
1 The Jacquet functor and parabolic induction

Retain the notations of Brian’s notes: G = G(F) is the groups of F-rational points of a connected

reductive F-group. Fix B = B(F) be a Borel, and also fix a maximal split torus A in B.

Let P ⊃ B a parabolic subgroup of G containing B (not as fixed as B). If N ⊂ P is the

unipotent radical of P (called U in Brian’s lecture), it is a normal subgroup and we have the Levi

decomposition P = MN where M is a reductive group that contains A, M is called a Levi subgroup.

We have M
⋂
N = {1} hence P = M o N is a semidirect product and M ∼= P/N . (Note also that

thus M normalizes N)

For all such M we obtain (dependent on which P ⊃ B we choose) we write M < G, and call M

standard.

Example 1.1. If G = GLn, let B be the subgroup of upper-diagonal matrices. Then all standard

subgroups correspond to an (ordered) partition n = (n1, . . . , nr) of n i.e. a solution in N of the

equation n1 + . . .+ nr = n.

For such a partition, M is the set of block diagonal matrices (with respect to the corresponding r

blocks), P is the set of block upper-triangular matrices and N is the set of block unipotent matrices.

This will be the example to have in mind for the entirety of the lecture.

Definition 1.2 (Jacquet module). Let (π, V ) be an admissible representation of G. Let V (N) =

V (N, 1) be the subspace of V generated by vectors of form π(n)v − v.

Let VN = V/V (N) and (πN , VN) the corresponding M -representation obtained by either restric-

tion from G to M , or restricting from G to P and taking quotients M ∼= P/N . This is called the

Jacquet module of V (with respect to P ), and V 7→ VN is called the Jacquet functor.

More generally, let χ be a character of N normalized by M . Set V (N,χ) be the subspace of V

generated by vectors of form π(n)v−χ(n)v and set VN,χ = V/V (N,χ) be the corresponding Jacquet

module acted upon by M .

Proposition 1.3 (Frobenius Reciprocity). The Jacquet functor is left adjoint to Induction:

HomM(πN , ρ) ∼= HomG(π, IndGP (ρ))

where π is a representation of G as above, and ρ is a representation of M , regarded as a representation

on P on the right via P/N ∼= M .

More generally

HomM(πN,χ, ρ) ∼= HomG(π, IndGP (ρ⊗ χ))

where ρ⊗ χ is regarded as a representation of P via P = MN (here we use that M normalizes χ).

The space of IndGP (ρ⊗ χ) is the space of functions f : G→ W that satisfy f(nmg) = χ(n)ρ(m) ·
f(g). The action of G, as usual, is by composition to the right.

Proof. The proof is standard: by the standard Frobenius reciprocity

HomP (π, ρ) ∼= HomG(IndGP (ρ))
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and the first is canonically isomorphic to HomM(πN , ρ) as N acs trivially on ρ.

More explicitly: let φ : VN → W be an intertwining map on the left-hand side. Then it corre-

sponds to ψ : V → IndGP (ρ) which sends v ∈ V to the function f : G→ W, f(g) = φ(g · v).

The inverse map sends ψ : V → IndGP (ρ) to the map φ that satisfies φ(v) = (ψ(v))(1). This is

independent, because ψ(nv)(1) = ψ(v)(n) = n · ψ(v)(1) = ψ(v)(1).

Similarly, HomG(π, IndGP (ρ ⊗ χ)) ∼= HomP (π, ρ ⊗ χ) and the latter factors as HomM(πN , ρ) as

N must annihilate the image of V (N,χ).

Proposition 1.4 (Jacquet’s lemma). If (π, V ) is admissible, and let K is a compact open subgroup G

admitting an Iwahori factorization with respect to P = MN , that is K = (K
⋂
N)(K

⋂
M)(K

⋂
N−)

where P = MN− is the parabolic opposite to P .

Then the projection map V → VN maps V K surjectively onto (VN)K
T
M .

Corollary 1.5. The Jacquet functor takes admissible representations of G to admissible representa-

tions of M . It also takes finitely generated smooth representations of G to finitely generated smooth

representations of M .

