
TRACES OF HECKE OPERATORS

1. Statement of main result - Evan

Let A = AQ and let G = GL2. Given a nice function f on G(A), we have
derived a formula which tells us the trace of its convolution action R(f) on the
space L2

cusp(G(A),ω) in terms of some geometric data expressed as orbital integrals
and some spectral data expressed as information about Eisenstein series (related to
the “missing” continuous and residual spectra). Classically, however, we care about
only a few special actions on a few special functions in L2

cusp(G(A),ω); namely, how
the Hecke operators act on cusp forms of a given weight and level. The first goal
of these two lectures is to pick a very special function f whose convolution action
“is” precisely the action of a Hecke operator on the space of cusp forms: that is,
we want R(f) to act as the Hecke operator on cusp forms (embedded as usual into
L2
cusp(G(A),ω)) and to act as the zero operator on the orthocomplement.
What does this give us? It means we can express the trace of the Hecke operators

as geometric and spectral data associated with G. Actually, since R(f) will act as
zero off of the cuspidal part of the spectrum of L2(G(A),ω), we don’t have to
account for the “missing” continuous and residual spectra at all, because they were
never there. Finally, we can simplify the geometric data in our case to get a formula
in the classical (non-adelic) language, as follows:

Theorem 1.1 (Eichler-Selberg). Fix an integer weight k > 2, an integer level
N ≥ 1, a Dirichlet character ω′ on Z/NZ, and an integer n such that (n,N) = 1.
Let Tn be the Hecke operator on the space of cusp forms Sk(N,ω′). Assume that
ω′(−1) = (−1)k (otherwise, Sk(N,ω′) is trivial). Then

tr(Tn) =
k − 1

12
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ω′(n1/2)−1 is defined to be zero if n is not a perfect square, ρ and ρ are the roots
of the polynomial X2 − tX + n, hw(d) is the weighted class number of the order in
Q(ρ) with discriminant d,

µ(t,m, n) =
ψ(N)

ψ(N/Nm)

∑

c

w′(c)−1

with Nm = gcd(N,m) and c running over all elements of (Z/NZ)∗ that lift to
solutions of c2− tc+n ≡ 0 mod NNm, φ is the Euler totient function, and y is the
unique integer modulo N/ gcd(τ, N/τ) such that y ≡ d mod τ and y ≡ n

d mod N
τ .

The first term corresponds to the identity term in the general trace formula, the
second term to the elliptic terms, and the third term to the hyperbolic and unipotent
terms. In particular, this is not a special case of Macky’s “simple trace formula”
from before; indeed, as we will see, only the local hyperbolic orbital integral at the
archimedean place vanishes, and there is only one archimedean place of Q. In fact,
even at level one we keep all terms, although there is some simplification:

Corollary 1.2 (Eichler-Selberg at level 1). With notation as above, if N = 1 then

tr(Tn) =
d− 1

12
n
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where 1S is the indicator function of the set of squares.

The Eichler-Selberg formula is also true if (n,N) $= 1 (due to Oesterlé [7] in his
thesis), and also true if k = 2 and we make a slight modification. The problem with
k = 2 is that the f that we will pick is then not absolutely integrable. Fortunately,
the theory of psuedo-coefficients (in this instance due to Clozel and Delorme [2])
manufactures a certain non-explicit C∞

c function f ′ whose trace is the same as that
of the archimedean place of f . Then we would use Arthur’s invariant trace formula
to employ f ′ in place of f .

Finally, note that the Eichler-Selberg trace formula can in principle be proven
in a completely classical setting. See, for example, [10] (and later correction [11])
for a proof of 1.2 along those lines. The proof outlined here largely follows [5].

2. Cusp forms as automorphic forms - Evan

What follows is a quick reminder of how classical cusp forms naturally lie inside
the space of automorphic forms, recalling Zeb’s earlier talk. Let h ∈ Sk(N,ω′),
where ω′ is a Dirichlet character modulo N such that ω′(−1) = (−1)k. By lifting
from (Z/NZ)∗ to Ẑ∗ and using strong approximation on A∗, we build a Hecke
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character ω : A∗ → C∗ (which happens to be trivial on R∗
+). This procedure

preserves the conductor and gives a bijection

{Dirichlet chars. of conductor M} ↔{ finite order Hecke chars. of conductor M}
for each M . Under this correspondence, ω′(d) = ω(dN ), where dN is the adele that
agrees with d at all places p|N and is set to 1 at all other places.

Recall that strong approximation for G(A) implies that we can write

G(A) = G(Q)GL+
2 (R)K0(N),

where K0(N) =
∏

p<∞ K0(N)p,

K0(N)p =

{(
a b
c d

)
∈ Kp, c ≡ 0 mod N

}
,

and Kp is the maximal compact open subgroup GL2(Zp).
1

Promote ω to a character of K0(N) by setting

ω

((
a b
c d

))
= ω(dN ),

where the adele dN is defined above.
Given our cusp form h, we can produce a function φh on G(A) by

φh(g) = h(g∞(i))j(g∞, i)−kω(k0),

where the factorization g = γg∞k0 is given by strong approximation and j(g∞, z) =
(c∞z+d∞)(det g∞)−1/2 is the usual factor of automorphy. The basic result, proven
in Zeb’s earlier talk, is the following:

Proposition 2.1. The map h (→ φh defines an isometric embedding of Sk(N,ω′)
into L2

cusp(G(A),ω). Its image consists precisely of the elements φ of L2
cusp(G(A),ω)

such that

• φ(gk) = ω(k)φ(k) for all k ∈ K0(N) and g ∈ G(A)

• φ

(
g

(
cos θ sin θ
− sin θ cos θ

))
= eikθφ(g) for all angles θ and all g ∈ G(A)

• If φ∞ denotes the restriction of φ to the archimedean place, we have

∆φ∞ = −k

2

(
k

2
− 1

)
φ∞.

We will explicitly need the first two properties (the transformation rules). From
now on, we will identify Sk(ω′, N) with its image under this map. Representation-
theoretically, we can verify without too much difficulty that

Sk(N,ω) )
⊕

cuspidal π
π∞&πk

Cvπ∞ ⊗ πK1(N)
fin ,

where πk is the discrete series representation of G(R) of lowest weight k.
We will need to recall a few basic facts about the πk. For each weight k the

discrete series are realizable in the following way: let

V +
k =

{
h holomorphic on H : ||h||2 =

∫

H
|h(x)|2yk−2 dx dy < ∞

}
,

1More generally (see page 41 of [3]) we can take in place of the groups K0(N)p any choice
of open subgroups K′

p such that K′
p = Kp for almost all p and such that the determinant map

Kp → Z∗
p is surjective for every p.
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and let g =

(
a b
c d

)
∈ SL2(R) act on V +

k via

f(z) (→ (−bz + d)−kf

(
az − c

−bz + d

)
.

This is a unitary discrete series representation of SL2(R) with lowest weight vector

f ′
0(z) =

1

(z + i)k
.

To promote this SL2(R)-representation to a discrete series representation of G(R),

we first let

(
−1 0
0 1

)
SL2(R) act in the same way but with a complex conjugate on

V −
k , where V −

k is the analagous space of antiholomorphic functions satisfying the
same L2 property on the upper half plane.2 Thus we have defined a SL±

2 (R)-action
on V +

k ⊕ V −
k . We let G(R) act on V +

k ⊕ V −
k by simply requiring that the positive

determinant elements Z+(R) of the center act trivially. The lowest weight vector
f0 for this representation is 1/(z+ i)k on the holomorphic part and identically zero
on the antiholomorphic part. We will normalize this vector for later use, defining

f̃0 =
f0

||f0||
.

3. Constructing the non-archimedean places of f - Evan

We want to construct a test function f whose convolution action will mimic the
Hecke operator on Sk(N,ω′) and equal the zero operator on the orthocomplement
in L2

cusp(G(A),ω). Specifically, we want the following diagram to commute, where
P is the orthogonal projection:

L2
cusp(G(A),ω)

R(f)
!!

P

""

L2
cusp(G(A),ω)

Sk(N,ω′)
n−(k/2−1)Tn !! Sk(N,ω′)

!"

