I have had the good fortune to learn most of the material in these notes from lectures given by
Robert Kottwitz at The University of Chicago. I am making use of some unpublished notes of
Casselman [4] and Bernstein [3, 2]. The notes you are reading come with no warranty — there
are hundreds of millions of mistakes in them. Indeed, no one (including the author) has taken
time to read what occurs between pages 79 and 115 in a serious way. By reading these notes,
you agree to send me a list of all the mistakes you find. I thank Brian Conrad, Florian Herzig,
Christopher Malon, and Joseph Rabinoff for helping to identify many mistakes. I thank Brian
Conrad for suggesting many substantive improvements.

1. NONARCHIMEDEAN LOCAL FIELDS

We fix some notation and spend a little time recalling basic facts.

We let k denote a nonarchimedean local field with finite residue field f, ring of integers' R,
maximal ideal ©, and residue field f = R/§. We fix a uniformizer w € k (that is, an element of
R such that ¥ = wR). Note that ¥ = w"R for all n € Z. We let v denote a valuation on k,
normalized such that v(k*) = Z. We suppose that the cardinality of f is ¢.

Example 1.0.1. Up to isomorphism, the field £ is either a finite extension of Q, (the p-adic
completion of QQ), or £ is the field of Laurent series in an indeterminate ¢ over the finite field f.

In the former case, £ has characteristic zero. We present a way to construct the field Q,,. Let
p be any prime. If r is a nonzero rational number, then there exists a unique integer ¢ such that
r=p’-a/bwith p{aandp{b. The p-adic absolute value |-| , on Q is defined by |7, = 0 if
r = 0and |r| = p~* otherwise. The p-adic absolute value has the following properties.

Exercise 1.0.2. If ; and r, are rational numbers, then
(1) |r1], > 0, and ||, = 0 if and only if r; = 0,
(2) |ry - ral, = |r1l, - [r2|,, and
(3) |r1 +7al, < max(|ri],, |ra],)-

Exercise 1.0.3. In the last item of the previous exercise, show that if [ri[, # [rs[, then the
inequality is an equality. Is the converse of this statement true?

From Exercise 1.0.2, it follows that we can define a metric on Q with respect to the p-adic
absolute value. We define Q), to be the completion of Q with respect to |-| . The p-adic absolute
value on Q extends continuously (and uniquely) to an absolute value |-| » Q= {0,p" |k € Z}.
We define the valuation v on Q,, by |z|, = p@ for x € Q) and v(0) = co. Thus v(p"™) = m
for m € Z.

Exercise 1.0.4. Fix o € R(. Show that H;‘ satisfies all three parts of Exercise 1.0.2, and that
the resulting metric recovers Q, upon completion. For which o € R does ||* satisfy the
triangle inequality, where || is the usual absolute value on R?

"t is far more common to denote the ring of integers by the symbol O. However, this is the notation we shall use

for nilpotent orbits.
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The ring of integers of QQ, consists of those elements of (@, with nonnegative or infinite val-
uation. It can also be identified with the completion of Z with respect to ||, and so is usually
denoted by Z,. The maximal ideal of Z, is the principal ideal (p), so we can take p to be the
uniformizer for Q,. The residue field is Z /pZ, the field with p elements.

In the latter case of Example 1.0.1, k£ has positive characteristic (equal to the characteristic of
f), R is the ring of power series in the indeterminate ¢ having coefficients in f, and we can take
w =t.

For x € k* there exists a unique n = v(z) € Z and unit u € R* so that x = uw™.
(Consequently, £* is isomorphic to Z x R* as a topological group.) For x € k we define

g V@ if x € kK~
x| ==

0 otherwise.

As in Exercise 1.0.2, this defines a norm. With respect to the metric defined by this norm, we
have that £ is a complete Hausdorff topological ring and that the map from £* to itself which
sends = to ! is continuous. For each n € 7Z, the sets " R = ©™ can be written as either

{rek|lz|<q¢"} or {zxek|lz|< q(l_”)}

and so are simultaneously open and closed. In fact, because f is finite, these sets are also compact.
Thus the ideals €, 2, ¢3, ... form a neighborhood-basis of the identity consisting of compact
open subgroups. (So, in particular, k is a totally disconnected topological space.)

Exercise 1.0.5. Show that & /" is countable for any n € Z.

We have just shown that the additive topological group k£ has the most important algebraic-
topological properties of nearly all of the groups that we will study. We give a name to these
properties:

Definition 1.0.6. If G is a Hausdorff topological group such that

(1) G has a countable neighborhood-basis of the identity consisting of compact open sub-
groups, and
(2) for any open subgroup K of G, the quotient space G/ K is countable,

then we say that G is a t.d.-group.

Note that an open subgroup of a t.d.-group is a t.d.-group, and a closed subgroup of a t.d.-group
is a t.d.-group.

Remark 1.0.7. The t.d.-group terminology is not standard. It is a specialization of the standard
concept of an /-group, which is a Hausdorff topological group with a neighborhood-basis of the
identity consisting of compact open subgroups.

Exercise 1.0.8. Prove that an /-group is totally disconnected, meaning the only connected sub-
sets are the points. For a challenge, try proving the following converse: a Hausdorff, locally
compact, and totally disconnected group is an ¢-group.



2. REPRESENTATION THEORY OF GL; (k)

We now look at the representation theory of GL; (k) = k*.
The group k™ is a Hausdorff topological group with a filtration by compact open subgroups:

EXOR*D(1+9)D>(1+9)D(1+¢*)D---D{1}.

For notational ease, for n > 1 we define K,, := 1 + ©". The collection {K, |n > 1} is a
neighborhood basis of the identity. Note that every compact open subgroup of k* is contained
in R* = R~ §, making it the unique maximal compact open subgroup of £*.

The filtration { X, } and the following exercise show that k£ is also a t.d.-group.

Exercise 2.0.9. (1) Let G be a topological group with a countable base of open sets. Show
that for every open subgroup K C G, the set G/ K is countable.
(2) Show that £* has a countable base of open sets.

2.1. Some basic definitions. Let G denote any t.d.-group. Keep £* in mind as a model for G.
A representation of G is a pair (m, V') where
(1) V is a complex vector space, and
(2) m is a homomorphism from G to Autc(V).

For two representations (7, V') and (o, W) of G, the set of morphisms of (7, V') into (o, W),
denoted Homg (V, W), is the space of linear maps f: V' — W for which

a(g)f(v) = f(m(g)v)

forall v € V and g € G. Thus representations of GG form a category, denoted by Rep(G).
We will restrict our attention to the following class of representations:

Definition 2.1.1. A representation (7, V') of G is said to be smooth, or algebraic, provided that
for all v € V/, the stabilizer Stabg(v) of v in G is open.

If we place the discrete topology on V' and the product topology on G x V/, then the requirement
that the stabilizer of each v € V' be open is equivalent to requiring that the map from G x V to
V' which sends (g, v) to 7(g)v be continuous.

Remark 2.1.2. We offer a few remarks on smooth representations.

(1) For v € V, we note that the stabilizer of v in G is open if and only if there exists a
compact open subgroup K C G such that

veVE ={veV|n(x)v=uvforallz € K}.

(2) In the literature R(G), S(G), or Alg(G) denotes the full subcategory of Rep(G) consist-
ing of smooth G-representations, meaning the morphisms are the same as in Rep(G) but
we consider only smooth representations as objects. We will generally use the notation
R(G). Since subrepresentations, quotients, and direct sums of smooth representations
are again smooth representations, R(G) is an abelian category.



(3) Suppose that (o, W) is any representation of GG. We define the set 1W>° of smooth vectors
for o by

W :={w € W |w € W¥ for some compact open subgroup K C G}
={w € W | Stabg(w) is open}.

Then (o, W) is the largest smooth subrepresentation of (o, W'). For all smooth repre-
sentations (7, V') we have

Homeg (V, W) = Homg (V, W*™).

We are most interested in those smooth representations which have no nontrivial proper G-
invariant subspaces.

Definition 2.1.3. A representation (7, V') of G is called irreducible provided that it is nonzero
and the only G-subrepresentations of V' are the trivial G-representation (that is, {0}) and V.

Lemma 2.1.4. If (7,V) is an irreducible smooth representation of G, then the dimension of V/
is countable.

Proof. Let v € V be nonzero. Since (7, V') is smooth, there exists a compact open subgroup K
of G such that v € VK. Because (m, V) is irreducible, G - v = G/K - v spans V, and G/K is
countable, so the lemma follows. [ |

We have the following fundamental result. The proof in our setting is due to Jacquet [8,
Lemme 1].

Lemma 2.1.5 (Schur’s lemma). If (7, V') is an irreducible smooth representation of G, then the
natural map

C — Endg(V) := Homg(V, V)

is an isomorphism.

Proof. Since (m, V) is irreducible, we have that End (V) is a division algebra.

Choose a nonzero v € V, and let A € Endg (V). Since {m(g)v|g € G} generates V' as a
complex vector space and A(7(g)v) = 7(g)(Av), we have that A is uniquely determined by Av.
Consequently, the map A — Av from Endg (V') to V is injective. Thus Lemma 2.1.4 implies
that the dimension of Endg (V) is countable.

If A € Endg(V), then C(A) C Endg(V) is a field of countable dimension over C. If
C # C(A) then (A — «) is invertible for all o € C, and the subset

{(A-a)aeC}

of C(A) consists of uncountably many C-linearly independent elements of C(A), a contradiction.
|

Remark 2.1.6. Lemma 2.1.5 holds (with the same proof) for any irreducible representation (7, V')
of an arbitrary group, provided that the dimension of V' is countable.
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Corollary 2.1.7. Let (7, V') and (o, W) be two irreducible smooth representations of G. If (7, V)
and (o, W) are isomorphic then Homg (V, W) = C, but otherwise Homg(V, W) = 0.

As always, isomorphism is an equivalence relation. We denote by Irr(G) the set of isomor-
phism classes of smooth irreducible representations of G.

Exercise 2.1.8. Let (7, V') be a finite-dimensional complex representation of an arbitrary group
G. Show directly that if (7, V) is irreducible then the natural map C — End¢ (V) is surjective.

