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1. INTRODUCTION

This paper contains the notes of some lectures I gave during my visit to the Tata
Institute of Fundamental Research in Mumbai, in November-December 2001. They
present the proof by Deligne, Kazhdan and Vignéras ([DKV]) of the correspondence
of Jacquet-Langlands in zero characteristic. The Jacquet-Langlands statement is that
there exists a correspondence respecting characters (in a sense to be defined) between
the set of equivalence classes of square integrable representations of GL, over a local
field and the set of equivalence classes of square integrable representations of an inner
form of GL,,. The main tool is the simple trace formula of Deligne and Kazhdan. Even
though all the ideas involved are from [DKV], the proof presented here is simpler. This
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is because the authors of [DKV]| put in their article much more information than is
necessary for the proof, intending to do also a survey of some techniques which had
become classical in the theory of reductive p-adic groups at that time. The proof here is
organized such that the largest possible part be true without any assumption regarding
the characteristic of the base field. We have also developed some steps of the proof
which may be found in the original papers of Jacquet and Langlands ([JL]) or Flath
([F12]) and have only been quoted in [Ro|, [DKV] and all the other papers about this
subject, wishing to bring them to the attention of the reader. We have tried to give
the simplest complete proof, admitting only one result (the result of finitude of [BB|,
in order to avoid definitions of e-factors and types).

I would like to thank Tata Institute and the organizers of the Langlands Programme
Special Year for their invitation and wonderful reception. My thanks go specially to
Tomas Gomez. I also like to thank Eknath Ghate for having read the manuscript and
made some corrections. I am very indebted to the Indo-French Cooperation which
supported the mission and to Prof. Vanhaecke.

2. NOTATIONS, DEFINITIONS, GENERAL RESULTS

Let F be a local non-archimedian field and n a positive integer. Set G = GL,(F'). Let
r and d be two positive integers such that rd = n. Let D be a central division algebra
over F' of dimension d?. Central means that F is the center of D. Set G' = GL,.(D).
Then G’ is an inner form of G that is G and G’ are isomorphic over an algebraic closure
of F.

If g € G we say that g is reqular semisimple if the characteristic polynomial of g has
distinct roots over an algebraic closure of F. We say that g is elliptic if g is regular
semisimple and its characteristic polynomial is irreducible over F' (the second condition
implies the first only when F' is of characteristic zero). Elliptic elements are exactly
those elements which do not belong to any proper parabolic subgroup of G. The con-
jugacy class of a regular semisimple element g (call it a regular semisimple conjugacy
class) is characterized by the characteristic polynomial of g. Just like for G, any element
of G’ has a characteristic polynomial which is monic of degree n ([Pi], 16.1). The same
definitions and properties hold for elements of G'.

2.1. Admissible representations and their characters. The groups G and G’ in-
herit a locally compact topology from F'. The unit has a basis of open compact neigh-
borhood. A representation (m,V) of G or G' is said to be smooth if every v € V is
fixed by an open neighborhood of the unit element under 7. 7 is said to be admissible
if it is smooth, and for every open compact subgroup K (of G or G') the space VX of
fixed vectors under K by 7 is finite dimensional. We know that an irreducible smooth
representation is always admissible. Suppose (m, V') is an admissible representation of
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G. As V is in general not finite dimensional, we cannot in general define trn(g) for an
element g.

Let Op be the ring of integers of F' and Op be the ring of integers of D. Then
Ky = GL,(OF) and Kj = GL,(Op) are maximal (open) compact subgroups of G and
G’ respectively. Fix Haar measures on G, resp. G’, such that the volume of Kj, resp.
K, is one.

Define the Hecke algebra under convolution H(G) of locally constant and compactly
supported functions on G. If 7 is an admissible representation of G set, for every

f e H(G),
w(f) = /G £(9)(9)dg.

Then 7(f) has finite rank (because of the admissibility of 7) hence trm(f) is well de-
fined. This means that we can look at trm as a linear functional on H(G), that is as a
distribution. Let G* be the set of regular semisimple elements of G (we call it the regu-
lar semisimple set). G* is an dense open subset of G, and its complement has measure
zero. By the submersion theorem of Harish-Chandra ([H-C]), the trace distribution of
7, when restricted to functions with support in GG°, may always be represented by a
function y, defined on G°, which is locally constant and class invariant. This means
that for all f € H(G) with support in G°, we have

(1) wr(f) = [ xe(0)f(0)d.

The same is true for G'.

2.2. Coefficients; square integrable representations. Let (7,V’) be an admissible
representation of G. Pick an element v in V' and a linear form v’ over V. The formula

g~ ' (n(g)(v))

gives a (locally constant) function on G. Such a function is called a coefficient of .
Now, say that 7 has central character w if there exists a character w of the center Z
of G such that, for all z € Z and all g € G, 7(zg) = w(z)7(g). A smooth irreducible
representation always has a central character (by Schur’s lemma). If a representation
is unitary then its central character is unitary. We shall say that a non zero function
f : G — C has central character w if there exists a character w of Z such that, for all
z € Z and all g € G, f(zg9) = w(z)f(g). If 7 has central character w then every non
zero coefficient of 7 has central character w.

Definition. We say that a smooth irreducible representation m s cuspidal if there exists
a coefficient f of m, not identically zero, such that the support of f is compact modulo Z.

Definition. We say that a smooth irreducible representation m is square integrable
if ™ is unitary and if there exists a coefficient f of m, not identically zero, such that | f|?
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is integrable over G/Z.

The same definition holds for G’ too (and generally for all connected reductive groups
on F).