##

We will build up f place by place. The non-archimedean components will mimic
the Hecke operator, while the archimedean component will be cooked up so as to
kill the orthocomplement of Sk(ω′, N).

To define the non-archimedean components of f , we first define

M(n,N)p =

{
g =

(
a b
c d

)
∈ M2(Ẑp) : det g ∈ nẐ∗

p and c ≡ 0 mod N Ẑp

}
.

Note that M(n,N)p is equal toK0(N)p if p ! n; i.e., for all but finitely many primes.
Let

M(n,N) =
∏

p<∞
M(n,N)p ⊂ M2(A).

Extend the character ω to a character on M(n,N) by setting

ω

((
a b
c d

))
= ω(dN ),

2Alternatively, we could consider the action of SL2(R) ⊕
(

−1 0
0 1

)
SL2(R) on a certain set

of holomorphic functions on C \R; the resulting representation is the same.
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just as for K0(N) above. Extend ω to Z(Afin) in a different way, setting

ω̃

((
d 0
0 d

))
= ω(d),

where d is the finite adele given by the usual embedding Q → Afin. In particular,
this character is not the one given by the bijection between Dirichlet characters and
finite order Hecke characters; we use the notation ω̃ to distinguish it. Let K0(N)
denote the group K0(N) modulo its center. We define ffin : G(Afin) → C by

ffin(g) =

{
ω̃(z)−1ω(m)−1

meas(K0(N))
if g = zm with z ∈ Z(Afin),m ∈ M(n,N),

0 otherwise.

We have to check that this is well-defined, which we can easily do working locally.
It is possible to massage this definition into a form that looks very close to the
“double coset” definition of the Hecke operator in the classical setting, but we will
not do this for lack of time. It turns out that the support of ffin is equal to

⋃

d1,d2>0
d2|d1,d1d2=n

Z(Afin)K0(N)

(
d1 0
0 d2

)
K0(N).

In the case that N = 1 and n = p, ffin actually turns out to be the characteristic
function of

Z(Afin)Kfin

(
p 0
0 1

)
Kfin.

For future reference, we check:

Lemma 3.1. We have meas(K0(N)) = 1
ψ(N) , where ψ(N) = [SL2(Z) : Γ0(N)].

Proof. Let Kfin =
∏

p<∞ Kp ⊂ G(A). Our measure is normalized so that the
measure of K is one. We verify by easy local computation that

[Kfin : K0(N)] = [SL2(Z) : Γ0(N)],

and this suffices. !
Our first goal is the following, which proves that the above diagram commutes

in the very special case that we started out in Sk(N,ω′) to begin with:

Proposition 3.2. Suppose n is a positive integer such that (n,N) = 1, and let
h ∈ Sk(N,ω′). Then

R(ffin)φh = φn−(k/2−1)Tnh.

Before proving this, we have to prove a couple of irritating decomposition lemmas
in order to get a handle on what ffin is actually doing.

Lemma 3.3. Suppose p|n. Then the following is a disjoint union:

M(n,N)p =

vp(n)⋃

j=0

pj−1⋃

a=0

(
pj a
0 pvp(n)−j

)
Kp.

Proof. It’s an easy check that the right hand side is contained in the left hand side.

In the converse direction, let g =

(
a b
c d

)
∈ M(n,N)p. We are allowed to multiply

on the right by Kp, and we will do so repeatedly in order to massage g into the
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correct form. First note that multiplying on the right by

(
0 1
1 0

)
∈ Kp swaps the

columns of g, so we can assume without loss of generality that vp(c) ≥ vp(d). Then

the matrix

(
1 0
− c

d 1

)
is obviously in Kp, and multiplying on the right by it yields

a matrix of the form

(
∗ ∗
0 ∗

)
. Multiplying by a diagonal matrix with entries in Zp

brings us to a matrix with only powers of p on the diagonal, which must necessarily

be of the form

(
pj b
0 pvp(n)−j

)
(with b ∈ Zp and 0 ≤ j ≤ vp(n)) because the

resulting matrix must still be in M(n,N)p, hence must have determinant a unit
multiple of n. Finally, we calculate

(
pj b
0 pvp(n)−j

)(
1 α
0 1

)
=

(
pj pjα+ b
0 pvp(n)−j

)
.

Therefore we can choose some α ∈ Zp to take b to its residue class modulo pjZp.
To prove disjointness of the decomposition, one checks straightforwardly that if

(
pj a
0 pvp(n)−j

)
∈
(
pj

′
a′

0 pvp(n)−j′

)
Kp

then we must have j = j′ and a ≡ a′ mod pj (note that we cannot merely invert
one of the matrices in M(n,N)p to resolve this, because the matrices in question
are not invertible; this is an error in [5], Lemma 13.4). !

Lemma 3.4. The following is a disjoint union:

M(n,N) =
⋃

d1,d2>0
d1d2=n

⋃

amod d1

(
d1 a
0 d2

)
K0(N).

!
I will omit the proof for lack of time and relevance; one straightforwardly applies

the above lemma at each place.

Proof of proposition. By definition,

R(ffin)φh(g) =

∫

Z(Afin)\G(Afin)
ffin(x)φh(gx) dx.

By the “double coset” description of the support of ffin that we didn’t prove above,
the integrand has compact support modulo Z(Afin), so convergence is clear.

Now we want to show that the integrand is right K0(N)-invariant. In order to
do this, we make a bit of a detour. Claim: if

K1(N) =

{(
a b
c d

)
∈ K0(N) : d ≡ 1 mod N Ẑ

}
,

then ffin is bi-K1(N)-invariant. This is proven by an easy check; multiplication
of some m ∈ M(n,N) on the left or right by an element of K1(N) preserves the
determinant (obviously) and the lower right corner modulo N (calculation).

Going back to checking that the integrand is right K0(N)-invariant, consider an

element k =

(
a b
c d

)
∈ K0(N). Briefly, we can multiply by a scalar matrix to get
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it into K1(N), and we know how both ffin and φh transform via the center, so we’re
in good shape. More precisely, let z be a scalar matrix such that zk ∈ K1(N). By
the definition of ffin and its K1(N)-invariance, we have

ffin(xk) = ffin(xz
−1zk) = ffin(xz

−1) = ω̃(z−1)−1ffin(x) = ω̃(z)ffin(x).

By Proposition 2.1,

φh(gxk) = ω(k)φh(gx).

Now note that the diagonal entries of z (which I will also denote by z) must be
coprime to N , so in the notation of Section 2 we have zN = z and therefore
ω̃(z) = ω(z). Additionally, zk ∈ K1(N) and ω is trivial on K1(N), so all in all we
have

ffin(xk)φh(gxk) = ω̃(z)ω(k)ffin(x)φh(gx) = ω(zk)ffin(x)φh(gx) = ffin(x)φh(gx).

Therefore the integrand is right K0(N)-invariant.
Looking at the decomposition in Lemma 3.4, therefore, we see that the integrand

is actually constant on each coset, so the integral reduces to the sum

R(ffin)φh(g) = meas(K0(N))
∑

d1,d2>0
d1d2=n

∑

amod d1

ffin

((
d1 a
0 d2

))
φh

(
g

(
d1 a
0 d2

)

fin

)
.

But by the definition of ffin,

ffin

((
d1 a
0 d2

))
=

ω′(d2)−1

meas(K0(N)
,

so the above simplifies to

R(ffin)φh(g) =
∑

d1,d2>0
d1d2=n

∑

amod d1

ω′(d2)
−1φh

(
g

(
d1 a
0 d2

)

fin

)
.

Claim: bothR(ffin)φh and φn−(k/2−1)Tnh are leftG(Q)-invariant and rightK1(N)-
invariant. In the former case this follows because ffin; in the latter case this follows
from Proposition 2.1. Strong approximation3 gives us

G(A) = G(Q)GL+
2 (R)K1(N),

so it suffices to check that the two functions agree on GL+
2 (R).

To this end, assume that g = (g∞, 1, 1, . . .), and let

γ =

(
d1 a
0 d2

)−1

=

(
d−1
1 −a(d1d2)−1

0 d−1
2

)
∈ G(Q).