Proof. The first part follows immediately from Jacquet’s lemma and the fact that G has a neighbor-

hood basis of the identity of compact open subgroups that posess Iwahori factorizations with respect

to P = MN .

For the second part, let v1, . . . , v` generate π over G, and let K be a compact open that fixes

v1, . . . , v`. Then the set P \ G/K is finite, and choosing representatives g1, . . . , gr for the double

cosets means {givj} generate V over P , and hence they generate VN over P/N ∼= M . For general χ,

the proof is the same by choosing K on which χ is trivial.

Lemma 1.6 (Jacquet, Langlands). v ∈ V (N,χ) if and only if there exists a compact subgroup K ⊂ N

such that ˆ
K

χ(h−1)φ(h) · vdµK = 0

(the above operator was also met in the previous lecture under the name eK,χ)

Proof. We shall use the fact that N the unipotent radical of P , is exhausted by its compact subgroups,

i.e. every compact subset of N is contain in a compact subgroup of N .

If v =
∑
π(ni) · vi − χ(ni)vi then we choose K be a compact containing n1, . . . , nk. Clearly,

”χ-twisted averaging over K” will then take π(ni) · vi and χ(ni) · vi to the same thing, which shows

eK,χv = 0.

Conversely, assume eK,χ(v) = 0.

Choose K ′ ⊂ K compact, open in K and small enough such that χ acts trivially on K ′ and k′

acts trivially on v (by smoothness). Let g1, . . . , gr be representatives of KK′.
We then immediately decompose eK,χ(v) as

∑r
i=1

1
r
χ(g−1

i )π(gi) · v.
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This is zero, so adding v to it yields v =
∑r

i=1
1
r
(v − χ(g−1

i )π(gi) · v)).

The interior terms have the for π(gi) · vi − χ(gi)vi for vi =
χ(g−1

i )

r
v, hence v ∈ V (N,χ)

Corollary 1.7. The Jacquet functor is exact.

Proof. Right exactness follows from adjointness, but it is also obvious by inspection. It remains to

show injectivity: if V1 ⊂ V2 then V1(N,χ) = V2(N,χ)
⋂
V1. This, however, is immediate from the

description in the above lemma.

Proposition 1.8. Induction from a parabolic subgroup takes admissible representations to admissible

representations.

Proof. Let K be a compact open, and consider IndGP (ρ) for an admissible representation ρ of P .

Choose representatives gi for each double coset P \G/K; note that this is a finite set because P \G
is compact and K is open.

Then f ∈ (IndGP (ρ))K one PgiK is uniquely determined by f(gi).

Even better, f(gi) must be fixed by P
⋂
giKg

−1
i : if gikg

−1
i ∈ P then f(gi) = f(gik)ρ(gikg

−1
i ) ·

f(gi).

We then identify (IndGP (ρ))K ∼= ⊕gi∈P\G/Kρ
P

T
giKg

−1
i which is finite.

To simplify certain formulas it is convenient to tensor up the above two formulas with the module

character.

Definition 1.9. Let δH be the module character of the group H, i.e. (Rh)∗(µH) = δH(h) ·µH where

µH is any left-invariant Haar measure on H.

For M,N,P, χ as above, define

rN,χ(π) = δ
−1/2
P ⊗ πN

IN,χ(ρ) = δ
1/2
P ⊗ IndGP (ρ⊗ χ)

The latter has as underlying space the function f : G→ W that satisfy f(nmg) = χ(n)δ
1/2
N (m)ρ(m)·

f(g). [Note that M is unimodular because reductive so δP (nm) = δN(m) the latter using the conju-

gation action of M on N . N is also unimodular because it is exhausted by its compact subgroups.]

These will be the functors we will be working with, the Jacquet functor and respectively parabolic

induction.

Proposition 1.10. (a) Parabolic induction and the Jacquet functors are exact, and rN,χ is left

adjoint to IN,χ.

(b) Let M ′ < M corresponding to N ′, and χ′ a character of N ′ normalized by M ′.

Then

IN,χ ◦ IN ′,χ′ = INN ′,χχ′ , rN ′,χ′ ◦ rN,χ = rNN ′,χ′

(c) Parabolic induction commutes with contragredients:

ĨN,χ(ρ) = IN,χ(ρ̃)
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Proof. (a) The two functors being adjoint to each other follows immediately from the fact that they

were obtained by tensoring two adjoint functors with δ
−1/2
P , δ

1/2
P .