2.3. Corresponding elements.

Definition. If g € G°* and ¢’ € G, we shall say that g corresponds to ¢’ if they
have the same characteristic polynomial. We also write in this case g <> ¢'.

This correspondence induces an injection from the set of regular semisimple conjugacy
classes on G’ to the set of regular semisimple conjugacy classes on G (obvious). It may
be proved that, when restricted to the elliptic classes, this injection becomes a bijection
from the set of elliptic conjugacy classes on G’ to the set of elliptic conjugacy classes on
G. The last bijection is realized via the set of monic irreducible separable polynomials
of degree n in F[X].

2.4. Statement of the Jacquet-Langlands correspondence. We can now state
the Jacquet-Langlands correspondence. Let E?(G) be the set of equivalence classes
of square integrable representations of G and E*(G') the set of equivalence classes of
square integrable representations of G'.

Jacquet-Langlands. There ezists a (unique) bijection
C: E*(G) —» E*(@)
such that for all m € E?(G),

Xx(9) = (=1)""xc(m)(9)
holds for all g <+ ¢'.

Jacquet and Langlands prove this statement in the case n = 2 in [JL]. Flath proved
it in the case n = 3 if char(F) = 0 in his thesis ([F1l]). Rogawski gave a proof in the
case r = 1 for every n provided char(F) = 0 in [Ro] and finally Deligne, Kazhdan and
Vignéras proved the general case if char(F) = 0 ([DKV]). Here I shall talk about a
simplified version of the Deligne, Kazhdan and Vignéras proof.

3. ORTHOGONALITY RELATIONS FOR CHARACTERS

Let Z be the center of G. Let dg and dz be Haar measures on G and Z. Let G, be
the set of elliptic elements of G (i.e. elements with irreducible separable characteristic
polynomial). A maximal torus 7 in G is said to be elliptic if the quotient T/Z is
compact. On every elliptic torus 7" of G fix a Haar measure dt such that volume of T'/Z
is one for the quotient measure dt = dt/dz. Let T be the set of elliptic elements of
T, Wr the Weyl group of T" and |Wr| the cardinality of this group.
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If g is an elliptic element of G it belongs to a maximal elliptic torus 7" and T is
its centralizer. Let D(g) be the absolute value of the determinant of the operator
Ad(g™') — Id acting on Lie(G)/Lie(T).

For every unitary character w of Z let Lo(G.;w) be the space of functions f defined
on GG, with complex values which are locally constant, invariant under conjugation by
elements of G and of central character w.

Let 7. be a set of representatives of conjugacy classes of elliptic tori. Let L?(G.;w)
be the space of f € Ly(Ge;w) such that

S (Wl / D) f(BPdF

fer Tres/2

is convergent (Z act on 7% by multiplication, D and | f| are invariant under this action).
Define a scalar product on L?(G,;w) by:

< fl; .f2 >e= Z ‘WT|_1/ D(t—)fl(t—)ﬁ@df
T Tres/Z

(L?(Ge;w), <>.) is a pre-hilbert space.

Clozel showed ([Cl]) that if char(F') = 0 then, for every square integrable representa-
tion 7 of G of central character w, the restriction of x, to G, is in L?(G.;w) and the set
of these functions form an orthonormal family for < ; >, in L?(G.;w). This property
is usually called orthogonality of characters on G. Clozel showed it for every connected
reductive group over a local field of zero characteristic. Thus this hold for G’ too.

4. ORBITAL INTEGRALS

For every g € G°*, the centralizer of g in G is a maximal torus Tj,. Fix Haar measures
on maximal tori of G such that if two such tori are conjugated then the measures
correspond to each other via conjugation (is independent of choice of the conjugation).
For each maximal torus T consider the quotient Haar measure on G/T. If f € H(G)
we may define a map ® : G° — C by setting, for all g € G°,

®(f;9) = f(zga™)dz.
G/Ty
The map ® is called the orbital integral of f. Then & is locally constant on G° and
invariant under conjugation.
The submersion theorem of Harish-Chandra ([H-C]) implies a weak converse:

Proposition 4.1. If ® is a function on G° which is locally constant,
class invariant and compactly supported mod conjugation then ® is the
orbital integral of a function f € H(G) supported in G*.

The same holds for G’ too.



5. SIMPLE TRACE FORMULA

Let F be a global field, and G a reductive group defined over F. Let Z be the center
of G. For every place v of F let F, be the completion of F at v, G, the group G(F,) and
Z, = Z(F,) the center of G,. Let A be the ring of adéles of F. To simplify definitions
for choice of maximal compacts and Haar measures, from now on we suppose G is GL,,.
Things are trivially the same for its inner forms. For every finite place v let O, be the
ring of integers of F,, and put K, = G(O,). From now on, for almost every will mean
“for every but a finite number” and a.e. (“almost everywhere”) will mean “for almost
every place v of F”. We consider the adele group G(A) of G, which is the restricted
product of G, with respect to K,. It is the group of elements (g,), of the direct product
of all G, such that g, € K, a.e.. 3 5

Let H(G(A)) be the set of functions f : G(A) — C of the form f =[], f,, where f,
is C* with compact support for every infinite place v, f, € H(G,) for every finite place
v, and f, is the characteristic function of K, a.e..

In the following we’ll consider groups G(F) and Z(F) as subgroups of G(A) and Z(A)
respectively (diagonal inclusion). Let @ be a unitary character of Z(A) trivial on Z(F).
For every place v we choose a Haar measure on G, such that, if v is finite, the volume
of K, is one. For every place v, there is an obvious isomorphism between Z, = Z(F,)
and F;. Put Haar measures on Z, such that, if v is finite, the volume of the image of
Oy, is one. The product measure gives measures on G(A) and Z(A).

