ′ = K ⊗k K. Since K is a primary extension of k, Spec K ′ is irreducible and in particular is
connected. By Theorem 3.1, it suffices to show that the two pullbacks p∗j (f) : AK′ → BK′ of f along the
projections p1, p2 : Spec K ′ ⇒ Spec K are equal. To prove that p∗1(f) = p∗2(f), we first check such equality
on a single fiber over Spec K ′. Consider the canonical point Spec K → Spec K ′ defined by the diagonal. The
pullback of each p∗j (f) via this point is f , so the desired equality is achieved on the fiber over the diagonal
point. With equality achieved on one fiber, now consider the K ′-maps induced by the p∗j (f)’s on `n-torsion
for n ≥ 1, with ` a fixed prime distinct from the characteristic of k (so ` is a unit on Spec K ′). These torsion
subschemes are finite étale over the connected base Spec K ′, and a map h : Z ′ → Z between finite étale
schemes over a connected scheme S is uniquely determined by its restriction Z ′s → Zs to fibers over a single
geometric point s of the base scheme S [7, IV4, 17.4.8]. Hence, p∗1(f) and p∗2(f) coincide on each AK′ [`n] for
all n ≥ 1.

To infer equality of p∗1(f) and p∗2(f) on AK′ , we want a map between abelian schemes over K ′ to be
uniquely determined by its restricton to all `-power torsion subgroup schemes. We shall appeal to a more
general sufficient claim: if A → S is any abelian scheme over a scheme S and if ` is any prime then the
collection of closed subschemes A [`n] for all n ≥ 1 is universally schematically dominant in A with respect
to S in the sense of [7, IV3, 11.10.8] (we only need the case when ` is a unit on S ). To prove this, by
working locally on S one can reduce to the case of noetherian S , in which case [7, IV3, 11.10.4, 11.10.9]
reduces the problem to the classical schematic density of such torsion-levels on geometric fibers. �

Theorem 5.5 ensures that the concept of “defined over k” for abelian varieties over K is both well-defined
and functorial when K/k is primary. We shall use this repeatedly without comment. An important corollary
is the validity of the Poincaré reducibility theorem over an arbitrary base field:

Corollary 3.20. Let k be a field. If Y is an abelian subvariety of an abelian variety X over k then there
exists an abelian subvariety Z ⊆ X such that the natural map Y × Z → X is an isogeny. In particular, the
isogeny category of abelian varieties over a field is artinian and semisimple.

Proof. A proof is given in [23, §12] when the base field k is perfect. (The proof is inapplicable for non-perfect
k because the underlying reduced scheme of a finite type k-group scheme can fail to be a subgroup scheme
when k is not perfect.) In the general case, if K/k is the perfect closure and Y ↪→ X is an abelian subvariety
then we may pick an abelian subvariety Z ′ ⊆ XK such that the natural map f : YK × Z ′ → XK is an
isogeny. Let XK → YK × Z ′ be an isogeny whose composite with f is multiplication by a nonzero integer.
The composite K-map

XK → YK × Z ′
pr2→ Z ′ ↪→ XK

descends to a k-map X → X by Theorem 3.19, and its schematic image Z ⊆ X is an abelian subvariety
that is an isogeny-complement to Y in X (as we may check after the faithfully flat extension of scalars
k → K). �
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Corollary 3.21. Let K/k be a primary extension of fields and let A be an abelian variety over k. Any
abelian subvariety of AK has the form A′K for a unique abelian subvariety A′ of A over k. In particular, if k
is separably closed then an abelian variety over k acquires no new abelian subvarieties under any extension
on the ground field.

Proof. By Theorem 5.5, passage from k to K does not change Hom-groups, and in particular does not
introduce new idempotents in the isogeny category, so if {Ai} is a collection of mutually non-isogeneous
k-simple abelian varieties such that A is k-isogenous to

∏
Aei

i (with ei > 0), then the Ai/K ’s are K-simple
and AK is K-isogeneous to

∏
Aei

i/K . Thus, by Poincaré reducibility over K, any abelian subvariety B in AK

is the schematic image of some K-map of abelian varieties
∏

A
e′i
i/K → AK for suitable e′i ≤ ei. By Theorem

3.19, this map descends to a k-map of abelian varieties
∏

A
e′i
i → A. The schematic image of this map is

an abelian subvariety A′ in A. Since the formation of schematic image commutes with the flat extension of
scalars from k to K, we conclude that B = A′K as abelian subvarieties of AK . �

4. The K/k-image

Throughout this section, K/k denotes a primary extension of fields. We begin with a definition:

Definition 4.1. Let A be an abelian variety over K. A K/k-image of A is an initial object (ImK/k(A), λ)
in the category of pairs (B, f) consisting of an abelian variety B over k and a K-map of abelian varieties
f : A → BK .

It is obvious that a K/k-image is unique up to unique isomorphism if it exists. An important example is:

Theorem 4.2. Let A be an abelian variety over k. A K/k-image of AK is given by the pair (A, 1AK
).

Proof. The assertion is that if B is any abelian variety over k and f : AK → BK is a map of abelian varieties
over K, then it arises as the base change of a unique k-map of abelian varieties A → B. This follows from
Theorem 3.19, since K/k is primary. �

Theorem 4.3. For any abelian variety A over K, the K/k-image exists.

Proof. If f : A → BK and f ′ : A → B′
K are maps of abelian varieties with B and B′ abelian varieties over

k, then (f, f ′) : A → BK ×B′
K = (B×B′)K is a map of the same sort. The image of this map is an abelian

subvariety of (B ×B′)K , and so by Corollary 3.21 it has the form XK for a unique abelian subvariety X in
B × B′. It is clear that f and f ′ respectively uniquely factor through the K-fibers of the natural k-maps
of abelian varieties X → B and X → B′, so we have shown that the collection of pairs (B, f) admits finite
suprema.

Each object (B, f) is uniquely dominated by an object (C, h) where C is an abelian subvariety of B and
h : A → CK is a surjection of abelian varieties (namely, take C to be the unique abelian subvariety of B
such that CK is the image of f ; here we once again use that K/k is primary). Thus, it is enough to make an
initial object in the category of pairs (B, f) such that f is surjective. Any such object is determined by the
K-subgroup ker f ⊆ A, and the construction of finite suprema shows that this collection of kernels is stable
under finite intersection in A. The descending chain condition in A thereby produces an initial object. �

Example 4.4. We give an example such that the map to the K/k-image has non-smooth kernel. Let K/k be
a non-trivial extension in positive characteristic p with k algebraically closed. Let E/k be a supersingular
elliptic curve, so the self-duality of E (see the proof of [16, 2.1.2]) implies that kerFE/k ' αp due to Examples
3.13 and 3.17. Let

G ⊆ (αp × αp)K ⊆ EK [p]×Spec K EK [p]
be an αp,K that is not defined over k as a K-subgroup of (αp × αp)K . (By Theorem 3.18, to pick such a G
amounts to picking a K-line L in the plane T0(α2

p,K) = K ⊗k T0(α2
p) such that L does not arise from a line

in the k-vector space T0(α2
p).) For A = (E ×E)K/G, we have ImK/k(A) = E(p) ×E(p) and the natural map

λ : A → (E × E)K/(αp × αp)K ' E
(p)
K × E

(p)
K
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is the K/k-image. The kernel of λ is isomorphic to αp,K , so ker λ is not smooth.

Let us now treat some formal properties.

Theorem 4.5. Let A be an abelian variety over K.

(1) If k/k0 is primary and (Imk/k0(ImK/k(A)), λ0) denotes the k/k0-image of ImK/k(A) then

(Imk/k0(ImK/k(A)), λ0/K ◦ λ)

is a K/k0-image of A.
(2) If K ′/K is a primary extension then (ImK/k(A), λK′) is a K ′/k-image of AK′ .
(3) The canonical map λ : A → ImK/k(A)K is surjective with (geometrically) connected kernel.

Proof. The first part is a tautology. The second part follows from the first part and Theorem 4.2. For
the final part, let H = ker λ. This is a (possibly non-smooth) closed subgroup of AK . The quotient A/H
is an abelian subvariety of ImK/k(A)K by Example 3.8. By Corollary 3.21, A/H must have the form XK

for a unique abelian subvariety X in ImK/k(A). For any K-map of abelian varieties h : A → BK with B
an abelian variety over k, there is a unique k-morphism of abelian varieties f : ImK/k(A) → B such that
h = fK ◦ λ, so h uniquely factors through the K-extension of f |X : X → B via the natural map A � XK

induced by λ. By universality, we conclude that the inclusion of X into ImK/k(A) must be an isomorphism.
Hence, λ is surjective.

It remains to show that H = kerλ is connected. Let H0 be the identity component and consider the
quotient A/H0. This is an abelian variety over K and the natural map

ρ : A/H0 → A/H = ImK/k(A)K

is a finite surjection with kernel H/H0 that is étale over K, so ρ is a finite étale covering. Let n be the
degree of this covering, so the map [n]K : ImK/k(A)K → ImK/k(A)K factors through ρ. The connected part
of ker[n]K is killed by ρ, so ρ is dominated by the base-change to K of the finite étale cover

ImK/k(A)/(ker[n])0 → ImK/k(A)

induced by [n]. We claim that the subgroup

ker(ImK/k(A)K/(ker[n]K)0 → A/H0) ⊆ (ker[n]K)/(ker[n]K)0 = (ker[n])étK

descends to a subgroup of the finite étale (ker[n])ét. This holds because for compatible separable closures
ks/k and Ks/K, the natural map Gal(Ks/K) → Gal(ks/k) is surjective (as K/k is primary, so ks ⊗k K is
naturally a subextension of Ks/K). Thus, there exists a unique abelian variety A0 over k equipped with a
finite étale map π : A0 → ImK/k(A) that descends the canonical map ρ : A/H0 → A/H.

For any abelian variety B over k, any K-map of abelian varieties h : A → BK admits a unique factorization
as fK ◦ λ where f : ImK/k(A) → B is a k-map of abelian varieties. Writing λ as ρ ◦ λ0 = πK ◦ λ0 for the
projection λ0 : A → A/H0, clearly there is also a factorization of h as gK ◦ λ0 for a unique map of abelian
varieties g = f ◦ π : A0 → B over k (uniqueness of g follows from surjectivity of λ0). Thus, the pair (A0, λ

0)
has the universal property of a K/k-image, and so the map πK carrying λ0 to λ must be an isomorphism.
This shows that H = H0 is connected. �

Remark 4.6. Theorem 4.5(2) is false if the primality condition on K ′/K is dropped. To give a counterex-
amples with regular K/k in arbitrary characteristic, let E0 be an elliptic curve over k such that E0 has
geometric automorphism group {±1}, let K ′/K be a quadratic Galois extension with k algebraically closed
in K ′ (so K ′/k is regular), and let A be the nontrivial quadratic twist of E0/K associated to K ′/K. In
this case A cannot arise from an elliptic curve E1 over k because otherwise the resulting K ′-isomorphism
E1/K′ ' AK′ = E0/K′ would descend to a k-isomorphism E1 ' E0 (since K ′/k is primary) and so would
give a K-isomorphism A ' E0/K , a contradiction. This non-constancy of A with respect to K/k forces
ImK/k(A) = 0 by Example 2.2 and duality, yet ImK′/k(AK′) = E0.
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Note that the functor ImK/k(·) carries finite products to finite products (since Hom(A × A′, X) =
Hom(A,X) × Hom(A′, X) for abelian varieties A, A′, and X over a field). Also, it carries isogenies to
isogenies since isogenies are characterized as having a two-sided “inverse” (up to multiplication by a non-
zero integer). Thus, for many questions about the K/k-image that take place in the isogeny category,
there is often no loss of generality by restricting attention to the case of K-simple abelian varieties. The
following useful result reduces many questions about the K/k-image to the case when the canonical map
λ = λA,K/k : A → ImK/k(A)K is an isogeny.

Corollary 4.7. For any abelian variety A over K there exists a unique abelian subvariety A′ ⊆ A such
that ImK/k(A′) = 0 (so ImK/k(A) → ImK/k(A/A′) is an isomorphism) and A/A′ → ImK/k(A/A′)K is an
isogeny.

Proof. Since the additive functor ImK/k commutes with products and carries isogenies to isogenies, by
Corollary 3.21 and Theorem 4.2 we see that A′ is the unique maximal abelian subvariety of A whose K-
simple isogeny factors are K-isogenous to an abelian variety defined over k. �

5. The K/k-image and base change

We now consider extension of the ground field. As before, K/k is a primary extension of fields and A is
an abelian variety over K. For any extension E/k, there is a unique E-map of abelian varieties

(5.1) IE/k : ImEK/E(AEK) → ImK/k(A)E

characterized by the property that composing

λ′ = λAEK ,EK/E : AEK → ImEK/E(AEK)EK

with (IE/k)EK yields the base change

λEK : AEK → (ImK/k(A)K)EK = (ImK/k(A)E)EK

of λ = λA,K/k. We remind the reader that EK denotes the fraction field of the domain (E ⊗k K)red, and it
is not the compositum in an arbitrary common extension of E and K over k (unless we restrict attention to
composites that satisfy a linear-disjointness condition over a suitable purely inseparable extension of k).

Theorem 5.1. The canonical map IE/k is a purely inseparable isogeny.

Proof. Since λ′ and λEK are surjective with connected kernels by Theorem 4.5(3), IE/k is surjective and
the EK-group scheme (ker IE/k)EK = (kerλ)EK/(ker λ′) is connected, so ker IE/k is connected. Hence, it
remains to compare dimensions. Quite generally, for a primary extension K/k we wish to give a “geometric”
description of dim ImK/k(A) in a manner that is unaffected by replacing K/k with EK/E (and replacing A
with AEK).

If X0 and X00 are abelian varieties over k such that X0/K and X00/K are K-isogenous then X0 is k-
isogenous to X00 (since K/k is primary). Thus, for any abelian variety X over K there is a well-defined
k-isogeny class CX,K/k of abelian varieties of maximal dimension that are K-isogenous to a factor of X,
and any abelian variety over k admitting a K-isogeny to a factor of X is k-isogenous to a factor of any
member of the distinguished k-isogeny class CX,K/k. Roughly speaking, CX,K/k corresponds to a maximal
isogeny-factor of X that can be defined over k. It is obvious that ImK/k(A) is a distinguished member of
this isogeny class for X = A, and so the dimension of ImK/k(A) is equal to the common dimension of the
members of CA,K/k.

The problem of finiteness of IE/k is thereby reduced to showing that the scalar extension k → E carries
members of CA,K/k to members of CAEK ,EK/E . If A′ denotes an isogeny-factor of A over K that is comple-
mentary to ImK/k(A)K then the proof of Corollary 4.7 shows that ImK/k(A′) = 0. Thus, it is enough to show
that if ImK/k(A) = 0 then ImEK/E(AEK) = 0. That is, if A admits no nonzero maps to abelian varieties BK

with B defined over k, then we must show that AEK admits no nonzero maps to abelian varieties BEK with
B defined over E. This property is transitive in E, so it is enough to treat separately the cases where E/k
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purely inseparable, separable algebraic, and separable in general. In each case, what we will really prove is
that if ImEK/E(AEK) 6= 0 then ImK/k(A) 6= 0. More precisely, since

λAEK ,EK/E : AEK → ImEK/E(AEK)EK

is a surjection, it suffices to prove that if AEK admits an EK-isogeny factor BEK for a nonzero abelian
variety B over E, then there is a nonzero K-map of abelian varieties A → XK for some abelian variety X
over k (and hence ImK/k(A) 6= 0).