2.2. Theirreducible representations of £*. Let (7, V') be an irreducible smooth representation
of k*. Since k* is abelian, for every = € k* we have 7(z) € End;x (V). Consequently, from
Schur’s lemma, we have 7(x) = z, - Idy for a unique z, € C*. Thus, V is one-dimensional.
When V' is one-dimensional, 7 is called a smooth character of k*, and we write (7, C,) for
(m, V).

Since the map x — (v(z), 2 - @) is a group isomorphism of k* with Z x R*, any smooth
character (1, C ;) of k* can be written as

(1) ¥(z) = 257 -z - =)

where z; € C* and v lies in the group R* of smooth characters of R*. Since 1 is a smooth
character of R*, there exists an m € Z- for which res ;om) 1 is trivial. (Here, res pm P
denotes the restriction of ) to (1 + #™).) That is, we can think of the character ¢ as a character
of the abelian group R* /(1 + ©™), which is finite because 1 4+ §™ is an open subgroup of the
compact group R*. Consequently, it must be the case that ¢»(R*) C S' = {2 € C* |2z = 1}.
We call such a character unitary.

Exercise 2.2.1. Show that if G is any t.d.-group and ) : G — C* is a continuous character, then
1 is smooth. Give an example of a smooth character of £* which is not unitary.

Exercise 2.2.2. Prove that the cardinality of R*/(1 + ¢™) is (¢ — 1)¢™ Y by showing that
R*/(1+®) 2§ and (1 + #*)/(1 + ©F+1) = § (here k > 1) as abelian groups.

Definition 2.2.3. A smooth character of £ is called an unramified character provided that its
restriction to R* is trivial. The set of unramified characters of £* is denoted by X (k*).

Exercise 2.2.4. Show that the map ¢ — (=) induces an isomorphism of X (k*) with C*.

2.3. The category 93(k*). We would like to say something reasonable about the category
9R(k*). In the representation theory of compact or finite groups, every representation” is com-
pletely decomposable (or semisimple). That is, if V' is a representation of this type of group,

then
V= v
(m,Vz)

with each of the (7, V) irreducible. This does not happen here.

ZRecall that our vector spaces are complex vector spaces. If we remove this assumption, this sentence can be
false.
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Exercise 2.3.1. Consider the representation (7, V') defined as follows. Let V = C? and 7(x) =
((1) “(lx) ) € Aut(V) for x € k*. Show that this representation is an object in R(k*), but it is not
completely decomposable.

2.4. A different approach. Fix (7, V) € R(k*).
Let ¢ € R*. Consider the projection operator e, € Endc (V') defined by

eo() = [ D) n(a)vda
.

for v € V, where dz is the normalized Haar measure® on R*. (Since 7 and 1) are smooth, this
integral is really just a finite sum.) Here v)(z) is the complex conjugate of 1)(x).

Exercise 2.4.1. Let G be a compact topological group, e.g. a finite group, or more generally a
profinite group like 2*. Fix a nontrivial continuous character ¢ : G — C* and a Haar measure
dg on G. There is a unique Haar measure such that G has measure 1, but any Haar measure will
do for this exercise. Prove that

Y(g) dg = 0.
G

Exercise 2.4.2. Verify the following standard facts.

(1) Forall y € R* we have m(y)ey, = ¢(y)ey.
(2) If ¢ € R* and ¢ # ¢/, then ey - ey, = 0.
(3) We have ey, - ey, = ey.

Definition 2.4.3. For ¢ € ]/%\X we define Vi, := ey V.

Since 2* is a normal subgroup of k*, V,; is a smooth representation of k*. Moreover, V; is
y-isotypic. That is, as a representation of R*, V,, is a direct sum of copies of (1, Cy,).

Lemma 2.4.4. As a representation of k™, we have

Proof. From Exercise 2.4.2, it is enough to show that if v € V/, then

U:ZGw’U

pes

where S is a finite subset of R*. Fix v € V. Since (7, V') is smooth, there exists a compact open
subgroup K C G for which v € VE_ If 1) € R*, then

colv) = [ Wa) n@pods = Y )7l [ V) ds
R GERX /K K
Consequently, e,,(v) will be zero unless the restriction of ¢ to K is trivial. Let S be the (finite)

subset of R* consisting of all 1) which restrict trivially to K. We can think of S’ as the set of all
irreducible representations of the finite abelian group R* /K. Let W be the R*-submodule of V/

3Thatis, [, dz = 1.
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generated by v. Then W is a finite-dimensional complex representation of a finite group, so it is

W=@De,Ww

PeS

v = Z%(U)-

peS

completely decomposable as
which shows that

Remark 2.4.5. Note that if ¢, v’ € R* such that W # 4, then for (m, V) € R(k*) we have
Homyx (Vy, Vi) = 0. Consequently, the category JR(k*) decomposes into a product of full
subcategories:
RE*) = ] RY(E).
$ERX
Here SR¥(k>) is the full subcategory of J:(k*) consisting of the 1-isotypic representations of
R(kX).

2.5. Toward an understanding of RV (k>).

2.5.1. Natural transfomations and equivalences of categories. We will often try to understand
certain categories of representations by finding equivalent categories to study. We therefore
present a brief review of natural transformations and categorical equivalences.

Definition 2.5.1. Let .4 and B be two categories, and let ' and G be covariant functors 4 — B.
A natural transformation p : F' — G from F to G is a rule which associates to each object X
of A a morphism px : F(X) — G(X) such that for any morphism f : X — Y between two
objects X and Y of A, the diagram

PX

F(X)— G(X)

F(f)l lG(f)

F(Y) —— G(Y)

commutes. We let Hom(F, ) denote the collection® of all natural transformations ' — G. A
natural isomorphism of F' and G is thus a natural transformation p : /' — (' that has a two-sided
inverse.

Definition 2.5.2. If F : A — Band G : B — A are covariant functors such that ' o G and
G o F are naturally isomorphic to the identity functors Idg and Id 4, respectively, then we say
that F' and G define an equivalence of categories.

Unwrapping the definitions, this means that for all X € A and Y € B we have natural
isomorphisms px : G(F(X)) - X and oy : F(G(Y)) — Y, so F and G define bijections of

“In general, Hom(F, G) is not a set.
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isomorphism classes of objects of .4 and 5. The naturality property of p and ¢ guarantee that for
all X, X' € Aand Y)Y’ € B,

F : Hom(X, X') — Homg(F(X), F(X"))

and
G : Homp(Y,Y") — Hom,(G(Y),G(Y"))

are bijections.

2.5.2. A categorical equivalence. Fix 1) € R*. As we saw in Exercise 2.3.1, we cannot expect
to decompose objects of R¥ (k) into a direct sum of irreducible k*-representations. We will try
to find a category that is equivalent to R¥ (k) which we hope will be easier to understand.

Fix a smooth character @Z of k™ whose restriction to > is ¢). Then every irreducible object in
RY(k*) is equivalent to ¥ ® X, where  is some element of X (k) (this is just Equation (1) on
page 5).

Let B denote the set of regular functions on X (k*) = C* (viewed as an algebraic variety over
C). Thus, we have B = C[t,¢!]. Define an action Y, of the group ¥* on B as follows. For
x € kX, letev, : X(k*) — C be evaluation at z: that is, ev,(x) = x(x). Then ev, € B: indeed,
if we identify B with C[t,¢~'], then ev, = t(*). Finally, for b € B set xuu(2)b = ev, -b. We
let Bacton C; ®c Bbyb- (v®@V) :=v®@0b-V. The (k*, B)-module (1 @ Xunrs C;®c B) is
called a (k*, B)-representation.

Let x € X(k*). If m, denotes the maximal ideal {b € B|b(x) = 0} in B, then

C;®c (B/my) = ((CJ ®c B)/mx(c{ﬁ ®¢ B) = Clex
where the second map is given by v ® b — b()v. That is, every irreducible object in RY (k) is
equivalent to a quotient of (¢) @ Xyar, C 7 ®c B).

Remark 2.5.3. The object C; ®c (B/m,) is usually called the specialization of C; ®c B at x;,
and it is denoted by sp, (Cj; ®c B).

Lemma 2.5.4. Let (7, V) be an object in R'k*). We have a natural isomorphism
HOIl'lkx (CJ Qc B, V) = HOIIle (C’L/H V)
as R*-modules.

Proof. The isomorphism is just precomposition with the natural inclusion C;, — Cf/? ®c B,
which sends z — 2z ® 1. Inversely, given an R*-morphism ¢ : C;, — V/, we can extend this to a
k*-morphism Cj; ®c B — V by letting 1 ® t" — (") - ¢(1). [
Corollary 2.5.5. The functor from RY (k) to the category of B-modules given by

(7'(', V) — Homy,x (CJ Q¢ B7 V)

is exact and faithful. Moreover, it defines an equivalence of categories.

Exercise 2.5.6. Prove Corollary 2.5.5. Hint: note that the right side of the isomorphism in
Lemma 2.5.4 can be identified with V.
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Exercise 2.5.7. Show that the category of B-modules is equivalent to 93(Z) (note that since Z is
discrete, smoothness is automatic and R(Z) = Rep(Z)). Moreover, both of these are equivalent
to the following very concrete category: the objects consist of pairs (V,T) where V is a C-
vector space and 7' € GL(V'), and a morphism ¢ : (V,T) — (W, S) is a C-linear map such that
o(T(v)) = S(p(v)) forallv € V.

Remark 2.5.8. The center of the category 3% (k) (as defined in Section 13) is isomorphic to
B =C[t,t7!].

3. THE REPRESENTATION THEORY OF HEISENBERG GROUPS

The Heisenberg group can be found in many places in representation theory (see, for exam-
ple, [5, 10, 15]) and, more broadly, in a great many branches of mathematics (see, for exam-
ple, [6])

Here we consider the simplest incarnation of a Heisenberg group, namely the Heisenberg
group in three variables, which we shall denote by the letter /. The group H can be identified
with the subgroup of GL3(k) consisting of the matrices

{[s,t,z] = <é§ ) \s,t,zek}.