Define L?*(G(A); @) as the space of functions ¢ : G(A) — C such that

- ¢ is left invariant under G(F)

-forall z € Z(A) and g € G(A), &(zg) = @w(z)¢(g) and

oz 19 <

Itisa Hllbert space with respect to the inner product

<4 ¢ >= / $(0)9(9)dg
G(F)Z(A)\G(A)

Say that ¢ € L*(G(A);@) is a cuspidal form if, for all ¢ € G(A) and all unipotent
radicals N of proper parabolic subgroups of GG, we have:

/ é(ng)dn = 0.
N(F)\N(A)

Let L?(G(A);@) be the subspace of cuspidal forms in L*(G(A);@).

The group G(A) acts on L?(G(A); &) by right translations. Call p this representation
of G(A). The space L2(G(A);w) is stable under p. Let p, be the representation of
G(A) in L}(G(A);@) induced by p. Then p and p, are unitary representations with
central character @. The representation p. is a reducible representation. We know that
it decomposes discretely and every irreducible subrepresentation has finite multiplicity.
An irreducible subrepresentation of p. is called automorphic cuspidal (it is not neces-
sary to define here what “automorphic representation” means). We know that every
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automorphic cuspidal representation & of G(A) breaks into a restricted product over v
of smooth irreducible representations &, of G,. Moreover o, is unramified (i.e. has a
non zero fixed vector under the maximal compact K,) a.e. (see [FI1]).

If f € H(G(A)) define an operator on L*(G(A); &) by:

(H)dl(9) = /G  Fmglanyan

It is a unitary operator.

Let v be a place of F. If 7 is a cuspidal representation of GG, with central character w,
then we say that f € H(G,) is a coefficient with compact support for m if trm(f) = 1 and
trm'(f) = 0 for all smooth irreducible representations 7’ of G, with central character w.
For every cuspidal representation there always exist coefficients with compact support.

Let X be the set of elliptic orbits in Z(F)\G(F). For every O € X choose an element
Yo € O. Let G,, denote the centralizer of 7vo. Put on G, (A) the product measure
with respect to the local fixed measures (at every place v, G,,(F,) is a maximal torus,
and for almost every v it is an elliptic torus). If f € H(G(A)) set

®(f;70) = / flz Yyoz) dz
Gro (W\G(4)

where dzx is the quotient measure.

Theorem 5.1. (Simple trace formula) Let f € H(G(A)). Suppose
there are two finite places v1 and ve such that f,, is a coefficient with
compact support for a cuspidal representation and the orbital integral

of fu, is supported in the elliptic set of Gy,. Then p.(f) and p(f) are
operators of trace class and

tx(pe(F) = tx(p()) = Y v0l(Go (F)Z(A)\Goo () [ 3(:)(F: 70)d

oex Z(4)

Proof. The proof may be found in [Ro] for example. The fact that the operator
pe( f ) is an operator of trace class is a general result independent of the condition on
f. The fact tr(pe(f)) = tr(p(f)) comes from p(f) (L*(G(A);@)) C L2(G(A);@) which
is a consequence of the condition at v;. I give here the proof of the formula since it is
slighter different form the one we usually find (I consider here functions with compact
support).

The operator p(f) in L*(G(A); &) is a kernel operator. One may see that:

Key)= 3 / RECHCENE

v€Z(F)\G(F)
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is a kernel for p(f) on the space G(F)Z(A)\G(A). Usually K (z;z) is not integrable,
but the condition at v, implies

Kwz)= 3 [ a@)fainm)ds
veZ(FN\G(F).  Z(4)

where the index e means that we sum only over the elliptic elements. Then, our K(z; )
IS integrable (see the calculus) and, as we have a trace operator with kernel and the
kernel is integrable over the diagonal, we have

trp(f) = /G(]F . K(m z)dx =

/( DZ(A\G(A) Jez ]F)\G

- / M Z(A\G(4) Z Z

0€X v€0

= Z/ / f(z 7 zyz) dz dz =
ANG(A) Y€O0

oex
= Z/ / &(2)f(z7' g 2y0g2) dz dx =
F)Z(A)\G (4)

oex

/ flzYzye) dzde =

/ @(2)f(z teyz) dz dz =

R) g6y, (F\G(F)

= Z / / @(2)f(z  2yox) dz de =
oex ! Gro M Z(AN\G(A) I 2(A)

= Y w0l(Go (F) Z(A)\Gry (A)) / 5(2)8(f; 2710) d=

oex Z(4)

6. TRANSFER

Let G = GL,(F) and G' = GL,(D) like before. Identify the centers of G and G’ and
call them both Z. There exists a coherent bijection between the set of conjugacy classes
of maximal elliptic tori of G' and the set of conjugacy classes of maximal elliptic tori of
G, and also an injection between the set of conjugacy classes of maximal tori of G’ and
the set of conjugacy classes of maximal tori of G. The first one is, of course, a restriction
of the second one. They are defined as follows: let g <> ¢’. As g is regular semisimple,
the centralizer T, of g is a maximal torus of G, equal to the group of invertible elements
of the subalgebra F[g] of M, (F). Also, the centralizer T, of ¢’ is a maximal torus of G,
equal to the group of invertible elements of the subalgebra F[¢'] of M, (D). As g and ¢
have the same characteristic (= minimal) polynomial, there exist a unique isomorphism
from F[g]| onto F[g']| sending g to ¢', and this isomorphism induces an isomorphism
igg : Ty — T, which send g to g'. It is clear that for all ¢ € Ty, t <> 4,4 (t). Note that
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ig,¢' 15 @ homeomorphism for the p-adic topologies. If T' is a maximal torus in G' and
T' is a maximal torus in G', we say that T' corresponds to 7" if there exist g € T' and
g' € T' which correspond to each other.

