1 The Jacquet functor and parabolic induction

Retain the notations of Brian's notes: $G=\mathbf{G}(\mathbf{F})$ is the groups of \mathbf{F}-rational points of a connected reductive \mathbf{F}-group. Fix $B=\mathbf{B}(\mathbf{F})$ be a Borel, and also fix a maximal split torus A in B.

Let $P \supset B$ a parabolic subgroup of G containing B (not as fixed as B). If $N \subset P$ is the unipotent radical of P (called U in Brian's lecture), it is a normal subgroup and we have the Levi decomposition $P=M N$ where M is a reductive group that contains A, M is called a Levi subgroup. We have $M \bigcap N=\{1\}$ hence $P=M \rtimes N$ is a semidirect product and $M \cong P / N$. (Note also that thus M normalizes N)

For all such M we obtain (dependent on which $P \supset B$ we choose) we write $M<G$, and call M standard.

Example 1.1. If $\mathbf{G}=\mathbf{G L}_{n}$, let B be the subgroup of upper-diagonal matrices. Then all standard subgroups correspond to an (ordered) partition $\underline{n}=\left(n_{1}, \ldots, n_{r}\right)$ of n i.e. a solution in \mathbf{N} of the equation $n_{1}+\ldots+n_{r}=n$.

For such a partition, M is the set of block diagonal matrices (with respect to the corresponding r blocks), P is the set of block upper-triangular matrices and N is the set of block unipotent matrices.

This will be the example to have in mind for the entirety of the lecture.
Definition 1.2 (Jacquet module). Let (π, V) be an admissible representation of G. Let $V(N)=$ $V(N, 1)$ be the subspace of V generated by vectors of form $\pi(n) v-v$.

Let $V_{N}=V / V(N)$ and $\left(\pi_{N}, V_{N}\right)$ the corresponding M-representation obtained by either restriction from G to M, or restricting from G to P and taking quotients $M \cong P / N$. This is called the Jacquet module of V (with respect to P), and $V \mapsto V_{N}$ is called the Jacquet functor.

More generally, let χ be a character of N normalized by M. Set $V(N, \chi)$ be the subspace of V generated by vectors of form $\pi(n) v-\chi(n) v$ and set $V_{N, \chi}=V / V(N, \chi)$ be the corresponding Jacquet module acted upon by M.

Proposition 1.3 (Frobenius Reciprocity). The Jacquet functor is left adjoint to Induction:

$$
\operatorname{Hom}_{M}\left(\pi_{N}, \rho\right) \cong \operatorname{Hom}_{G}\left(\pi, \operatorname{Ind}_{P}^{G}(\rho)\right)
$$

where π is a representation of G as above, and ρ is a representation of M, regarded as a representation on P on the right via $P / N \cong M$.

More generally

$$
\operatorname{Hom}_{M}\left(\pi_{N, \chi}, \rho\right) \cong \operatorname{Hom}_{G}\left(\pi, \operatorname{Ind}_{P}^{G}(\rho \otimes \chi)\right)
$$

where $\rho \otimes \chi$ is regarded as a representation of P via $P=M N$ (here we use that M normalizes χ).
The space of $\operatorname{Ind} d_{P}^{G}(\rho \otimes \chi)$ is the space of functions $f: G \rightarrow W$ that satisfy $f(n m g)=\chi(n) \rho(m)$. $f(g)$. The action of G, as usual, is by composition to the right.

Proof. The proof is standard: by the standard Frobenius reciprocity

$$
\operatorname{Hom}_{P}(\pi, \rho) \cong \operatorname{Hom}_{G}\left(\operatorname{Ind}_{P}^{G}(\rho)\right)
$$

and the first is canonically isomorphic to $\operatorname{Hom}_{M}\left(\pi_{N}, \rho\right)$ as N acs trivially on ρ.
More explicitly: let $\phi: V_{N} \rightarrow W$ be an intertwining map on the left-hand side. Then it corresponds to $\psi: V \rightarrow \operatorname{Ind}_{P}^{G}(\rho)$ which sends $v \in V$ to the function $f: G \rightarrow W, f(g)=\phi(\overline{g \cdot v})$.