The group multiplication law is given by
[s,t, 2] - [s", ¢/, 2| =[s+ & t+1, 2+ 72 +1s3],

so the center Z = Z(H) of H is {[0,0,z2] |z € k}. The quotient P = H/Z is isomorphic to
k & k as a topological group. For all » € R, we can define the compact open subgroup

— kN

K, = {[s,t,z] | u(s), v(t) > gand u(z) > r} = {[s,t,2]|s,t € 95 and 2 € "1},

Since K, = Ky, /21, the set { K, | > 1} is a countable neighborhood-basis of the identity con-
sisting of compact open subgroups. For each K in this basis, the coset space H/K is countable,
so H is a t.d.-group.

3.0.3. The representation theory of k. For the Heisenberg group, the central character controls
nearly everything; thus, before we can begin to understand the representation theory of H, we
must first consider the representation theory of Z (which is isomorphic to k).

Since k£ is abelian, it follows from Schur’s lemma that every smooth irreducible representation
of k is a smooth character. The group of smooth characters of £ (or more generally, any abelian
topological group) is called the Pontrjagin dual of k and is denoted k.

Exercise 3.0.9. Prove that there exists a nontrivial smooth character A : &k — C*. (Or see, for
example, [11, Exercise 3 on p. 297].)

Fix one nontrivial smooth character A : & — C*. For all m € Z, we have that respm A is a
character of the compact open subgroup €. Thus, the image of respm A in C* lies in S'. Since
k = U,,>1#™ and this is true for arbitrary m, we conclude that A is a unitary character of k.

Choose = € k. The function A, : k& — S* which maps y € k to A(yx) is a smooth additive
character of k, so z — A, is a map from k to k.
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Exercise 3.0.10. Show that this map is a topological isomorphism of k£ and k. (The topology on
k is the compact open topology.)

Exercise 3.0.11. More generally, for a finite-dimensional k-vector space W equipped with the
obvious topology, show that the characters on W are all unitary, and that W* = W via the map
A= (z = A(A(x))). (Here W* = Homy (W, k).)

Exercise 3.0.12. Let I" be a finite group, and let A be any I'-module, i.e. an abelian group with
an action of I' by group automorphisms. Define

At ={acAlvy-a=aforallyeTl}.

Let A(T') C A be the submodule generated by {ya —a | a € A, v € T'}, and define Ar =
AJA(T); thus Ar is the largest quotient module of A on which I" acts trivially.
Let A = Hom(A, S') be the Pontrjagin dual of A (without topological considerations). Then

I acts on A by (y- A\)(a) = M(y~" - a). Suppose that the natural injection A — A is surjective
(which is true when, for instance, A is finitely generated as an abelian group). Show that there is

a natural isomorphism AT — ((A)p)".

3.1. Some basic definitions. In this subsection, let G be any t.d.-group.

Definition 3.1.1. A smooth representation (7, V') of G is called admissible provided that, for
each compact open subgroup K of GG, the dimension of V¥ is finite.

Let (m, V) be a smooth representation of G. We define the representation (7*, V*) of G on
V'*, the linear dual of V, via

(T (9)\)(v) = A(m(g~")v).
Generally, this representation will not be smooth, so we define the contragredient representation
of (m, V), denoted (7, V'), to be the restriction of 7* to the smooth vectors in V*.
Let K be a compact subgroup of GG, and let dx denote a normalized Haar measure on K.
Define a projection operator ex on V' by

eKv:/ m(x)vdx
K

for v € V. Note that since (7, V') is smooth, the integral defining e is a finite sum.

Exercise 3.1.2. Verify that ey is a projection operator. Show that exV = VX and that, as
a representation of K, we have (1 — ex)V @& VE = V. Show that for A\ € V andv € V,
(exX\)v = Aegv), and conclude that VX = Homc (V% C).

For A € V and v € V, we call the function m,_, : G — C sending g to A(w(g)v) the matrix
coefficient of G corresponding to v and . Since (7, V') and (7, V') are both smooth, there exists
a compact open subgroup K of G such that m, ,(g) = mn(ki1gks) for all ki, ks € K and all
g€ G.
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Definition 3.1.3. A smooth representation (7, V') of G is called supercuspidal provided that its
matrix coefficients are compactly supported modulo the center Z of GG. That is, the image of the
support of any matrix coefficient in the topological space G/Z is compact.

It follows from Schur’s lemma that for an irreducible smooth representation (7, V') of G, the
center of G will act on V' by a character. We call this the central character associated to (7, V).
I believe that it was Jacquet [8] who first observed the following fact.

Lemma 3.1.4. If (7, V) is a smooth, irreducible, supercuspidal representation of G, then (w, V)
is admissible.

Proof. Let K be a compact open subgroup of G, so we want to show that V¥ is finite-dimensional.
Fix a nonzero v € VX, so by the irreducibility assumption G - v = G//K - v spans V and hence
ex -G/K-v spans VE Let S C G beasubsetsuchthateg-S-v =ex-SK/K -vis abasis for
VE. Letting (7, V) denote the smooth contragredient, we have VE = (VE)* and consequently
we can find A € VX such that

A (g)v) = Aexm(g)v) =1
for all g € S. Since (m, V) is supercuspidal, g — A(7w(g)v) has compact support modulo Z,
whence the open cover {sKZ/Z | s € S} of SZ/Z has a finite subcover. But by Schur’s lemma
Z acts on V' by scalars, so it follows that the {sK Z/Z} are all disjoint, whence SZ/Z is finite.
Again, the {sZ/Z | s € S} are all distinct by Schur’s lemma, so S is finite as desired. [ |

3.2. Basic properties of the representations of the Heisenberg group. We are now in a posi-
tion to investigate whether or not smooth irreducible representations of H are admissible.

Lemma 3.2.1. [f (m, V) is an irreducible smooth representation of H with trivial central charac-
ter; then (m, V') is a smooth character. In particular, (7, V') is admissible but not supercuspidal.

Proof. Since the central character of (7, V') is trivial, the representation (7, V") descends to a
smooth irreducible representation of P = H/Z = k @ k. As in subsection 3.0.3, any such
representation of P is a unitary character. ]

We therefore have a complete understanding of those irreducible representations of H with
trivial central character. We now turn our attention to understanding the remaining irreducible
representations.

Lemma 3.2.2. If (w, V) is an irreducible smooth representation of H with nontrivial central
character x, then (w, V') is admissible and supercuspidal.

We follow the proof of [13].

Proof. From Lemma 3.1.4, it will be enough to show that (7, ') is supercuspidal.

Fix A\ € Vand v € V. Choose m € Zs; such that v € VE» and A\ € VE», so the
matrix coefficient m, , satisfies m, ,(k1hks) = my ,(h) for all ki, ko € K,, and h € H. Let
[s,t,0] € H, and choose [¢',t',0] € K, with ', nonzero. Since

my([s,t,0]) = mx,([0,t,0] - [s,¢,0] - [$,0,0]) = mp,([s + 5, ¢+ t,0]),



12
it follows that

mo([s,t,0]) = mau([s,2,0] - [s",, 0]) = x(t's) - mr.([s, ¢, 0])
and that

ma.([s,t,0]) = my([s',t,0] - [s,t,0]) = x(¢s') - ma([s,t,0]).

Since x is a nontrivial character, we must have that m , is zero if either of s or ¢ is too far from
the origin. Consequently, m , is compactly supported modulo Z. [ |

Remark 3.2.3. Note that the bound for the support of m, , obtained in the proof is independent
of v and A, in the sense that it depends only on the central character y and the integer m. Thus
for any m € Z, the functions in the set

{myo|v € VEm and X € VEn}

are uniformly supported (that is, they all have support within some fixed subset of G which is
compact modulo the center).

3.3. Some more definitions and results in a general context. In order to continue investigating
the irreducible representations of /1 with nontrivial central character, we first must introduce
some general notation and results. As before, G' will denote any t.d.-group in this subsection.

3.3.1. Unitary representations.

Definition 3.3.1. A smooth representation (7, V') of G is unitary provided that there exists a
positive-definite G-invariant Hermitian form (, ) on V. That is:
(1) the form (, ) is linear in the first variable and conjugate-linear in the second variable, and
(v,w) = (w,v) forall v,w € V;
(2) forall v € V we have (v,v) > 0, and (v, v) = 0 if and only if v = 0; and
(3) forall v,w € V and for all g € G, we have (7(g)v, 7(g)w) = (v, w).

Lemma 3.3.2. Let (m,V') be an admissible unitary representation of G with Hermitian form
(, ). If Vi is any G-submodule of V', then

Vit ={veV|(v,v)=0foralv, € V;}
is also a G-submodule, and V =V, @ V.
Proof. The only nonobvious part of the lemma is the claim thatif v € V, thenv € V; @ V-. Let
v € V. Choose a compact open subgroup K of G such that v € V. Note that V;X = VE NV,
and that (, ) descends to a positive-definite K-invariant Hermitian form (, )x on VX. Let

Vy C VK denote the perpendicular to V/* with respect to (, )x. Since V¥ is finite-dimensional,
we have VE = VX @ V;, and one checks that Vi* N VE = 15, |

Corollary 3.3.3. Let (m,V') be an admissible unitary representation of G. Then Endg(V) = C
if and only if (7, V') is irreducible.

Corollary 3.3.4. Any admissible unitary representation is semisimple.
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3.3.2. Quotients, induction, and coinvariants. We begin with a consequence of Zorn’s lemma.

Lemma 3.3.5. Let (7w, V) be a smooth representation of G. If V is nonzero, then V has an
irreducible subquotient. That is, there exist smooth subrepresentations (71, V1) and (ma, Va) of
G such that Vo C Vi C V and V1 / Vs is an irreducible G-representation.

Proof. We can replace V' with any nonzero finitely generated subrepresentation: for example,
pick some nonzero v € V' and consider the subrepresentation generated by v. Now consider the
partially ordered set S of proper G-representations of V. This is a nonempty set, since {0} € S.
Suppose that C is a chain of proper G-representations. If vy, ..., v, is a set of generators of V" as
a G-representation, then no W € C contains v; for all 1 < j < n, whence UyyccW € S. Thus
S # @ is closed with respect to chain unions, so by Zorn’s lemma, it has a maximal element. W

Exercise 3.3.6. Let (7, V') be a nonzero finite-dimensional complex representation of an arbi-
trary group GG. Show that (7, V') has an irreducible subrepresentation.