Fix now Haar measures on the maximal tori of G’ such that, if two tori are conjugated,
their measures corresponds to each other via conjugation (it is independent of the choice
of the conjugation) and suppose that, on elliptic tori 7', measures are chosen as in section
3 (vol(T/Z) =1).

Let T be a maximal torus of G. If T' corresponds to a torus 7" of G’, choose g € T and
g' € T' such that g <+ ¢’, and put on T the inverse image by i, of the measure fixed
on T'. It is independent of the choice of g,¢’. On tori of G’ which do not correspond
to any torus of G', put any Haar measure such that if two tori are conjugated, their
measures correspond to each other via conjugation (it is independent of the choice of the
conjugation). We fix from now on measures associated like this on tori of both groups.

Fix a character w of Z. We obviously may define a map i : Ly(Ge;w) — Lo(GL; w)
(see section 3 for definitions): for every ¢’ € G. take a g € G, which corresponds to ¢’
and for every f € Lo(Ge;w) set i(f)(g') = f(g). Using correspondence of elliptic tori
classes just discussed, it is clear that the restriction of i to L?(Ge;w) is onto L*(GL;w)
and is an isometry.

Definition. If f € H(G) and f' € H(G') say that f corresponds to f' if f and f'
are supported in the reqular semisimple set, and if

- for every g <> g' we have ®(f,g9) = ®(f',¢') and

- for all g € G* which do not correspond to any ¢ € G'* we have ®(f,g) =0
(orbital integrals calculated with the choice of measures like before). Notation: f < f'.

Proposition 4.1 implies now

Proposition 6.1. a) For every f' € H(G') supported in the reqular
semisimple set there exists f € H(G) such that f < f'.

b) For every f € H(G) supported in the reqular semisimple set and
whose orbital integral vanishes on every g which does not correspond to
any g' € G' there exists f' € H(G') such that f < f'.

This is a weak variant of the definition and proof of transfer, but it is the only one
which we may prove in non-zero characteristic. We’ll see that this transfer of orbital
integrals is sufficient for the proof of the Jacquet-Langlands correspondence.

7. THE PROOF

Let’s start the proof of the Jacquet-Langlands statement. I make no assumption on
the characteristic of F' yet. I suppose G # G'; if not, all is trivial.
Let my be a square integrable representation of G and w its (unitary) central character.

7.1. Finding a representation which corresponds to 7.
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7.1.1. Application of the simple trace formula. First recall some arithmetical facts. Ref-
erences are [Pi] and [We|. I shall follow [Pi] where the exposition is more clear. When
a result I need is proven in [Pi] only in the zero characteristic base field case, I shall
add a reference to [We], where the result is proven also if the characteristic of the
base field is positive. Let F be a global field. For every finite place v of F, there is
a bijective map INV, (notation of [Pi]) from the set of isomorphism classes of central
simple algebras A, of dimension n? over F, onto the set {%, ke {0,1,...,n—1}}. Also,
INV,(M,(F,)) = 0 and for every other (class of) central simple algebra A, = M,(D),
q > 1, with dimpD = ¢* (hence pg = n), INV,(4,) = %, with (k,¢) = 1. In particular,
INV,'(1) must always be the class of a division algebra. It is a consequence of a deep
result ([Pi], th. 18.5 and [We|, th. 4, sect. 6, XIII) that, if for every finite place v of
F we fix an element a, € {£, k € {0,1,...,n — 1}} such that a, = 0 for almost every
v and the sum of positive a,’s is an integer, then there exists a central simple algebra
A over F such that, for every infinite place v A(F,) ~ M,(F,), and for every finite
place v, INV,(A(F,)) = a,. For a place v of F, we say that A is unramified at v if
A(F,) ~ M, (F,). If not, we say that A is ramified at v.

Consider now a global field ' and a central division algebra D over F such that:

- there exists a place vy of F such that F,, ~ F' and D(F,,) ~ M,(D) ;

- at infinite places D is nonramified;

- at every place v # vy where D is ramified, D(TF, ) is isomorphic to a division algebra
over IF,.

The existence of such a D) is a simple consequence of the previous facts (exercice).

Set D, = D(F,) for every place v. Let V = {vg, v1...u;n } be the set of places where
D is ramified. Fix once and for all an isomorphism D,, ~ M, (D) and isomorphisms
D, ~ M,(F,) for all places v ¢ V. For all v note GL,(F,) by G, et D} by G.. We shall
put G = GL, and G’ = D* when no confusion may occurs. In fact, our local G and G’
in the statement of the theorem have become, in our global situation, G,, and G, .

Identify centers of G and G’ and call them Z. For every v, fix local measures on G,,
Gl and Z(F,) as in the section 5. The measures on G(A) and Z(A) will be taken to
be the product measures. For every v, for every maximal torus of G, or G, fix a Haar
measure as in the section 6 (such that measures correspond to each other). If v is an
elliptic element of G(A) (resp. G'(A)), then the measure on G, (A) (resp. G’ (A)) will
be taken to be the product measure of local measures on tori.