First consider the case when E/k is purely inseparable, so EK/K is primary. By expressing E as a
direct limit of subextensions of finite degree over k, we may assume E to be of finite degree over k. We
can also assume that k has positive characteristic p (as otherwise E = k and we are done), so some relative
q-Frobenius twist B(q) (with q = pn for some n ≥ 0) is defined over k. Hence, A

(q)
EK admits a nonzero

isogeny-factor that is defined over k. A projection to such a factor descends from EK down to K since
EK/K is primary, so A(q) has a nonzero K-isogeny factor that is defined over k. However, the relative
q-Frobenius A → A(q) is a K-isogeny, so we conclude that A has a nonzero K-isogeny factor that is defined
over k. This takes care of the case when E is purely inseparable.

Now assume that E is separable algebraic, so we can assume E/k is a finite Galois extension. In particular,
EK = E ⊗k K. The Weil restriction ResEK/K(AEK) (see [1, 7.6]) is a product of copies of A, and it has a
K-isogeny factor given by the nonzero abelian variety ResEK/K(BEK) = ResE/k(B)K ; this equality is due
to compatibility of Weil restriction and base change. We thereby get a nonzero K-map of abelian varieties
from A to an abelian variety over K that is defined over k.

Finally, we may assume that E/k is separable, and since the separable algebraic case is settled we can
use a direct limit argument with E/k to see that it is enough to treat the case when E = k(t) is purely
transcendental of degree 1 over k. At the expense of separable algebraic increase on k (permissible by the
steps we have just settled), it may be assumed that k is separably closed and in particular infinite. Let
us assume that there is an abelian variety B over k(t) and a nonzero map f : AK(t) → BK(t) over K(t).
Since B extends to an abelian scheme B over a dense open U in P1

k, the infinitude of k allows us to find
t0 ∈ U(k) such that f extends around t = t0 and so may be specialized to define a nonzero K-map of abelian
varieties from A to (Bt0)K with Bt0 an abelian variety over k. (Non-vanishing of the specialization follows
from considering the finite étale `n-power torsion subschemes over U in the abelian scheme B for a prime
` 6= char(k) and all n ≥ 1.) �

The following corollary gives a criterion for an abelian variety A over K to be defined over k (i.e., for
λA,K/k to be an isomorphism) via a descent hypothesis on AEK relative to E for a separable extension E/k.

Corollary 5.2. Let K/k be a primary extension of fields and let A be an abelian variety over K. If there
exists an abelian variety B defined over an extension E/k such that AEK is EK-isogenous to a factor of
BEK , then the natural map

λ = λA,K/k : A → ImK/k(A)K

is a purely inseparable isogeny. This map is an isomorphism if AEK is EK-isomorphic to BEK and E/k is
separable.

Proof. We first claim that AEK has the same dimension as its EK/E-image; that is, we claim that the
canonical surjective map

λAEK ,EK/E : AEK → ImEK/E(AEK)EK

is an isogeny. This property is isogeny-invariant and is inherited by direct factors, so since AEK is an isogeny
factor of BEK the desired result follows from the fact that BEK has EK/E-image equal to B (by Theorem
4.2). By Theorem 5.1 we conclude that

dim ImK/k(A) = dim ImEK/E(AEK) = dimA,

so the map λ : A → ImK/k(A)K that is a priori surjective with connected kernel must be an isogeny and
hence is purely inseparable.

Now assume that E/k is separable and that there is an EK-isomorphism of abelian varieties ϕ : BEK '
AEK . We want to show that λ is an isomorphism. Equivalently, in view of Theorem 4.2, we need to
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show that A can be defined over k. By direct limit considerations with the separable E/k we can assume
E = k′(V ′) for a smooth variety V ′ over a finite separable extension k′/k, and by smearing-out of ϕ over
a dense open U ′ ⊆ V ′ and specializing at a closed point u′ ∈ U ′ for which k′(u′)/k′ is separable we may
assume E/k is finite and separable. By increasing E/k to be normal, transitivity (as in Theorem 4.5(1))
reduces us to treating the case when E/k is finite Galois, so EK = E ⊗k K and hence we may transfer
the Galois descent data on AEK (via the K-structure A) into Galois descent data on BEK relative to the
extension EK/K. However, Gal(EK/K) = Gal(E/k) and any EK-isomorphism BEK ' (BEK)σ = (Bσ)EK

of abelian varieties (for σ ∈ Gal(EK/E) = Gal(E/k)) uniquely descends to an E-isomorphism B ' Bσ

because EK/E is primary. Thus, we have Galois descent data on the abelian variety B relative to E/k, and
so by Corollary 3.4 we conclude that B = XE for an abelian variety X over k, with this equality respecting
the actions of Gal(E/k). Thus, AEK is EK-isomorphic to XEK = (XK)EK in a manner that respects the
actions of Gal(EK/K) = Gal(E/k) on both sides. By Theorem 3.1, this EK-isomorphism descends to a
K-isomorphism A ' XK , so A is defined over k as desired. �

The proofs of Theorem 5.1 and Corollary 5.2 use direct limit arguments with E/k, but they avoid the
issue of how the K/k-image behaves with respect to direct limit processes. Now we address this issue; the
next result reduces most questions about the K/k-image (and base change) to the case of finitely generated
extensions:

Lemma 5.3. If E = lim−→Ei is a rising union of extensions of k, then the natural map

IE/Ei
: ImEK/E(AEK) → ImEiK/Ei

(AEiK)E

is an isomorphism for large i. Also, if K = lim−→Ki is a rising union of primary extensions of k and Ai0 is

an abelian variety over some Ki0 with Ai
def= Ai0/Ki

for i ≥ i0 and A
def= Ai0/K , then the natural map

ImK/k(A) → ImKi/k(Ai)

is an isomorphism for all large i.

Proof. To show that IE/Ei
is an isomorphism for large i, first recall that ImEK/E(AEK)EK is constructed

as the largest quotient of AEK that is defined over E. The kernel of the quotient map λAEK ,EK/E is a
closed subgroup scheme of AEK and so is the base change of some closed EiK-subgroup Γ of AEiK for some
large i. The quotient AEiK/Γ over EiK might not be defined over Ei, but since its EK-fiber is defined
over E it is clear that by replacing i with some i′ ≥ i and Γ with Γ ⊗EiK Ei′K we may arrange that the
quotient AEiK/Γ is defined over Ei. We have now shown that for sufficiently large i there is a quotient Xi of
AEiK over EiK that is defined over Ei and has EK-fiber (Xi)EK equal to the quotient ImEK/E(AEK)EK

of AEK that is defined over E. Consequently, the maximality of this latter quotient over EK forces the
maximality of Xi as a quotient over EiK that is defined over Ei. This implies that the Ei-descent of the
abelian variety Xi, equipped with its quotient structure over EiK, is an EiK/Ei-image of AEiK . Hence,
IE/Ei

is an isomorphism for such large i.
Next, we turn to the behavior with respect to limits in K. The morphism

λ : A → ImK/k(A)K

descends to a map
λ′ : Ai′ → ImK/k(A)Ki′

over some subextension Ki′/Ki0 . It is clear via Theorem 3.19 that this gives a Ki′/k-image of Ai′ . �

We conclude our discussion of base change by studying an important case when the formation of the
K/k-image commutes with any (linearly disjoint) extension on k relative to K; without a doubt, this is the
most important theorem in the theory and all of the difficulties in its proof are related to purely inseparable
extensions in positive characteristic:

Theorem 5.4. Let K/k be a primary extension of fields and let E/k be an arbitrary extension of fields.
Assume either that E/k is separable or that K/k is regular. For any abelian variety A over K, the natural
map IE/k in (5.1) is an isomorphism. In particular, (ImK/k(A)E , λEK) is an EK/E-image of AEK .
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Note that the separability and regularity assumptions both hold if k is perfect.

Proof. By transitivity, it suffices to treat two cases: when E/k is separable, and when E/k is purely insepa-
rable with K/k regular. We first treat the separable case. By Lemma 5.3 it suffices to handle separately the
cases when E/k is finite separable and when E = k(t). In the finite separable case, so EK = E ⊗k K, it is
easy to reduce to treating the case when E/k is finite Galois. In this case we have Gal(EK/K) = Gal(E/k),
and the universality of

AEK → ImEK/E(AEK)EK

gives a natural action of Gal(EK/K) on the target that is compatible with the action on the source. This
descends to a Gal(E/k)-action on ImEK/E(AEK) because EK/E is primary; let us write X to denote the
descended abelian variety over k. The natural map

AEK → ImEK/E(AEK)EK = (XE)EK = (XK)EK

is equivariant with respect to the actions of Gal(EK/K), so it descends to a map A → XK as abelian
varieties over K. This latter map factors through the K-fiber of a unique map of abelian varieties

ImK/k(A) → X

over k. Extending scalars to E thereby gives a map of abelian varieties

ImK/k(A)E → XE = ImEK/E(AEK)

respecting projections from AEK , so this is an inverse to IE/k. Thus, IE/k is an isomorphism, as desired.
This settles the case when E/k is finite and separable, and so when E/k is separable algebraic.

Since we have verified compatibility with separable algebraic base change, by a transitivity argument we
may now assume that k is separably closed, and hence infinite. To handle E = k(t), it is enough to show
that for any abelian variety B over k(t), any map f : AK(t) → BK(t) over EK = K(t) uniquely factors
through

λK(t) : AK(t) → ImK/k(A)K(t).

Certainly B extends to an abelian scheme B̃ over a dense open U in P1
k, and so f extends to a map of

abelian schemes f̃ : AW → B̃K |W over a nonempty open W ⊆ UK . It is obvious that U(k) is contained in
W (K) with at most finitely many exceptions (as we are working in P1).

For each t0 ∈ U(k)∩W (K), the specialization f̃t0 uniquely factors through λ. Thus, kerλ is contained in
ker f̃t0 for all t0 ∈ U(k). In other words, the induced map

f̃ : (kerλ)W → B̃K |W

over W specializes to zero over U(k)∩W (K). This map factors through B̃K [n]|W with n = # kerλK(t), and
the resulting map (kerλ)W → B̃K [n]|W between finite flat W -groups specializes to zero over the infinite set
U(k) ∩ W (K). Since W is a nonempty open in P1

K , this implies that f̃ vanishes on (ker λ)W , and hence
f = f̃K(t) kills kerλK(t). Thus, f uniquely factors through λK(t) as desired.

Finally, we suppose that K/k is regular and E/k is purely inseparable (hence algebraic). Since k is
separably closed, E must be separably closed. By Lemma 5.3, we can assume [E : k] is finite. Clearly
EK = E ⊗k K since K/k is regular. If k has characteristic 0 then E = k and there is nothing to prove.
Thus, we may assume that the separably closed field k has positive characteristic p.

We shall reduce to the case when the natural maps

λ = λA,K/k : A → ImK/k(A)K , λ′ = λAEK ,EK/E : AEK → ImEK/E(AEK)EK

are isogenies. Let us first check that ImK/k(A) = 0 if and only if ImEK/E(AEK) = 0. Since the map AEK →
ImK/k(A)EK is surjective and factors through ImEK/E(AEK)EK (via (IE/k)EK), if ImEK/E(AEK) = 0 then
ImK/k(A) = 0. Conversely, assuming ImEK/E(AEK) 6= 0 let us show that ImK/k(A) 6= 0. By assumption,
there exists a nonzero morphism AEK → BEK for an abelian variety B over E, so composing with a relative
q-Frobenius B → B(q) such that B(q) is defined over k (e.g., q = [E : k]) allows us to assume that B is
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defined over k. In this case we may descend to get a nonzero morphism of abelian varieties A → BK because
EK/K is primary. Thus, ImK/k(A) 6= 0.

We now reduce to the case when λ and λ′ are isogenies. Since EK/K is primary, base change from K to
EK carries K-simple abelian varieties to EK-simple abelian varieties. We have proved the equivalence of
the vanishing of K/k- and EK/E-images for any abelian variety over K, and these “image” functors carry
isogenies to isogenies and commute with the formation of products. Thus, by Corollary 4.7, we can replace
A with the quotient by its unique abelian subvariety that splits (in the isogeny sense) the quotient map λ so
as to reduce to the case where λ is an isogeny without changing either the K/k-image or the EK/E-image
of interest. Since ker λ′ ⊆ (ker λ)EK , we conclude that the surjective λ′ also has a finite kernel and so λ′ is
an isogeny. This completes the reduction to the case when λ and λ′ are both isogenies. Since the map IE/k

satisfies
(IE/k)EK ◦ λ′ = λEK ,

IE/k must be a purely inseparable isogeny. In concrete terms, G = ker λ and G′ = ker λ′ ⊆ GEK are the
unique minimal connected finite subgroups of A and AEK such that A/G and AEK/G′ are respectively
defined over k and E. We wish to prove that G′ = GEK , but such a concrete formulation is not the way
we will make progress since it is hard to directly exploit the minimality properties that define G and G′.
Instead, we are going to indirectly show that the purely inseparable isogeny IE/k is smooth, and so it is an
isomorphism.

By Lemma 5.3, we may assume that the regular extension K/k is finitely generated, so K = k(V ) for a
smooth k-variety V . By shrinking V we may assume that A extends to an abelian scheme Ã over V and
that the isogeny λ : A → ImK/k(A)K extends to a map of abelian V -schemes

λ̃ : Ã → ImK/k(A)V .

Thus, for all v ∈ V (k) we have a well-defined specialization λ̃v : Ãv → ImK/k(A). Since EK is the function
field of the smooth E-variety VE , by possibly shrinking some more on V (in fact, no shrinking is needed) we
also have a map

λ̃′ : Ã×V VE → ImEK/E(AEK)VE

of abelian schemes over VE that smears out the map λ′ : AEK → ImEK/E(AEK)EK on generic fibers over
VE .

We now must formulate (and prove) Chow’s regularity theorem. This theorem pleasantly disentangles
the roles of E and k: it says that for any sufficiently large integer m there exists a dense open V(m) in
the m-fold product V m = V ×Spec k · · · ×Spec k V over Spec k such that for all extensions F/k and all
(vj) ∈ V(m)(F ) ⊆ V (F )m, the specialized surjective F -map of abelian varieties∑

λ̃vj : Ãv1 × · · · × Ãvm → ImK/k(A)F

is smooth (or equivalently, this map induces a “regular extension” of function fields in Weil’s terminology).
In other words, the universal flat surjective addition morphism

m∑
j=1

p∗j (λ̃) :
∏

p∗j (Ã) → ImK/k(A)V m

of abelian V m-schemes is smooth on fibers over the generic point of V m for large m.
Granting such a general result and also applying it to the situation with the EK/E-image over the

separably closed E, for large m we similarly get a dense open V ′
(m) in the m-fold product of V ′ = VE over E

with an analogous specialization property. Since E/k is a purely inseparable extension we can arrange for
V ′

(m) to map into V(m) under the canonical morphism from V ′m onto V m for all large m. This has the fantastic
consequence that for a common large m and an algebraic closure E of E and k, for (vj) ∈ V ′

(m)(E) ⊆ V(m)(E)

the E-maps
∑

λ̃vj
and

∑
λ̃′vj

are both smooth. However, (IE/k)E carries the first of these smooth surjections
to the second, and hence (IE/k)E is smooth, so IE/k is smooth! This forces the purely inseparable isogeny
IE/k to be an isomorphism, as desired. The regularity theorem of Chow is presented below. �
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Theorem 5.5 (Chow’s regularity theorem). Let V be a smooth variety over a field k. Let A be an abelian
variety over K = k(V ) such that A extends to an abelian scheme Ã over V . Let

λ̃ : Ã → ImK/k(A)V

be the unique map of abelian V -schemes that extends the canonical map λ : A → ImK/k(A)K . For any
m > dim A there exists a dense open V(m) in V m over which the flat surjective summation morphism

(5.2)
∑

p∗j (λ̃) : p∗1(Ã)×V m · · · ×V m p∗m(Ã) → ImK/k(A)V m

is smooth.