In particular, rN,χ is right exact and IN,χ is left exact.

Let’s prove the other two statements. The character δ
±1/2
P may be dropped. Then exactness of

the Jacquet functor was shown before.

Right exactness of induction follows immediately from the tensor product description.

(b) The module components are δNδ(N
′) respectively δ(NN ′) which coincide.

The rest follows from transitivity of the usual induction. For the Jacquet functor, use adjunction.

(c) Let f ∈ Hom(G, δ
1/2
P ⊗ ρ), f̃ ∈ Hom(G, δ

−1/2
P ⊗ ρ̃).

Consider the function g → 〈f̃(g), f(g)〉.
Then pg gets mapped to 〈f̃(pg), f(pg)〉 = δ

−1/2
P (p)〈f̃(g), p−1f(pg)〉 = 〈f̃(g), f(g)〉.

Thus this function is invariant under right action by P and we define

(f, f̃) =
´
P\G〈f̃(g), f(g)〉dP\G(g)

This is the inner product that realizes the required isomorphism.

2 The composition of Jacquet and Parabolic Induction

Definition 2.1. If π is a smooth representation of G, let JH(π) be the set of all irreducible sub-

quotients of π. Let `(π) be the length of π as a G-module; if `(π) is finite then we know it has a

Jordan-Holder series whose members we denote JH0(π). Each element of JH(π) is then contained

in JH0(π) with some multiplicity.

Our aim is to describe the Jordan-Holder series of a parabolic induction, and how different such

things relate to each other.

Definition 2.2. A representation π of G is called quasicuspidal if rM,G(π) = 0 for any standard

subgroup M < G,M 6= G. In that case, by exactness of rM,G, any of its subquotients is quasicuspidal

too.

A quasicuspidal admissible representation is called cuspidal.

Cuspidal representations are building blocks of G-representations, in the sense that every ad-

missible G-representation is induced from a cuspidal one.

Proposition 2.3. Let π be an irreducible admissible G-representation. Then π is a subrepresentation

of IndGN(ρ) for some M < G and a cuspidal irreducible representation ρ of M .

Sketch. We will consider a minimal M < G for which rM,G(π) 6= 0; it exists and rM,G(π) is then

cuspidal. The Jacquet functor takes finitely generated modules to finitely generated module, which

implies rM,G(π) has an irreducible factor representation. By adjunction, there is a non-zero map

from π to IndGN(ρ) which must then be an embedding.
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The aim of this section is to study how the representations IM,G(ρ) decompose into subfactors

and how they relate to each other as the irreducible cuspidals ρ and standard groups M are allowed

to vary.

Proposition 2.4. (a) Every smooth representation π of G decomposes into π = πc⊕ π⊥C where πc is

quasicuspidal and π⊥c has no non-zero quasicuspidal subquotients.

(b) If π is admissible and ω is a cuspidal subquotient of π, then π has a submodule and a

factormodule equivalent to ω.

(c) If π is cuspidal then so is π̃.

(d) If M is a proper standard subgroup of G and ρ is a smooth M-representation then π = IG,M(ρ)

then πc = 0.

Proof. (a),(b), (c) Skip.

(d) Hom(πc, π) = Hom(rG,M(πc), ρ) = Hom(0, ρ) = 0.

Definition 2.5. Let W = NG(A)/ZG(A) be the Weyl group of G. For w ∈ W , lift w to w ∈ NG(A)

and consider the action of w on G by conjugation: w(g) = wgw−1. This action is not well-defined,

but images of subgroups that contain ZG(A) are well-defined. In particular, for standard M < G

that contain B, ZG(A) ⊆M which means w(M) is another subgroup of G that does not depend on

the choice of lift w. It is standard with respect to the Borel w(B), but not necessarily B.

Let WM be the Weyl group of M , WM ⊆ W and it corresponds to w ∈M
⋂
NG(A).

If M ′ is another standard subgroup of G, we set W (M,M ′) = {w ∈ W | w(M) = M ′}.
If this is non-empty, we call M,M ′ associated and write M ∼ M ′. Similarly, if w(ρ) = ρ′ we

write ρ ∼ ρ′.