Let vpmy1 € V be a finite place of F. Set S = VU {vpui1} = {vo...vmys1}. Forallv € S
choose 7, as follows:

- Tyy = T,

- for all v € V\{vo}, 7, is the Steinberg representation of G,;

- Ty, 18 @ cuspidal representation of G, ;.
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We know that there exists then a cuspidal automorphic representation 7 such that
o = 7, for all v € S ([AC], lemma 6.5 for example). Let @ be the central character of
7r.

Let f € H(G(A)) and f' € H(G'(A)). Say that f and f' correspond to each other
and write f <+ f' if for all v € V we have f, « f', (sect. 6) and for all v ¢ V we
have f, = f', (recall we identified via some fixed isomorphisms G, and G’ for all these
places).

Denote by p. (resp. p.) the representations of G(A) (resp. G'(A)) in the space of
cuspidal forms with central character equal to & (see sect. 5).

Proposition 7.1. Let f~€ H(G(A)) and f' e H(G'(A)) be such that
f < f'. Suppose that fu,., = f,.,, 15 a coefficient with compact
support of a cuspidal representation of G, ,,. Then we have:

trpe(f) = trp::(f').

Proof. We may apply the simple trace formula to G(A) and G'(A) for f and f'.
Hypothesis are fulfilled : fvm 4 and f{,m+ , are coefficients of compact support of a cuspidal
representation ; moreover, at every place in v € V\{v}, the orbital integral of f is
supported in the set of elliptic elements (because f{J itself is supported in the elliptic
set, as every regular semisimple element of G, is elliptic) and the orbital integral of fv
is supported in the set of elliptic elements because it corresponds to f{,

After application of the trace formula, it remains to prove that, if X is a set of
representatives in G(IF) of elliptic conjugacy classes of Z(F)\G(F) and X’ is a set of
representatives in G'(F) of elliptic conjugacy classes of Z(F)\G' (), then we have

@) Y wlG(AZMNG, () [ al:)8(fim)dz =

vEX Z(4)
S vol(Gy (F)Z(B\G (1) | , DN

For every 7' € X', there exists v € G(F) which has the same characteristic polynomial
(take the companion matrix). Then 7+ is elliptic. Without changing the sum, we may
then clearly modify the choice of X such that there exists an injection j : X' — X such
that, if v € X', the characteristic polynomial of 7y equals the characteristic polynomial of
j(7)- As we have chosen on all groups over A the product measure, the term concerning
" on the right hand side of (2) is equal to the term concerning j(7') on the left hand side
of (2) (both are the product of a common part, corresponding to a restricted product
over places v ¢ V', by the product over v € V of local terms which correspond to each
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other). We shall prove now that all the terms concerning elements v € X which are not
in the image of j vanish.

Let v € X. For every place v, denote by <, the image of vy under the inclusion
G(F) — G(F,). The element 7, is regular semisimple, but need not be elliptic (the
characteristic polynomial of v may be reducible over F,).

Lemma 7.2. Suppose that for every v € V there exists an element
z, € G, such that v, <> x,. Then there exists an element v' € D such
that v, is a conjugate of vy, for every place v ¢ V and v, < v, for
everyv € V.

Proof. This follows from a more general fact but I shall give here the proof in
our particular case. Let P be the characteristic polynomial of v. P is irreducible
over F because 7 is elliptic. The subalgebra of M, (F) generated by < is isomorphic
to F[X]/(P). It is a sub-field L of M,(F) of dimension n over F. For every place
v € V\{vo}, 7o <> 2 which is elliptic, hence L(F,) is a field (i.e. L/F is not ramified at
v). As the characteristic polynomial of +,, is equal to the characteristic polynomial of
x,,, which is a regular semisimple element of G L, (D), every irreducible factor of P over
F,, has degree divisible by d. Hence, L is either unramified at vy, or splits into a product
of extensions of F,, of degrees which are all divisible by d. As d x INV,,(M,(D)) € N,
we may apply ii), Cor. b, sect. 18.4 in [Pi] (or the equivalence between (ii) and (iii)
in prop. 5, sect. 3, XIII, [We] for the case of non zero characteristic) to obtain that
L is isomorphic to a subalgebra (actually a sub-field) of D. The image of  under this
isomorphism is an element 4’ which has the same characteristic polynomial as +. 0J

The lemma implies that for a v € X which doesn’t have the same characteristic
polynomial as some 7' € I, there exist v € V' such that the orbital integral of f, is
zero at z7, for all z € Z(F,). Hence ®(f;2y) = 0 for all z € Z(A) and all these terms
vanish. O

7.1.2. First simplification of the equality. Let T be the (finite) set of places v where G’
is nonramified, but 7 is ramified (see sect. 5). Let Y be the set of infinite places of F
(void if the characteristic is non-zero). Set

W=5SuTUY.

Set Gw = yew Gy, Gy = I,ewG,,. Note Ty the representation of Gy obtained by
restricting 7 at places in W. If fyr = [[,ew fo € [Loew H(Go) and fiy = [[ew fo €
[Lew H(G,), write fw < fy, if for all v € V we have f, <+ f, and for all v € W\V we
have f, = f}.

Proposition 7.3. Let fw < fy. If fo,. = fp,., 8 a coefficient
with compact support of a cuspidal representation of G, ., = G, "
we have:

trtw (fw) = Y m(®) iy (fir)

w'el’
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where

- U' is the set of automorphic cuspidal representations 7' of G'(A)
such that for all v ¢ W we have 7, ~ 7,,

- m(7') is the multiplicity of 7' in pl,.