By G(Q)-invariance,

φh

(
g

(
d1 a
0 d2

)

fin

)
= φh

(
γg

(
d1 a
0 d2

)

fin

)
= φh(γ∞g∞ × 1fin).

3(in the somewhat greater generality afforded by the first footnote)
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Therefore, if we let z = g∞(i) ∈ H and use the cocycle property of the usual factor
of automorphy as well as an explicit calculation of j(γ∞, z), we get

φh

(
g

(
d1 a
0 d2

)

fin

)
= j(γ∞g∞, i)−kh(γ∞g∞(i))

= j(γ∞, z)−kj(g∞, i)−kh(γ∞z)

= (d1d2)
−k/2dk2j(g∞, i)−kh

(
d−2
1 z − a(d1d2)−1

d−1
2

)

= nk/2d−k
1 j(g∞, i)−kh

(
d2z − a

d1

)
.

After multiplying by ω′(d2)−1 and summing up, we get

j(g∞, i)−knk/2
∑

d1,d2>0
d1d2=n

d1−1∑

a=0

ω′(d2)
−1d−k

1 h

(
d2z − a

d1

)
.

We find that this is precisely the “hands-on” definition of the Hecke operators on
the space of cusp forms multiplied by the factor n−(k/2−1) (possibly modulo a sign
of a, which is irrelevant as we are summing it over a cyclic group). !

4. Constructing the archimedean place of f - Evan

Define fk : G(R) → C by

fk(g) = 〈πk(g)f̃0, f̃0〉,

where πk is the discrete series representation on V +
k ⊕V −

k and f̃0 is the lowest weight
vector described above. In other words, fk is the matrix coefficient πk corresponding
to the “diagonal” pair of vectors (f̃0, f̃0). Recall that f̃0 was complety explicit as a
function, so fk is as well. After some annoying integration that I will skip, it turns
out that for g ∈ G(R),

fk(g) =

{
det(g)k/2(2i)k

(b−c+(a+d)i)k if det(g) > 0,

0 if deg(g) < 0.

Another marginally less annoying calculation using this result shows that fk(g) is
absolutely integrable over Z(R)\G(R) whenever k > 2. Unfortunately, as men-
tioned previously, it is not integrable when k = 2, so we exclude this case from our
analysis from now on.

We now make a short digression into representation theory. Let d be the formal
degree of πk; that is, the element such that

∫

Z(R)\G(R)
|〈πk(g)v, w〉|2 dg =

1

d
||v||2||w||2

for all vectors v, w. That is, it is the L2 norm of any matrix coefficient formed
from unit vectors. It is a theorem that this element always exists for a nonzero
irreducible unitary square-integrable representation of a locally compact unimodular
group. If the group in question were compact, d would just be the dimension of the
representation.
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Now I have to explain square-integrable more precisely. By a theorem of Gode-
mont, if χ is any unitary central character and (π, V ) an irreducible unitary rep-
resentation of a locally compact unimodular group G, then one matrix coefficient
lies in L2(G,χ) if and only if all do, if and only if (π, V ) is an irreducible direct
summand of the right regular representation of G on L2(G,χ). Such a representa-
tion is called square-integrable. By our knowledge of the representation theory of
G(R), the discrete series representations are such.

We let

f∞ = dkfk

be the archimedean component of f .
Why did we pick a matrix coefficient of a lowest weight vector here? The goal is

to kill all cuspidal automorphic functions that are not in Sk(N,ω′), so we want to
exploit the orthogonality of matrix coefficients. Specifically, we have the following
strong version of Schur’s lemma:

Proposition 4.1. Let (π0, V0) be an irreducible unitary representation of a locally
compact unimodular group G. Assume that the matrix coefficient φv0,v0 is inte-

grable for some vector v0 ∈ V0. Define f(g) = dπ0〈π0(g)v0, v0〉. For any unitary
representation (π, V ) of G with the same central character, π(f) is the projection
of V onto W = {Tv0 : T ∈ HomG(π0,π)} ⊂ V . In particular, if HomG(π0,π) = 0,
then π(f) = 0. !

With the representation theory taken care of, we have two major steps remaining.
Step one: we want to show that R(f) kills the orthocomplement of L2

cusp(G,ω).
This justifies ignoring the spectral terms in the trace formula. Step two: we want
to show that R(f) kills the orthocomplement of Sk(N,ω′) and acts as (essentially)
the Hecke operator on Sk(N,ω′); i.e., the diagram at the beginning of Section 3
commutes.

Theorem 4.2 (Step one). R(f) annihilates L2
cusp(G(A),ω)⊥.

Proof. Let φ ∈ L2(G(A),ω) be a function bounded (in the supremum norm) by
M . We will use the properties of f∞ to show that R(f)φ is a cusp form. Let G(A)
denote the group Z(A)\G(A) (the adelic points of G modulo the center).

By definition, the constant term of R(f)φ (that we desire to show is zero) is

∫

N(Q)\N(A)
R(f)φ(ng) dn =

∫

N(Q)\N(A)

(∫

G(A)
f(x)φ(ngx) dx

)
dn.

This integral is absolutely convergent because φ is bounded (specifically, by M ·
meas(N(Q)\N(A)) · ||f ||1 < ∞). Therefore we can rearrange things at will; the
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constant term is

=

∫

N(Q)\N(A)

(∫

G(A)
f(g−1n−1x)φ(x) dx

)
dn

=

∫

N(Q)\N(A)




∫

N(Q)\G(A)

∑

δ∈N(Q)

f(g−1n−1δx)φ(x) dx



 dn

=

∫

N(Q)\G(A)




∫

N(Q)\N(A)

∑

δ∈N(Q)

f(g−1n−1δx) dn



φ(x) dx

=

∫

N(Q)\G(A)

(∫

N(A)
f(g−1n−1x) dn

)
φ(x) dx.

Therefore it suffices to show that the infinite place of the inner integral vanishes;
that is, we want ∫

N(R)
f∞(gnx) dn = 0

for all g, x ∈ G(R). This follows by direct calculation; by the above calculation we
know that fk, hence f∞, is a constant multiple of a function of the form 1/(At+B)k,

where we have written n =

(
1 t
0 1

)
. Evaluating the integral of this function from

−∞ to ∞ yields zero, as desired (see Lemma 6.1 below). This calculation may
seem lucky, but it is a specific case of a more general phenomenon noticed by
Harish-Chandra that discrete series matrix coefficients, integrated over unipotent
subgroups, vanish.

So we can conclude that R(f)φ is cuspidal if φ is bounded. But such φ are dense
in L2(G(A),ω), R(f) is a continuous operator, and the cuspidal subspace is closed.
Therefore

R(f) : L2(G(A),ω) → L2
cusp(G(A),ω).

Now we use a trick. I claim that R(f)∗, the adjoint, is equal to R(f∗), where
f(g) = f(g−1). This is an easy formal calculation. Similarly, by the construction
of f∞ as a matrix coefficient and a similarly easy formal argument, we see that
f∗
∞ = f∞. The above argument about vanishing of constant terms only used
properties of f∞, so we can conclude that

R(f)∗ : L2(G(A),ω) → L2
cusp(G(A),ω)

as well. Now by a general easy fact about Hilbert spaces (if a continuous operator
and its adjoint both carry a space into the same subspace, then the operator kills the
orthocomplement of that subspace), we conclude that R(f) kills L2

cusp(G(A),ω)⊥.
!

Theorem 4.3 (Step two). R(f) annihilates Sk(N,ω′)⊥, and the diagram from the
beginning of Section 3 commutes.

Proof. We play approximately the same game. First, I claim that R(f) : L2(ω) →
Sk(N,ω′). Without loss of generality we can check this for v contained in an
irreducible representation Vπ, v cuspidal (by the above step) and v equal to a pure
tensor v∞ ⊗ vfin. Then, almost purely formally, we find that

R(f)v = π∞(f∞)v∞ ⊗ πfin(ffin)vfin.
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By Proposition 4.1, π∞(f∞)v∞ = 0 unless π∞ ) πk, and in this case we have
π∞(f∞)v∞ ∈ Cvπk , where vπk is the lowest weight vector for πk. For the finite
places, we note that ffin is bi-K1(N)-invariant, so πfin(ffin)vfin is too. Therefore

R(f)v ∈ Cvπk ⊗ πK1(N)
fin ⊂ Sk(N,ω′).