The inverse map sends $\psi: V \rightarrow \operatorname{Ind}_{P}^{G}(\rho)$ to the map ϕ that satisfies $\phi(\bar{v})=(\psi(v))(1)$. This is independent, because $\psi(n v)(1)=\psi(v)(n)=n \cdot \psi(v)(1)=\psi(v)(1)$.

Similarly, $\operatorname{Hom}_{G}\left(\pi, \operatorname{Ind}_{P}^{G}(\rho \otimes \chi)\right) \cong \operatorname{Hom}_{P}(\pi, \rho \otimes \chi)$ and the latter factors as $\operatorname{Hom}_{M}\left(\pi_{N}, \rho\right)$ as N must annihilate the image of $V(N, \chi)$.

Proposition 1.4 (Jacquet's lemma). If (π, V) is admissible, and let K is a compact open subgroup G admitting an Iwahori factorization with respect to $P=M N$, that is $K=(K \bigcap N)(K \bigcap M)\left(K \bigcap N^{-}\right)$ where $P=M N^{-}$is the parabolic opposite to P.

Then the projection map $V \rightarrow V_{N}$ maps V^{K} surjectively onto $\left(V_{N}\right)^{K} \cap{ }^{M}$.
Corollary 1.5. The Jacquet functor takes admissible representations of G to admissible representations of M. It also takes finitely generated smooth representations of G to finitely generated smooth representations of M.

Proof. The first part follows immediately from Jacquet's lemma and the fact that G has a neighborhood basis of the identity of compact open subgroups that posess Iwahori factorizations with respect to $P=M N$.

For the second part, let v_{1}, \ldots, v_{ℓ} generate π over G, and let K be a compact open that fixes v_{1}, \ldots, v_{ℓ}. Then the set $P \backslash G / K$ is finite, and choosing representatives g_{1}, \ldots, g_{r} for the double cosets means $\left\{g_{i} v_{j}\right\}$ generate V over P, and hence they generate V_{N} over $P / N \cong M$. For general χ, the proof is the same by choosing K on which χ is trivial.

Lemma 1.6 (Jacquet, Langlands). $v \in V(N, \chi)$ if and only if there exists a compact subgroup $K \subset N$ such that

$$
\int_{K} \chi\left(h^{-1}\right) \phi(h) \cdot v d \mu_{K}=0
$$

(the above operator was also met in the previous lecture under the name $e_{K, \chi}$)
Proof. We shall use the fact that N the unipotent radical of P, is exhausted by its compact subgroups, i.e. every compact subset of N is contain in a compact subgroup of N.

If $v=\sum \pi\left(n_{i}\right) \cdot v_{i}-\chi\left(n_{i}\right) v_{i}$ then we choose K be a compact containing n_{1}, \ldots, n_{k}. Clearly, " χ-twisted averaging over K " will then take $\pi\left(n_{i}\right) \cdot v_{i}$ and $\chi\left(n_{i}\right) \cdot v_{i}$ to the same thing, which shows $e_{K, \chi} v=0$.

Conversely, assume $e_{K, \chi}(v)=0$.
Choose $K^{\prime} \subset K$ compact, open in K and small enough such that χ acts trivially on K^{\prime} and k^{\prime} acts trivially on v (by smoothness). Let g_{1}, \ldots, g_{r} be representatives of $K \mathcal{K}^{\prime}$.

We then immediately decompose $e_{K, \chi}(v)$ as $\sum_{i=1}^{r} \frac{1}{r} \chi\left(g_{i}^{-1}\right) \pi\left(g_{i}\right) \cdot v$.

This is zero, so adding v to it yields $\left.v=\sum_{i=1}^{r} \frac{1}{r}\left(v-\chi\left(g_{i}^{-1}\right) \pi\left(g_{i}\right) \cdot v\right)\right)$.
The interior terms have the for $\pi\left(g_{i}\right) \cdot v_{i}-\chi\left(g_{i}\right) v_{i}$ for $v_{i}=\frac{\chi\left(g_{i}^{-1}\right)}{r} v$, hence $v \in V(N, \chi)$

Corollary 1.7. The Jacquet functor is exact.
Proof. Right exactness follows from adjointness, but it is also obvious by inspection. It remains to show injectivity: if $V_{1} \subset V_{2}$ then $V_{1}(N, \chi)=V_{2}(N, \chi) \bigcap V_{1}$. This, however, is immediate from the description in the above lemma.