Proof. The proof is based on the following lemma. Let {F;};c; be a countable set
of non-archimedian local fields. For every ¢ € I, let O; be the ring of integers of F;.
Put K; = GL,(O;). Let H be the restricted product of GL,(F;) over I with respect to
compacts K;. Let K be the product of all K;’s. Let M be the set of product functions
f =1Le fir fi € H(GL,(F;)) such that

- for all ¢, f; is bi-invariant (i.e. right and left invariant) under Kj;, and

- for all but a finite number of indices 7, f; is the characteristic function of K;.

Let {m;}jes be a countable set of irreducible, mutually non-equivalent representations
of H such that every m; is a restricted product (see [Fl1]) of unitary and unramified
representations m,; of the GL,(F;)’s.

Lemma 7.4. Suppose given complex numbers c; such that for every
f € M, the series

(3) > ejtemi(f)

jed
converges absolutely to zero. Then all the c; are zero.

Proof. A proof of this lemma may be found in [F12]. I give here a sketch. Any
unramified representation of GL,, is a sub-quotient of a parabolic induced representation
from a character | [ ® | [ ®...Q® | |*", (z; € C) of the diagonal torus. Conversely,
every such induced representation has only one unramified sub-quotient. Then the
set of equivalence classes of unramified representations of GL,, is in bijection with C"
modulo relations z; & 2] if z; — 2] € 2miZ and modulo permutation of components. It
is also known that an unramified representation is unitary iff, for all 7, |Re(z;)| < 3.
This gives a structure of compact topological space to the set of equivalence classes of
unramified unitary representations of GL,. Using this, put a topology on the set of all
representations of H which are locally unitary and unramified. Denote R this space.
It is a compact space (product of compact spaces). With each f like in the lemma, we
associate a function Fy : R — C* by the formula Fy(7) = trm(f). The set of all these
functions verifies the Stone-Weierstrass conditions:

- it contains the constant functions (consider f equal to a scalar multiple of the
characteristic function of K);

- it is stable by complex conjugation because, if we put f*(g) = f(g~'), then for every
locally unitary representation 7 of H we have trr(f*) = trm(f), hence Fj. = Fy.

- it separate points, as locally this is a classical result (particular case of [Be], cor.
3.9 for example).
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Hence, the set of all functions Fy, f € M, is a dense subset of the set C(R) of
continuous functions on R. Now, putting f = 1 in formula (3), the absolute convergence
implies that ) |c;| converges. Then choose » in J such that |c,| is maximal. Suppose
cu| # 0. Choose a finite subset Jo of J such that -, ; [¢;| < %. The density result
implies that we may find a function f such that

- [trm; (f)] < 2 for all j € J,

- |trmy(f)| > 1 and

- [t ()] < 3k for all m € Jo\{u}.

Then
Y atrm(HI< Y lelltem(f)] <
j€I\{u} jeI\{u}
< (ol =2 1 2% < ey < feytrm, (1)
2|Jo
which contradicts the hypothesis. Hence \cu| must be 0. O

Now we prove the proposition. Write

trpe(f) — troe(f') =0

Decompose p. and p, as a sum of irreducible representations. The index set I in the
lemma will be the set of places v ¢ W. The restricted product of GL,(F,)’s, v ¢ W will
play the role of the space H in the lemma. And the restriction to H of the irreducible
sub-representations of p. and p, which are unramified at every place v ¢ W will give the
set {m;} in the lemma. Let us determine the coefficients c; in the last relation. Take an
irreducible sub-representation 7; of p. or p.. Let m; g denote the restriction of 7; to H.
Let Uy, (resp. U;,) be the set of automorphic cuspidal representations 7’ of G(A) (resp.
of G'(A)) whose restriction to H is equivalent to m; g. By multiplicity one and the
strong multiplicity one theorem for G = GL, ([Sh]), if 7; is a sub-representation of p,
then Uy, has a unique element (which must then be ;) which appears with multiplicity
one. The contribution of the terms in Uz, U Uz, to the sum may be written

ca b m ( H )
vgW

(f, = f at these places), where cz, is

cr = tritw (fw) — > m(#)teiy (fiy)

weUr,

where m(7') is the multiplicity of 7' in p. For every v ¢ W, we let f, = f! vary in the set
of bi-invariant under K, functions in H(G,). For all such f , for every representation &
which is ramified at at least one place z ¢ W we have tr&(f) = 0 because tré,(f,) = 0.
In the sum remains then only terms unramified at all the places v ¢ W. For such
representations, if we fix fir and fW, then the number of ¢z, which do not vanish
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is finite (because it corresponds to cuspidal automorphic representations which have
the same central character, and have a fixed non-zero vector under a given compact
subgroup of the adele group). We are then in the situation of the preceding lemma and
we may conclude that all coefficients are 0. In particular ¢z = 0, because 7 is unramified
at places v ¢ W. This proves the proposition. O

7.1.3. Finitude on the G' side.
Proposition 7.5. U’ is a finite set.
Proof. Admitted. See [BB|.

7.1.4. New simplifications. Recall V. = {wg,vy...u } is the set of places where G’ is
ramified and we have put S =V U {vp41}.

Proposition 7.6. Let U" be the set of those @' € U’ such that 7!, ==

YUm+1

Tomir- Then, for all fy =Tl,cy fo € [Lyev H(Gy) and fi, = [1,ev fo €
[L,ev H(G,) such that f, <+ fo, for allv € V we have:

trity(fv) = Y m(& )iy ().

leu

Proof. First put in the formula, at place v,,,1, a coefficient with compact support
of 7y,, ., Then the traces of all representations in U'\U" are zero. Now apply the same
proof as for the first simplification (prop.7.3), replacing lemma 7.4 by the theorem of
linear independence of a finite number of characters on the finite product HUeW\ sGLy.