Now look at the adjoint, which isR(f∗). The function f∗ is stillK1(N)-invariant,
so the same argument shows that R(f)∗ : L2(G(A),ω) → Sk(N,ω′). By the same
general Hilbert space fact, we conclude that R(f) kills Sk(N,ω′)⊥.

Finally, we need to show that R(f)φh = φn−(k/2−1)Tnh. We know that the finite
part is correct by Proposition 3.2, so we just have to show that the infinite parts
match. But again, this just follows by Schur orthogonality: an irreducible repre-
sentation evaluated at the matrix coefficient of another irreducible representation
is zero, and evaluation at its own diagonal matrix coefficient is a projection onto
the given one-dimensional subspace. !

5. The trace formula for f - Zeb

Somewhere between the statement of Theorem 6.33 of [4] and Theorem 22.1 of
[5] we have

Theorem 5.1. For f as above,

trR(f) = Vol(Ḡ(Q)\Ḡ(A))f(1)

+

∫

Ḡ(Q)\Ḡ(A)

∑

γ elliptic

f(x−1γx) dx

+ f.p.s=1ZF (s)

−Vol(Q×\A1)
∑

[γ]⊂Ḡ(Q)
hyperbolic

∫

M̄(A)\Ḡ(A)

f(g−1γ0g)v(g) dg,

where

F (y) =

∫

K
f

(
k−1

(
1 y
0 1

)
k

)
dk,

the zeta function ZF (s) is defined by

ZF (s) =

∫

A×
F (a)|A|× d×a,

the element γ0 is chosen from [γ]∩M̄(Q), and the height function v(g) is determined
by

v(g) = H(g) +H

((
0 1
−1 0

)
g

)
,

and H(g) is thought of as the height of g(i) in the upper halfplane

H(g) = − log
||(0 1)g||2

| det g| ,

which is characterized by

H

((
a 0
0 b

)
nk

)
= log

∣∣∣
a

b

∣∣∣

for n unipotent and k ∈ K.
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The first summand is the identity contribution, the second is the elliptic con-
tribution, the third is the unipotent contribution, and the last is the hyperbolic
contribution. Note that the contribution from the continuous spectrum is 0, since
by construction this f projects to the discrete spectrum.

We can make an immediate simplification: with the standard normalization of
the measures, we have

Vol(Q×\A1) = 1.

6. Vanishing of the hyperbolic orbital integral at ∞ - Zeb

Recall that we explicitly have

fk(g) =

{
det(g)k/2(2i)k

(b−c+(a+d)i)k det g > 0

0 det g < 0
.

Lemma 6.1. For any g, h ∈ G(R), and any integer k > 2, we have
∫

N(R)

fk(gnh) dn = 0.

Proof. For fixed g, h, it’s clear from the definition of fk that we can find constants
A,B ∈ C such that

fk

(
g

(
1 t
0 1

)
h

)
=

1

(At+B)k
.

Since fk takes finite values, we have A
B $∈ R, so we can apply the residue theorem

to see that ∫ ∞

∞

dt

(At+B)k
= 0

as long as k > 2. !
Corollary 6.2. If k > 2, g, h ∈ G(R), and a, b, a− b ∈ R× then we have

∫

N(A)
f

(
gn−1

(
a 0
0 b

)
nh

)
dn = 0.

Proof. This follows from the previous Lemma and the calculation
(

1 −t
0 1

)(
a 0
0 b

)(
1 t
0 1

)
=

(
a 0
0 b

)(
1 t

(
a−b
a

)

0 1

)
. !

Proposition 6.3. If γ ∈ G(R) is hyperbolic, Gγ(R) the centralizer of γ, then the
orbital integral vanishes:

Φ(γ, f∞) =

∫

Gγ(R)\Ḡ(R)

f∞(g−1γg) dg = 0.

Proof. Without loss of generality we may take γ to be diagonal, so Gγ(R) = M̄(R),
and ∫

M̄(R)\Ḡ(R)

f∞(g−1γg) dg =

∫

K∞

∫

N(R)
f∞(k−1n−1γnk) dn dk = 0

by the Corollary and the fact that f∞ is proprtional to f̄k. !
Thus we have one vanishing orbital integral. This will be useful, but it will not

simplify things as much as they simplified in Macky’s talk.
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7. Calculation: the identity term - Zeb

Recall the identity term from the trace formula:

Vol(Ḡ(Q)\Ḡ(A))f(1).

With the standard measures, we have

Vol(Ḡ(Q)\Ḡ(A)) = Vol(Γ(1)\H) =

∫ 1
2

x=− 1
2

∫ ∞

y=
√
1−x2

dy

y2
dx =

π

3
.

At the Archimedian place, we had f∞ = f̄kdk. By definition, we have

fk(1) =
1k/2(2i)k

(0− 0 + (1 + 1)i)k
= 1,

and
1

dk
=

∫

Ḡ(R)

|fk(g)|2 dg,

and by the Cartan decomposition Ḡ(R) = K∞A+K∞ together with the fact that
|fk| is invariant under K∞ acting on either side of the argument (since fk was
defined to be a matrix coefficient), we have

∫

Ḡ(R)

|fk(g)|2dg = π

∫ ∞

1

∣∣∣∣fk
((

t1/2 0
0 t−1/2

))∣∣∣∣
2

(1− t−2) dt

= 4kπ

∫ ∞

1

1− t−2

(t+ t−1 + 2)k
dt = 4kπ

∫ ∞

4

1

sk
ds =

4π

k − 1
,

where we have used the substitution s = t+ t−1 + 2. Thus we have

f∞(1) = f̄k(1)dk =
k − 1

4π
.

By our definition of ffin, we have

ffin(1) =

{
ω̃(z)−1ω(m)−1

meas(K0(N))
if 1 = zm with z ∈ Z(Afin),m ∈ M(n,N),

0 otherwise.

We easily have
1

meas(K0(N))
= ψ(N) = N

∏

p|N

(
1 +

1

p

)
.

Now suppose that 1 = zm, z ∈ Z(Afin),m ∈ M(n,N). Then by the definition of
M(n,N), n det(z) has an even p-valuation for every p, so since n is positive n must
be the square of an integer. Thus we may as well take

z =

(
n−1/2 0
0 n−1/2

)
, m =

(
n1/2 0
0 n1/2

)
.

We have

ω̃(z) =
ω∞(1)

ω∞(n1/2)

∏

p

ωp(n
1/2) = 1,

since n1/2 > 0, and

ω(m) = ω′(n1/2).
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Thus, the identity term is

Vol(Ḡ(Q)\Ḡ(A))f(1) =
k − 1

12
ψ(N)ω′(n1/2)−1,

where we take ω′(n1/2) to be 0 if n is not a square.

8. Calculation: the hyperbolic terms - Zeb

The hyperbolic term we would like to evaluate is the sum over hyperbolic con-
jugacy classes [γ] ⊂ Ḡ(Q) of

∫

M̄(A)\Ḡ(A)

f(g−1γ0g)v(g) dg.

At this point we will make our first use of the vanishing of hyperbolic orbital
integrals at ∞: since v(g) = v∞(g) + vfin(g), we have

∫

M̄(A)\Ḡ(A)

f(g−1γ0g)v(g) dg =




∫

M̄(R)\Ḡ(R)

f∞(g−1γ0g)v∞(g) dg








∫

M̄(Afin)\Ḡ(Afin)

ffin(g
−1γ0g) dg





+




∫

M̄(R)\Ḡ(R)

f∞(g−1γ0g) dg








∫

M̄(Afin)\Ḡ(Afin)

ffin(g
−1γ0g)vfin(g) dg



 ,

and the second term is just 0 since it is a multiple of the orbital integral at ∞. We
are left with the task of evaluating the first term. Suppose now that

γ =

(
γ1 0
0 γ2

)
,

with γ1 > γ2 ∈ Z+ and γ1γ2 = n.