Proposition 1.8. Induction from a parabolic subgroup takes admissible representations to admissible representations.

Proof. Let K be a compact open, and consider $\operatorname{Ind}_{P}^{G}(\rho)$ for an admissible representation ρ of P. Choose representatives g_{i} for each double coset $P \backslash G / K$; note that this is a finite set because $P \backslash G$ is compact and K is open.

Then $f \in\left(\operatorname{Ind}_{P}^{G}(\rho)\right)^{K}$ one $P g_{i} K$ is uniquely determined by $f\left(g_{i}\right)$.
Even better, $f\left(g_{i}\right)$ must be fixed by $P \bigcap g_{i} K g_{i}^{-1}$: if $g_{i} k g_{i}^{-1} \in P$ then $f\left(g_{i}\right)=f\left(g_{i} k\right) \rho\left(g_{i} k g_{i}^{-1}\right)$. $f\left(g_{i}\right)$.

We then identify $\left(\operatorname{Ind}_{P}^{G}(\rho)\right)^{K} \cong \oplus_{\bar{g}_{i} \in P \backslash G / K} \rho^{P} \cap g_{i} K g_{i}^{-1}$ which is finite.

To simplify certain formulas it is convenient to tensor up the above two formulas with the module character.

Definition 1.9. Let δ_{H} be the module character of the group H, i.e. $(R h)^{*}\left(\mu_{H}\right)=\delta_{H}(h) \cdot \mu_{H}$ where μ_{H} is any left-invariant Haar measure on H.

For M, N, P, χ as above, define
$r_{N, \chi}(\pi)=\delta_{P}^{-1 / 2} \otimes \pi_{N}$
$I_{N, \chi}(\rho)=\delta_{P}^{1 / 2} \otimes \operatorname{Ind}_{P}^{G}(\rho \otimes \chi)$
The latter has as underlying space the function $f: G \rightarrow W$ that satisfy $f(n m g)=\chi(n) \delta_{N}^{1 / 2}(m) \rho(m)$. $f(g)$. [Note that M is unimodular because reductive so $\delta_{P}(n m)=\delta_{N}(m)$ the latter using the conjugation action of M on $N . N$ is also unimodular because it is exhausted by its compact subgroups.]

These will be the functors we will be working with, the Jacquet functor and respectively parabolic induction.

Proposition 1.10. (a) Parabolic induction and the Jacquet functors are exact, and $r_{N, \chi}$ is left adjoint to $I_{N, \chi}$.
(b) Let $M^{\prime}<M$ corresponding to N^{\prime}, and χ^{\prime} a character of N^{\prime} normalized by M^{\prime}.

Then

$$
I_{N, \chi} \circ I_{N^{\prime}, \chi^{\prime}}=I_{N N^{\prime}, \chi \chi^{\prime}}, r_{N^{\prime}, \chi^{\prime}} \circ r_{N, \chi}=r_{N N^{\prime}, \chi^{\prime}}
$$

(c) Parabolic induction commutes with contragredients:
$I_{N, \chi}(\rho)=I_{N, \chi}(\widetilde{\rho})$

Proof. (a) The two functors being adjoint to each other follows immediately from the fact that they were obtained by tensoring two adjoint functors with $\delta_{P}^{-1 / 2}, \delta_{P}^{1 / 2}$.

In particular, $r_{N, \chi}$ is right exact and $I_{N, \chi}$ is left exact.
Let's prove the other two statements. The character $\delta_{P}^{ \pm 1 / 2}$ may be dropped. Then exactness of the Jacquet functor was shown before.

Right exactness of induction follows immediately from the tensor product description.
(b) The module components are $\delta_{N} \delta\left(N^{\prime}\right)$ respectively $\delta\left(N N^{\prime}\right)$ which coincide.

The rest follows from transitivity of the usual induction. For the Jacquet functor, use adjunction.
(c) Let $f \in \operatorname{Hom}\left(G, \delta_{P}^{1 / 2} \otimes \rho\right), \tilde{f} \in \operatorname{Hom}\left(G, \delta_{P}^{-1 / 2} \otimes \tilde{\rho}\right)$.