The fact that λ extends to λ̃ over all of V is a special case of a general extension lemma of Weil [1, 4.4/1]
(extending the Néron mapping property of abelian schemes to the case of a normal noetherian base), but
for our purposes in the proof of Theorem 5.4 it is enough to use elementary denominator-chasing to initially
shrink V to a smaller dense open over which λ extends to a map of abelian schemes, thereby bypassing the
need to use Weil’s lemma.

Proof. The case of characteristic 0 is trivial for any m ≥ 1, so we may (and do) now assume that k has
positive characteristic p. By using Corollary 4.7 and shrinking V , we can assume that the canonical map

λ : A → ImK/k(A)K

is an isogeny. By Theorem 4.5(3), kerλ is (geometrically) connected, so λ is a purely inseparable isogeny.
Hence, λ̃ is an isogeny.

The compatibility of ImK/k with respect to separable extension on k has already been established in the
part of above proof of Theorem 5.4 that is not conditional on Chow’s regularity theorem, so we may (and do)
assume that k is separably closed. Let A∨ and Ã∨ be the duals of A and Ã (see [2, Ch. I, Thm. 1.9] for the
general existence of the dual abelian scheme, or shrink V to make A → V projective so that Grothendieck’s
construction of the dual may be applied), and let

τ : TrK/k(A∨)K → A∨

denote the dual of the purely inseparable isogeny λ (since this dual map τ will later be called the K/k-trace
of A∨). A key technical problem is that we do not yet know that the finite ker τ is connected. The proof
of such connectivity will be given later (Theorem 6.12), using the general validity of Theorem 5.4 whose
proof has not yet been finished. (See Example 6.3 for examples of non-regular primary extensions K/k with
λ = τ∨ a purely inseparable isogeny and ker τ disconnected.)

Duality translates the universal property of λ into a universal property of τ : it is a final object in the
category of pairs (B, f) consisting of abelian varieties B over k and maps of abelian varieties f : BK → A∨

over K. This finality implies that the finite K-subgroup Hη
def= ker τ inside of TrK/k(A∨)K cannot contain

any nonzero K-subgroup defined over k in TrK/k(A∨)K , as otherwise we could replace TrK/k(A∨) with a
non-trivial quotient to contradict the minimality property of τ . In particular, the connected K-subgroup
H0

η = (ker τ)0 in TrK/k(A∨)[N ]0K (with N the order of Hη) cannot contain any nonzero K-subgroup in
TrK/k(A∨)[N ]0K that is defined over k. Let τ̃ : TrK/k(A∨)V → Ã∨ denote the isogeny that is dual to
the isogeny λ̃. The kernel H = ker τ̃ is a finite flat V -group, so by working on the K-fiber we see that
H ⊆ TrK/k(A∨)[N ]V . For any m ≥ 1, any extension F/k, and any (vj) ∈ V (F )m, the F -map of abelian
varieties

(5.3) (τ̃v1 , . . . , τ̃vm) : TrK/k(A∨)F → Ã∨v1
× · · · × Ã∨vm

is dual to
∑

λ̃vj and its kernel is the schematic intersection ∩Hvj inside of TrK/k(A∨)F . If this intersection
vanishes then (5.3) is a closed immersion of abelian varieties, and hence its dual

∑
λ̃vj is smooth. This

motivates us to consider the following rather concrete assertion concerning finite connected k-groups and
generic specialization of certain finite K-groups.
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Let B be a finite commutative connected k-group (such as TrK/k(A∨)[N ]0 above) and let G ⊆ BV be a
finite flat V -subgroup (such as the V -group H ∩ TrK/k(A∨)[N ]0V that is open and closed in H). Assume
also that the generic fiber Gη contains no nonzero K-subgroups that are defined over k as subgroups of BK .
For m > dimK T0(Gη) we claim that there exists some dense open V ′

(m) in V m such that for all F/k and
all (vj) ∈ V ′

(m)(F ) the intersection ∩Gvj in BF vanishes. Roughly speaking, the claim is that for a family
of subgroups {Gv} of B that is parameterized by a smooth k-variety V and is truly varying in the sense
that the generic fiber Gη contains no nonzero subgroup arising from a k-subgroup of B (there is no nonzero
“fixed part” in the family), an intersection ∩Gvj of sufficiently many generic specializations of the family is
equal to 0 (where “sufficiently many” can be taken to mean “more than dimK T0(Gη)”).

Once this general claim is proved, we can apply it to the preceding situation with the k-group B =
TrK/k(A∨)[N ]0 and G = H ∩ BV (so Gη = H0

η ). This gives that for m > dim A = dimK T0(A) the kernel
of (5.3) for any extension field F/k and (vj) ∈ V ′

(m)(F ) has vanishing connected part, and so is F -étale. Fix
such an m and consider the special case that F = k(V m) and (vj) is the generic point of V m. Since F/k
is regular, by Lemma 3.11 the étale kernel of (5.3) in this case arises from an étale k-subgroup Γm of B.
Smearing out from Spec F = Spec k(V m) provides a dense open U ⊆ V ′

(m) such that the restriction over U

of the canonical map

(p∗1(τ̃), . . . , p∗m(τ̃)) : TrK/k(A∨)V m → p∗1(Ã
∨)×V m · · · ×V m p∗m(Ã∨)

has kernel (Γm)U . Letting q : V m → V m−1 denote the flat projection away from the first V -factor, pick
ξ ∈ V m−1(k) in the non-empty Zariski-open q(U) ⊆ V m−1 (such ξ exists since k is separably closed and
V m−1 is k-smooth). Specializing at the generic point Spec K of the fiber q−1(ξ) = V thereby realizes (Γm)K

as a K-subgroup of Hη = ker τ that is defined over k as a subgroup of TrK/k(A∨)K . This forces Γm = 0,
whence (5.3) at the generic point of V m is a closed immersion. Hence, the dual map is smooth on fibers over
the generic point of V m, and this is (5.2) over the generic point of V m. We conclude that (5.2) is smooth
over a Zariski-open neighborhood V(m) of the generic point in V m as desired.

It remains to prove the above general claim concerning a connected finite k-group B and a finite flat
V -subgroup G ⊆ BV . We can assume Gη 6= 0. Since a nonzero finite connected commutative K-group
has nonzero kernel for its relative Frobenius morphism, we have kerFGη/K 6= 0. Thus, by shrinking V so
that ker FG/V is V -flat, we can replace G with ker FG/V and B with ker FB/k to reduce to the case when
FB/k = 0.

For any m ≥ 1, generic flatness over the reduced V m provides a dense open in V m over which the universal
m-fold intersection of fibers of the subgroup G ↪→ BV is flat over the base. Within this dense open locus in
V m, the vanishing condition on the m-fold intersection ∩Gvj is a Zariski-closed condition. We seek to prove
that if m > dimK T0(Gη) then this locally-closed locus in V m contains a non-empty open and hence (by
irreducibility) is Zariski-dense in V m. Since k is separably closed, for an algebraic closure k/k we see that
V m

k
→ V m is a homeomorphism. Hence, it is enough to solve our finite-group problem with k replaced by k

and V replaced by Vk; that is, we can assume k is algebraically closed. Here we use crucially that extending
scalars to k does not destroy the irreducibility and reducedness properties used above. With k algebraically
closed, the connected finite k-group B is naturally a product of a local-local group B1 and a multiplicative
group B2. The intersection Gη ∩ B2,K must vanish because it is a K-subgroup of the multiplicative B2,K

and all such K-subgroups arise from k-subgroups of B2 (as we can see via Cartier duality and the constancy
of D(B2)). Lemma 3.14 implies that Gη = (Gη ∩ B1,K)× (Gη ∩ B2,K) inside of BK = B1,K × B2,K , so Gη

is contained in B1,K . Hence, G ⊆ (B1)V and so we are reduced to the case when B is local-local.
Just as we reduced to the case FB/k = 0, now that B is local-local we can reduce to the case when the

relative Verscheibung morphism VB/k vanishes too. Thus, by Theorem 3.18, for any extension E/k the Lie
functor on the set of E-subgroups of BE sets up an inclusion-preserving bijective correspondence between
the set of such E-subgroups and the set of E-linear subspaces of the tangent space T0(B)E = T0(BE). The
main consequence of interest to us is that T0(Gη) must be a K-subspace of T0(B)K that contains no nonzero
k-rational subspaces.
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Working with the relative tangent spaces for G and BV along their identity sections over V , our problem
now translates into relative linear algebra: T0(G) is a subbundle of T0(B)⊗k OV whose generic fiber contains
no nonzero k-rational subspaces, and we seek to prove that if m > dimK T0(Gη) then on some dense open
locus of m-tuples (vj) in V m the intersection of the T0(G)vj

’s in T0(B) is equal to zero. It is obviously
enough to work with vj ’s that are k-points of V , as k is now algebraically closed. For any positive m at all,
consider the universal map

φm : T0(B)V m → (T0(B)V m/p∗1(T0(G)))⊕ · · · ⊕ (T0(B)V m/p∗m(T0(G)))

over V m. The induced map on fibers over a point (vj) ∈ V (k)m is the natural map

T0(B) → (T0(B)/T0(G)v1)⊕ · · · ⊕ (T0(B)/T0(G)vm),

and hence this fibral map is injective if and only if ∩T0(G)vj = 0.
Since φm is a map of vector bundles on V m, if it is injective on the fibers at some k-point ξ then it is a

direct summand over a Zariski-open neighborhood of ξ in V m. Thus, the locus of points ξ = (vj) ∈ V (k)m

such that ∩T0(G)vj
= 0 is a Zariski-open set in V (k)m. Since V m is irreducible, it therefore suffices (for

any particular m) to find some (vj) ∈ V (k)m such that ∩T0(G)vj
= 0. We may assume that the rank r of

T0(G) is positive. To prove the existence of such a (vj) if m > r, it suffices to prove (by induction on i) that
for 1 ≤ i ≤ r and any v1, . . . , vi ∈ V (k) such that ∩j≤iT0(G)vj in T0(B) has dimension at most r − (i− 1),
there exists vi+1 ∈ V (k) such that T0(G)vi+1 does not contain ∩j≤iT0(G)vj

in T0(B). More generally, for
any nonzero subspace T in T0(B) we claim that there exists v ∈ V (k) such that T0(G)v does not contain T .
If no such v exists then the composite map

T ⊗k OV → (T0(B)⊗k OV )/T0(G)

vanishes on all k-fibers and hence vanishes, so T0(G) contains T ⊗k OV and therefore the K-subspace T0(Gη)
in T0(B)K contains the nonzero k-rational subspace TK , a contradiction. �

6. The K/k-trace

As usual, we let K/k be a primary extension of fields.

Definition 6.1. Let A be an abelian variety over K. A K/k-trace is a final object (TrK/k(A), τ) in the
category of pairs (B, f) where B is an abelian variety over k and f : BK → A is a map of abelian varieties.

In view of the double-duality theorem for abelian varieties, the existence of the K/k-trace is obvious by
dualizing the K/k-image of A∨ and using the dual of its universal morphism. Combining this with Theorem
4.5(3) we get:

Theorem 6.2. Let K/k be a primary extension of fields, and A an abelian variety over K. The K/k-trace

τ = τA,K/k : TrK/k(A)K → A

exists, and the associated dual morphism is the K/k-image λA∨,K/k of the dual abelian variety A∨.

The image of the map τ as above is an abelian subvariety of A and it is called the K/k-maximal abelian
subvariety in [18]. By Theorem 3.19 and Theorem 4.5(3), this subvariety is defined over k if and only if ker τ
descends to a k-subgroup of TrK/k(A), and (by the universality of τ) this happens if and only if ker τ = 0,
or equivalently τ is a closed immersion. In characteristic 0, τ is a closed immersion because it is dual to the
surjective map

λA∨,K/k : A∨ → ImK/k(A∨)K

whose connected kernel must be smooth (by Cartier’s theorem [25, p. 101]) and hence is an abelian subvariety
of A∨.

In characteristic p > 0, the K-subgroup ker τ may be nonzero, or equivalently the connected kernel of the
dual map τ∨ may not be smooth. Example 4.4 gives many examples for which this possibility happens with
ker τ∨ = αp,K (so τ is an isogeny and ker τ ' D(αp,K) ' αp,K). For general primary extensions K/k the
kernel of τ might not be connected (but see Theorem 6.12 below for the absence of this phenomenon when
K/k is regular); the following class of disconnected étale examples was suggested by the referee.
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Example 6.3. Let E be an ordinary elliptic curve over a field k of characteristic p > 0 such that the connected-
étale sequence of E[p] is not split. (Many examples of such E are provided by Serre–Tate theory, applied to
the generic fiber over k0[[q]] of a sufficiently generic deformation of an ordinary elliptic curve over a field k0 of
characteristic p. The standard Tate curve over k0((q)) is another example of such an elliptic curve.) Since the
sequence splits over a perfect closure of k, it splits over a sufficiently large finite purely inseparable extension
K/k. Such a splitting over K is unique (since there are no nonzero maps from an étale commutative group
scheme to a finite connected commutative group scheme over a field), and we let G ⊆ EK [p] be the unique
étale K-subgroup of order p.

Define E′ = EK/G, and consider the degree-p étale isogeny EK → E′ over K. This isogeny factors
uniquely as τ ′ ◦ hK where τ ′ : TrK/k(E′)K → E′ is the K/k-image and h : E → TrK/k(E′) is a map of
abelian varieties over k. This forces TrK/k(E′) to be nonzero and h and τ ′ to be étale isogenies of elliptic
curves with deg h · deg τ ′ = p. The map h must be an isomorphism because if it is not then it is étale with
degree p and so the étale subgroup kerh ⊆ E[p] with order p defines a k-splitting of the connected-étale
sequence of E[p] (which we assumed is not split over k). Hence, the universal morphism τ ′ : TrK/k(E′)K → E′

is a degree-p étale isogeny, so its kernel is disconnected.

Some basic properties of the K/k-trace with respect to extensions of fields are formal consequences of
the theory of the K/k-image by means of duality. For example, dualizing Theorem 4.2, Theorem 4.5, and
Corollary 4.7 gives:

Theorem 6.4. Let K/k be a primary extension of fields, and let A be an abelian variety over K with
K/k-trace τ = τA,K/k : TrK/k(A)K → A.

(1) If A = XK for an abelian variety X over k then τ is an isomorphism.
(2) If k/k0 is a primary extension and (Trk/k0(TrK/k(A)), τ0) denotes the k/k0-trace of TrK/k(A) then

(Trk/k0(TrK/k(A)), τ ◦ τ0/K)

is a K/k0-trace of A.
(3) If K ′/K is a primary extension then (TrK/k(A), τK′) is a K ′/k-trace of AK′ .
(4) The canonical map τ : TrK/k(A)K → A has finite kernel.