Proposition 8.1. With γ as above and k > 2 we have

∫

M̄(R)\Ḡ(R)

f∞(g−1γ0g)v∞(g) dg =
n1− k

2 γk−1
2

γ1 − γ2
.

Proof. Note that f∞ is invariant under conjugation by K∞ by a purely formal
check, using the fact that it is defined as a matrix coefficient of the discrete se-
ries representation πk, which acts via multiplication by some eikθ when applied to
elements of K∞:

〈
πk(k

−1
θ gkθ)f̃0, f̃0

〉
=

〈
πk(g)πk(kθ)f̃0,π(kθ)f̃0

〉

= eikθe−ikθ
〈
πk(g)f̃0, f̃0

〉

=
〈
πk(g)f̃0, f̃0

〉
.

Thus we have f∞(k−1n−1γnk) = f∞(n−1γn). By the definition of v∞, we also
have v∞(nk) = v∞(n). Also, with the standard normalization of measures we have
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Vol(K∞) = 1, so the integral we want to evaluate is just
∫

N(R)

f∞(n−1γn)v∞(n) dn = dk

∫ ∞

−∞

nk/2(2i)k

((γ1 − γ2)t+ i(γ2 + γ1))k
· (− log(1 + t2)) dt

= − dknk/2(2i)k

(−1)k(γ1 − γ2)k

∫ ∞

−∞

log(1 + t2)

(t− γ1+γ2

γ1−γ2
i)k

dt

= −k − 1

4π

nk/2(2i)k(−1)k

(γ1 − γ2)k(k − 1)

∫ ∞

−∞

2t

1 + t2

(
t− γ1 + γ2

γ1 − γ2
i

)−k+1

dt

=
1

4π

nk/2(2i)k(−1)k+1

(γ1 − γ2)k
· 2πi · (−1) ·

(
−i− γ1 + γ2

γ1 − γ2
i

)−k+1

=
n1−k/2γk−1

2

γ1 − γ2
,

where the third equality followed from integration by parts and the fourth equality
followed from

2t

1 + t2
=

1

t+ i
+

1

t− i

and the residue theorem applied to a large semicircle not containing γ1+γ2

γ1−γ2
i (here

we are making use of k > 2 and γ1 > γ2). !

So far we have shown that
∫

M̄(A)\Ḡ(A)

f(g−1γ0g)v(g) dg =
n1−k/2γk−1

2

γ1 − γ2

∏

p<∞

∫

M̄(Qp)\Ḡ(Qp)
fp(g

−1γg) dg.

If we write ψ(N) =
∏

p ψp(N) in the obvious way, then we have
∫

M̄(Qp)\Ḡ(Qp)

fp(g
−1γg) dg = ψp(N)−1

∫

Kp/K0(N)p

∫

N(Qp)
fp(k

−1n−1γnk) dn dk

= ψp(N)−1
∑

α

∫

N(Qp)
fp(α

−1n−1γnα) dn,

where α runs over a system of representatives of left cosets of K0(N)p in Kp. We
now split the evaluation of these local orbital integrals up into three cases.

(i) If p ! N then ψp(N) = 1, we can take α = 1, and we get
∫

M̄(Qp)\Ḡ(Qp)

fp(g
−1γg) dg =

∫

Qp

fp

((
γ1 t(γ1 − γ2)
0 γ2

))
dt

= ωp(γ2)
−1 Vol

(
1

γ1 − γ2
Zp

)

=
1

|γ1 − γ2|p
.

Lemma 8.2. Suppose p|N . Then we can write

Kp =
⋃

δ∈Zp/NZp

(
δ 1
1 0

)
K0(N)p ∪

⋃

τ∈pZp/NZp

(
1 0
τ 1

)
K0(N)p
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as a disjoint union.

Proof. Let g =

(
a b
c d

)
∈ Kp.

Two cases: if p|c, then because the determinant is invertible we must have a ∈ Z∗
p,

so h =

(
a−1 −b

ad−bc
0 a

ad−bc

)
∈ K0(N)p. Then gh =

(
1 0
c/a 1

)
, so we can express g as

a product in the second union of the statement of the lemma. It is easy to see by
the definition of K0(N)p that c/a is then unique up to N .

In the other case, p ! c so c ∈ Z∗
p, and we multiply by h′ =

(
c−1 d

ad−bc
0 −c

ad−bc

)
and

proceed in the same way.
Disjointness follows from the calculation

(
1 0
τ 1

)(
w x
Ny z

)
=

(
∗ ∗

τw +Ny ∗

)

and the observation that p|(τw+Ny), so the right hand side cannot be of the form(
δ 1
1 0

)
. !

(ii) p | N and α =

(
δ 1
1 0

)
. We have

(
1 t
0 1

)(
δ 1
1 0

)
=

(
δ + t 1
1 0

)

and(
0 1
1 −t

)(
γ1 0
0 γ2

)(
t 1
1 0

)
=

(
γ2 0

t(γ1 − γ2) γ1

)
,

so

ψp(N)−1

∫

N(Qp)
fp(α

−1n−1γnα) dn = ψp(N)−1

∫

Qp

fp

((
γ2 0

t(γ1 − γ2) γ1

))
dt

= ψp(N)−1ωp(γ1)
−1ψp(N)Vol

(
N

γ1 − γ2
Zp

)

=
|N |pωp(γ1)−1

|γ1 − γ2|p
.

The sum of this over all choices of δ is

ωp(γ1)−1

|γ1 − γ2|p
.

(iii) p | N,α =

(
1 0
τ 1

)
. If τ = 0, we get ωp(γ2)

−1

|γ1−γ2|p as in case (i). Otherwise,

we have

α−1

(
1 t
1 0

)−1

γ

(
1 t
1 0

)
α =

(
γ1 + τ(γ1 − γ2)t (γ1 − γ2)t

−τ(γ1 − γ2)(1 + τ t) γ2 − τ(γ1 − γ2)t

)
.

Setting y = γ2 − τ(γ1 − γ2)t, we get

ψp(N)−1

∫

N(Qp)
fp(α

−1n−1γnα) dn =
ψp(N)−1

|τ |p|γ1 − γ2|p

∫

Qp

fp

((
γ1 + γ2 − y γ2−y

τ
−τ(γ1 − y) y

))
dy.
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The integrand is nonzero if y ∈ Zp,

y ≡ γ2 mod τZp,

y ≡ γ1 mod
N

τ
Zp,

and then the value is ωp(y)−1ψp(N). For this to happen, we need γ1−γ2 ∈
(τ, N

τ )Zp, and then y is determined modulo lcm(τ, N
τ )Zp. Suppose yp is a

solution to this congruence. Then the integral we wish to evaluate becomes

| lcm(τ N
τ )|p

|τ |p|γ1 − γ2|p
ωp(yp)

−1

∫

Zp

ωp(1 + lcm(τ,
N

τ
)z)−1 dz.

This is 0 unless lcm(τ, N
τ ) =

N
(τ,Nτ )

is in NωZp, where Nω is the conductor

of ω. In that case, the integral above comes out to 1.
Summing over τ with p-adic valuation k ≥ 1, we get

ϕp((pk,
N
pk ))ωp(yp)−1

|γ1 − γ2|p
,

when N
(pk, N

pk
)
∈ NωZp, γ1 − γ2 ∈ (pk, N

pk )Zp.

Combining cases (ii) and (iii), we see that for p | N the local orbital integral is

1

|γ1 − γ2|p

∑

τ=pk|N
N

(τ, N
τ

)
∈NωZp

γ1−γ2∈(τ,Nτ )Zp

ϕp

((
τ,

N

τ

))
ωp(yp)

−1,

where

yp ≡ γ2 mod τZp,

yp ≡ γ1 mod
N

τ
Zp.

Multiplying out the local orbital integrals, we get
∫

M̄(A)\Ḡ(A)

f(g−1γ0g)v(g) dg = n1−k/2γk−1
2

∏

p|N

∑

τ=pk

...