Clearly, W (M,M ′) = WM ′W (M,M ′)WM .

Also, set W (M, ?) =
⋃
M ′W (M,M ′) for M ′ standard groups (with respect to B) associated to

M , and let `(M) be the cardinality of the set W (M, ?)/WM .

Note that WM has finite index in W , hence all relevant quotients are finite.

Example 2.6. For G = GLn, the Weyl group is Sn. M,M ′ are associated if and only if the

corresponding partitions are reorderings of each other. W (M,M ′) is the set of permutations that

takes one partition into the other.

Note, in particular, that W (M,M) is not in general equal to W (M): the first is the set of

permutations that preserve the partition whereas the second is the set of permutations that preserve

each block of the partition. If a partition has two blocks of equal length, these two definitions

disagree.

The set W (M, ?) consists of permutations that preserve the ”consecutivity” of each block, and

W (M, star)/WM is the set of permutations of the blocks. If M corresponds to the partition n =

(n1, . . . , nr) then `(M) = r!.

5



From now on, let’s fix a cuspidal representation ρ of M , and let π = IG,N(ρ).

The main theorems are as follows:

Theorem 2.7. The length `(π) of the representation π is finite, and `(π) ≤ `(M).

Theorem 2.8. (a) The following are equivalent:

(i) M ∼M ′, ρ ∼ ρ′

(ii) Hom(π, π′) 6= 0

(iii) JH0(π) = JH0(π′)

(iv) JH(π)
⋂
JH(π′) 6= 0

(b) Set W (ρ, ρ′) = {w ∈ W (M,M ′) | w(ρ) = ρ′}
Then dim Hom(π, π′) ≤ |W (ρ, ρ′)/WM |

The proof of these two theorems relies on the following three lemmas:

Lemma 2.9. Let M,M ′ be standard subgroups of G. Let

WM,M ′ = {w ∈ W | w(M
⋂

B) ⊂ B,w−1(M ′
⋂

B) ⊂ B}

Then:

(a) Every double coset WM ′ \W/WM contains exactly one element of WM,M ′.

(b) If w ∈ WM,M ′ then M
⋂
w−1(M ′) < M,M ′⋂w(M) < M ′.

(Note that part (a)) implies WM,M ′ is finite.

Lemma 2.10 (Geometric lemma of Langlands). Suppose WM,M ′ is non-empty. For w ∈ WM,M ′

define

Fw = IM ′,M ′
T
w(M) ◦ w ◦ rM T

w−1(M ′),M

The functor F = rG,M ′ ◦IG,M is glued from the functors Fw, w ∈ WM,M ′. (In particular if WM,M ′

is empty the functor is zero)

That is, there exists a numeration w1, . . . , wk of WM,M ′ and F (ρ) has a filtration 0 ⊂ τ1 ⊂ . . . ⊂
τk = F (ρ) with τi/τi−1

∼= Fwi
(ρ)

Corollary 2.11. Let M,M ′ < G and ρ be a cuspidal representation of M . Let τ = (rM ′,G ◦ IM,G)(ρ)

(a) If M ′ has no standard subgroups associated to M , then τ = 0.

(b) If M ′ is not associated to M , then τ has no non-zero cuspidal quotients.

(c) If M ∼M ′ then τ is glued from representations w(ρ) where w ∈ W (M,M ′)/WM , in partic-

ular τ is cuspidal.

Proof. (a) If M ′ has no standard subgroups associated to M , then all functors Fwi
must be zero

because they involve rM T
w−1

i (M ′),M(ρ) which is 0, because M ∩ w−1
i (M ′) ⊆ M must be a proper

subgroup and ρ is supercuspidal.

(b) Skip.

(c) If M ∼M ′ then as in (a), Fw are non-zero only for w ∈ WM,M ′
⋂
W (M,M ′).
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By lemma 2.8., this is in bijection with WM ′ \W (M,M ′)/WM which equals W (M,M ′)/W (M).

For w ∈ W (M ′M ′), Fw(ρ) equals w(ρ) because both induction and restriction are the identity

functor.