Moreover, there exists a unique abelian subvariety A′ ⊆ A such that TrK/k(A/A′) = 0 (so TrK/k(A′) →
TrK/k(A) is an isomorphism) and τA′,K/k : TrK/k(A′)K → A′ is an isogeny.

The abelian subvariety A′ ⊆ A at the end of Theorem 6.4 is the K/k-maximal abelian subvariety of A.
Combining Theorem 6.4 with Theorem 4.5(3) gives an interesting property of the finite K-group ker τA,K/k:

Corollary 6.5. Let K/k, A, and τ be as in Theorem 6.4. The finite K-group ker τ has connected Cartier
dual.

Proof. By the final assertion in Theorem 6.4, we easily reduce to the case when τ is an isogeny. Hence, the
Cartier dual of ker τ is the kernel of the dual isogeny λA∨,K/k, and the connectedness of this latter kernel
follows from Theorem 4.5(3). �

Dualizing Theorem 5.1 gives:

Theorem 6.6. Let K/k be a primary extension of fields and A an abelian variety over K. For any extension
E/k, consider the unique E-map of abelian varieties

I ′E/k : TrK/k(A)E → TrEK/E(AEK)

such that τAEK ,EK/E ◦ (I ′E/k)EK = (τA,K/k)EK . The map I ′E/k is an isogeny and its kernel has connected
Cartier dual.

Remark 6.7. Corollary 5.2 and Lemma 5.3 are of an essentially technical nature, and their analogues for
K/k-traces are immediate via either dualizing from K/k-images or (better) copying the earlier proofs in our
new setting (which is possible, due to the preceding results), so we do not state them formally here.

The dual of Theorem 5.4 is very useful, so we record it here for later reference:
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Theorem 6.8. Let K/k be a primary extension of fields and E/k an arbitrary extension, and assume either
that E/k is separable or that K/k is regular. For any abelian variety A over K with associated K/k-trace
τ : TrK/k(A)K → A, the pair (TrK/k(A)E , τE) is an EK/E-trace of AEK .

By working with K-isogeny factors of A that are defined over k (as in the proof of Theorem 5.1), we
deduce an unsurprising relationship between the K/k-image and K/k-trace:

Theorem 6.9. Let K/k be a primary extension of fields and A an abelian variety over K. The unique map

TrK/k(A) → ImK/k(A)

of abelian varieties over k that descends the K-map λA,K/k ◦ τA,K/k is an isogeny.

Another simple but useful consequence of duality is a dual version of Chow’s regularity theorem (Theorem
5.5):

Theorem 6.10. Let V be a smooth variety over a field k. Let A be an abelian variety over K = k(V ) such
that A extends to an abelian scheme Ã over V . Let

τ̃ : TrK/k(A)V → Ã

be the unique map of abelian V -schemes that extends the canonical map τ : TrK/k(A)K → A. For all
m > dim A, there exists a dense open V(m) in V m over which the morphism

(6.1) (p∗1(τ̃), . . . , p∗m(τ̃)) : TrK/k(A)V m → p∗1(Ã)×V m · · · ×V m p∗m(Ã)

is a closed immersion.

Remark 6.11. Theorem 6.10 is not a formal consequence of the statement of Chow’s regularity theorem.
Indeed, from the statement of Chow’s theorem one gets smoothness of the kernel of the surjective dual of
(6.1) over some dense open in V m for all m > dim A, but in general the dual of a smooth surjection between
abelian varieties need not be a closed immersion. Fortunately, it is the stronger closed immersion condition
for (6.1) over some dense open in V m for all m > dim A that was established in the proof of Chow’s regularity
theorem.

It is natural to seek a criterion for ker τ to be connected (and hence infinitesimal, by Theorem 6.4(4)). The
proof of the following criterion requires the full strength of Theorem 6.8 (allowing E/k to be inseparable):

Theorem 6.12. Let K/k be a regaular extension of fields. For any abelian variety A over K, the finite
K-group ker τA,K/k is connected with connected dual.

Proof. The connectedness of the dual holds for any primary extension K/k (Corollary 6.5), and to prove
connectedness when K/k is regular we first use that the formation of τ commutes with passage to EK/E
for any extension E/k (by Theorem 6.8). By taking E to be an algebraic closure of k, we may assume that
k is algebraically closed. In particular, for any extension K ′/K the extension K ′/k is regular. By Theorem
3.19, for any primary extension K ′/K the map

τK′ : TrK/k(A)K′ → AK′

is a K ′/k-trace of AK′ . Thus, by taking K ′ to be a perfect closure of K we can assume K is perfect. This
perfectness ensures that the connected-étale sequence of the finite K-group ker τ is split, and its étale factor
G descends to a finite k-subgroup of TrK/k(A) by Lemma 3.11 (applied to H = TrK/k(A)[n] with n = #G).
We conclude that τ factors through the K-fiber of the projection map TrK/k(A) → TrK/k(A)/G, and so by
finality of the K/k-trace it follows that G must be trivial. Hence, ker τ is connected. �

7. The Lang–Néron theorem

Theorem 6.12 implies that if K/k is regular and A is an abelian variety over K then the map τ = τA,K/k :
TrK/k(A)K → A is injective on K-points, so TrK/k(A)(k) is naturally a subgroup of A(K).

Theorem 7.1 (Lang–Néron). Let K/k be a finitely generated regular extension of fields. Let A be an abelian
variety over K. The quotient group A(K)/TrK/k(A)(k) is finitely generated.
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The reader who is only interested in the case K = k(C) with algebraically closed k and a smooth proper
connected k-curve C can skip ahead to the paragraph containing (7.2). For non-constant elliptic curves E
over such a K (i.e., non-constant elliptic fibrations E → C), the K/k-trace vanishes by Theorem 2.3. The
argument following (7.2) therefore gives a proof that E(K) = E (C) is finitely generated for such E over K
without using any of the material in §4–§6.

Since an abelian variety over a finite field obviously has a finitely generated (even finite) group of rational
points, and an abelian variety over a number field has a finitely generated group of rational points (the
classical Mordell–Weil theorem), a special case of the Lang–Néron theorem is the main result of Néron’s
thesis [26]:

Corollary 7.2. Let K be a field that is finitely generated over its prime field, and let A be an abelian variety
over K. The group A(K) is finitely generated.

To prove the Lang–Néron theorem, the first step is to reduce to the special case when k is algebraically
closed and K/k is finitely generated of transcendence degree 1; that is, K = k(C) for a smooth proper
connected curve C over k. The reader may find it interesting to compare our arguments below with those
in [20, Ch. 6].

Let us now turn to the reduction steps.

Lemma 7.3. If k′/k is an extension, it suffices to prove the Lang–Néron theorem for the regular extension
k′K/k′ instead of K/k.

Proof. Let K ′ = k′K and A′ = AK′ . We know that TrK′/k′(A′) = TrK/k(A)k′ , by Theorem 6.8, so
TrK′/k′(A′)(k′) = TrK/k(A)(k′) inside of A(K ′) (recall that τ and τ ′ are injective on field-valued points, by
Theorem 6.12). Thus, by hypothesis A(K ′)/TrK/k(A)(k′) is finitely generated, and so it is enough to prove
that the natural map

A(K)/TrK/k(A)(k) → A(K ′)/TrK/k(A)(k′)

is injective. That is, we want the natural inclusion

TrK/k(A)(k) ⊆ A(K) ∩ TrK/k(A)(k′)

inside of A(K ′) to be an equality.
Let Fm be the fraction field of the domain K⊗m (tensor product over k), and let pi : Spec Fm → Spec K

over Spec k be the map induced by the ith standard projection. By Theorem 6.10, for sufficiently large m
the map of abelian varieties over Fm

(7.1) TrK/k(A)Fm
→ p∗1(A)× · · · × p∗m(A)

is a closed immersion. Let F ′
m denote the fraction field of K ′⊗m (tensor product over k′), so F ′

m = k′Fm.
Since k is algebraically closed in Fm we have Fm∩k′ = k inside of F ′

m, so to show that a k′-point of TrK/k(A)
inducing a K-point of A (inside of A(K ′)) is a k-point of TrK/k(A) it is enough to prove that an F ′

m-point of
TrK/k(A) inducing a K-point of A is an Fm-point of TrK/k(A). Concretely, if we let Fm,i and F ′

m,i denote Fm

and F ′
m viewed as K-algebras via the ith tensor-factor, then the assertion to be proved is that if x ∈ A(K)

is a point such that the points p∗i (x) ∈ A(Fm,i) are all induced by a common point

y ∈ TrK/k(A)(F ′
m) = p∗i (TrK/k(A))(F ′

m,i)

then y ∈ TrK/k(A)(Fm).
By descent theory (Theorem 3.1), it suffices to show that y has the same image under the two maps

TrK/k(A)(F ′
m) ⇒ TrK/k(A)(F ′

m ⊗Fm
F ′

m). Since (7.1) is a monomorphism of functors, it is enough to check
that the two natural maps

A(F ′
m,1)× · · · ×A(F ′

m,m) ⇒ A(F ′
m,1 ⊗Fm,1 F ′

m,1)× · · · ×A(F ′
m,m ⊗Fm,m

F ′
m,m)

have the same composite with the diagonal embedding

A(K) → A(F ′
m,1)× · · · ×A(F ′

m,m).
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Thus, it suffices to show that for each i, the two composite maps

K → F ′
m,i ⇒ F ′

m,i ⊗Fm,i F ′
m,i

coincide. This equality of maps is obvious, since the map K → K ′⊗m to the ith tensor-factor factors through
the map K → K⊗m to the ith tensor-factor. �

By the preceding lemma, if we wish to prove the Lang–Néron theorem for any specific abelian variety
relative to a given finitely generated regular extension K/k then it suffices to treat the analogous situation
relative to kK/k for an algebraic closure k/k.

Lemma 7.4. For any intermediate extension K/E/k such that K/E is regular, it suffices to separately treat
the cases K/E and E/k.

Note that, under the hypotheses in the lemma, K/E and E/k are automatically finitely generated and
E/k is automatically regular.

Proof. Since TrE/k(TrK/E(A)) is a K/k-trace of A (Theorem 6.4(2)), via the commutative diagram

TrK/E(A)K

τK/E // A

TrE/k(TrK/E(A)E)K

(τE/k)K

OO

'
// TrK/k(A)K

τK/k

OO

we are done. �

We now may and do assume k to be algebraically closed, and we can choose a smooth k-variety V such
that K = k(V ). The case dim V = 0 is trivial (as then K = k). If dim V > 1, then by Bertini methods
we can shrink V so that there is a smooth map f : V → V ′ with V ′ a k-variety of dimension dim V − 1
and all fibers of f geometrically connected of dimension 1. In particular, K is regular over E = k(V ′) with
trdegE(K) = 1. Using Lemma 7.4, we are thereby reduced to the case when k is algebraically closed and
the finitely generated extension K/k has transcendence degree equal to 1.

Let C be the proper smooth connected curve over k with function field K. Let U be a dense open in C
such that A extends to an abelian scheme A over U . Note that A(K) = A (U). Letting m > 1 be an integer
not divisible by the characteristic of k, the Kummer sequence

(7.2) 0 → A [m] → A
m→ A → 0

on Uét induces an injection A(K)/mA(K) ↪→ H1
ét(U,A [m]). Since k is separably closed and A [m] is a

locally constant constructible sheaf of Z/mZ-modules on the smooth k-curve U (with m a unit in k), the
group H1

ét(U,A [m]) is finite by a general finiteness theorem [9, I, 8.10] for compactly supported cohomology,
together with Poincaré duality [32, Thm. 4.8] on U . (See [6, Thm. 1.1] for a much deeper finiteness theorem.)
Hence, A(K)/mA(K) is finite. This is an analogue of the so-called weak Mordell–Weil theorem in the classical
case (with K a global field).

Using the standard normalized valuations on K arising from the points of C(k), we have a product formula
and thereby get a logarithmic height-function on A(K) via a choice of projective embedding of A ↪→ Pn

K

over K. We will show that the set of elements of A(K) with height below any given bound M has finite
image in A(K)/TrK/k(A)(k); once this is proved, the classical proof of the Mordell–Weil theorem (combining
the weak Mordell–Weil theorem and the elementary parts of the theory of heights) may be easily adapted
to show that A(K)/TrK/k(A)(k) is finitely generated.

Now choose a projective embedding A ↪→ Pn
K and let h be the resulting logarithmic height on A(K). Let

Ã ↪→ Pn
k × C be the closure of A; this is a projective k-variety. By the valuative criterion for properness,

A(K) = {f ∈ Homk(C, Ã) |pr2 ◦ f = 1C} = Ã(C)

where pr2 : Ã ↪→ Pn
k × C → C is the second projection and is used to view Ã as a C-scheme.
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Lemma 7.5. Choose a projective embedding C ↪→ Pm
k as a degree-d curve. For P ∈ A(K), the associated

Segre-map
fP : C → Ã ↪→ Pn

k × C ↪→ P(n+1)(m+1)−1
k

is a closed immersion and the projective curve fP (C) has degree ≤ h(P ) + d.
In particular, as P varies with bounded height, the map fP varies with bounded degree for its image.

Proof. The map C ↪→ Pm
k is given by a tuple [h0, · · · , hm] with hj ∈ k(C) = K and not all hj equal to zero.

The point
P ∈ A(K) ⊆ Pn(K) = Homk(C,Pn

k )
is given by a tuple [g0, . . . , gn] with gi ∈ k(C) not all zero, so fP is given by the tuple of gihj ’s (by the definition
of the Segre embedding). Thus, viewing fP as a K-point of P(n+1)(m+1)−1, it has naive logarithmic height
equal to ∑

x∈C(k)

max
i,j

(−ordx(gihj)) ≤
∑

x∈C(k)

max
i

(−ordx(gi)) +
∑

x∈C(k)

max
j

(−ordx(hj))

= h(P ) +
∑

x∈C(k)

max
j

(−ordx(hj)).

We claim as a general identity that

(7.3)
∑

x∈C(k)

max
j

(−ordx(hj)) = d;

this would complete the proof, since applying it to fP would also show that the naive height just shown to
be bounded by h(P ) + d would in fact coincide with the degree of fP (C), as desired.