ϕp

((
τ,

N

τ

))
ωp(yp)

−1

= n1−k/2γk−1
2

∑

τ |N
(τ,Nτ ) | ( N

Nω
,γ1−γ2)

ϕ

((
τ,

N

τ

))
ω′(y)−1.

Finally, we see that the hyperbolic term is

−n1−k/2
∑

d|n
d<

√
n

dk−1
∑

τ |N
(τ,Nτ ) | ( N

Nω
,d−n

d )

ϕ

((
τ,

N

τ

))
ω′(y)−1,

where y satisfies

y ≡ d (mod τ),

y ≡ n

d
(mod

N

τ
).
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Alternatively, since the inner sum is invariant under replacing d with n
d (by

swapping τ with N
τ ), we can also write this as

−1

2
n1−k/2

∑

d|n
d ,=

√
n

min
(
d,

n

d

)k−1 ∑

τ |N
(τ,Nτ ) | ( N

Nω
,d−n

d )

ϕ

((
τ,

N

τ

))
ω′(y)−1.

9. Calculation: the unipotent term - Evan

For the unipotent term, we have to calculate the finite part of ZF (s) at s = 1,
where ZF is the Tate zeta integral

ZF (s) =

∫

A∗
F (t)|t|s d∗t

associated to the function

F (t) =

∫

K
f

(
k−1

(
1 t
0 1

)
k

)
dk.

The obvious plan of attack, then, is to evaluate the zeta integrals explicitly, place
by place. This is possible but for the nonarchimedean places it is very complicated
and (fortunately) unnecessary, thanks to the following proposition:

Proposition 9.1. Let φ : A → C be Schwartz-Bruhat on Afin and of quadratic
decay on R.4 Let ζp(s) = 1

1−p−s be the p-local part of the usual Riemann zeta

function, and let Zφp(s) be the p-local part of Zφ(s). Then the function

Ωφ(s) =
∏

p<∞

Zφp(s)

ζp(s)

is well-defined and entire. If we further assume that Zφ∞(1) = 0, then the finite
part of Zφ(s) at s = 1 is equal to Z ′

φ∞
(1)Ωφ(1).

Proof. As φ is Schwartz-Bruhat on the finite places, it must equal the characteristic
function of Zp, χZp , at almost all places (this is easy and standard argument using
that every Schwartz-Bruhat function is a finite sum of characteristic functions of
compact sets). A quick calculation of the local zeta integral shows that

ZχZp
(s) =

∫

Z∗
p

|t|s d∗t =
∞∑

n=0

∫

pnZ∗
p

p−ns d∗t =
∞∑

n=0

p−ns =
1

1− p−s
= ζp(s).

Therefore Ωφ is well-defined as an infinite product. A similar but slightly more
involved computation shows that at every place, the ratio Zφp(s)/ζp(s) is a rational
function in p−s, hence an entire function in s. (This boils down to noting that the
integrand of Zφp(s) is compact and constant on small enough balls. The “small
enough balls” integrate to give some multiple of ζp, while the remainder is a finite
sum yielding a rational function in p−s.)

Trivially rearranging and multiplying out, we have

Zφ(s) = Zφ∞(s)Ωφ(s)ζ(s),

4Note that this is less stringent than the usual class of functions for which the Tate zeta
functions are defined. For these functions the functional equation holds as usual but we can only
conclude meromorphic continuation on some strip containing 0 < $(s) < 2 whose width depends
on the decay of φ∞ and its Fourier transform.
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so at s = 1 we have merely a simple pole contributed by ζ(s) (it is not difficult
to show that the local zeta integral at the infinite place is analytic on some strip
containing s = 1). Now it’s just a matter of writing down some Laurent series.

Zφ∞(s) = Zφ∞(1) + Z ′
φ∞(1)(s− 1) + . . . ,

Ωφ(s) = Ωφ(1) + Ω′
φ(1)(s− 1) + . . . ,

ζ(s) =
1

s− 1
+ γ + . . .

where γ is the usual Euler constant. Multiplying out, we get

Zφ(s) =
Zφ∞(1)Ωφ(1)

s− 1
+ (Zφ∞(1)Ωφ(1)γ + Zφ∞(1)Ω′

φ(1) + Z ′
φ∞(1)Ωφ(1)) + . . .

If Zφ∞(1) = 0, we immediately get the desired result. !
This proposition means that we only really have to evaluate ZF∞(s) as a function;

at all the finite places we can get by evaluating just at s = 1. First, let’s tackle the
infinite place. Because f∞ is invariant under conjugation byK∞ (by the calculation
in the previous section), it is trivially easy to evaluate F∞ (recall that our measure
is nicely normalized!):

F∞(t) =

∫

K∞

f∞

(
k−1

(
1 t
0 1

)
k

)
dk = f∞

((
1 t
0 1

))
=

dk(2i)k

(−t+ 2i)k
.

Now evaluation of the zeta integral is just a computation:

Proposition 9.2. On some strip around s = 1,

ZF∞(s) =
2s−1 cos(πs/2)Γ(s)Γ(k − s)

π(k − 2)!
.

Extremely sketchy proof outline. Split up into two similar integrals from zero to ∞,
change variables w = − t

2i in the integrand, use contour integration to replace the
integral from zero to i∞ with an integral from zero to ∞, and recognize the result
as a beta integral which can be evaluated in terms of gamma functions. !

Due to the fortunate fact that cos(π/2) = 0, we deduce the following from the
product rule immediately:

Corollary 9.3.

Z ′
F∞(1) = −1

2
.

!
By Proposition 9.1, it remains only to calculate the local zeta integrals evaluated

at s = 1.
Claim: F (t) is identically zero unless n is a perfect square. We have the following

argument: by definition, f is supported at each p on Z(Qp)M(n,N)p. Therefore if
some g is such that f(g) $= 0, the determinant of g must be a square multiple of n,
as it must be in (Q∗

p)
2nZ∗

p for each p. But in the integral defining F , f is evaluated
only on a matrix with determinant one. We conclude that if F is to be nonzero, n
must be a square.

Second claim: if p ! nN , then ZFp(s) = ζp(s). I will omit this easy argument,
noting only that it follows from the definition of f and the resulting conclusion that
Fp is equal to χZp .
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Third claim: if p|n, then

ZFp(s) = ωp(
√
n)|

√
n|−s

p ζp(s).

Again, we use the definition of fp, noting that if k−1

(
1 t
0 1

)
k = zm for z ∈ Z(Qp),

m ∈ M(n,N)p, we can assume by multiplying by a unit that z is the matrix with√
n in the diagonal entries. Then

m = k−1

(√
n t

√
n

0
√
n

)
k,

which implies that t
√
n must lie in Zp. Evaluating, we get fp(zm) = ωp(

√
n).

We then integrate over all t such that t
√
nZp and get Fp(t) = ωp(

√
n)χZp(

√
nt).

Evaluating the zeta integral is then easy.
It remains to tackle the case where p|N , for which we really do only want to

calculate ZFp(1). Note that

ZFp(1) =

∫

Q∗
p

∫

Kp

fp

(
k−1

(
1 t
0 1

)
k

)
dk |t|1 d∗t

= ζp(1)

∫

Qp

∫

Kp

fp

(
k−1

(
1 t
0 1

)
k

)
dk dt.

But this is exactly the same as the local hyperbolic orbital integral that we have
already calculated above, upon specializing appropriately. Therefore we conclude
that

ZFp(1)

ζp(1)
=

∑

τ

φp(gcd(τ, N/τ)),

where the sum is taken over all powers of p dividing N satisfying N/ gcd(τ, N/τ) ∈
NωZp.

Putting all of this together, by multiplying out, we get the desired result: the
finite part of ZF (s) at s = 1 is equal to

−1

2

√
nω′(

√
n)−1

∑

τ

φ(gcd(τ, N/τ)),

when n is a square, and zero otherwise. Here the sum is taken over all positive τ |N
satisfying N/ gcd(τ, N/τ) ∈ NωZ. One can easily check that this precisely fills in
the missing d =

√
n term in the hyperbolic result.