Next we describe a canonical way of inducing a smooth representation of a closed subgroup
F of G to a smooth representation of GG. Fix such an F'.

Definition 3.3.7. Let (o, W) be a smooth representation of F'. We define the induced represen-
tation (R, Ind%(W)) as follows. We let Ind% (W) denote the space of functions h: G — W
such that

(1) forall f € F and for all g € G, we have h(fg) = o(f)h(g); and
(2) there exists a compact open subgroup K in GG (depending only on h) such that for all
g € Gandall z € K, we have h(gz) = h(g).

The action of G is given by the right regular action: (R(g)h)(x) = h(zg) for all z,g € G.
Property (2) guarantees that this action is smooth.

There are other types of induction one might wish to consider, but we shall take up that dis-
cussion at a later time.

We need a definition before the statement of the next result: given a representation (7, V') of
G, we write resp V' = (7|, V') for the restriction to F', which has the same underlying vector
space V' thought of as a representation of ' C G.

Lemma 3.3.8 (Frobenius Reciprocity). Let (o, W) be a smooth representation of F and let
(7, V') be a smooth representation of G. We have

Homg(V, Ind% W) = Homp(resp V, W).
In other words, induction is the right adjoint of the restriction functor.

Proof. Given a € Homg(V,Ind% W), define 3, € Homp(resp V, W) by f.(v) = a(v)(e),
where e denotes the identity element of F. Conversely, given § € Homp(resp V, W), define
ap € Homg(V,Ind% W) via ag(v) = (g = B(m(g)v)). One easily checks that these define
inverse maps between Homg(V, Ind$ W) and Homp (resp V, W). [ |
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Let (m, V') be a representation of G and S C V any subset. The subrepresentation generated
by S, denoted by (), is defined to be the intersection of all subrepresentations of (7, V') which
contain S. Concretely, (S) is the C-span of G - S = {7(g)v | g € G,v € S}.

Let ¢ be a smooth character of F' and (7, V') a smooth representation of G. We would like to
construct the largest quotient of (7, V') on which F acts by . First define an F’-subrepresentation
of V' by

V(. ¢) = (w(f)v —¢(f)v|veVand f € F),
and then set
View) = V/V(E ).
Clearly F' acts by v on V(gy, so we call Vg, the space of ¢-coinvariants. Note that if I’ is
normal, then V' (F, ) is a G-subrepresentation of V.

Exercise 3.3.9. Prove that V' (F,v¢) = Nker f where the intersection ranges over all f €
Homp(V, v). Deduce that the natural map

Homp(Vipy), ) — Hompg(V, )
is an isomorphism.

Exercise 3.3.10. Suppose that we can write F' = |J K, where K; C Ky C K3 C --- are
compact open subgroups. In this case, show that we can characterize V' (F,v) as the set of
v € V for which

/le(x) ~m(z)vdr =0

for some compact open subgroup K C F'. Show that in this case, the above integral is zero for
every compact open subgroup K’ containing K as well. Also, deduce that if V(z,) = 0, then
W(r) = 0 for every F'-subrepresentation W C V.

3.4. The irreducible representations of the Heisenberg group with nontrivial central char-
acter. We now prove the p-adic version of the Stone—von Neumann theorem. Our approach will
be very concrete: for a more conceptual approach which applies to all p-adic unipotent groups,
see Rodier’s paper (insert citation).

We define two closed subgroups

S={[5,0,0]|sek} =k and S={[0,50]]|5ck}=2k
of H; in addition, let Z = {[0,0, 2] | z € k} = k be the center of H (which is closed). We will

use the following properties of these subgroups:

(1) The multiplication map S X SxZ-—Hisa homeomorphism.
(2) The subgroup SZ = {[s,0,z] | s,z € k} = k & k is normal in H.

Fix a nontrivial smooth character y of Z, and let Y be any smooth character of SZ which
restricts to . For s € S, define another smooth character Y5 of SZ by

() %3\([3? 0, z]) = 5(/(/8\[57 0, Z]?l) = X([O’ 0, _S/S\])S(/([& 0, Z])
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Exercise 3.4.1. Show that x — Yz defines a simply transitive action of S on the set of characters
of SZ which agree with y on Z (use Exercise 3.0.10).

Fix a smooth character X of SZ which restricts to y on Z (for example, set Y (sz) = x(z2)).
Lemma 3.4.2. The representation Ind%,,(X) is admissible.

Proof. Fixm € N, and let f € Ind%, ()%™ and [s,?, 2] € K,,. Then for 5 € k, we have
[0,3,0][s,7, 2] = [s,0, 2][0,0, —s(5 + 1)][0, 5+ £, 0]

which implies that

3) £([0,5,00) = X([s, 0, 2]) - x([0,0, =s(3 + )]) - F([0,5 +7,0])

for all [0,5,0] € S. By setting t=0in Equation (3) and choosing s to be nonzero, we see that
this implies that f([0, 5, 0]) = 0 for all 5 outside of some compact set in %, and this compact set
is completely determined by m. By setting s = z = 0, we see (again from Equation (3)) that the
restriction of f to Sis locally constant with respect to K,,, N S. Consequently, the dimension of
Ind%, (Y)% is finite, so Ind,,(Y) is admissible. [ |

The proof of the above lemma also shows the following.

Remark 3.4.3. (1) Since any f € Ind4,(Y) is determined by its values on S =57 \H, we
have that the space COO(S ) of locally constant compactly supported functions on S is
isomorphic as a complex vector space to Ind%,, () under the map

(4) f'_> ([S,/S\,Z] l—)%([S,O,Z—Sjﬂ)-f([o,/S\,O])).
If we let [s, 5, 2] € H acton f € C*(5) by the formula
([S7§7 Z] ) f)(%\) = %([57072 - S(/S\—i_%\)]) ’ f(g—f‘%\),

then formula 4 is an H -intertwiner, i.e. defines an isomorphism of /-representations.

(2) This will imply that Indg Z( X) is not a semisimple S-module. Indeed, suppose that Cf is
stable under S for some f € Indh,(Y). For any [0,5,0] € S and [s,0,0] € S, we have
that

(R([s,0,0)£)([0,5,0]) = f([0,5,0][s,0,0][0,5,0]*[0,5,0]) = x([0,0, —s5]) £ ([0, 5, 0]).

Since S acts by scalars, we have R([s,0,0]) f = c¢- f for some ¢ € C*. If f([0,5,0]) # 0,
then, the above equation shows that x([0,0,—ss]) = c for all s € k, so since x is
nontrivial, s = 0. Thus f|s can only be nonzero at [0, 0, 0], so since f|g is locally
constant, we must have f| g=0,s0 f=0.

Lemma 3.4.4. The representation Ind%,,(X) is unitary.

_ / 13- TG &

Proof. For f, f' € Ind},(X), set
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where 7(”5\) denotes the complex conjugate of f/(5) and d5s is a Haar measure on S = k. Since
f and f’ are locally constant compactly supported functions on S (Remark 3.4.3(1)), the above
integral makes sense. This pairing is clearly a positive-definite Hermitian form; we need to check
that it is H-invariant. For g = [s,7, 2] € H, we have

!/

(R(9)f. R(@)f") = / £(00.3,0][5. % 2]) - F(10, 5, 0)fs. T, 2]) &
= /§|)Z([s,0,z — st — s5])
— (/. F)

The last in this string of equalities follows from the facts that  is a unitary character, and that a

‘ 2

F[0,3+%0) - F([0,5+1,0]) d5

Haar measure is translation-invariant. [ |

Theorem 3.4.5 (Stone-von Neumann). The representation Ind%,(X) is, up to isomorphism, the
unique irreducible smooth representation of H with central character .

We follow the proof in [14].

Remark 3.4.6. Before we begin the proof, we note that the theorem implies that Ind§,(Y) de-
pends only on x and not on the choice of .

Proof. Let (m, V') be an irreducible representation of H with central character y, so V restricts
to a smooth representation of SZ. Therefore, by Lemma 3.3.5 and Exercise 3.4.1, there is
an irreducible subquotient of V' on which SZ acts by the character Y5 for some s € S. By
the last statement in Exercise 3.3.10, the largest quotient Visz 5.y = V/V(SZ,x5s) of V on
which SZ acts by Yz is nonzero. Since SZ is stable under conjugation in H, we have that
7(8)-V(SZ, xz) = V(SZ,X), so by Exercise 3.3.9 Homg(V, X) is nonzero. Thus, by Frobenius
reciprocity, V embeds into Ind%,, (¥).

To complete the proof, it will suffice to show that Ind%,(Y) is irreducible. By Frobenius
reciprocity, we have Endy(Ind%, (X)) = Homgz(ressz Indy, X, X). Note that for any ¢ €
Homgy(resgz Indh, X, X), f € Indi, X, and ¢ € H, we have o(R(g9)f) = X(9)e(f) =
©(X(9)f), so ¢ reduces to a homomorphism (Ind{,(X))szz — X Therefore, by Corol-
lary 3.3.3, 3.4.2, and Lemma 3.4.4, it suffices to show that (Ind§, (X)) (szz) is one-dimensional.

Let F : C(S) — Ind%,(Y) be the isomorphism given in Remark 3.4.3(1), and let Cy C
C§°(§ ) be the subspace of functions which are zero at [0, 0, 0]. Since C, has codimension one, it
is enough to show that F(Cy) C (Ind%,(X))(SZ,X). We use Exercise 3.3.10 again. Let f € Cj
and [0, 5,0] € S,andlet U C SZ be any compact open subgroup. For v € SZ and x € S, we

have F(f)(zu) = F(f)(zur='z) = X(zuz™)f(z), so
[ X FO(0.5.0)wpdu= [ %) Ta(w) - F(10.5.0) du
U U
When 5 = 0, f([0,5,0]) = 0 by the definition of Cy. When § # 0, the character Y ' - X5 is
nontrivial since S acts simply transitively on the characters of SZ which restrict to . In either
case, the integral is zero for large enough U (when s # 0 apply Exercise 2.4.1). We can choose

a single U that will work for each [0, 5, 0] since f is compactly supported. [
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3.5. A more general setting. The proof of the Stone—von Neumann theorem presented above
holds in the following more general context.