Note that, by the product formula, the left side of (7.3) is unaffected by a common k(C)×-scaling on
the hj ’s. Hence, this left side is intrinsic to the embedding of C into Pm

k and is independent of the choice
of representative homogeneous rational coordinate functions h0, . . . , hm. Let ` =

∑
ajXj be a generically

chosen nonzero linear form over k, with zero-scheme H in Pm
k . By genericity, C is not contained in H and

all aj are nonzero. Clearly H ∩C is the zero-scheme of the nonzero rational function
∑

ajhj on C. Thus, d
is the degree of the zero-scheme of this rational function (by the definition of d as the degree of C as a curve
in Pm

k ), and so d is also the degree of the polar-scheme of the rational function
∑

ajhj . For generic choices
of the aj ’s,

∑
ajhj will have its poles exactly where the hj ’s have poles, with the pole-order of

∑
ajhj at

each such point equal to the maximal pole-order among the hj ’s at the point. Hence,

d =
∑

x∈C(k)

max
j

(−ordx(hj))

as long as the hj ’s have no common zero (this lack of a common zero ensures that the contribution to the
sum at each x is non-negative, and is positive at precisely the points where some hj has a pole). By making
a common k(C)×-scaling on the hj ’s we may suppose some hj is equal to 1, so this eliminates common
zeros. �

By Lemma 7.5, as P varies over A(K) with h(P ) ≤ M (for fixed M), the curves

fP : C ↪→ P(n+1)(m+1)−1
k

have degree ≤ M + d. It is therefore enough to show that the set of points P ∈ A(K) for which the closed
immersion

fP : C ↪→ P(n+1)(m+1)−1
k

has a fixed degree (or equivalently, a fixed Hilbert polynomial) has finite image in A(K)/TrK/k(A)(k).
By the quasi-compactness aspects of Grothendieck’s representability results on Hilbert and Hom-schemes

[10], the functor of morphisms P : C → Ã such that pr2 ◦ P = 1C and fP has degree δ in P(n+1)(m+1)−1

is represented by the “degree-δ” Hom-scheme Hδ that is of finite type over k. Thus, it suffices to restrict
attention to those P ’s corresponding to k-points on a common irreducible component of Hδ. The case of a



26 BRIAN CONRAD

0-dimensional component is trivial, so we may focus attention on positive-dimensional components. Any two
k-points on an irreducible finite-type k-scheme V of positive dimension lie in a common irreducible curve
X in V (see the Lemma on p. 56 in [25]), so it remains to check that if P, P ′ : C ⇒ Ã are two C-maps
lying in an algebraic family of maps parameterized by an irreducible k-curve X then P and P ′ coincide in
A(K)/TrK/k(A)(k). To be precise, by an algebraic family of maps we mean an X × C-map

P : X × C → X × Ã,

and for all x ∈ X(k) we will show that the points Px ∈ Ã(C) = A(K) represent a common class modulo
TrK/k(A)(k).

Using pullback by the finite surjective normalization X̃ → X, we may assume that X is k-smooth. Let
X denote the k-smooth compactification of X. Passing to fibers over the generic point Spec K of C, we get
a section

PK : XK → XK ×A,

or equivalently a K-map XK → A, and by the valuative criterion for properness this uniquely extends to a
K-map

F : XK → A.

Since X(k) 6= ∅, upon choosing x0 ∈ X(k) we can use Albanese functoriality to find a unique factorization

XK

ιK //

F
%%KKKKKKKKKKK

(AlbX/k)K

η

��
A

where η(0) = F (x0) ∈ A(K). Here, ι : (X,x0) → (AlbX/k, 0) is the universal pointed map to an abelian
variety over k, and its formation commutes with extension on k. Since η − F (x0) respects origins, it is a
map of abelian varieties over K. (For example, if A is a non-constant elliptic curve over K then η − F (x0)
vanishes because TrK/k(A) = 0 by Theorem 2.3.)

We apply the universal property of
τ : TrK/k(A)K → A

to get a factorization η − F (x0) = τ ◦ fK for a unique map of abelian varieties f : AlbX/k → TrK/k(A)
over k! Thus, composing with ιK gives F = F (x0) + τ ◦ (f ◦ ι)K . Composing this identity with the map
x : Spec K → XK defined by x ∈ X(k) gives that Px : Spec K → A in A(K) is equal to F (x0)+τ ◦(f◦ι)K(x),
so the Px’s agree as elements in A(K)/TrK/k(A)(k): they all represent the residue class of the point
F (x0) ∈ A(K) that has nothing to do with x. This concludes the proof of the Lang–Néron theorem.

8. Generalized global fields

In the final three sections, we give a scheme-theoretic development of the theory of heights in the “geo-
metric” context of the Lang–Néron theorem. The theory of canonical heights on abelian varieties over a
global field K provides a natural positive-definite quadratic form on A(K)R

def= R⊗Z A(K) for any polarized
abelian variety (A,φ) over K such that the polarization φ satisfies an auxiliary symmetry condition: the
ample line bundle Nφ = (1, φ)∗(P) on A is symmetric (i.e., [−1]∗(Nφ) ' Nφ), where P is the Poincaré
bundle on A × A∨. There are many such φ for any A, such as φ = φL : x 7→ t∗x(L ) ⊗L −1 for any ample
symmetric line bundle L on A, in which case Nφ = [2]∗(L )⊗L ⊗(−2).

For any regular and finitely generated extension of fields K/k and any polarized abelian variety (A,φ)
over K such that (1, φ)∗(P) is symmetric, we wish to put a similar structure on (A(K)/TrK/k(A)(k))R
once K is endowed with a collection of absolute values resembling the “product formula” situation in the
classical special case trdegk(K) = 1 (using || · ||v = e−[k(v):k]ordv as v runs over the closed points of the unique
regular proper k-curve with function field K). In this section we shall develop the theory of fields endowed
with a “product formula” structure, and in §9 we use it to develop a theory of heights. Applications to
positive-definiteness are given in §10 (and also see Corollary 9.12).
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Let K be a field. Two absolute values | · | and | · |′ on K are equivalent if they define the same topology
on K. By [20, Ch. 1, 1.1], it is the same to say | · |′ = | · |r for some r > 0.

Definition 8.1. A generalized global field is a field K equipped with an infinite set of equivalence classes v
of non-trivial absolute values on K and a choice of representative absolute value || · ||v for each v such that

(1) all but finitely many v are non-archimedean, each non-archimedean v is discretely-valued, and each
x ∈ K× is a v-unit for all but finitely of the non-archimedean v;

(2) for all x ∈ K× the product formula
∏

v ||x||ev
v = 1 holds, where ev = 2 if v is complex (that is, if v is

archimedean and Kv ' C) and ev = 1 otherwise;
(3) for all non-archimedean v, the discrete valuation ring Ov for v on K is excellent (this is equivalent

to Kv/K being a separable extension, so it is always satisfied when K has characteristic 0).

Remark 8.2. Beware that for non-archimedean v the notation Ov denotes the discrete valuation ring for v in
the field K, and it is not to be confused with the complete discrete valuation ring of the v-adic completion
Kv of K; this latter valuation ring will never arise below. To keep the distinction clear, note that complete
discrete valuation rings are always excellent whereas general discrete valuation rings (with positive generic
characteristic) may fail to be excellent. We refer the reader to [21, Ch. 13] for a development of the basic
properties of excellent rings. See [7, IV3, 7.8ff] for further results concerning excellence.

Let us give two important classes of examples.

Example 8.3. The arithmetic case is when K is a number field. In this case, we use the traditional set of
normalized absolute values || · ||v: for non-archimedean v we require the value group of || · ||v in R>0 to be qZ

v

with qv equal to the size of the finite residue field at v, and for archimedean v we use the standard absolute
value on the topological field Kv (satisfying ||q||v = |q| for q ∈ Q). An element x ∈ K× satisfies ||x||v = 1 for
all v if and only if x is a root of unity.

Example 8.4. The geometric case with constant field k is when K is a finitely generated over a field k with
k algebraically closed in K and trdegk(K) > 0; we do not assume K/k is separable. In this case, let V be
a proper integral k-scheme with k(V ) = K and assume V is regular in codimension 1 (for example, normal
projective V ). The codimension-1 points v ∈ V give rise to inequivalent non-trivial discrete valuations on
K with local ring OV,v and associated normalized order function denoted ordv : K× � Z. If dim V > 1
then this collection of local rings depends on the choice of V (though V is unique if trdegk(K) = 1), and for
each x ∈ K× we have ordv(x) = 0 for all but finitely many v. Since schemes of finite type over a field are
excellent [7, IV2, 7.8.3], each OV,v is excellent. To give K a structure of generalized global field, we want to
find constants 0 < cv < 1 such that defining || · ||v = cordv

v makes the product formula
∏

v ||x||v = 1 hold for
all x ∈ K×. (A special property of the generalized global field structures {|| · ||v}v on K arising in this way
is that an element x ∈ K× satisfies ||x||v = 1 for all v if and only if x ∈ k×, since k is algebraically closed in
K and the normalization map Ṽ → V is a finite birational map that is an isomorphism away from a closed
subset of codimension ≥ 2 in V .)

To find such cv’s, first assume there exists a closed immersion i : V ↪→ Pn
k over k. We can use cv,i =

e− degk,i(v), with degk,i(v) the k-degree of the closure of i(v) as an integral closed subscheme of Pn
k : the

product formula is the classical fact that on an integral closed subscheme of Pn
k that is regular in codimension

1, any principal Weil divisor has k-degree 0. More generally, if there exists an ample line bundle N on V
then we can use cv,N = e− degk,N (v) where

degk,N (v) def= degk,V ([{v}] ∩ c1(N )dim V−1) = deg
k,{v}(c1(N |{v})

dim {v}).

Since cv,N ⊗n = cndim V−1

v,N for all positive integers n, reduction to the very ample case shows that the absolute
values || · ||v,N = cordv

v,N satisfy the product formula.
Whenever we speak of the “geometric case” for K/k, it is always understood that we use a generalized

global field structure arising from such a pair (V,N ). Note that replacing V with its normalization Ṽ and
N with its ample pullback to Ṽ does not affect this construction, so there is no serious loss of generality in
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restricting attention to normal projective k-models for K. In the special case dim V = 1, V is unique and
both degk,N (v) = [k(v) : k] and log || · ||v,N = −[k(v) : k]ordv are independent of N .

Of course, when k is finite (the “overlap” of the arithmetic and geometric cases), it is traditional to use
1/#k rather than 1/e in the above construction. In Remark 8.7 we will recall the justification for this
convention, but we note here that since this change merely scales all log || · ||v’s by the universal positive
constant log #k, it has essentially no impact on the theory of heights and so does not affect the meaning of
any of the theorems of this paper (when applied to the geometric case with k finite).

Let us now explain the canonical procedure for extending generalized global field structures through finite
extensions (and in Example 8.5 we will make it explicit in the arithmetic and geometric cases). Let K be a
generalized global field and let K ′/K be a finite extension. Each v on K lifts to finitely many equivalence
classes v′ on K ′, and each such v′ admits a unique representative || · ||v′ defined by the requirement that its

restriction to K is || · ||[K
′
v′ :Kv ]ev/ev′

v (where ev = 2 for complex v and ev = 1 otherwise, and similarly for ev′).
Note that for archimedean v we are requiring || · ||v′ |K = || · ||v, and obviously at most finitely many v′ are
archimedean. For x′ ∈ K ′×, if x′ (resp. 1/x′) is non-integral at a non-archimedean place v′ of K ′ over a place
v of K then one of the coefficients of the minimal polynomial of x′ (resp. 1/x′) over K is non-integral at v.
Hence, x′ is a v′-unit for all but finitely many non-archimedean v′. Also, for non-archimedean v the excellence
requirement on the Ov’s is inherited by the Ov′ ’s because excellence is preserved under normalization in finite
extensions [7, IV2, 7.8.2]. The rings K ′ ⊗K Kv are reduced because Kv/K is separable for all v (thanks to
the excellence hypothesis in the non-archimedean case), and hence the natural map

K ′ ⊗K Kv →
∏
v′|v

K ′
v′

is an isomorphism for all v. Thus, for all v and all x′ ∈ K ′× we have∏
v′|v

||x′||ev′
v′ =

∏
v′|v

(
||NK′

v′/Kv
(x′)||[K

′
v′ :Kv ]ev/ev′

v

)ev′/[K′
v′ :Kv ]

= ||NK′/K(x′)||ev
v ,

and so the product formula holds for the || · ||v′ ’s. This gives K ′ the sought-after natural structure of
generalized global field, and the procedure is transitive in towers of finite extensions. This construction is
the algebraic method for putting a generalized global field structure on K ′ (via the one given on K).

Example 8.5. In the arithmetic case, the algebraic method for endowing a finite extension K ′/K of a number
field K with a structure of generalized global field does give the number field K ′ its traditional collection of
normalized absolute values as in Example 8.3.

Consider the geometric case K/k with a generalized global field structure {|| · ||v,N }v as in Example 8.4,
using a choice of pair (V,N ), so cv = e− degk,N (v) for all codimension-1 points v ∈ V . The algebraic method
as above gives any finite extension K ′ a structure of generalized global field via absolute values having the
form || · ||v′ = c

ordv′
v′ on K ′× for suitable 0 < cv′ < 1, with v′ ranging over the codimension-1 points on the

V -finite normalization V ′ of V in K ′. Since V ′ is k-proper, integral, and normal with function field K ′,
clearly the k-finite Γ(V ′,OV ′) ⊆ K ′ coincides with the algebraic closure k′ of k in K ′. In particular, V ′ is
naturally a k′-scheme. The only elements x′ ∈ K ′× satisfying ||x′||v′ = 1 for all v′ are the nonzero elements
in k′. (Note that K ′/k′ need not be separable even if K/k is.) We would like to describe the cv′ ’s explicitly,
in a manner similar to the cv’s.

Let N ′ be the ample pullback of N to V ′. In proofs it is sometimes necessary to replace K/k with K ′/k′,
and so it is crucial to know that the generalized global field structure put on K ′ via the algebraic method
(with respect to the given “geometric” generalized global field structure {|| · ||v,N }v on K) is closely related
to the generalized global field structure {|| · ||v′,N ′}v′ put on K ′ via k′, V ′, and N ′, at least up to a constant
factor in the exponent. First, observe that for both constructions the resulting set of equivalence classes of
valuations on K ′ is the same, namely the equivalence classes of the discrete valuations on K ′ lifting the ones
arising from the generalized global field structure on K. Hence, the absolute values on K ′ arising from the
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algebraic method may be denoted {|| · ||v′} with index set given by the codimension-1 points v′ ∈ V ′. The
relationship between || · ||v′ and || · ||v′,N ′ is explained in the following lemma.

Lemma 8.6. For all codimension-1 points v′ ∈ V ′ we have cv′ = c
[k′:k]
v′,N ′ = e− degk′,N ′ (v′)[k′:k]. Thus,

|| · ||v′ = || · ||[k
′:k]

v′,N ′ for all such v′.

Proof. Using the defining property of || · ||v,N and the general formulas

ordv′ |K× = e(v′|v) · ordv, [K ′
v′ : Kv] = [k′(v′) : k(v)]e(v′|v)

with e(v′|v) denoting the ramification degree for v′ over v, the problem comes down to verifying the identity

[k′ : k] degk′,N ′(v′)
?= [k′(v′) : k(v)] degk,N (v).

Letting X and X ′ denote the closures of v and v′ in V and V ′ respectively, we are reduced to proving that
if k′/k is a finite extension of fields, f : X ′ → X is a finite dominant map from an integral proper k′-scheme
to an integral proper k-scheme, and N is a line bundle on X with pullback N ′ on X ′, then

[k′ : k] degk′,N ′(X ′) ?= [k′(X ′) : k(X)] degk,N (X)

with degk,N (X) def= degk(c1(N )dim X) and likewise for (X ′,N ′, k′).
Equivalently, since dim X = dim X ′, we want the polynomials

[k′ : k] · χk′(X ′,N ′⊗n), [k′(X ′) : k(X)] · χk(X, N ⊗n)

in n to have the same leading coefficients. Since

[k′ : k] · χk′(X ′,N ′⊗n) = χk(X ′,N ′⊗n) = χk(X, f∗(N ′⊗n)) = χk(X, (f∗N ′)⊗n)

and f∗N ′ = f∗f
∗N = (f∗OX′)⊗OX

N , with f∗OX′ generically a vector bundle of rank [k′(X ′) : k(X)], it
suffices to show that if F is a coherent sheaf on an integral proper k-scheme X and F has positive rank r
at the generic point, then χk(X, F ⊗N ⊗n) has leading coefficient that is r times the leading coefficient of
χk(X, N ⊗n). This is proved in [25, §6, App.]. �

Remark 8.7. For function fields of varieties over finite fields, the equality (1/#k)[k
′:k] = 1/#k′ enables us to

eliminate the intervention of [k′ : k] in Lemma 8.6 by using 1/#k rather than 1/e in Example 8.4.