Consider the function $g \rightarrow\langle\tilde{f}(g), f(g)\rangle$.
Then $p g$ gets mapped to $\langle\tilde{f}(p g), f(p g)\rangle=\delta_{P}^{-1 / 2}(p)\left\langle\tilde{f}(g), p^{-1} f(p g)\right\rangle=\langle\tilde{f}(g), f(g)\rangle$.
Thus this function is invariant under right action by P and we define
$(f, \tilde{f})=\int_{P \backslash G}\langle\tilde{f}(g), f(g)\rangle d_{P \backslash G}(\bar{g})$
This is the inner product that realizes the required isomorphism.

2 The composition of Jacquet and Parabolic Induction

Definition 2.1. If π is a smooth representation of G, let $J H(\pi)$ be the set of all irreducible subquotients of π. Let $\ell(\pi)$ be the length of π as a G-module; if $\ell(\pi)$ is finite then we know it has a Jordan-Holder series whose members we denote $J H^{0}(\pi)$. Each element of $J H(\pi)$ is then contained in $J H^{0}(\pi)$ with some multiplicity.

Our aim is to describe the Jordan-Holder series of a parabolic induction, and how different such things relate to each other.

Definition 2.2. A representation π of G is called quasicuspidal if $r_{M, G}(\pi)=0$ for any standard subgroup $M<G, M \neq G$. In that case, by exactness of $r_{M, G}$, any of its subquotients is quasicuspidal too.

A quasicuspidal admissible representation is called cuspidal.
Cuspidal representations are building blocks of G-representations, in the sense that every admissible G-representation is induced from a cuspidal one.

Proposition 2.3. Let π be an irreducible admissible G-representation. Then π is a subrepresentation of $\operatorname{Ind} d_{N}^{G}(\rho)$ for some $M<G$ and a cuspidal irreducible representation ρ of M.

Sketch. We will consider a minimal $M<G$ for which $r_{M, G}(\pi) \neq 0$; it exists and $r_{M, G}(\pi)$ is then cuspidal. The Jacquet functor takes finitely generated modules to finitely generated module, which implies $r_{M, G}(\pi)$ has an irreducible factor representation. By adjunction, there is a non-zero map from π to $\operatorname{Ind}_{N}^{G}(\rho)$ which must then be an embedding.

The aim of this section is to study how the representations $I_{M, G}(\rho)$ decompose into subfactors and how they relate to each other as the irreducible cuspidals ρ and standard groups M are allowed to vary.

Proposition 2.4. (a) Every smooth representation π of G decomposes into $\pi=\pi_{c} \oplus \pi_{C}^{\perp}$ where π_{c} is quasicuspidal and π_{c}^{\perp} has no non-zero quasicuspidal subquotients.
(b) If π is admissible and ω is a cuspidal subquotient of π, then π has a submodule and a factormodule equivalent to ω.
(c) If π is cuspidal then so is $\tilde{\pi}$.
(d) If M is a proper standard subgroup of G and ρ is a smooth M-representation then $\pi=I_{G, M}(\rho)$ then $\pi_{c}=0$.

Proof. (a),(b), (c) Skip.
(d) $\operatorname{Hom}\left(\pi_{c}, \pi\right)=\operatorname{Hom}\left(r_{G, M}\left(\pi_{c}\right), \rho\right)=\operatorname{Hom}(0, \rho)=0$.

Definition 2.5. Let $W=N_{G}(A) / Z_{G}(A)$ be the Weyl group of G. For $w \in W$, lift w to $\bar{w} \in N_{G}(A)$ and consider the action of \bar{w} on G by conjugation: $w(g)=\bar{w} g \bar{w}^{-1}$. This action is not well-defined, but images of subgroups that contain $Z_{G}(A)$ are well-defined. In particular, for standard $M<G$ that contain $B, Z_{G}(A) \subseteq M$ which means $w(M)$ is another subgroup of G that does not depend on the choice of lift \bar{w}. It is standard with respect to the Borel $w(B)$, but not necessarily B.