10. Calculation: the elliptic terms - Zeb

We want to compute
∫

Ḡ(Q)\Ḡ(A)

∑

γ∈Ḡ(Q) ell.

f(g−1γg) dg.

If f(g−1γg) $= 0 for any g, then we can find two lifts γ̃ of γ to G(Q) with det γ̃ = n,
so this becomes

1

2

∫

Ḡ(Q)\Ḡ(A)

∑

γ∈G(Q) ell.

f(g−1γg) dg =
∑

[γ] ell.
det γ=n

1

2

∫

Gγ(Q)\Ḡ(A)

f(g−1γg) dg,
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where Gγ(Q) = Z(Q)\Gγ(Q), and Gγ(Q) is the centralizer of γ in G(Q) (note this
is not the same as the centralizer of γ in Ḡ(Q)).

Thus we just need to calculate Φ(γ, f) =
∫
Gγ(Q)\Ḡ(A) f(g

−1γg) dg. Note that

Gγ(Q), Gγ(A) are both abelian, since we have

Gγ(Q) = Q[γ]∗,

and similarly for A, for γ elliptic or hyperbolic.

Proposition 10.1. If γ is elliptic in G(Q) but hyperbolic in G(R), then Φ(γ, f) =
0.

Proof. Since Gγ(Q), Gγ(A) are unimodular, we have

Φ(γ, f) = Vol(Gγ(Q)\Gγ(A)

∫

Gγ(A)\Ḡ(A)

f(g−1γg) dg

= Vol(Gγ(Q)\Gγ(A)
∏

p≤∞

∫

Gγ(Qp)\Ḡ(Qp)
f(g−1γg) dg,

and the p = ∞ term is 0. !

Proposition 10.2. If γ ∈ G(Q) is elliptic in G(R), then there exists a fundamental
domain F ⊆ Ḡ(Afin) for Gγ(Q)\Ḡ(Afin), i.e. Gγ(Q) is discrete in Ḡ(Afin).

Proof. We need to show that Z(Afin)\(Gγ(Q) ∩ Z(Afin)Kfin) is a finite set. By
considering the valuation of the determinant modulo 2, we see that we just need to
show that Gγ(Q) ∩ SL±

2 (Z) is a finite set. For g ∈ Gγ(Q) ∩ SL±
2 (Z) we can write

g = a+ bγ, and since g ∈ SL±
2 (Z) we have a, b ∈ 1

dZ for some d depending only on
γ. Finally, since det(a+ bγ) is a positive definite quadratic form (since γ is elliptic
in G(R)) it can only take on the values ±1 for finitely many pairs of a, b ∈ 1

dZ. !

Corollary 10.3. If γ ∈ G(Q) is elliptic in G(R), we have

Φ(γ, f) =

∫

Ḡ(R)
f∞(g−1γg) dg

∫

Gγ(Q)\Ḡ(Afin)

ffin(g
−1γg) dg = Φ(γ, f∞)Φ(γ, ffin).

Proof. The second equality follows from the fact that Gγ(R) is conjugate to K̄∞,
which has volume 1. ! !

Proposition 10.4. If gamma is elliptic in G(R) with eigenvalues γ1, γ2, then

Φ(γ, f∞) = −n1−k/2 γ
k−1
1 − γk−1

2

γ1 − γ2
.

Proof. By conjugating γ, we may assume that we have γ =

(
n

1
2 0
0 n

1
2

)
kθ, where

kθ =

(
cos θ sin θ
− sin θ cos θ

)
, for some θ ∈ [0, 2π). Since ω∞(n

1
2 ) = 1, we have

Φ(γ, f∞) = Φ(kθ, f∞). Using

(
1 0
0 −1

)
kθ

(
1 0
0 −1

)
= k−θ we have

Φ(kθ, f∞) =

∫

SL2(R)
f∞(g−1kθg) dg +

∫

SL2(R)
f∞(g−1k−θg) dg.
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By the Cartan decomposition we can take g = k1

(
t
1
2 0
0 t−

1
2

)
k2. Since f∞ is

invariant under conjugation by elements of K∞ and k1, k−θ commute, we get

∫

SL2(R)
f∞(g−1k−θg) dg = π

∫ ∞

1
f∞

((
t−

1
2 0

0 t
1
2

)
k−θ

(
t
1
2 0
0 t−

1
2

))
(1− t−2) dt

= π

∫ ∞

1
f∞

((
cos θ −t−1 sin θ
t sin θ cos θ

))
(1− t−2) dt

=
k − 1

4

∫ ∞

1

(2i)k

(sin θ(t+ 1
t ) + 2i cos θ)k

(1− t−2) dt

=
k − 1

2

∫ ∞

1

ik

(s sin θ + i cos θ)k
ds

=
−ei(k−1)θ

eiθ − e−iθ
,

where the second to last equality came from the substitution s = t+1/t
2 . !

Thus the elliptic term is

−1

2
n1−k/2

∑

[γ] ell.
t2<4n

γk−1
1 − γk−1

2

γ1 − γ2
Φ(γ, ffin),

where t is the trace of γ and the determinant of γ is n.

Proposition 10.5. We have bijections

Gγ(Q)\Ḡ(Afin)/K̄fin ↔ Gγ(Q)\G(Afin)/Kfin

↔ Gγ(Q)\{lattices in Q2}
↔ {classes of lattices in Q[γ]}.

Proof. The only nontrivial bijection is the second one, and this follows from the
local-global principle for lattices: a lattice in Q2 is the same as a collection of rank
2 Zp-submodules of Q2

p, almost all of which are trivial. !

Let L be a lattice contained in Q[γ]. We define OL to be the ring of elements
g ∈ Q[γ] satisfying gL ⊆ L (note that OL is then automatically an order of Q[γ]).
Let Oγ be the order Z[γ]. For any order O of Q[γ], we define the weighted class
number to be

hw(O) =
2h(O)

|O×| ,

where h(O) is the usual class number (i.e. the number of invertible ideals of O
modulo invertible principal ideals). If d is the discriminant of an order O, we also
use hw(d) to denote hw(O)

First we work out the local orbital integral in the case N = 1. Then ffin is the
characteristic function of Z(Afin)Kfin{g ∈ M2(Ẑ) | det g ∈ nẐ}. If γ has trace t
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and determinant n, we get

Φ(γ, ffin) =
∑

g∈Gγ(Q)\G(Afin)/Kfin

Vol(K̄fin)

Vol(K̄fin ∩ g−1Gγ(Q)g)
ffin(g

−1γg)

=
∑

classes of lattices L
γL⊆L

2

|O×
L |

· 1

=
∑

orders O⊇Oγ

h(O)
2

|O×|

=
∑

m≥1

m2| t
2−4n
disc

hw

(
t2 − 4n

m2

)
.

In general, a similar (but much more tedious) calculation gives

Theorem 10.6. The elliptic term is

−n1− k
2

∑

t2<4n

ρk−1 − ρ̄k−1

ρ− ρ̄

∑

m2|t2−4n
t2−4n
m2 ≡0,1 (mod 4)

hw

(
t2 − 4n

m2

)
µ(t,m, n),

where ρ, ρ̄ are the roots of the polynomial x2 − tx+ n and

µ(t,m, n) =
ψ(N)

ψ
(

N
(N,m)

)
∑

c (mod N) lifting to
c2−tc+n≡0 (mod N)

ω′(c)−1.

!

11. Application: dimensions and eigenvalues - Zeb

If we plug in n = 1 to the trace formula, then we will get a formula for tr(T1) =
tr(1) = dimSk(N,ω′). In this case there will be no hyperbolic term, and in the
elliptic term the sum will include only t = 0,±1 and m = 1. Furthermore, the
elliptic term corresponding to t = 1 and the term corresponding to t = −1 will be
equal. The result is the following formula for the dimension.