9. Review of heights

Let K be a generalized global field with associated set of absolute values {|| · ||v}v as in Definition 8.1, and
choose an algebraic closure K. For n ≥ 0, the standard K-height hK,n : Pn

K(K) = (K
n+1 − {0})/K

× → R
is

hK,n([t0, . . . , tn]) =
1

[K ′ : K]

∑
v′

max
i

(log ||ti||ev′
v′ ) ≥ 0

where K ′ ⊆ K is a finite subextension over K that contains the tj ’s and we canonically endow K ′ with a
structure of generalized global field via the algebraic method as in §8. This formula is independent of the
choice of K ′ (because [K ′′ : K ′] =

∑
v′′|v′ [K

′′
v′′ : K ′

v′ ] for all v′ on K ′), it is well-defined (by the product
formula), and it is invariant under the action of Aut(K/K) on Pn

K(K) (so it is essentially independent of
the choice of K). It would be more canonical to not choose K and to instead work with hK,n as a function
on the set of closed points of Pn

K . However, we are interested in applications to abelian varieties and so we
prefer to work with the set of K-points because for a locally finite type K-group G the set of K-points G(K)
is naturally a group whereas the set of closed points of G is not naturally a group.

For any T ∈ AutK(Pn
K), hK,n−hK,n◦T is bounded (in absolute value) on Pn

K(K). For proofs of this and all
subsequent unattributed assertions in this section concerning K-heights, see [14, §B] and [25, §4, Appendix II],
where proofs are given for number fields but carry over essentially verbatim to any generalized global field.
Many basic proofs in [14] are written with restrictive smoothness hypotheses, though as noted in [14, B.3.6]
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such hypotheses can be avoided with better definitions in terms of Cartier divisors rather than Weil divisors.
(The proofs of the basics in [25] make no smoothness restriction.)

For any K-vector space V of dimension n + 1 ≥ 1, transporting hK,n by means of any linear isomorphism
V ' Kn+1 gives rise to a common (and hence intrinsic) residue class hK,V in the R-vector space of R-valued
functions on P(V )(K) modulo O(1) (by which we mean: modulo the R-subspace of bounded functions).
This residue class is denoted hK,V .

Remark 9.1. In the arithmetic case it is traditional to work with hn = hK,n/[K : Q] and hV = hK,V /[K : Q]
because these are invariant under finite extension on K. There is no “smallest subfield of finite index”
analogous to Q in the geometric case, and so we must keep track of the ground field K in general.

Let X be a projective K-variety. For any very ample line bundle L on X, the closed immersion

ιL : X ↪→ P(H0(X, L ))

defines a K-height function (modulo O(1))

(9.1) hK,L = hK,H0(X,L ) ◦ ιL

on X(K). In what follows, all equations and inequalities involving hK,L are understood to be taken modulo
O(1), though we may sometimes repeat this explicitly for emphasis.

Since hK,L⊗L ′ = hK,L +hK,L ′ for any two very ample line bundles L and L ′ on X, and hK,L = hK,L ′

if L ' L ′ on X, if L is an arbitrary line bundle on X then we may define

hK,L = hK,L1 − hK,L2

where L ' L1 ⊗ L −1
2 with very ample line bundles L1 and L2. This is independent of the choice of L1

and L2, and L 7→ hK,L is a homomorphism from Pic(X) to the R-vector space of R-valued functions on
X(K) modulo O(1).

Remark 9.2. Let K ′/K be finite and give K ′ a generalized global field structure via the algebraic method
as in §8. Upon picking a K-embedding of K ′ into K, we have

(9.2) [K ′ : K]hK,L = hK′,LK′

on X(K) = XK′(K) (modulo O(1), as always). Thus, for applications where one considers sets of bounded
height it is harmless if we replace K with a finite extension K ′ and X with the projective K ′-variety XK′ .

The identity (9.2) has a useful application for K/k as in the geometric case when K ′ = K ⊗k k′ for an
algebraic extension k′/k such that either k′/k or K/k is separable (so K ′ is a field and k′ is algebraically
closed in K ′). Fix a choice of generalized global field structure on K using a pair (V,N ) as in Example 8.4.
The hypotheses ensure that Vk′ is integral. Let V ′ be the normalization of Vk′ and let N ′ be the ample
pullback of Nk′ to V ′. Upon choosing an algebraic closure K/K, we pick a k-embedding of k′ into K and
thereby realize K as an algebraic closure of K ′. Define hgeom

K′,LK′
to be the mod-O(1) class of functions on

XK′(K) defined via the line bundle LK′ and the generalized global field structure on K ′ corresponding to
the pair (V ′,N ′). Beware that when [k′ : k] is finite and larger than 1, this “geometric” generalized global
field structure on K ′ is not the one assigned to K ′ as a finite extension of K via the algebraic method as in
§8: there is a discrepancy by a factor of [k′ : k] due to Lemma 8.6.

The advantage of this “geometric” procedure for making K ′ and K into generalized global fields via such
pairs (V,N ) over k and (V ′,N ′) over k′ is that it gives a variant on (9.2) in which there is no intervention
of field degrees and so is well-suited to the case of algebraic extensions k′/k with possibly infinite degree
(such as k′ taken to be a separable closure of k):

Theorem 9.3. With notation and hypotheses as above,

hK,L = hgeom
K′,LK′

on X(K) = XK′(K).
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Proof. Since heights are calculated as finite sums, by descending through direct limits we may reduce to the
case when [k′ : k] is finite. In this case, (9.2) translates the problem into that of proving the identity

hK′,LK′

[k′ : k]
?= hgeom

K′,LK′

on XK′(K), where the K ′-height on the left is defined using the generalized global field structure on the
finite extension K ′/K via the algebraic method in §8, and the K ′-height on the right is defined in terms of
the pair (V ′,N ′) as we have explained above. The desired identity is a special case of Lemma 8.6. �

Here are some basic properties of K-heights:
• (functoriality) If f : X → X ′ is a map of projective K-varieties and L ′ is a line bundle on X ′ then

hK,f∗L ′ = hK,L ′ ◦ f . This follows from the Nullstellensatz over K.
• (positivity of ample K-heights) If L is an ample line bundle on X and L0 is an arbitrary line bundle

on X then for some c > 0 we have |hK,L0 | ≤ c · hK,L modulo O(1) on X(K). This follows from the
fact that the two line bundles L ⊗N ⊗L

⊗(±1)
0 are very ample for N sufficiently large, together with

the fact that the standard K-height hK,n on Pn(K) is non-negative at all points.
• (quasi-equivalence) If L and L ′ are algebraically equivalent (that is, they give rise to geometric

points in the same connected component of the Picard scheme PicXK/K) and one of them is ample
(so the other is also ample [17, 4.6]), then

lim
hK,L (x)→∞

hK,L ′(x)
hK,L (x)

= 1

as x ranges over X(K) (in this limit we must choose representative functions on X(K) for the
mod-O(1) residue classes hK,L and hK,L ′ , but a priori these choices do not affect the limit).

• (positivity away from the base locus) If L is a line bundle on X then hK,L is bounded below on
(X −B)(K) = X(K)−B(K), where

B = supp(coker(H0(X, L )⊗K L → L ))

is the base locus of L (so X −B is a non-empty open set in X if and only if H0(X, L ) 6= 0).

Example 9.4. Let K/k be as in the geometric case, endowed with a generalized global field structure as in
Example 8.4. Let Y be a projective k-variety and X a projective K-variety, and let f : YK → X be a map
over K. Using the algebraic closure k ⊆ K, we claim that hK,L ◦ f on Y (K) is bounded on Y (k) for any
line bundle L on X. By functoriality, we may assume X = YK and f is the identity, so the claim is that if
X = X0 ⊗k K for a projective k-variety X0, then hK,L is bounded on the subset X0(k) ⊆ X(K). It suffices
to check this for a single very ample L , so we choose L to arise from a k-embedding X0 ↪→ Pn

k . Since all
points in the subset Pn(k) ⊆ Pn(K) have standard K-height 0, the claim is proved.

Example 9.5. For a proper K-variety X endowed with a projective K-embedding ι : X ↪→ Pn
K it is traditional

to consider hK,n ◦ ι as the “induced height function” on X(K). This ad hoc construction represents the mod-
O(1) residue class hK,ι∗OPn

K
(1) defined via the associated complete linear system (a fact we shall use below

without comment). Indeed, the K-height hK,OPn
K

(1) on Pn
K is represented by the function hK,n, so hK,n ◦ ι

represents the residue class hK,OPn
K

(1) ◦ ι, and this residue class is hK,ι∗OPn
K

(1) by functoriality of K-heights.

In the special case of abelian varieties A over K, one has a much finer theory of canonical K-heights in
the sense that the mod-O(1) residue class hK,L admits a canonical representative function, the canonical K-
height function ĥK,L : A(K) → R attached to L by Néron and Tate. Let us recall how this is constructed.
For ε = ±1, a line bundle L on A is ε-symmetric if L ' [−1]∗(L )ε (we also say symmetric if ε = 1 and
anti-symmetric if ε = −1). If L is ε-symmetric, then the limit

(9.3) ĥ+
K,L (a) = lim

n→∞

hK,L (na)
n2

∈ R
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for ε = 1 and

(9.4) ĥ−K,L (a) = lim
n→∞

hK,L (na)
n

∈ R

for ε = −1 exists for all a ∈ A(K); the formation of these limits uses a fixed choice of representative function
for hK,L , the choice of which does not affect the limit. If L is symmetric then ĥ+

K,L is a quadratic form,

and if L is anti-symmetric then ĥ−K,L is additive. The dependence of ĥ+
K,L on symmetric L and of ĥ−K,L

on anti-symmetric L is additive.
For any line bundle L on A, define the symmetric and anti-symmetric line bundles

L + = L ⊗ [−1]∗(L ), L − = L ⊗ [−1]∗(L )−1,

and define the quadratic function

ĥK,L =
ĥ+

K,L + + ĥ−K,L−

2
: A(K) → R

as a sum of a quadratic form and an additive function. Strictly speaking, this “quadratic” function may
have vanishing quadratic part, so it is really of degree ≤ 2 with value 0 at the origin; we shall nonetheless
often refer to it as being a quadratic function. If L is symmetric (resp. anti-symmetric) then this quadratic
function coincides with ĥ+

K,L (resp. ĥ−K,L ), and ĥK,L1⊗L2 = ĥK,L1 + ĥK,L2 on A(K) in general.

Remark 9.6. By Remark 9.2, if K ′/K is a finite extension and we choose a K-embedding K ′ ↪→ K, then for
L on A we have ĥK′,LK′ = [K ′ : K]ĥK,L on A(K) = AK′(K) when K ′ is made into a generalized global
field by the algebraic method in §8.

Clearly the function ĥK,L on A(K) is a representative for the residue class hK,L , and it only depends on
the isomorphism class of L . Functoriality holds for canonical K-heights in the sense that if f : A → B is a
K-map of abelian varieties (so f(0) = 0) then for any line bundle L on B,

(9.5) ĥK,f∗L = ĥK,L ◦ f.

Indeed, both sides are R-valued quadratic functions on A(K) that vanish at the origin, so the boundedness
of their difference (due to functoriality of the mod-O(1) object hK,L ) forces the difference to be zero. We
can improve (9.5) by allowing f to merely be a map of K-varieties (with f(0) 6= 0 permitted): the general
identity is

(9.6) ĥK,f∗L = ĥK,L ◦ f − ĥK,L (f(0)),

and to prove this we use the factorization f = tf(0) ◦ (f − f(0)) with f − f(0) a homomorphism and tb the
translation by b ∈ B(K) to reduce ourselves to treating the special case of translation morphisms by points
in B(K). Slightly more generally:

Lemma 9.7. Let K be a generalized global field with algebraic closure K and let A be an abelian variety
over K. For any finite subextension K ′/K inside K, any a ∈ A(K ′), and any line bundle L on AK′ , we
have

(9.7) ĥK′,t∗aL = ĥK′,L ◦ ta − ĥK′,L (a)

as functions on A(K) = AK′(K). Here, K ′ is endowed with its canonical structure of generalized global field
as a finite extension of K.

Proof. The height function ĥK′,L is defined as a sum of a quadratic form and a linear form by construction
of canonical heights, and since K ′-height functions as in (9.1) are functorial modulo O(1) with respect
to arbitrary morphisms of K ′-varieties we see that the mod-O(1) residue class hK′,L ◦ ta of the function
ĥK′,L ◦ ta is the class hK′,t∗aL that admits a representative function ĥK′,t∗aL . Thus, the two sides of (9.7)
are functions of degree ≤ 2 that lie in the same residue class modulo O(1), and so they differ by a constant.
Comparing values at the origin shows that this constant is zero. �
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The property hK,L ≥ 0 (modulo O(1)) for ample L implies ĥK,L ≥ 0 on A(K) for symmetric ample L

because ĥK,L is a bounded-below quadratic form for such L .
The “quasi-equivalence” for K-height functions acquires a stronger form for canonical K-heights in the

symmetric case (even without ampleness):

Theorem 9.8. For symmetric invertible L on A, the quadratic form ĥK,L on A(K) only depends on L
up to algebraic equivalence.

Proof. Choose a symmetric ample L ′, and pick a large n so that the symmetric L ⊗ L ′⊗n is ample too.
Since ĥK,L = ĥK,L⊗L ′⊗n − nĥK,L ′ , it suffices to prove the result for symmetric ample line bundles.

Now let L be a symmetric ample line bundle, and L ′ another symmetric line bundle algebraically
equivalent to L , so L ′ is ample. We want to prove ĥK,L = ĥK,L ′ on A(K). By ordinary quasi-equivalence,
applied to the canonical K-heights as representatives of the residue classes hK,L and hK,L ′ , we have

ĥK,L (a)

ĥK,L ′(a)
→ 1

as ĥK,L ′(a) → ∞. For arbitrary a ∈ A(K) with ĥK,L ′(a) 6= 0 we have ĥK,L ′(na) = n2ĥK,L ′(a) → ∞ as
n →∞ (since ampleness of L ′ ensures ĥK,L ′(a) ≥ 0), so as n →∞ we obtain

ĥK,L (a)

ĥK,L ′(a)
=

ĥK,L (na)

ĥK,L ′(na)
→ 1

and hence ĥK,L (a) = ĥK,L ′(a). We likewise get such an equality when ĥK,L (a) 6= 0, and of course when
both canonical K-heights vanish they are still equal. �

The canonical K-height construction is important because it gives rise to a canonical K-height pairing

〈·, ·〉A,K : A(K)×A∨(K) → R

defined by

(a, [LK ]) 7→ ĥK′,L (a)
[K ′ : K]

for a ∈ A(K ′) and L a representative line bundle on AK′ for a finite extension K ′/K inside of K (with K ′

given its canonical structure of generalized global field via the algebraic method as in §8); by Remark 9.6,
the choice of K ′ ⊆ K adapted to the K-points a and [LK ] does not matter. This is Z-bilinear because line
bundles associated to geometric points of A∨ = Pic0

A/K are anti-symmetric (by the theorem of the square).
Thus, we can extend scalars to R to get an induced R-bilinear pairing

〈·, ·〉A,K,R : A(K)R ×A∨(K)R → R.