Let W_{M} be the Weyl group of $M, W_{M} \subseteq W$ and it corresponds to $\bar{w} \in M \bigcap N_{G}(A)$.
If M^{\prime} is another standard subgroup of G, we set $W\left(M, M^{\prime}\right)=\left\{w \in W \mid w(M)=M^{\prime}\right\}$.
If this is non-empty, we call M, M^{\prime} associated and write $M \sim M^{\prime}$. Similarly, if $w(\rho)=\rho^{\prime}$ we write $\rho \sim \rho^{\prime}$.

Clearly, $W\left(M, M^{\prime}\right)=W_{M^{\prime}} W\left(M, M^{\prime}\right) W_{M}$.
Also, set $W(M, \star)=\bigcup_{M^{\prime}} W\left(M, M^{\prime}\right)$ for M^{\prime} standard groups (with respect to B) associated to M, and let $\ell(M)$ be the cardinality of the set $W(M, \star) / W_{M}$.

Note that W_{M} has finite index in W, hence all relevant quotients are finite.
Example 2.6. For $G=\mathrm{GL}_{n}$, the Weyl group is $S_{n} . ~ M, M^{\prime}$ are associated if and only if the corresponding partitions are reorderings of each other. $W\left(M, M^{\prime}\right)$ is the set of permutations that takes one partition into the other.

Note, in particular, that $W(M, M)$ is not in general equal to $W(M)$: the first is the set of permutations that preserve the partition whereas the second is the set of permutations that preserve each block of the partition. If a partition has two blocks of equal length, these two definitions disagree.

The set $W(M, \star)$ consists of permutations that preserve the "consecutivity" of each block, and $W(M$, star $) / W_{M}$ is the set of permutations of the blocks. If M corresponds to the partition $\underline{n}=$ $\left(n_{1}, \ldots, n_{r}\right)$ then $\ell(M)=r$!.

From now on, let's fix a cuspidal representation ρ of M, and let $\pi=I_{G, N}(\rho)$. The main theorems are as follows:

Theorem 2.7. The length $\ell(\pi)$ of the representation π is finite, and $\ell(\pi) \leq \ell(M)$.
Theorem 2.8. (a) The following are equivalent:
(i) $M \sim M^{\prime}, \rho \sim \rho^{\prime}$
(ii) $\operatorname{Hom}\left(\pi, \pi^{\prime}\right) \neq 0$
(iii) $J H^{0}(\pi)=J H^{0}\left(\pi^{\prime}\right)$
(iv) $J H(\pi) \bigcap J H\left(\pi^{\prime}\right) \neq 0$
(b) Set $W\left(\rho, \rho^{\prime}\right)=\left\{w \in W\left(M, M^{\prime}\right) \mid w(\rho)=\rho^{\prime}\right\}$

Then $\operatorname{dim} \operatorname{Hom}\left(\pi, \pi^{\prime}\right) \leq\left|W\left(\rho, \rho^{\prime}\right) / W_{M}\right|$
The proof of these two theorems relies on the following three lemmas:
Lemma 2.9. Let M, M^{\prime} be standard subgroups of G. Let

$$
W^{M, M^{\prime}}=\left\{w \in W \mid w(M \bigcap B) \subset B, w^{-1}\left(M^{\prime} \bigcap B\right) \subset B\right\}
$$

Then:
(a) Every double coset $W_{M^{\prime}} \backslash W / W_{M}$ contains exactly one element of $W^{M, M^{\prime}}$.
(b) If $w \in W^{M, M^{\prime}}$ then $M \bigcap w^{-1}\left(M^{\prime}\right)<M, M^{\prime} \bigcap w(M)<M^{\prime}$.
(Note that part (a)) implies $W^{M, M^{\prime}}$ is finite.
Lemma 2.10 (Geometric lemma of Langlands). Suppose $W^{M, M^{\prime}}$ is non-empty. For $w \in W^{M, M^{\prime}}$ define

$$
F_{w}=I_{M^{\prime}, M^{\prime} \cap w(M)} \circ w \circ r_{M \cap w^{-1}\left(M^{\prime}\right), M}
$$

The functor $F=r_{G, M^{\prime}} \circ I_{G, M}$ is glued from the functors $F_{w}, w \in W^{M, M^{\prime}}$. (In particular if $W^{M, M^{\prime}}$ is empty the functor is zero)