Suppose that H is a t.d.-group which is a central extension of an abelian group P by the center
Z of H (we assume Z—{1}). That is, we have an exact sequence (of topological groups)

17 —-H—P—1

and the commutator subgroup (H, H) of H is a subgroup of Z.
Given a nontrivial smooth character y of Z, we define a form (, ) on P = H/Z by

(p1,p2) = x(h1hahi'hy"),
where py, py € P, and h; is any lift of p; (note langle , ) is well-defined). We have that (-, -) is

(1) alternating: i.e., (py,p2) = (pa,p1) ! for all py, p, € P, and
(2) bimultiplicative: i.e., (pp1,pa) = (p,p2)(p1,p2) and (p1,pps) = (p1,p)(p1,p2) for all
p,p1, P2 € P (see Exercise 3.5.1 below).
By the Pontrjagin duality there exists a nontrivial smooth character x of Z, and we will assume
that the associated form (-, -) is nondegenerate: i.e., if (p,p’) = 1 for all p’ € P, then p = 1.

Exercise 3.5.1. Show that (-, -) is bimultiplicative.

If H is a t.d.-group, we say that H = S SZisa complete polarization of H with respect to
(-, ) if:

(1 S, §, and Z are closed abelian subgroups of H;

(2) the multiplication map S x SxZ-—Hisa homeomorphism; and

(3) the image of S (resp. S ) in P is a maximal isotropic subgroup with respect to (, ) —
that is, the image of S (resp. §) in P is a maximal subgroup having the property that
(S, S) =1 (resp. (S, S) = 1); and

(4) for any compact open subgroup K of P, the group

K+-={peP|(pp)=1forallp € K}

is also compact and open.

If a complete polarization exists, one can show the following.

Remark 3.5.2. (1) Let K C S and K C Sbe any compact open subgroups. Writing P =
H/Z = S® S, wehave that KNS = (K& K)*NS (resp. KXNS=(K®K)tNS)
is a compact open subgroup of S (resp. .5). In other words, the subgroups

(55| (G s)=1forallse K} and {s€ S| (s,3) =1forallse K}

are compact and open.

(2) Since the image of S in P is a maximal isotropic subspace, a calculation shows that SZ
is a normal closed subgroup of H.

(3) There is a natural injective homomorphism of S into the Pontrjagin dual of S via the map
S (S, ).
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(4) This homomorphism gives an action of the group S on the (nonempty) set of smooth
characters of SZ which restrict to x on Z. To wit,

Xz(s) := )Z(fs\s?l) = (5,s) - X(9)
where X is such a character of SZ, s € §, and s € SZ.

Exercise 3.5.3. Let H, S, §, and  be as in Subsection 3.4. Show that
(1) H is a central extension of H/Z = k® kby Z = k,
(2) (-,-) is nondegenerate, and
B3 H=S SZisa complete polarization of H.

Remark 3.5.4. Let H be as in Subsection 3.4. If the characteristic of k& is not two, set S’ =
{[s,s,5%/2]|s € k} and S" = {[5,—5,—5/2]|5 € k}. Then H = S’S’Z is another complete
polarization of H.

The proof of the following theorem is similar to the proof of Theorem 3.4.5 (see Exer-
cise 3.5.6).

Theorem 3.5.5. Suppose that H is a t.d.-group which is an increasing union of compact open
subsets (so x is unitary), and that it has a complete polarization H = SSZ. Suppose also
that the abelian group S acts simply transitively on the set of continuous characters of SZ that
restrict to x on Z. Then the representation Indgz()}') is the unique irreducible representation
(up to equivalence) with central character x. (Here X is any continuous character of SZ whose
restriction to Z is X.)

Exercise 3.5.6. Modify the proof of Lemma 3.4.2 to work under the hypotheses of Theorem 3.5.5
(hint: use Remark 3.5.2(1)). Conclude that Remark 3.4.3(1) holds as well.

3.5.1. A case of interest. We consider what happens when P is finite (with the discrete topol-
0gy).

Exercise 3.5.7. Prove that in this case, any irreducible representation of H on which the center
acts by a character is finite-dimensional. (Hint: use Frobenius reciprocity.)

Remark 3.5.8. Since H is homeomorphic to a finite disjoint union of copies of Z, all topological
considerations reduce to the topology of Z and the smoothness of the central character of an
irreducible representation.

It would be nice if the hypotheses of Theorem 3.5.5 were valid in this context. However,
this need not be the case — we may not be able to find subgroups S and S with the required
properties. We therefore follow the treatment of Jeff Adler given in Séminair Paul Sally, 1994.

Let S’ be a maximal isotropic subgroup of P (it is easy to see that such a subgroup exists).
Define a map ¢ from P to the character group Pof P by sending p to the character x,, : P — C*
given by p' — (p,p). Since (, ) is assumed to be nondegenerate, ¢ is an isomorphism. Since
S’ is a maximal isotropic subgroup of P, for p € P we have that

resss @(p) = lifand only if p € S'.
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Therefore, ¢ descends to an isomorphism from P/S’ to the character group of S’ (so |P| =
1S1%).

Let SZ denote the preimage of S” in H. (This is a notational convenience; there may be no
subgroup S.) Note that SZ is normal. We now define a character of SZ whose restriction to Z
is . By the fundamental theorem for finitely generated abelian groups, we can write S’ as the
direct sum of n cyclic subgroups (s;) for 1 < i < n. For each 1 < i < n, let d; denote the order
of s; and let s; € SZ be any element that maps to s, so Sfi € Z. Let «; denote a d;th root of

X(sfi). Noting that any element of SZ can be written as s}'s5” - - - s7» z for integers r; and z € Z,
we define y by
X(s11sy? -8y 2) = aray’ - agx(2).

Exercise 3.5.9. Check that y is a well-defined character of SZ that restricts to x on Z.

Remark 3.5.10. Alternatively, one can prove the existence of an extension x of x to SZ using
the following basic lemma from the field of homological algebra [?]:

Lemma 3.5.11. A module M over a principal ideal domain A is injective (that is, if N' C N
are two A-modules then any homomorphism N' — M extends to N ) if and only if it is divisible
(that is, the map x — ax : M — M is surjective for every nonzero a € A).

Since any x € C* has an nth root for any n € Z \ {0}, C* is injective in the category
of abelian groups. Since the character  is trivial on the commutator subgroup (SZ,SZ) of
SZ, it reduces to a homomorphism Z/(SZ,SZ) — C* and thus extends to a homomorphism
SZ/(SZ,SZ) — C*, which gives an extension x : SZ — C* of x.

In this context, we define the induced representation Ind%, Y to be the set of all functions
f : H — C such that f(sh) = X(s)f(h) forall s € SZ and h € H. As before, we give
this space the right regular action; since /1 is homeomorphic to a finite disjoint union of copies
of Z, this defines a continuous representation. One shows that Frobenius reciprocity holds for
Ind%, X, with the same proof.

With these definitions, a version of the Stone—von Neumann theorem holds. Note that we do
not assume that y is unitary.

Theorem 3.5.12. The representation Inng X is the unique (up to equivalence) irreducible rep-
resentation of H with central character .

Proof. For ease of notation, set 7y = Ind%, X.
First we claim that any irreducible representation of SZ with central character x is one-
dimensional. Let (7, V') be such a representation. Since S’ is isotropic,

m(sts 1Y) = x(sts ') = (s,t) =1

for any s,t € SZ. Thus m € Autg(V), so the claim follows by Schur’s lemma, which holds in

this context since (7, V') is finite-dimensional in any case by Exercise ?? (cf. Exercise 2.1.8).
Now let (7, V') be any irreducible representation of H with central character y. Since V'

is finite-dimensional, resgz V' has an irreducible quotient, so there is some character \’ of SZ
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which restricts to x on Z such that the space V' (SZ,Y’) of coinvariants is not all of V. Since
any character of S' = SZ/Z is of the form (p, -) for some p € P/S" = H/SZ, there exists an
h € H such that X'(s) = (h, s)X(s) for all s € SZ. Therefore, as in the proof of Theorem 3.4.5,
we have that 7(h)V (SZ, X') = V(SZ, X), so by Frobenius reciprocity, 1 embeds into 5.

It remains to show that 7y is irreducible. Since any f € 7y is determined by its values on a
set {h1, ..., h,} of coset representatives of SZ\ H, a calculation shows that

f— Zf(hl) . Tesgy Ty — @S{hz
i=1

i=1
is an isomorphism of SZ-modules, where X, (s) = (hi, s)X(s). Roughly, 75 will be irreducible
because H acts transitively on the ,,. More precisely, if we define f;, € 7y for h € H by

Z(mh‘l) ifx e SZh
fu(z) = .
0 otherwise,

then the above isomorphism shows that the elements f, , ..., f, are a basis for 7. We have
hj_1 “ fn; = fnin;» 0 if hy, represents the coset SZh;h;, then

Jie = xX(hihiihi ') fron, = X(hihjhlzl)(h/j_l < fn)-
Thus each f,, generates 5.

Let g € my. We would like to show that g generates 7y, so it is enough to show that fj, is
contained in the subrepresentation I of 7y generated by g. Assume that o; = 1, and assume
without loss of generality that g(1) # 0. Set gy = g, and find so € SZ such that (hs, s9) # 1.
Let go = ((ha, s2)X(s) — s)g1 € W, s0

g2(hi) = (((ha, 52)X(8) — 8)g1)(ha) = X(s)({h2, 52) — (hi 52)) 91 (hi);
in particular, g2(1) # 0 and ga(h2) = 0. Continuing in this fashion, we can inductively find a
gn € W that is a nonzero multiple of fj,. This completes the proof. |

Exercise 3.5.13. Prove that if y is unitary, so are ¥ and Ind%, X.

3.6. Another look at representations of the Heisenberg group. Let y be a nontrivial smooth
character of the center Z of [{. Here we present a different way to construct the unique irre-
ducible representation of /4 having central character . The method presented in Subsection 3.4
is akin to parabolic induction for reductive groups (see § 6.2). The approach we outline here
is closer to the way in which supercuspidal representations of p-adic reductive groups are con-
structed (see Exercise 7.3.7 (2)).