Proposition 7.7. a) For all representations e U", for all v €
V\{wo}, 7'y is the trivial representation of G,.
b) We have:

(4) Xro(9) = (1) N " m(7)xay (9) Vg g

Freun

Proof. a) The local components of 7y at places vy, vs...v,, are Steinberg representa-
tions. The character of a Steinberg representation is equal to (—1)"~! on the elliptic set
(general fact). Use then like before the independence of characters on G, (the character
of the trivial representation is 1 on the elliptic set).

b) It is clear now from a) that we may simplify at places v € V\{wp}. It is also clear
that then the sign (—1)"~1)™ appears. We have

(5)  trm(f) = (=)@ Y m(@ ), (f)  Vf o S
#eun
Let us explain how we may pass from the distributions relation to characters relation.
Choose any g <> ¢’. As we have a finite number of representations, there exist neigh-
borhoods N and N’ of g and ¢' such that y,, is constant, equal to x,,(g) in N, and
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every X, is constant, equal to xz; (¢') on N'. Using the submersion theorem of Harish-
Chandra, we may suppose N is a crossed product of a neighborhood V; of g in the torus
T, containing no two conjugate elements and a neighborhood V, of 1 in G/T, which
acts by conjugation on Vi, and N’ is the crossed product of the neighborhood i, 4 (V7)
(see sect. 6) of ¢' in the torus T, and a neighborhood V3 of 1 in G'/T,. If measures
on tori are associated like in sect. 6, then one may see that m 1y & W 1pr.
We may apply the relation 5 to those functions. But in the mean time we have
trmo(1n) = Xro(g) vol(N) and trer, (1n7) = X, (¢') vol(N'). By a well known calculus,
vol(N) = wvol(V3) [i. D(t)dt. We also have vol(N') = wvol(V5) [ D(igq(t)) dt =
vol(Vy) [, D(t) dt (the function D has been defined at sect. 3).
We get then after simplifications:

Xmo(9) = (D)™ N " m(#)xa, (9).

®eun

g.q' (V1)

which is the required relation. O

7.1.5. Representations on the G' side are square integrable. Let F' be a non-archimedian
local field. Set G = GL,(F) and let G' = GL,(D) be an inner form of G, where D
is a central division algebra of finite dimension d? over F'. Let L' be a standard Levi
subgroup of G, i.e. the product GLy, (D) X GLyy (D) X ... X GLy (D) “diagonally”
embedded in G'. Let P’ be the parabolic subgroup containing L' as a Levi subgroup
and the upper triangular invertible matrix group (such a group will be called “standard
parabolic subgroup”). Let L be the standard Levi subgroup of G corresponding to L',
i.e. the product GLgn (F) X GLgny (F) X ... X GLdn;(F) “diagonally” embedded in G.
Let P be the (standard) parabolic subgroup of G which contains L as a Levi subgroup
and the upper triangular invertible matrix group.

Let 7 be an irreducible smooth representation of G and =}, i € {1,2...k} irreducible
smooth representations of G'. Suppose there exists complex numbers a;, ¢ € {1,2...k},
such that

Xr(9) = Z aiXn! (gl)

for all g +» g'. We have the following proposition following [DKV].
Proposition 7.8. We have

k
XTCSgﬂ' (g) = Z a’inesg;ﬂ'i (gl)
i=1

forall g € L*, ¢ € L' such that g +> ¢'.

Proof. ([DKV]) Let ¢’ € L' be a regular semisimple element and let g € L such that
g < g'. Write g = (91,92---9), 9i € GLgn(F), and ¢' = (91, 95---9p), 9i € GLy (D).
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Then we have g; <+ gi. Assume firs that ¢’ is elliptic. We shall use the result of [Cal]
which we translate here in the simple case of our particular groups. Put

|det(gi) 7"

N(g) = i
1<i<p-1 |det(gi1)|p

This definition obviously extends to any element in L. Let z = (21, 22...2p) in the center
of L identified with the center of L' such that N(z) < N(g) . Then we have N(zg) < 1.
Take a finite extension F’ of F' which splits the characteristic polynomial of zg. For all
1, the characteristic polynomial of z;g; is irreducible over F', and its roots in F’ have
the same absolute value a;. Moreover, if ¢ > j, then a; > a;. Then zg is semisimple.
For the same reasons, the parabolic group P,, associated to an element zg in [Cal] is
nothing but P, and the th. 5.2 of [Cal] implies xx(29) = Xesgr(29). The same holds

for g' and we have, for all i € {1,2..k}, Xx.(29) = X,es0' 1 (29'). We then have

resg,m;

k
XT'Esgﬂ'(zg) = Z a’inesICjzﬂ'i (zg’) °
i=1

Now write the character of each representation as the sum of characters of its irre-
ducible sub-factors. After this operation, our relation becomes: a sum of characters of
irreducible representations of L applied to zg equal a sum of characters of irreducible
representations of L' applied to zg’. But every irreducible smooth representation has a
central character, and then the z may be removed using the next lemma:

Lemma 7.9. Let c be a real positive number. Let wy,ws...w, be distinct
characters of the center Z; of L and by, by...b, complex numbers such
that:

Vz € Z1, such that N(z) < ¢, X} _ibiwi(z)=0.
Then b; = 0 for all 1.

Proof. Suppose v is the smallest positive integer such that

(6) Zbiwi(z) =0

for all z € Z;, with N(z) < c and at least one b; doesn’t vanish.