That is, there exists a numeration w_{1}, \ldots, w_{k} of $W^{M, M^{\prime}}$ and $F(\rho)$ has a filtration $0 \subset \tau_{1} \subset \ldots \subset$ $\tau_{k}=F(\rho)$ with $\tau_{i} / \tau_{i-1} \cong F_{w_{i}}(\rho)$

Corollary 2.11. Let $M, M^{\prime}<G$ and ρ be a cuspidal representation of M. Let $\tau=\left(r_{M^{\prime}, G} \circ I_{M, G}\right)(\rho)$
(a) If M^{\prime} has no standard subgroups associated to M, then $\tau=0$.
(b) If M^{\prime} is not associated to M, then τ has no non-zero cuspidal quotients.
(c) If $M \sim M^{\prime}$ then τ is glued from representations $w(\rho)$ where $w \in W\left(M, M^{\prime}\right) / W_{M}$, in particular τ is cuspidal.

Proof. (a) If M^{\prime} has no standard subgroups associated to M, then all functors $F_{w_{i}}$ must be zero because they involve $r_{M \cap w_{i}^{-1}\left(M^{\prime}\right), M}(\rho)$ which is 0 , because $M \cap w_{i}^{-1}\left(M^{\prime}\right) \subseteq M$ must be a proper subgroup and ρ is supercuspidal.
(b) Skip.
(c) If $M \sim M^{\prime}$ then as in (a), F_{w} are non-zero only for $w \in W^{M, M^{\prime}} \bigcap W\left(M, M^{\prime}\right)$.

By lemma 2.8., this is in bijection with $W_{M^{\prime}} \backslash W\left(M, M^{\prime}\right) / W_{M}$ which equals $W\left(M, M^{\prime}\right) / W(M)$. For $w \in W\left(M^{\prime} M^{\prime}\right), F_{w}(\rho)$ equals $w(\rho)$ because both induction and restriction are the identity functor.

Lemma 2.12. Let $M \sim M^{\prime}=\omega(M)$. Then there is a chain of standard subgroups $M_{0}=M, M_{1}, \ldots, M_{k}=$ M^{\prime} and $w_{i} \in W$ elementary maps such that $w_{i}: M_{i-1} \xrightarrow{\sim} M_{i}$, and $w=w_{k} \circ \ldots \circ w_{1}$.

Here, a map $w: M \rightarrow M^{\prime}$ is elementary if there exists $L<G, M, M^{\prime}<L$ and $\ell(M)=2$ inside L. Equivalently, w corresponds to a reflection of the two corresponding Weyl chambers with respect to a shared wall.

In the example of GL_{n}, elementary maps correspond to exchanging two consecutive blocks in the partition. Thus the statement becomes the theorem that any permutation can be obtained as a composition of transpositions of consecutive blocks.

Proof of theorem 2.7. We need to bound the length of any chain $0=\pi_{0} \subset \pi_{1} \subset \ldots \subset \pi_{r}=\pi$. Let $\pi_{i} / \pi_{i-1}=\rho_{i}$.

By exactness, $r_{M^{\prime}, G}(\pi)$ obtains a chain $r_{M^{\prime}, G}\left(\pi_{0}\right) \subset r_{M^{\prime}, G}\left(\pi_{1}\right) \subset \ldots \subset r_{M^{\prime}, G}\left(\pi_{r}\right)$ with quotients $r_{M^{\prime}, G}\left(\rho_{i}\right)$.

We claim that for some $M^{\prime} \sim M, r_{M^{\prime}, G}\left(\rho_{i}\right)$ is non-zero. Indeed, let us choose a minimal $L<G$ such that $r_{L, G}\left(\rho_{i}\right)$ is non-zero, then this is also cuspidal. This is a subquotient of $r_{L, G}\left(\mathscr{I}_{M, G}(\pi)\right)$ hence by corollary 2.10 . b), cuspidality implies $L \sim M$ as desired.

We then conclude that $r \leq \sum_{M^{\prime} \sim M} \ell\left(r_{M^{\prime}, G}(\pi)\right)$.
But by 2.11.c) we know the length of $r_{M^{\prime}, G}$ is $\left|W\left(M, M^{\prime}\right) / W_{M}\right|$ and summing over all M^{\prime} yields $\ell(M)$, as desired.