Also, if K ′/K is a finite extension (given its generalized global field structure via the algebraic method in
§8) and we choose a K-embedding K ′ ↪→ K, then under the general identification X(K) = XK′(K) for
K-schemes X (such as A and A∨) we have

(9.8) 〈·, ·〉A,K′ = [K ′ : K] · 〈·, ·〉A,K .

The functoriality of canonical K-heights immediately implies adjointness with respect to dual maps: for
f : A → B a map of abelian varieties over K,

(9.9) 〈a, f∨(b′)〉A,K = 〈f(a), b′〉B,K .

Remark 9.9. If P denotes the Poincaré line bundle on A×A∨ then 〈·, ·〉A,K : (A×A∨)(K) → R is also equal
to ĥK,P . Indeed, consider a finite extension K ′/K inside of K, a point a ∈ A(K ′), and a line bundle L on
AK′ that is algebraically equivalent to 0 (i.e., L is classified by a K ′-point of the identity component A∨ of
PicA/K). We want to prove ĥK′,L (a)/[K ′ : K] = ĥK,P(a,L ), and by Remark 9.6 we can rename K ′ as K.
By the universal property of the Poincaré bundle, the slice inclusion i : A → A×A∨ defined by x 7→ (x, L )
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satisfies i∗(P) ' L . Thus, since i(a) = (a,L ), the generalized functoriality (9.6) for canonical heights
gives ĥK,P(a,L ) = ĥK,L (a) + ĥK,P(i(0)). We therefore just need to prove that ĥK,P(i(0)) = ĥK,P(0,L )
is equal to 0. This reduces us to the special case a = 0. But now we can view A as dual to A∨ (retaining
the fact that P is the universal line bundle) and so running the same calculation with roles of the factors
swapped gives ĥK,P(0,L ) = ĥK,P(0,OA) = 0.

The quadratic form ĥK,L for symmetric L is naturally recovered from the canonical K-height pairing
〈·, ·〉A,K , up to a factor of 2, by means of the map φL : A → A∨ (x 7→ t∗x(L ) ⊗ L −1). This reflects the
correspondence between quadratic forms and symmetric bilinear forms:

Theorem 9.10. For any invertible L on A we have

(9.10) 〈a1, φL (a2)〉A,K = ĥK,L (a1 + a2)− ĥK,L (a1)− ĥK,L (a2)

for all a1, a2 ∈ A(K), where φL (x) = t∗x(L ) ⊗ L −1. In particular, this pairing is symmetric and if L is
symmetric then 〈a, φL (a)〉A,K = 2ĥK,L (a) for all a ∈ A(K).

Proof. By functoriality of canonical K-heights,

ĥK,P ◦ (1A × φL ) = ĥK,(1×φL )∗(P) = ĥK,m∗L⊗p∗1L−1⊗p∗2L−1 = ĥK,L ◦m− ĥK,L ◦ p1 − ĥK,L ◦ p2.

Thus, by Remark 9.9 we get (9.10). The rest follows immediately (e.g., the final assertion for symmetric L

holds because ĥK,L is a quadratic form for such L ). �

Corollary 9.11. Let ιA : A → A∨∨ be the double-duality isomorphism. For any (a, a′) ∈ A(K) × A∨(K)
we have 〈a, a′〉A,K = 〈a′, ι(a)〉A∨,K .

Proof. Again using Remark 9.9 and the functoriality of canonical K-heights, we just have to recall that
if s : A × A∨ ' A∨ × A is the flipping isomorphism and PA∨ is a Poincaré bundle on A∨ × A∨∨ then
s∗((1A∨ × ιA)∗(PA∨)) is a Poincaré bundle on A×A∨. �

Corollary 9.12. For any polarization φ : A → A∨, the induced R-bilinear pairing

A(K)R ×A(K)R → R

defined by (a1, a2)φ = 〈a1, φ(a2)〉A,K,R is symmetric. If the ample line bundle (1, φ)∗(P) on A is symmetric
then (·, ·)φ is positive semidefinite (i.e., (a, a)φ ≥ 0 for all a ∈ A(K)R).

Proof. By replacing K with a finite extension and using (9.8), we can assume φ = φL for some ample L
on A. This gives the symmetry, by Theorem 9.10. If we define N = (1, φ)∗(P) = [2]∗(L ) ⊗L ⊗(−2) then
N is ample and 2φL = φN by the theorem of the square. Hence, in case N is symmetric it is harmless to
replace φ with 2φ to reduce the positive semidefiniteness claim to the case φ = φL for a symmetric ample
L on A. It therefore remains to recall our earlier observation that the quadratic form ĥK,L on A(K)R is
non-negative for any symmetric ample line bundle L on A. �

The preceding discussion of heights is valid for any generalized global field K. We now turn our attention
to the geometric case. Let K/k be a finitely generated regular extension, and give K a generalized global
field structure using a pair (V,N ) as in Example 8.4. This generalized global field structure on K gives rise
to a theory of heights for abelian varieties over K.

Lemma 9.13. For a generalized global field K/k as in Example 8.4, let A be an abelian variety over K and
let L be a line bundle on A. For all a ∈ A(K) and a0 ∈ TrK/k(A)(k) we have ĥK,L (a + a0) = ĥK,L (a). In
particular, the quadratic (or additive) function ĥK,L uniquely factors as a quadratic (or additive) function

(9.11) ĥK,L : A(K)/TrK/k(A)(k) → R

We let ĥK,L ,R : (A(K)/TrK/k(A)(k))R → R denote the induced function after extension of scalars to R
on the source. This is a quadratic form if L is symmetric.
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Proof. By Theorem 6.8, Theorem 9.3, and the definition of ĥK,L , we can replace K/k with kK/k to reduce
to the case that k is algebraically closed. Since a ∈ A(K ′) for some finite extension K ′/K inside of K, and
K ′/k is regular (since k is algebraically closed), by Remark 9.6 we can assume a ∈ A(K). By Lemma 9.7, we
just have to prove that ĥK,t∗aL vanishes on TrK/k(A)(k). For any line bundle N on A, applying Example
9.4 to τ : TrK/k(A)K → A gives that any representative function for hK,N on A(K) is bounded on the
subgroup TrK/k(A)(k) ⊆ A(K). Hence, the quadratic (or additive) function ĥK,N on A(K) is bounded on
TrK/k(A)(k) with value 0 at the origin, and therefore it vanishes on this subgroup. �

Remark 9.14. Assume K/k in Lemma 9.13 is regular, so K ⊗k k′ is a field for any algebraic extension k′/k.
By the proof of Lemma 7.3, for any algebraic extension k′/k and any extension K ′ of K ⊗k k′, the natural
map A(K)/TrK/k(A)(k) → A(K ′)/TrK/k(A)(k′) is injective (clearly the key case is K ′ = K ⊗k k′). Thus,
by expressing k/k as a direct limit of finite subextensions, the source in (9.11) is a direct limit with injective
transition maps when K/k is regular.

Recall that when K is a global field of the classical type (a number field or function field of a curve
over a finite field), then for a symmetric ample line bundle L on an abelian variety A over K, the positive
semidefinite canonical K-height ĥK,L on A(K) has positive-definite scalar extension to A(K)R. Thus, this
scalar extension is also positive-definite (or equivalently, non-degenerate) on each finite-dimensional subspace
A(K ′)R for finite K ′/K inside of K, and we can use Theorem 9.10 to rephrase this non-degeneracy in more
canonical terms: when K is a global field, the canonical K-height pairing

〈·, ·〉A,K,R : A(K)R ×A∨(K)R → R

restricts to a perfect duality between A(K ′)R and A∨(K ′)R for all finite K ′/K inside of K. In the classical
global function field case with finite constant field k ⊆ K, the subgroup TrK/k(A)(k) is a torsion group and
so it is killed by the operation of tensoring against R. Thus, in this case we can equivalently say that ĥK,L ,R

is positive-definite on (A(K)/TrK/k(A)(k))R. In general, we have:

Theorem 9.15. Let K be a finitely generated regular extension of a field k with trdegk(K) > 0, and endow
K with a structure of generalized global field by means of a pair (V,N ) over k as in Example 8.4. For any
abelian variety A over K and any symmetric ample line bundle L on A, the quadratic form

ĥK,L ,R : (A(K)/TrK/k(A)(k))R → R

is positive-definite.

This is proved in [20, Ch. 6, §5] using pre-Grothendieck methods, and in §10 we shall give a proof in the
language of schemes. Let us now give the reduction steps that eliminate the appearance of algebraic closures,
as this also leads to a reformulation of Theorem 9.15 in terms of the canonical K-height pairing.

Observe that by expressing K as a direct limit of finite extensions of kK, we see that among the finite
extensions of K inside of K, a cofinal set is given by those K ′ that are regular over the algebraic closure
k′ of k in K ′ (this regularity is automatic when K ′/K is separable or k is perfect). Thus, by Theorem
6.8, Example 8.5, Lemma 8.6, Remark 9.6, and Remark 9.14, by suitable renaming of the constant field it
suffices to prove positive-definiteness on (A(K ′)/TrK/k(A)(k))R in general for finite extensions K ′/K such
that K ′/k is regular. (In case K ′/K is separable, the extension K ′/k is regular if and only if it is primary.)

Lemma 9.16. For A and K as above, let K ′/K be a finite extension with K ′/k regular. The natural map

(9.12) A(K)/TrK/k(A)(k) → A(K ′)/TrK′/k(AK′)(k)

has finite kernel.

Before proving the lemma, let us show by example in arbitrary characteristic that the kernel of (9.12)
can be nonzero. Let K ′/K/k and the elliptic curves E0 over k and A over K be as in Remark 4.6, so
TrK/k(A) = 0. By construction, A(K) ⊆ A(K ′) = E0(K ′) is the −1-eigenspace E0(K ′)− for the natural
action by Gal(K ′/K). Hence, (9.12) is the map E0(K ′)− → E0(K ′)/E0(k) that has kernel E0(k)[2]. We can
choose E0 so that this latter group is nonzero.
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Proof. Let K0/K be the separable closure of K in K ′. Since K ′/K0 is purely inseparable, Theorem 6.4(3)
settles the case of K ′/K0 and so it remains to treat the case when K ′/K is separable. Let K ′′ be a Galois
closure of K ′/K, and let k′′/k be the algebraic closure of k in K ′′. The extension K ′′/k′′ is regular, but
we need to first circumvent the possibility that k′′ 6= k. To this end, let F = K ⊗k k′′ and F ′ = K ′ ⊗k k′′

considered as subfields of K ′′. Theorem 6.8 and Remark 9.14 imply that the natural map

A(K ′)/TrK′/k(A)(k) → A(F ′)/TrF ′/k′′(AF ′)(k′′)

is injective. The composite of this injection with (9.12) is equal to the composite of natural maps

A(K)/TrK/k(A)(k) → A(F )/TrF/k′′(A)(k′′) → A(F ′)/TrF ′/k′′(AF ′)(k′′)

with injective first step (by Theorem 6.8 and Remark 9.14). Hence, we can replace K/k with F/k′′ to reduce
to the case when k′′ = k (i.e., K ′′/k is regular). It clearly suffices to treat K ′′/K instead of K ′/K, so we
can assume K ′/K is Galois. Hence, we need to prove that when K ′/K is Galois and K ′/k is regular (or
equivalently, finite), the quotient group (A(K) ∩ TrK′/k(AK′)(k))/TrK/k(A)(k) is finite.

For γ ∈ Gal(K ′/K), there are canonical isomorphisms

iγ : γ∗(TrK′/k(AK′)K′) ' TrK′/k(AK′)K′ , jγ : γ∗(AK′) ' AK′

as abelian varieties over K ′ (encoding the evident Galois descents to K). By the universal property of the
K ′/k-trace τAK′ ,K′/k, there is a unique k-map of abelian varieties [γ] : TrK′/k(AK′) → TrK′/k(AK′) such
that the diagram

TrK′/k(AK′)K′

[γ]K′

��

'

i−1
γ // γ∗(TrK′/k(AK′)K′)

γ∗(τA
K′ ,K′/k)

((PPPPPPPPPPPP

TrK′/k(AK′)K′
τA

K′ ,K′/k

// AK′ γ∗(AK′)'
jγ

oo

commutes. Uniqueness gives [1] = id and [γ1γ2] = [γ1] ◦ [γ2], so each [γ] is an automorphism and we
get a natural action of the finite group Gal(K ′/K) on the abelian variety TrK′/k(AK′) over k. For x ∈
TrK′/k(AK′)(K) and y ∈ A(K) we have iγ(γ∗(x)) = x and jγ(γ∗(y)) = y, so this action by Gal(K ′/K) is
the identity on all points in A(K) ∩ TrK′/k(AK′)(k).

The Zariski-closure Z of A(K) ∩ TrK′/k(AK′)(k) in TrK′/k(AK′) is a smooth closed k-subgroup of
TrK′/k(AK′), so the identity component Z0 is an abelian variety (perhaps Z0 = 0). The triviality of the
Gal(K ′/K)-action on A(K) ∩ TrK′/k(AK′)(k) implies (by Zariski-denseness considerations) that the map
t′ : ZK′ → AK′ induced by τAK′ ,K′/k is Gal(K ′/K)-equivariant with respect to the K ′/K-descent data on
both sides, so it descends to a K-map of K-groups t : ZK → A. The restriction t0 : Z0

K → A of t factors
uniquely as τA,K/k ◦ ϕK for a unique k-map of abelian varieties ϕ : Z0 → TrK/k(A). Hence, the image
of Z0(k) in A(K) lies in TrK/k(A)(k) ⊆ A(K), so by working inside of TrK′/k(AK′)(k) we have that the
subgroup A(K) ∩ TrK′/k(AK′)(k) ⊆ Z(k) meets Z0(k) in a subgroup of TrK/k(A)(k). The group

(A(K) ∩ TrK′/k(AK′)(k))/TrK/k(A)(k)

is therefore a quotient of the subgroup

(A(K) ∩ TrK′/k(AK′)(k))/(Z0(k) ∩A(K) ∩ TrK′/k(AK′)(k)) ↪→ Z(k)/Z0(k),

so finiteness of Z(k)/Z0(k) finishes the proof. �

By Lemma 9.16, the natural map (A(K)/TrK/k(A)(k))R → (A(K ′)/TrK′/k(AK′)(k))R is injective for
finite K ′/K such that K ′/k is regular, and so (again using Example 8.5, Lemma 8.6, and Remark 9.6) by
renaming K ′ as K we see to prove Theorem 9.15 it is equivalent prove positive-definiteness of the positive
semidefinite quadratic form ĥK,L ,R on the R-vector space (A(K)/TrK/k(A)(k))R in general. This result
will be proved in §10.

In view of the preceding reduction steps and Theorem 9.10, the Lang–Néron theorem enables us to
reformulate Theorem 9.15 as follows:
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Corollary 9.17. With hypotheses and notation as in Theorem 9.15, the canonical K-height pairing restricts
to a perfect duality (A(K ′)/TrK/k(A)(k′))R × (A∨(K ′)/TrK/k(A∨)(k′))R → R between finite-dimensional
vector spaces for any finite extension K ′/K that is regular over the algebraic closure k′/k of k in K ′.

The regularity condition on K ′/k′ in the corollary is satisfied for all separable finite extensions K ′/K,
and also for all finite extensions K ′/K when k is perfect.