Then v > 2 and every b; doesn’t vanish. Let zy € Zy, such that N(z) < 1. Then, for
every z such that N(z) < ¢ we have N(29z) < ¢ hence X}_;bw;(202) = 0 which gives
YY1 bjwi(z0)wi(z) = 0. Multiplying (6) by w1 (2) and subtracting with the last obtained
relation, we find another (6)-type relation. The number of characters being inferior, all



18

the coefficients vanish. Then, for every ¢ € {1,2..v} we must have w;(20) = w1(20). In
particular,

w1(z0) = wa(z0)  Vzp such that N(z) < 1.

Then, since the w;’s are characters, we also have
wi(zp!) = wa(z5!)  Vzp such that N(z) < 1.

As every h € Z; may be written h = zy~' where N(z) < 1 and N(y) < 1 (take
y such that N(y) < 1 and N(hy) < 1, then set x = hy) we find w; = wy which is
impossible. U

The proposition is proved if ¢’ is elliptic. If ¢’ is not elliptic, then there exists a
proper standard Levi subgroup H' of L', such that ¢’ is conjugated in L’ with an elliptic
element h' € H'. If H is the standard Levi subgroup of L corresponding to H', there
is an element h in H conjugated to g in L. It is clear that h <> h’. Since characters of
representations are invariant by conjugation, it is sufficient to prove the proposition for
h and b’ instead of g and ¢'. But this is a consequence of the preceding proof (ellip-
tic case) applied to G,G', H, H' and to L, L', H, H' and the transitivity of the Jacquet
functor. O

Proposition 7.10. Representations 7, , ©' € U", are all square inte-
grable.

Proof. ([DKV]) Let P’ be a standard subgroup of G', and P the standard parabolic
subgroup of G corresponding to P'. The restriction of 7y to P is either zero or irreducible
([Ze]). We apply the last proposition to the relation (4) for P and P'. If res@m, is
zero, the restriction of every representation #, must be also zero, by independence of
characters and the fact that the coefficients in the sum are all positive. If res$m is an
irreducible representation o then for the same reasons (idependence of characters and
positivity of coefficients), for every =}, for every irreducible sub-quotient o’ of resgiwé,
the central character of ¢’ equals the one of o. Then, applying the Casselman’s criterion
([Ca2], 4.4.6), we find that my square integrable implies all 7} are square integrable. [

7.1.6. Using the orthogonality to conclude. The previous equality between characters
may be written, when restricted to the elliptic set

() = (=)™ 0™ 37 m(#)xe, (9)

(see sect. 6). Now assume the orthogonality of characters is true for both groups. It is
always the case in zero characteristic. Then the norm of the left hand term is equal to
the norm of the right hand teem. This gives

1= Z m(7)%

#eu
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It means that U” has exactly one element 7', and m(#') = 1. Using (4), we have
g

Xmo(9) = (=1)" V" xz (d)
for all g «+» ¢'.

7.2. Definition of C. The construction we made works for any square integrable rep-
resentation my. Set

C(’ﬂ'o) =
We have then, for every my € E%(G),

Xro(9) = (=)™ V"X o) (9)
for all g ++ ¢g’. Now, if Stg is the Steinberg representation of G, then its character is
constant (—1)"! on the elliptic set. Then the character of C(Sts) must be constant,
equal to (=1)»~1N(m=1) on the elliptic set of G'. As the character of the Steinberg
representation Stg of G’ is constant (—1)" " on the elliptic set of G', it is clear that
C(Stg) = Stgr, by the orthogonality of the characters of C(Stg) and Stgr. This proves
that (—1)"~Y™ = (—1)"" hence

Xro(9) = (=1)" "X (o) (9)
for all g <+ ¢', as required by the Jacquet-Langlands statement.

!
v’

7.3. Injectivity of C. The assumption C(m) = C(m;) gives us equality of characters
of my and m; only on the set of regular semisimple elements of G(F) which correspond
to some ¢’ € G'(F'). But this set always contains the set of elliptic elements. And the
orthogonality of characters on G(F') implies that two square integrable representations
could not have the same character on the elliptic set. (It is not true in general: a
square integrable representation has the same character on the elliptic set as another
representation on GL,, if n > 3.)

7.4. Surjectivity of C. We would like to do the same construction in the other sense:
take a square integrable representation 7’ of G’ and put it in a global situation and
finally find something on G which corresponds to. But the problem is that I don’t know
how to prove that a square integrable representation of groups other than GL, may
always be a local component of an automorphic cuspidal one. I'll have to use once more
the orthogonality of characters.

First, suppose that G' is the group of invertible elements of a division algebra (r = 1).
Then every representation of G’ is cuspidal, and we know that a cuspidal representation
may always be a local component of an automorphic cuspidal one (true for any reductive
group over a local field, [He] appendix 1). Then we may do the construction in the other
sense and get surjectivity and complete correspondence with a division algebra (up to
sign). Now, as in this case G’ is compact mod Z, the set of restriction of all characters
of representations of G’ to G, form a complete orthonormal family in the prehilbert
space L?(G.;w). The first corollary is that the same happens on G since we established
a surjective correspondence here.



20

Now, return to the general case. Suppose C is not surjective. But, if 7’ € E?(G',w)
is not in the image, it means by orthogonality relations that it is orthogonal to the
image. And as the image contains a complete orthonormal set in L?(GL; w) (because i
is an isometry between L?(Ge;w) and L?(G.;w)) it must be zero. Contradiction with
the fact that it has norm 1.

The proof is done. O

8. CONCLUSION

This proof works in all characteristics except for the problem of orthogonality of char-
acters. It has been used in three places: construction, injectivity, surjectivity.
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