Proof of theorem 2.8. (a) The implications (ii) to (iv), (iii) to (iv) are trivial.
Now we prove (iv) to (i). Assume $\tau_{1} \subset \tau_{2} \subset \pi$ with $\tau_{2} / \tau_{1} \cong \rho$, and ρ is an irreducible subquotient of π^{\prime} as well.

Then as above $r_{L, G}(\rho)$ is cuspidal for some L. Corollary 2.11. b) implies $L \sim M$ and 2.10. c) implies $r_{L, G} \rho$ is glued from representations of form $w(\pi)$. For the same reason, $L^{\prime} \sim M$ and $r_{L, G}(\rho)$ is glued from representations of form $w\left(\pi^{\prime}\right)$. This implies $M \sim M^{\prime}, \pi \sim \pi^{\prime}$ as desired.

Next, we show (i) implies (ii).
By adjunction, $\operatorname{Hom}\left(\pi, \pi^{\prime}\right)=\operatorname{Hom}\left(r_{M^{\prime}, G} \circ I_{G, M}(\rho), \rho^{\prime}\right)=\operatorname{Hom}\left(F(\rho), \rho^{\prime}\right)$.
By the geometric lemma, if $\rho \sim \rho^{\prime}$ then $F(\rho)$ has a subquotient isomorphic to ρ^{\prime} which implies that the above set is non-empty.

Finally, we show that (i) implies (iii).
The first step is to assume that $\ell(M)=2$. In particular, by the previous theorem π, π^{\prime} both have length at most 2 so they are either irreducible or extensions of irreducibles by one another.

By (ii), there are non-zero maps maps $A: \pi^{\prime} \rightarrow \pi, A^{\prime}: \pi^{\prime} \rightarrow \pi^{\prime}$.

If either A, A^{\prime} are isomorphisms then (iii) is immediate. Otherwise, this is only possible when π, π^{\prime} have length 2 and hence the kernels of A, A^{\prime} are proper irreducible submodules $\pi_{0}, \pi_{0}^{\prime}$ and the quotients $\pi / \pi_{0}, \pi^{\prime} / \pi_{0}^{\prime}$ are irreducible.

We claim that $\pi_{0}, \pi_{0}^{\prime}$ are only irreducible submodules of π.
Indeed, we know $\ell\left(r_{M, G}\right)(\pi)+\ell\left(r_{M^{\prime}, G} \pi\right) \leq \ell(M)=2$.
If we have $\tilde{\pi}_{0}$ another irreducible submodule of M then $\ell\left(r_{M, G}\left(\pi_{0}\right)\right)+\ell\left(r_{M^{\prime}, G}\left(\pi_{0}\right)=1\right.$.
Since $\operatorname{Hom}\left(\pi_{0}, \pi\right)=\operatorname{Hom}\left(r_{M, G}\left(\tilde{\pi}_{0}\right), \rho\right) \neq 0$ it follows that $r_{M, G}\left(\pi_{0}\right) \neq 0$ and $r_{M^{\prime}, G}\left(\pi_{0}\right)=0$.
This means that $\operatorname{Hom}\left(\pi_{0}, \pi^{\prime}\right)=\operatorname{Hom}_{r_{M^{\prime}, G}\left(\pi_{0}\right), \rho^{\prime}}=0$ so A kills $\tilde{\pi}_{0}$ which means $\tilde{\pi}_{0} \subseteq \pi_{0}$ as desired.
Similarly, π_{0}^{\prime} is the only irreducible submodule of π^{\prime}.
This implies $\pi / \pi_{0} \cong \pi^{\prime}, \pi^{\prime} / \pi_{0}^{\prime} \cong \pi$ so $J H^{0}(\pi)=J H^{0}\left(\pi_{0}\right)=\left\{\pi_{0}, \pi_{0}^{\prime}\right\}$.
This finishes the proof for the case when $\ell(M)=2$. The general case follows from applying the lemma. We may need to restrict to a smaller L instead of G, and then $J H^{0}$ will be induced from the L case.