Recall that for » € R, we have defined the compact open subgroup

K, = {[s,t,z] | v(s),v(t) > g and v(z) > r} = {[s,t,2]|s,t € 921 and z € "1},
so Ky C K, when s > r, and K, = Ky, /2. We set

K+ = U K, = {[s,t,z] | v(s),v(t) > g and v(z) > 7“}.

s>r

Note that K+ = K, if and only if /2 ¢ Z, and that K,+ C K, in any case.
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Let p(x) be the unique integer for which

reSzAK, o+ X = 1 and IESZAK ) X # 1.

We extend x to a character of K )+ Z by setting
x(kz) = x(2)
for k € K,,)+ and z € Z. Note that for [a,b, c|, [s,t, 2] € H, we have
[s,t, 2][a, b, c|[s, t,2] " = [a,b,c+ (bs — ta))].

Thus we see that K(,)+Z is anormal subgroup of H, and that the stabilizer in H of the character
X of KP(X)+Z is

{[s,t, z] | v(bs — ta) > p(x) for all a,b € k such that v(a),v(b) > @} = K,Z.

Our goal is eventually to construct an irreducible representation of /7, for which we first must
extend X to an irreducible representation X of K,,)Z. When p(x) is odd, K,\nZ = K+ Z,
so we set ¥ := x. However, when p(x) is even, these subgroups are not the same. Fortu-
nately, in this case, K ,(,)Z/K )+ is a central extension of the abelian group f @ f by its center
K+ Z/ K+ Hence, by Theorem 3.5.12, there is a unique unitary irreducible representation
X of K,(,)Z with central character x.

Lemma 3.6.1. The representation m, = Indgp(x) 4 X is admissible.

Proof. Tt will be enough to show that if m > p(x) then
dime (7, )™ < 0.

Let f € (m)5™, h =la,b,c|] € H,and z = [s,t, 2] € K,,. We have f(hz') = f(h), and since
r € K+ C Kyn)+Z we have X(z) = x(x) = 1 nomatter what p(x) is. Therefore,

F(h) = X(@)f(ha ™) = flaha™)
= f([0,0,bs — ta]h)
= x([0,0,bs — ta]) f(h).

Choosing s and ¢ wisely, we see that when a, b € k are outside of some compact set depending
only on m, we must have f([a,b,c]) = 0. Therefore, all functions in (, )%™ are supported in
some set C' (depending only on m) which is compact modulo the center Z. Any f € (m, )%
is determined by its values on a (finite) set of representatives of the cosets K,,) Z\CK ) Z, s0

we have
dimC(Wx)Km < }KP(X)Z\CKP(X)Z‘ < 00.

Lemma 3.6.2. The representation T, is unitary.
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Proof. Let (-, -)y denote a positive-definite /,(,)Z-invariant Hermitian form for the unitary rep-
resentation X (cf. Exercise 3.5.13). For f, g € m,, then, we have that the map h — (f(h), g(h)) :
H — C descends to a map on the quotient group K ,(,yZ\ H. This and the fact that any f €
is compactly supported modulo Z (which we showed in the proof of Lemma 3.6.1) allows us to
define a positive-definite /-invariant Hermitian form on 7, by

(f.9) = / LT g an
Ko Z\H

for f,g € m,, where dh* denotes a right Haar measure on K,y Z\ H. u
Lemma 3.6.3. The representation , is irreducible.

Proof. Since 7, is unitary and admissible, by Corollary 3.3.3 it is enough to show that End (7, ) =

Hompg  7(m,, X) is one-dimensional.

p()Z

For h € H, let V}, denote the subspace of 7, consisting of the functions which are supported
on the coset K,y Zh. So, as complex vector spaces, we have m, = & Vi, where the sum runs
over some set of coset representatives of K,,yZ\H. Let h = [a,b,c] € H and f € V},. For

r=[s,t,2] € K,,)+ and y € K,,yZ, we have

If h ¢ K,,)Z then we may assume that v(a) < p(x)/2, so we can find a t € k with v(t) >
p(x)/2 such that x([0,0, —ta]) # 1 (since x is nontrivial on K,y N Z); choosing = = [0, ¢, 0],
the above equation tells us that ¢( f) = 0. Thus ¢ reduces to a homomorphism Vjo 9 — X. But
Vio,0,0] is isomorphic to  as a representation of K ,(,)z, so Hom Ko z(my, X) is one-dimensional
as claimed. |

3.6.1. A glance at the Weil representation. Although we will not attempt a full development of
this topic, we note that the Weil (or Shale-Weil, or oscillator) representations play a crucial role
in representation theory. For example, they can be used to realize the supercuspidal representa-
tions of SLy(k) (see, for example, [12]), they are used to construct more general supercuspidal
representations (see, for example, [15]), and they are used to define the #-correspondence (see,
for example, [?]).

For the remainder of this section, we assume k does not have characteristic 2. Here it is
convenient to use a different realization of the Heisenberg group: let W = k? with the symplectic
formw : W — k given by w((s, t), (s',t")) = st’ — s't, and put Z = k, thought of as the additive
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group. As a set H = W X k, with the group operation given by
(v,a) - (w,b) = (v+w,a+b+ %w(v,w)).
More explicitly, we can write H = k% and then the multiplication is
(s,t,2) - (s, ¢, 2"y =(s+ &, t+t, 242"+ %(st’ — §'t)).

This is isomorphic to our previous construction of H as a matrix group via

S z l8
(s,t,2) — {(él +f t)}
00 1

Suppose that H; is a locally compact Hausdorff topological group that has a continuous action
1 on the Heisenberg group H via automorphisms that fix Z (pointwise). Fix a nontrivial central
character y of Z, and let (7, V') be the unique (up to equivalence) irreducible smooth represen-
tation of H with central character . For g € H;, we define another representation (7,4, V') of H
by
7o(h)o = (ug)h)v
forv € V and h € H. Since 7, and 7 have the same central character, the Stone—von Neumann

theorem tells us that 7, and 7 are equivalent. Thus, there exists p(g) € Autc(V') such that for
all h € H we have

p(g)m(h) = mg(h)p(g)-
Choose one such p(g) for each g € G — note that by Schur’s lemma, p(g) is unique up to scalar

multiplication. Let gy, go € H;. Since p(g192) and p(g1)p(g2) both define equivalences between
(m, V) and (m,,4,, V), we have that

p(g1)p(g2) = B(g1, g2) - p(9192)

for an element (g1, g2) € C*. We even have 3(g;, g2) € S* because (7, V) is unitary. One can
verify that 3: H; x H, — S* satisfies

(1) B(g1,92) - B(91 - 92, 93) = B(92, 93) - B(g1, 92 - g3) for all g1, g2, g3 € Hy and
(2) B(1,9) = B(g,1) = 1forall g € H.

That is, 3 defines a two-cochain on H;. The homomorphism p: H; — PGL(V) is called a
projective representation of Hy which extends x (or, sometimes, a projective [3-representation).
It sometimes happens that the cohomology class of 3 in H?(H,, S') is trivial. In this case, one
can extend Y to a representation of /.

When 3 represents a nontrivial class in H*(H;, S'), one can extend  to a representation by
enlarging the group ;. We offer an example.

Example 3.6.4. Let H; = Sp,(k) = SLy(k) denote the isometry group for the symplectic form
won W = k?. The group SLy(k) acts on H via

g- (’LU,Z) = (g(UJ),Z),
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and it is clear that these are group automorphisms of H which fix Z pointwise. As above, we
get a projective representation p of Sp,(k) on the space V' which extends y. The two-cycle, £,
associated to this projective representation defines a central extension Sp,(/3) of Spy(k) by S*:

1 — S* — Spy(B) — Spy(k) — 1

where the group law on %2(6 ) is given by

(9,2)- (g, 2") = (99, B(g,9")2%")

for g, g’ € Spy(k) and z, 2’ € S'. We have a representation p of %2(6) defined by p(g, 2) =
zp(g). This is the “universal” solution to the problem of linearizing p, but there is a more
efficient one: write Mp,(5) = [%2(5), %2(5)] for the commutator subgroup of %2(5), called
the metaplectic group associated with 3. Then the short exact sequence above reduces to

1 — {1} — Mpy(8) — Spy(k) — 1,

and p lifts to a (linear) representation of Mp, (/).

4. REDUCTIVE p-ADIC GROUPS: BASIC FACTS

In this section, we review some fundamental facts about reductive p-adic groups. We state
many general theorems but provide proofs only for the general linear group. For a more general
treatment, see, for example, [?] and [?, ?]. Readers who are not comfortable with the theory of
algebraic groups are advised to think of the general linear group everywhere below unless we
say otherwise (e.g. we sometimes use Sp, as an example).

Let GG be the group of k-rational points of a connected reductive group G defined over k. Let
T denote the group of k-rational points of a maximal k-split torus in G. Let Fj denote a minimal
parabolic subgroup of GG which contains 7". (That is, Py is the group of k-rational points of a
parabolic subgroup Py of G, and Py is a minimal element in the set of parabolic subgroups of
G which are defined over k). We let K, denote a special (with respect to 1") parahoric subgroup
of G. From [?, Theorem 20.9], the set of maximal k-split tori in G form a single conjugacy
class under the action of GG and similarly for the set of minimal parabolic subgroups. However,
in general it is not true that the special parahoric subgroups are all conjugate. (This fails already
for SLs.)

Example 4.0.5. Fix n € Z>,, and let G = GL,, so G = GL, (k). We shall always realize
GL, (k) as the set of invertible elements in M, (k), the vector space of n X n matrices with
entries in k. We shall take 7" to be the subgroup of GL,, (k) consisting of diagonal matrices. For
Py we take the Borel subgroup consisting of upper triangular matrices in GL,,(k). For K, we
can take GL,,(R); this is a maximal compact open subgroup of GL,, (k).

Theorem 4.0.6 (Iwasawa decomposition). We have G = Py K.

Remark 4.0.7. By taking inverses, we see that we also have G = K F.
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Proof. As mentioned at the start of this section, we will assume that G = GL,(k), and that
Py, Ky, and T are all as in Example 4.0.5.