Theorem 11.1.

dimSk(N,ω′) =
k − 1

12
ψ(N)− 1

2
s0 − s1 −

1

2

∏

p|N

par(p),

where

s0 =

{
1
2 (−1)

k
2−1ω′(x0)2r if x2

0 ≡ −1 (mod N), r = #odd prime factors of N,ω′(x0) well-defined

0 if k odd, 4 | N, ∃p | N p ≡ −1 (mod 4), or ∃p | N ω′
p(−1) = −1,

s1 =






α
3ω

′(2)−1
∏

p|N,p ,=3

(ω′
p(1 + x1) + ω′

p(1− x1)) x2
1 ≡ −3 (mod N or N/3),α =

{
1 k ≡ 2, 3 (mod 6)

−1 k ≡ 0, 5 (mod 6)

0 k ≡ 1 (mod 3), 2 | N, 9 | N, or ∃p | N p ≡ −1 (mod 3),
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and

par(p) =






2pvp(N)−vp(Nω′ ) if 8 vp(N)
2 9 < vp(Nω′)

p
vp(N)

2 + p
vp(N)

2 −1 if vp(N)
2 9 ≥ vp(Nω′) and vp(N) even

2p1
vp(N)

2 2 if vp(N)
2 9 ≥ vp(Nω′) and vp(N) odd.

!
Corollary 11.2.

dimSk(N,ω′) =
k − 1

12
ψ(N) +O

(
ψ(N)

N
1
2

)
.

!
The second easy application of the trace formula is to show that the Hecke

eigenvalues are integral.

Theorem 11.3. For every n relatively prime to N , the eigenvalues of Tn are
algebraic integers.

Proof. By multiplicativity, it’s enough to prove this for n a power of a prime p,
and by the recurrences connecting the Tpj s it’s enough to prove this for Tp. By
the form of the trace formula, we have tr(Tpj ) ∈ 1

12 Z̄ for all j, from which we can
immediately conclude that tr(T j

p ) ∈ 1
12 Z̄ for all j. Now let λ be an eigenvalue of

Tp, and let d = dimSk(N,ω′). Now by Newton’s identities, we have λj ∈ 1
12dd! Z̄

for every j, and from this we can conclude that in fact λ ∈ Z̄. !

12. Application: equidistribution of eigenvalues - Evan

Here we summarize a result on the “vertical” distribution of Hecke eigenvalues,
due to Serre in ([8]). Fix a prime p and think of the weight k and the level N
as varying. Let Tp(N, k) denote the pth Hecke operator on Sk(N, Id) (we have
taken the nebentypus to be the trivial character for simplicity’s sake). The Hecke
operators are self-adjoint with respect to the Petersson inner product, so their
eigenvalues are real. By the proof of the Weil conjectures (and the consequent
proof of the Ramanujan-Petersson conjecture), we know that the Hecke eigenvalues
of Tp(N, k) lie in the interval [−2p(k−1)/2, 2p(k−1)/2]. For convenience, therefore,
we shall normalize as follows:

T ′
p(N, k) =

Tp(N, k)

p(k−1)/2
.

Thus the eigenvalues of T ′
p(N, k) will lie in [−2, 2].

The natural question, therefore, is whether these eigenvalues are equidistributed
with respect to some natural probability measure on [−2, 2] in some limit.5 The
“vertical” situation considered by Serre, which can be resolved using the Eichler-
Selberg trace formula, is where p is held fixed and N+k is allowed to tend to infinity

5Recall that a sequence x! on a compact space X is equidistributed with respect to a Radon
probability measure µ if 1

!

∑!
i=1 δxi → µ in the weak topology as # → ∞, where δx is the “delta

distribution” supported at x. In other words, we require that

lim
!→∞

1

#

!∑

i=1

f(x!) =

∫

X
f(x) dµ(x)

for all continuous functions f on X.
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in any way, so long as k is always even and p ! N . In particular, we get results
for the limit in large weight only (keeping N fixed), in large level only (keeping
k fixed), or in an arbitrary combination of the two. The related question of the
limiting distribution obtained while holding N and k fixed and letting p tend to
infinity is (a generalization of) the Sato-Tate conjecture and much more difficult;
however, the k = 2 and N squarefree case has been established ([1]).

In our case, the measure µp that we want has the following definition:

dµp =
p+ 1

π

(1− x2/4)1/2

(p1/2 + p−1/2)2 − x2
dx,

where dx is the Lebesgue measure on [−2, 2]. It has an interpretation as follows:
we can write

µp = fpµ∞,

where µ∞ is the Sato-Tate measure (which comes from the pushforward of the
Haar measure on conjugacy classes of the Lie group SU(2)) and fp is a function
which comes from the Plancherel measure on the spectrum of the Bruhat-Tits tree
associated to PGL2(Qp). More preciasely, if Xn is the polynomial in x given by

Xn(x) = einφ + ei(n−2)φ + . . .+ e−inφ, x = 2 cosφ,

then fp is the corresponding generating series given by

fp(x) =
∞∑

m=0

q−mX2m(x) =
q + 1

(q1/2 + q−1/2)2 − x2
.

When p is small (for instance, p = 3 or p = 5), the graph of dµp

dx looks like a
symmetric hill with two peaks and a valley in between at x = 0; as p gets larger µp

flattens somewhat and tends towards the Sato-Tate distribution µ∞, which looks
like a semicircle.

Theorem 12.1 (Serre). Let {kλ} and {Nλ} be sequences of positive integers such
that kλ is always even, p never divides Nλ, and limλ→∞(kλ +Nλ) = ∞. Let {x,}
be the sequence formed by concatenating the sets of eigenvalues of each operator
T ′
p(Nλ, kλ) (where each finite set of eigenvalues of a single operator can be ordered

arbitrarily). Then the sequence {x,} is equidistributed with respect to the measure
µp.

Proof sketch. A priori the statement of equidistribution needs to be checked for
every continuous function f on [−2, 2], but it is clear by linearity and continuity
that it actually suffices to check that the weak limit holds for any sequence of
functions whose span is dense in the space of continuous functions. We will pick
our test functions carefully to take advantage of the multiplicativity of the Hecke
operators and then use the trace formula.

More specifically, as the trace is the sum of the eigenvalues it suffices to check
that

Tr(P (T ′
p(N, k)))

dimSk(N, Id)
→

∫ 2

−2
P (x) dµp(x)

for a set of polynomials P with dense span. We take these P to be the polynomials
Xm from above, for which the normalized Hecke operators obey the recurrence
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relation T ′
pm = Xm(T ′

p). For these polynomials, an easy calculation shows that

∫ 2

−2
Xm(x) dµp(x) =

{
p−m/2 if m is even,

0 otherwise.

To calculate the limit on the right hand side, we employ the Eichler-Selberg trace
formula. After some easy and unenlightening analysis bounding the hyperbolic,
unipotent, and elliptic terms, we find that in the large weight and/or level limit,

Tr(T ′
n(N, k)) ∼

{
k−1
12 Ψ(N)n1/2 if n is a square,

0 otherwise.

Specializing to n = 1, we get dimSk(N) ∼ k−1
12 Ψ(N). Putting these two asymptotic

results together, we conclude that
Tr(T ′

pm (N,k))

dimSk(N) tends to p−m/2 if m is even and zero
otherwise, which exactly matches the above calculation of the left hand side. !

Variants of this proof show that the same basic result holds in more generality;
for instance, we can introduce a nontrivial nebentypus or restrict to only newforms
and get similar results. More interestingly, we can consider the related problem of
simultaneous equidistribution of eigenvalues of the operators T ′

p(Nk) as p ranges

over a finite set S of primes and ask what the limiting distribution in [−2, 2]|S|

is. As expected, it turns out to be the tensor product
⊗

p∈S dµp, which implies in
particular that for any finite set of primes and fixed weight k we can pick a level N
for which one of the eigenvalues of Tp(N, k) is arbitrarily close to the Ramanujan-
Weil bound for each p ∈ S (alternatively, fix N and pick a k such that the same
statement holds).

By specializing to the k = 2 case, Serre’s equidistribution results have the corol-
lary that the maximum of the dimensions of the Q-simple factors of the modular
Jacobian J0(N) must tend to infinity as N → ∞. In particular, there are only
finitely many J0(N) isogenous to a product of elliptic curves. All of these results
can be made effective (see [6]); for example, it is known that the largest N for which
J0(N) is isogenous to a product of elliptic curves is N = 1200, due to Yamauchi in
[9].
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