Lemma 2.12. Let M ∼M ′ = ω(M). Then there is a chain of standard subgroups M0 = M,M1, . . . ,Mk =

M ′ and wi ∈ W elementary maps such that wi : Mi−1
∼−→Mi, and w = wk ◦ . . . ◦ w1.

Here, a map w : M →M ′ is elementary if there exists L < G, M,M ′ < L and `(M) = 2 inside

L. Equivalently, w corresponds to a reflection of the two corresponding Weyl chambers with respect

to a shared wall.

In the example of GLn, elementary maps correspond to exchanging two consecutive blocks in

the partition. Thus the statement becomes the theorem that any permutation can be obtained as a

composition of transpositions of consecutive blocks.

Proof of theorem 2.7. We need to bound the length of any chain 0 = π0 ⊂ π1 ⊂ . . . ⊂ πr = π. Let

πi/πi−1 = ρi.

By exactness, rM ′,G(π) obtains a chain rM ′,G(π0) ⊂ rM ′,G(π1) ⊂ . . . ⊂ rM ′,G(πr) with quotients

rM ′,G(ρi).

We claim that for some M ′ ∼ M , rM ′,G(ρi) is non-zero. Indeed, let us choose a minimal L < G

such that rL,G(ρi) is non-zero, then this is also cuspidal. This is a subquotient of rL,G(IM,G(π))

hence by corollary 2.10. b), cuspidality implies L ∼M as desired.

We then conclude that r ≤
∑

M ′∼M `(rM ′,G(π)).

But by 2.11.c) we know the length of rM ′,G is |W (M,M ′)/WM | and summing over all M ′ yields

`(M), as desired.

Proof of theorem 2.8. (a) The implications (ii) to (iv), (iii) to (iv) are trivial.

Now we prove (iv) to (i). Assume τ1 ⊂ τ2 ⊂ π with τ2/τ1 ∼= ρ, and ρ is an irreducible subquotient

of π′ as well.

Then as above rL,G(ρ) is cuspidal for some L. Corollary 2.11. b) implies L ∼ M and 2.10. c)

implies rL,Gρ is glued from representations of form w(π). For the same reason, L′ ∼ M and rL,G(ρ)

is glued from representations of form w(π′). This implies M ∼M ′, π ∼ π′ as desired.

Next, we show (i) implies (ii).

By adjunction, Hom(π, π′) = Hom(rM ′,G ◦ IG,M(ρ), ρ′) = Hom(F (ρ), ρ′).

By the geometric lemma, if ρ ∼ ρ′ then F (ρ) has a subquotient isomorphic to ρ′ which implies

that the above set is non-empty.

Finally, we show that (i) implies (iii).

The first step is to assume that `(M) = 2. In particular, by the previous theorem π, π′ both

have length at most 2 so they are either irreducible or extensions of irreducibles by one another.

By (ii), there are non-zero maps maps A : π′ → π,A′ : π′ → π′.
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If either A,A′ are isomorphisms then (iii) is immediate. Otherwise, this is only possible when

π, π′ have length 2 and hence the kernels of A,A′ are proper irreducible submodules π0, π
′
0 and the

quotients π/π0, π
′/π′0 are irreducible.

We claim that π0, π
′
0 are only irreducible submodules of π.

Indeed, we know `(rM,G)(π) + `(rM ′,Gπ) ≤ `(M) = 2.

If we have π̃0 another irreducible submodule of M then `(rM,G(π0)) + `(rM ′,G(π0) = 1.

Since Hom(π0, π) = Hom(rM,G(π̃0), ρ) 6= 0 it follows that rM,G(π0) 6= 0 and rM ′,G(π0) = 0.

This means that Hom(π0, π
′) = HomrM′,G(π0),ρ′ = 0 so A kills π̃0 which means π̃0 ⊆ π0 as desired.

Similarly, π′0 is the only irreducible submodule of π′.

This implies π/π0
∼= π′, π′/π′0

∼= π so JH0(π) = JH0(π0) = {π0, π
′
0}.

This finishes the proof for the case when `(M) = 2. The general case follows from applying the

lemma. We may need to restrict to a smaller L instead of G, and then JH0 will be induced from the

L case.
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