10. Proof of Theorem 9.15

We begin by recalling a general lemma of Minkowski that reduces the positive-definiteness problem over
R to a finiteness assertion on a lattice.

Lemma 10.1 (Minkowski). Let Λ be a finitely generated Z-module and let q : Λ → R be a quadratic form
such that q(λ) ≥ 0 for all λ ∈ Λ. Let qR : V = R⊗Z Λ → R be the induced quadratic form. If, for all C > 0,
there are only finitely many λ ∈ Λ such that q(λ) < C, then qR is positive-definite.

Proof. See [31, Ch. VIII, Lemma 9.5]. �

This lemma and the reduction steps in §9 reduce us to showing that for all C > 0, the elements P ∈ A(K)
satisfying ĥK,L (P ) < C represent only finitely many residue classes modulo TrK/k(A)(k). We can replace
L with a very ample power L ⊗n, and we can work with a K-height function arising from a choice of
ordered K-basis of Γ(A,L ) and the associated projective K-embedding of A (as this function differs from
the corresponding canonical height by a bounded amount). Thus, by the reduction steps in §9, Theorem
9.15 is reduced to:

Theorem 10.2. Let K/k be a finitely generated regular extension of fields with trdegk(K) > 0, and fix
a pair (V,N ) over k giving K a structure of generalized global field as in Example 8.4. Fix a projective
K-embedding A ↪→ Pn

K and let hK : A(K) → R be the resulting K-height function. For all M > 0, the
elements P ∈ A(K) satisfying hK(P ) ≤ M represent only finitely many residue classes modulo TrK/k(A)(k).

The special case trdegk(K) = 1 with k algebraically closed was proved as the key ingredient in the proof
of the Lang–Néron theorem in §7. The case of higher transcendence degree requires more care because we
have to work systematically with rational maps fP on V whose domain of definition in V may vary with
P . The diligent reader will observe that the reduction of our task to proving Theorem 10.2 did not use the
Lang–Néron theorem, nor does the following proof of Theorem 10.2 use the Lang–Néron theorem, and so (at
the expense of using the foundational discussion in §8–§9) Theorem 10.2 gives a proof of the Lang–Néron
theorem that avoids the need to initially reduce to the case of transcendence degree 1 with an algebraically
closed constant field.

Proof. Let k′/k be a separable algebraic extension and define K ′ = K ⊗k k′, so we get a standard K ′-
height on Pn(K ′) by using the generalized global field structure on K ′ arising from (Vk′ ,Nk′) as in Example
8.4; note that Vk′ is integral and regular in codimension 1 since k′/k is separable and V is geometrically
irreducible over k (and regular in codimension 1). By Lemma 8.6, if [k′ : k] is finite then this is generally
not the generalized global field structure put on the finite extension K ′/K via the algebraic method in §8;
there is a discrepancy factor of [k′ : k] = [K ′ : K]. Even worse, there is no uniform discrepancy factor
when [k′ : k] is infinite. Fortunately, by Theorem 9.3, the standard K ′-height on Pn(K ′) defined via the
generalized global field structure on K ′ arising from (Vk′ ,Nk′) has restriction to Pn(K) that coincides with
the standard K-height defined via the generalized global field structure on K arising from (V,N ). Thus, by
Remark 9.14 we can extend scalars to a separable closure of k to reduce to the case when k is infinite.

Let η be the generic point of V . Replacing the ample N with a very ample power N ⊗n causes K-heights
to be multiplied by a universal constant ndim V−1 = ntrdegk(K)−1, so we can assume that there is a projective
k-embedding ι : V ↪→ Pm

k that induces the structure of generalized global field on K = k(η) (with field of
constants k). We let [h0, . . . , hm] be a representative ordered (m + 1)-tuple of rational functions on V not
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all of which are zero and which define ι as a rational map. We let d be the k-degree of V in Pm
k . Here is a

formula for d:

(10.1) degPm
k

(V ) ?= hK,m(ι(η)) =
∑

v

max
j

(−ordv(hj)degPm
k

(v)),

where the sum runs over all codimension-1 points v ∈ V and degPm
k

(v) is the degree of the closure of ι(v)
as an integral closed subscheme of Pm

k . For the case trdegk(K) = 1 and k algebraically closed, (10.1) is the
identity (7.3). In general, the right side of (10.1) is invariant under a common k(V )×-scaling on the hj ’s, by
the product formula, and so the argument used in the 1-dimensional case carries over essentially verbatim
to the general case as long as we are able to find k-rational points in Zariski-dense open loci of hyperplanes
(parameterized by a dual projective space). This is no problem, since k is infinite. (The reduction steps to
get to the case of infinite k also show that (10.1) is valid for finite k.)

The given closed embedding A ↪→ Pn
K identifies P ∈ A(K) with a K-point [g0, . . . , gn] of projective

n-space with gi ∈ K not all zero. By definition of hK and the generalized global field structure on K,

hK(P ) =
∑

v

max
i

(−ordv(gi)degPm
k

(v)).

Let Ã be the k-variety closure of A under the map

φ : A ↪→ Pn
η = Pn

k × η ⊆ Pn
k ×k V ↪→ Pn

k ×Pm
k ↪→ PN

k ,

where N = (n+1)(m+1)−1. The closure WP of P in Ã is the scheme-theoretic image of the rational k-map
fP = φ ◦P on V defined by the tuple [gihj ]; the domain of fP on V may vary with P . By construction, the
projection from WP ⊆ Pn

k × V to V is a birational morphism. Thus, WP is a projective k-variety model for
K, but (unlike V ) it is generally not regular in codimension 1.

We shall now bound the degree of WP inside of PN
k . The generic point fP (η) of WP is a K-point of PN

whose standard K-height has an upper bound:

hK,N (fP (η)) =
∑

v

max
i,j

(−ordv(gihj) degPm
k

(v))

≤
∑

v

max
i

(−ordv(gi) degPm
k

(v)) +
∑

v

max
j

(−ordv(hj) degPm
k

(v))

= hK(P ) + d

by (10.1). We claim that hK,N (fP (η))dim WP is an upper bound on the k-degree of WP as a k-subvariety of
PN

k . Rather more generally:

Lemma 10.3 (Néron). If f : η = Spec K → PN
k is a k-morphism and W denotes the k-variety closure of

f(η), then
degPN

k
(W ) ≤ hK,N (f(η))dim W .

Although we are presently working under the extra property that k is infinite, the lemma makes sense for
any k and it true in such generality: the preceding arguments concerning separable algebraic extension of
the constant field show that both sides of the inequality are unaffected by any separable algebraic extension
on k.

Proof. Let [f0, . . . , fN ] be a representative tuple of elements of K not all zero that induces the rational k-map
f from V to PN

k . We can and do assume one of the fj ’s is equal to 1. The case dim W = 0 is trivial, so we
suppose r = dim W is positive.

Choose dense opens W ′ ⊆ W and V ′ ⊆ V such that V ′ lies in the domain of definition of every fj and
f induces a surjective k-morphism from V ′ onto W ′. Since k is infinite and W is generically smooth with
r = dim W > 0, by Bertini techniques we can find k-rational hyperplanes H1, . . . ,Hr in PN

k whose common
intersection with W is finite étale over k and is supported in W ′. In fact, we can choose the Hi’s so that
for 1 ≤ i < r each H1 ∩ · · · ∩Hi ∩W is geometrically integral of codimension i and Hi+1 is “generic” in the
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dual projective space of hyperplanes. The k-finite étale intersection W ∩ (∩αHα) has k-length degPN
k

(W ),
and we want to bound this k-length from above by hK,N (f(η))r.

The preimage of Hi ∩ W ′ in V ′ is an effective Cartier divisor in V ′, and let Di be its scheme-theoretic
closure in V , so Di is a k-subscheme of V with codimension 1 having its generic points in V ′. The genericity
of the choices of the Hi’s therefore ensures that we can arrange that if 1 ≤ i < r then Di+1 does not contain
the generic points of D1 ∩ · · · ∩Di, and so ∩αDα is k-finite. This intersection contains a closed subscheme
surjecting onto the k-finite étale scheme W ∩ (∩αHα) ⊆ W ′ whose k-length is degPn

k
(W ), so

degPn
k
(W ) ≤ `k(∩αDα).

Thus, it suffices to prove `k(∩αDα) ≤ hK,N (f(η))r. By Bézout’s theorem on V in Pn
k ,

`k(∩αDα) =
r∏

α=1

degPn
k
(Dα),

and so it suffices to prove degPn
k
(Di)

?
≤ hK,N (f(η)) =

∑
v maxj(−ordv(fj) degPn

k
(v)) for each 1 ≤ i ≤ r.

By definition, Di is the closure in V of the zero locus on V ′ of some Li =
∑

a
(i)
j fj with a

(i)
j ∈ k not all

zero, and so degPn
k
(Di) is the degree in Pn

k for the part of the zero-scheme Weil divisor div0(Li) ⊆ V that
meets the dense open V ′ ⊆ V . Hence,

degPn
k
(Di) ≤ degPn

k
(div0(Li)) = degPn

k
(−div∞(Li)) =

∑
v

max(−ordv(Li), 0) degPn
k
(v).

It therefore suffices to prove that for a generic [a(i)
0 , . . . , a

(i)
N ] ∈ PN (k),

max(−ordv(
∑

a
(i)
j fj), 0) ≤ max

j
(−ordv(fj))

for all v. Since one of the fj ’s is equal to 1, the right side is always nonnegative. We therefore just need
to consider those codimension-1 points v at which

∑
j a

(i)
j fj (for fixed i) has a pole. The only such v are

those at which some fj has a pole, and the pole order of the sum
∑

j a
(i)
j fj is certainly no worse than the

maximum pole order of any of the fj ’s at such v. So in fact we do not even need a genericity condition on
the a

(i)
j ’s. �

To summarize, for every P ∈ A(K) with hK(P ) ≤ M , the corresponding rational k-map fP from V

to Ã ⊆ PN
k is a generic immersion whose image has k-variety closure WP = (φ ◦ P )(η) with dimension

δ = trdegk(K) that is independent of P and has k-degree in PN
k that is uniformly bounded above by

(M + d)δ. Thus, we may now abandon K-heights and instead aim to prove that for any M ′ ≥ 0, the points
P ∈ A(K) satisfying degPN

k
(WP ) ≤ M ′ lie in finitely many classes in A(K)/TrK/k(A)(k). This statement

does not involve heights, so it does not matter for this assertion that the projective k-model V is regular in
codimension 1. Thus, even though the integral k-scheme Vk may fail to be regular in codimension 1, we can
nevertheless replace k and K with k and K ⊗k k to reduce to the case when k is algebraically closed.

The WP ’s are geometrically integral closed subschemes of PN
k with dim WP independent of P and

degPN
k

(WP ) bounded independently of P . Thus, as Grothendieck explains in the discussion of “limited
families” in his work on Hilbert schemes (see [10, §2], especially Lemma 2.4 there), an application of Chow
coordinates and Grothendieck’s basic results on constructibility loci for fibers of morphisms ensures that
there exists a k-scheme S of finite type and an S-flat closed subscheme Z ↪→ S×PN

k such that all fibers Zs

are geometrically integral and each WP arises as such a fiber over some s ∈ S(k) (here we use crucially that
k is algebraically closed). By replacing S with a suitable closed subscheme without losing any of the above
properties, we can impose the extra requirement that Z lies in S ×Spec k Ã since the fibers WP ⊆ Pn

k lie in
Ã. We can also assume that S is a disjoint union of k-varieties.

We now claim that if WP and WP ′ occur as fibers over the same irreducible component of S, then P and
P ′ have the same image in A(K)/TrK/k(A)(k); this will certainly solve our problem. The case P = P ′ is
trivial, so we can assume we are working over an irreducible base component with positive dimension. By
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[25, p. 56], on an irreducible variety of positive dimension over an algebraically closed field, any two rational
points lie in a common irreducible curve in the variety. Thus, it suffices to suppose the base of our family is
an irreducible curve X , which we may moreover suppose to be k-smooth by base change to its normalization
(recall that k is algebraically closed). Thus, we have an X-flat closed subscheme

Z ↪→ X ×Spec k Ã

such that the closed subscheme Zx ⊆ Ã ⊆ PN
k is geometrically integral for all x ∈ X, and for suitable

x0, x
′
0 ∈ X(k) the fibers Zx0 and Zx′0

in Ã ⊆ PN
k coincide with WP and WP ′ respectively. In particular, Z

is integral with dimension dim WP + dim X = dim V + 1.
Consider the composite map

(10.2) Z ↪→ X × Ã → Ã → V,

where the final step uses that Ã is constructed inside of Pn
k × V . The map (10.2) is dominant, since even

WP = Zx0 ⊆ Z maps birationally onto V , so Z hits the generic point η ∈ V with fiber Zη that must be
integral and have dimension dim Z − dim V = 1. Thus, the proper map

Z ↪→ X × Ã → X × V

has restriction over XK that is a proper map ξ : Zη → XK between integral curves over K. Since XK is a
K-smooth curve, ξ is either constant or finite and flat. The fibers of ξ over the K-points {x0}×Spec k K and
{x′0}×Spec k K of XK are (Zx0)η = (WP )η and (Zx′0

)η = (WP ′)η, and these are non-empty because WP → V
and WP ′ → V are dominant (even birational) morphisms. Thus, ξ must be finite and flat. Since WP → V
is birational, so (WP )η → η is an isomorphism, ξ has degree 1 and thus is an isomorphism. It follows that
for some dense open V 0 ⊆ V , the restriction of the composite Z ↪→ X × Ã → X × V over X × V 0 is an
isomorphism.

Hence, we can consider Z|V 0 as a section PV 0 : XV 0 → XV 0 ×V 0 ÃV 0 . Restricting this over the generic
point η of V 0 and recalling that (by construction of Ã) the map Ã → V has generic fiber equal to the abelian
variety A over η, we arrive at a section PK : XK → XK × A over XK such that PK({x0}K) ∈ A(K)
is the K-point P that was used to define WP via closure, and likewise PK({x′0}K) ∈ A(K) is P ′. It is
therefore enough to prove that for all x ∈ X(k), the points PK(x) ∈ A(K) coincide modulo TrK/k(A)(k).
The argument with Albanese varieties that we used to conclude the proof of the Lang–Néron theorem may
now be carried over verbatim to prove this final claim. �
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Bourbaki 9, Exp. 286, pp. 129–147.

[29] T. Shioda, “Mordell–Weil lattices for higher genus fibration over a curve” in New trends in algebraic geometry, selected
papers presented at the Euro conference, Warwick, UK, July 1996. Cambridge Univ. Press, Lecture Note Series 264

(1999), pp. 359–373.

[30] J. Silverman, “Heights and the specialization map for families of abelian varieties”, J. Riene Angew. Math. 342 (1983),
pp. 197–211.

[31] J. Silverman, The arithmetic of elliptic curves, Springer–Verlag GTM 106, New York, 1986.

[32] J-L. Verdier, “A duality theorem in the étale cohomology of schemes” in Proceedings of a conference on local fields,
Springer-Verlag, New York, 1967, pp. 184–198.

[33] W. Waterhouse, Introduction to affine group schemes, Springer-Verlag GTM 66, New York, 1979.

[34] A. Weil, Foundations of algebraic geometry, American Math. Soc. 29, New York, 1946.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

E-mail address: bdconrad@umich.edu