Note that the permutation matrices belong to K. Also, for 1 < i # j < nandr € R, the
matrix ¢;;(r) € GL, (k) defined by

1 ifk =1,
Gii(Mw =< r if k=7and [ = 7, and
0 otherwise.

for 1 < k,l < n belongs to K. Multiplication on the right by the permutation matrices and by
the matrices g;;(r) allows us to permute columns of matrices in GG and add r-multiples of one
column to another. We proceed as follows:

Fix a € G. Permute the columns of a so that the entry a,, has v(a,,) < v(a,;) for all
1 < j < n; in particular, a,,, # 0. For 1 < j < n, we have a,;/a,, € R; consequently, we can
add R-multiples of the last column to the other columns to clear the last row of all entries except
the a,,, entry.

By applying the same reasoning to the first (n — 1) rows and (n — 1) columns of a, we can
find an element g of K such that the n — 1st row of ag is zero in all entries except (n — 1,n — 1)
and (n — 1,n). Continuing in this fashion, we arrive at the result. |

Remark 4.0.8. Since K is compact, G/ Py is compact. Let My := Cg(T), the centralizer of T’
in G. Let P, denote the minimal parabolic opposite Py with respect to M. That is, Py is the
unique minimal parabolic for which Py N Py = M. We let Ny (resp. Ng) denote the unipotent
radical of Py (resp. Py). We have the Levi decomposition Py = MyNjy, and similarly for Pj.

Example 4.0.9. For GL,(k), we have My = T, and Py is the set of lower triangular matrices
in GL,, (k). The group Nj is the group of upper triangular matrices in GL,, (k) with ones on the
diagonal, and N is the group of lower triangular matrices in GL,,(k) with ones on the diagonal.
For example, in GL3(k), we have

* ok ok *00 1 % x
Pyp=10x+)=(0x0 01 *
00 % 00 % 001
— x* 00 * 00 100
PQ):(**O>:(0*O) (*10).
* ok ok 00 % * x 1

Definition 4.0.10. A compact open subgroup K of G is said to have an Iwahori decomposition
with respect to Py = My Ny provided that

K=K K K~

where the product can be taken in any order, and K™ = K NNy, K~ = KN N@, and K° =
MynN K.

We have a filtration of GG by compact open subgroups

GDODKyDK DKy DK3D---D{l}
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where K; is normal in K; for 0 < j < 4, and K, has an Iwahori decomposition with respect
to Py = MyNy for each m > 1. Moreover, the elements of this filtration form a neighborhood
basis of the identity, and G/ K,, is countable for each m, so G is a t.d.-group.

Example 4.0.11. For m € Z>,, define K,,, = 1 + @™ - M,,(R). The group K, is certainly com-
pact and open in G = GL,,(k), and K,/ K is canonically isomorphic to the finite group GL,,(f).
Left multiplication by K corresponds to adding a £™ multiple of a row to any row strictly above
it, we can left multiply any element of K, by elements of K into a lower triangular matrix in
K.

Since right multiplication by K corresponds to adding a o™ - R multiple of a column to any
column strictly to the left of it, we can right multiply any lower triangular matrix in K, into a
diagonal element of K.

Consequently, each K, has an Iwahori decomposition.

Remark 4.0.12. In general, Ky does not have an Iwahori decomposition, but we can always write
Ko = (Ng N Ko) - (Ng N Kp) - (Ng N Ko) - (My N Kp).

Let ® = ®(G, T') denote the set of roots of G with respect to 7" and G. We let &1 denote the
set of positive roots with respect to Py, and we let A C ®* denote the set of simple roots with
respect to FPy. We let 7" denote the set of ¢t € T for which |«(t)| < 1 forall « € A. We can and
do choose a set of representatives for 7”/(7' N K,) which is closed with respect to products. We
call this set of representatives 7. Note that there is a natural monoid isomorphism between 7'*
and Z%, X Z™ where n is the semisimple rank of G and m is the k-rank of the center of G.

Example 4.0.13. The elements of ¢ are the nontrivial eigencharacters of 7" for its adjoint action
on M, (k) (thatis, t - X = Ad(t)X = tXt!. Thus, for each pair (7, j) with 1 < i # j < n, we
have a root a;; € ® defined by «; ;(diag(t,ts,...,t,)) = t;/t;. The root a;; is positive with
respect to F provided that ¢ < 7, and it is simple with respect to F} provided that j =7+ 1. We
have that 7'N K is the group of elements in 7" for whom each entry belongs to R*. We will take
T™ to be the set

{diag(c™, ®2, ... &™) | k1 > ky > - >k, € Z}.

The set T has some very important properties. For example, we can and will assume that our
filtration of G by compact open subgroups [, has the following property. For all m > 1, not
only does K, have an Iwahori decomposition with respect to Py = MyNy, but for each t € T'*
and K = K, we have

'Kt Cc KT 'K- D> K, and'K° = K°.
and
'Kt KY UK c K, andt K° = K°,
(Here 'K, = tK*t!, etc.) In other words, the action of T preserves the My part of K,,,
shrinks the N part, and enlarges the N part. Moreover, we have

No=|J " KtandNy= | J 'K~

teT+ teT+
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That is, both Ny and Ny can be written as the union of compact open subgroups. Finally, we
have that the elements of

{'Kt|teT"}
form a neighborhood basis of the identity in /Ny and, similarly, the elements of
('Kt |teTt)
form a neighborhood basis of the identity in N.

Example 4.0.14. Consider the element ¢ = diag(w’!, @w’2, @w’?) € GLs(k) with j; > jp > js. If

00 1
then 'n is

1 wl2=91)n;y w3 —J1)n;

0 1 w(i3=92)nog .

0 0 1
In general, the element t = diag(w®, @, - @) acts on z € GL, (k) by (‘z);; = w4 .
Lij-

Exercise 4.0.15. Prove that any finite-dimensional smooth irreducible representation (7, V") of
GL, (k) has the form x o det, where y : k* — C* is a smooth character. (Hint: use the above
calculation of the action of 7" on Ny to deduce that 7 is trivial on Ny. Then prove that SL,, (k) is
generated by the conjugates of Ny, so that 7 factors through det.)

Theorem 4.0.16 (Cartan decomposition). There exists a finite subset w of My such that

G = H K()U)tKO

wew, teTt

Remark 4.0.17. The set w compensates for the fact that, in general, My # T'. It is also true that
the elements of w stabilize K, and the /K, can be chosen so that they too are stabilized by the
elements of w.

Proof. Since My = T for GL,,(k), we have w = {1}. We first show that we can write:

G = | KotKo.
teT+

Indeed, since K is now on the left and right, by multiplying by elements of K, on the left and
right, we can permute rows and columns. Therefore, we can move the matrix entry with smallest
valuation into the a,,, position. As in the proof of the Iwasawa decomposition, we can then clear
out all entries in the bottom row except for a,,,, and all entries in the final column except for a,,,.
Note that a,,,, remains the matrix entry with the smallest valuation. We continue in this way until
we produce a diagonal matrix diag(ay, ass, - . ., Gpy) With v(agy) > v(age) > -+ > v(an,). By
multiplying by an appropriate element of 7' N K, we arrive at an element of 7.

We now show that if Ky - diag(@®, @*2, ... @f) . Ky = K, - diag(@’, @’, ..., @) - K
withky > ky > --->k,and j; > jo > -+ > j,, thenk; = g, for 1 < < n.



28

If a € G, then define |a| =
have |kz| < |z| = |ki"kiz| < |ky| and similarly for right multiplication by k». Therefore,
|krgka| = |g].

Thinking of g € GL,, (k) as a map from k" to k" we can then define A‘g from A*k™ to A*k™ for
1 < ¢ < n. Here A* g is the (’g) X (’g) matrix whose entries are the determinants of ¢ x ¢ minors
of g. We have A*(kigks) = A'ky - Alg - A'ky and since Ak; € GL(T;)(R), we have that |/\£g]
depends only on the the K, double coset of g. Thus, if g € K - diag(w’“1 w2 L i) - K,
then ‘/\fg| = ‘w’“" - k1) . gghn—en1 ‘ We conclude that k, = j, for 1 < 7 < n. [ |

maxi<; j<yn |@;j|. Note that for ¢ € G and ki, k; € K we

Corollary 4.0.18. For allm > 0, G/K,, is countable.

Proof. From the Cartan decomposition, the double coset space K \ G/Kj is countable. Since
for all ¢ € G, the double coset KygK, can be written as a finite union of left K,,-cosets, the
corollary follows. u

4.1. Parabolic subgroups. A parabolic subgroup P of G is called standard (or, more precisely,
standard with respect to Py) if Py C P C (. Since every minimal parabolic is conjugate to %,
every parabolic subgroup of (G is conjugate to a standard parabolic. If H is a closed subgroup of
G such that Py < H < G, then H is a (standard) parabolic subgroup of G.

Remark 4.1.1. As we shall see, two standard parabolic subgroups of G can be conjugate.

There is a very nice description of the standard parabolic subgroups of G. We follow the
presentation of [4]. For every subset 6 of A, let T, < T' denote the connected component of

m ker(a).

a€cl

Define My = Cq(Ty) and Py = MyPy. Note that, by definition, T} is the “split part” of the
center of M.

Remark 4.1.2. The minimal parabolic Fj is what it should be, and G = M = Ph.

Example 4.1.3. For GL3(k), there are four standard parabolic subgroups. Besides GG and Py, we
have P,,, consisting of matrices in GL3(k) of the form

® ok ok
* %k ok
00 %

and P,,, consisting of matrices in GL3(k) of the form
<E§ . I) .
0 * *

Ty, = {diag(a> a, b) | a,be kx}

For completeness, we note that

and
To,, = {diag(a,b,b)|a,b e k™}
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while M,,, consists of those matrices in F,,, of the form
* % 0
< * ok 0)
00 %
and M, . consists of those matrices in P,,.. of the form

23 23

(*00)
0% % | .
0 * *

We denote by Ny the unipotent radical® of Pj. The parabolic P, has a Levi decomposition
Py = MyNy.

Example 4.1.4. Continuing the example above, we have that V,,,, consists of those matrices in

P
<10*>
01 %
001

12
of the form

1 % %
010 ).
001

Exercise 4.1.5. For GLy(k) and GL4(k) describe, ®, & A, T and all possible Py, My, Ny,
and Tp.

of the form

consists of those matrices F,,,

and N,

@23

Exercise 4.1.6. Do the same for Sp,(k). In these notes, we shall always realize Sp,(k) as the

?g) where j = (% }).

We take 7', Py, and K, in Sp,(k) to be the intersection of Sp, (k) with the analogous objects in
GL4(k).

subgroup of GL4(k) which is the isometry group for the form J = (

Definition 4.1.7. Suppose that P is a parabolic subgroup of G with Levi decomposition P =
MN. A compact open subgroup K of G is said to have an Iwahori factorization with respect to
P = M N if we can write, in any order,

K=(KNN)-(KNM)-(KNN)
where N is the unipotent radical of the parabolic opposite P = MN.

We can and will assume that each of our compact open subgroups £, with m > 1 has an
Iwahori decomposition with respect to every standard parabolic Py = MyNy. Note that the
action of T on K,, N My will no longer be trivial. To compensate for this, we fix a subset
T,F C Ty of coset representatives for Tj,/(Ty N Ko) where

Ty :={t € Tp| |a(t)| < 1foralla € A\ 6},
Moreover, we can and do assume that 7, 9+ = T N T,. Just as above, the elements of the set

{t(KmﬂN9) ’t S T0+}

>The unipotent radical is the unique minimal normal subgroup of P, for which Py /Ny is reductive. (This quotient
is isomorphic to the Levi component My, which is not unique.)
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form a neighborhood basis of the identity element in Ny and

No= |J " (K Np).

teT,

Remark 4.1.8. Py My is a minimal parabolic subgroup of My, T'is the group of k-rational points
of a maximal k-split torus in My, and Ky N My is a special (with respect to 7') compact open
subgroup of Mjy. With respect to this data, we have the Iwasawa decomposition, Iwahori decom-
position, and Cartan decomposition (of Mjy). Moreover, every standard parabolic subgroup of
My looks like Ps N M, for some standard parabolic subgroup Pjs of GG. Moreover, Ps N My has a
Levi decomposition Py N My = (My N My)(My N Ny). Note that My N Ms = Mpns.

Exercise 4.1.9. Show that K,,, N P forms a neighborhood basis of the identity in . Show that
Py/(K,, N Pp) is countable.

Remark 4.1.10. I hope that this will be enough notation to keep us going for some time.

5. SOME GENERAL BASIC FACTS
In this section we assume only that G is a t.d.-group.

5.1. A second look at admissibility. Recall that a smooth representation (7, V') is admissible
provided that for all compact open subgroups K of GG, the space of K-fixed vectors is finite-
dimensional. We will give an alternative characterization of admissibility; first we need a lemma.

Lemma 5.1.1. Let K be a compact t.d.-group.

(1) Any irreducible smooth representation of K is finite-dimensional.

(2) For every finite-dimensional smooth representation (7, V') of K, there is a normal com-
pact open subgroup N of K that acts trivially on V.

(3) Every smooth representation of K is semisimple.

(4) Every smooth representation of K is unitary.

Proof. (1) Let (7, V) be an irreducible smooth representation of /K. Choose a nonzero v €
V,and let U C K be a compact open subgroup that fixes v. Since K /U is finite, the set
Kv = {m(x)v |z € K} is finite. Since K'v generates V' as a vector space, dim¢ V' < oo.
(2) Let (m, V) be a finite-dimensional smooth representation of K, and let N = ker 7 (recall
that 7 is a homomorphism K — Autc(V)), so N is a normal subgroup of K. Let

vy, ..., 0, be a C-basis for V, so

N = ﬂstabK(vi).
i=1
Since (7, V') is smooth, stabg(v) C K is open for any v € V, so, since the above
intersection is finite, /V is open. Since K is compact, any open subgroup of K is compact.
(3) Let (m, V') be a smooth representation of K. It suffices to show that V' is a (not neces-
sarily direct) sum of irreducible representations (see, for example, [9, XVII, §2]). Let
v € V be any nonzero vector, so we must show that v belongs to a sum of irreducible
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subrepresentations of V. Let W = Kwv be the subrepresentation generated by V. As in
the proof of (1), W is finite-dimensional, so by (2), there is an open normal subgroup
N of K which acts trivially on W. Since K/N is finite, W is completely decomposable
into a direct sum of irreducible representations of K. Since v € W, this completes the
proof.

(4) Let (m, V') be a smooth representation of /K. Choose a positive-definite Hermetian form
(-,-yon V. Forv,w €V, set

(U,’LU)Z/K<7T({E)U,7T(ZE)QU> dx,

where dz is a Haar measure on K. Clearly (-,-) defines a positive-definite K -invariant
Hermetian form on V.
|

Thus any smooth representation of a compact t.d.-group K can be decomposed into a direct
sum of irreducible representations. This decomposition is not necessarily canonical — e.g., there
are many ways to decompose n copies of the trivial representation. We do have the following
result, however:

Corollary 5.1.2. Let (7, V') be a smooth representation of a compact t.d.-group K. Then (w, V)
has a canonical decomposition (as K -representations) as

V=V

where the sum runs over a set of representatives for the isomorphism classes of irreducible
smooth representations (o,W,) of K, and V(o) is the image of the canonical map W, Q¢
Homg (W,,V) — V. The subrepresentation V (o) is isomorphic to a direct sum of copies of
W,,.

Proof. Let V = @, V; be a decomposition of V' into irreducible K -modules, where / is some
index set. If V; = W, for some o, then there is an injection ¢ : W, — V whose image is V;;
thus V; C V(o),s0 V = >"_V/(o). To show that the sum is direct, let I, = {1 € I | V; = W, },
so P, . Vi C V(o). Any homomorphism ¢ : W, — V is zero when composed with each
projection map V' — V; fori ¢ I,,s0 V(o) C D,c; Vi

It is clear from the proof that V(o) is isomorphic to a direct sum of copies of W,,. |

The submodule V' (¢) has a name:

Definition 5.1.3. Let GG be any t.d.-group, let (o, W) € R(G) be irreducible, and let (7,V) €
R(G). We define the o-isotypic submodule of (7, V') to be the image of the canonical homo-
morphism W ®@¢ Homg(W, V') — V, and we denote it by V' (¢). As above, one can show that
V(o) is the unique largest submodule of W which is isomorphic to a direct sum of copies of V.
If we can write V' = V(o) & V' for a unique submodule V'’ C V, then we will also call V(o)
the o-isotypic component of V.

Corollary 5.1.2 allows us to make the following definition.
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Definition 5.1.4. Let K be a compact t.d.-group, let (o, W, ) be any irreducible smooth repre-
sentation of K, and let (7, V') be any smooth representation of K. We define the multiplicity
m(o) of o in (m, V) to be
m(o) = diI.n(c(V(G))

dimc¢ (W)
where V(o) is the o-isotypic component of V.

Exercise 5.1.5. Show that m (o) = dimc(Homg (W, V)).

Lemma 5.1.6. A smooth representation (7, V') of G is admissible if and only if for every compact
open subgroup K of G, each irreducible representation of K occurs with finite multiplicity in
(resg m, V).

Proof. “=" Choose a compact open subgroup K of GG and an irreducible representation (o, W)
of K. Let N be a normal compact open subgroup of K such that o factors through K/N. Then
V(o) C V¥ so V(o) is finite-dimensional.

“«" Let K be a compact open subgroup of GG. Since the trivial one-dimensional representation
of K is irreducible, the dimension of the space of /K -fixed vectors is finite by hypothesis. |

If (7, V') is an admissible representation, then from the previous two lemmas we can write
resyg m = @ &)
g

where o runs over a set of representatives for the isomorphism classes of irreducible representa-
tions of K, and m(o) < oo.

Lemma 5.1.7. A smooth representation (, V) is admissible if and only if (%, V) is admissible.

In this case, the natural map V- — V' is an isomorphism of G-representations.

Proof. Let K be a compact open subgroup of (G. By Exercise 3.1.2, there is a natural isomor-
phism VX = Home (VX C), so VX is finite-dimensional if and only if VX is. This proves the
first statement. _ _

For all compact open subgroups K, we have VX = Home(VE | C), so since VX and VX have
the same dimension, the natural injection ¢ : v — (A + A(v)) is an isomorphism. Since this is

true for all compact open subgroups, we conclude that ¢ is an isomorphism of V' with V. Itis
easy to check that ¢ is a G-homomorphism. |

Formally, the previous lemma says that V' —> Visa duality on the full subcategory A C R(G)
consisting of admissible representations, meaning a contravariant equivalence A — A whose
square is isomorphic to the identity functor. When G is the trivial group, this specializes to the
duality of finite-dimensional vector spaces.

Remark 5.1.8. If (m, V') is smooth but not admissible, then the natural map V' — V is an injec-
tion, but it is never an isomorphism.

We close this section with a definition which is closely related to semisimplicity.
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Definition 5.1.9. Let VV be a smooth G-representation. Define the length of V' to be the maximum
n € Zxo such that there exists a filtration

{0j=hecWnc---CV,=V

of G-representations, assuming that such an n exists. If there is no maximum n, we say that V/
has infinite length.
Alternatively, suppose that the filtration

{0}=VHCWC - CV,=V

has the property that each V;/V;_; is simple (such a filtration exists for any finite length module).
Then n is the length of V' (and is thus independent of the filtration by the Jordan-Ho6lder theorem).

If V has a decomposition V' = @, V; where each V; is simple, then the length of V' is the
cardinality of the indexing set /.

Exercise 5.1.10. Show that any finite length module is finitely generated.
5.2. Exactness properties.

Lemma 5.2.1. Suppose that V; € R(G), i = 1,2, 3. The sequence
0—-Vi—=V,—=>V:s—0

is exact in R(G) if and only if for each compact open subgroup K of G, the sequence of complex
vector spaces

0-VE=sVE S VE =0

Is exact.

Proof. “=-" Since taking invariants is always left exact, it is enough to show thatif 5: W — V
is a surjective G-module homomorphism between two smooth representations, then for each
compact open subgroup K of G, 3: WX — V¥ is surjective. Let v € VX Since 3 is surjective,
there exists w € W such that 3(w) = v. We have

v=exv =egf(w) = Plegw).

(Since the projection operator ex on V' and IV is a finite sum, we may move ey through f3.)
“«<" This is clear.
|

Exercise 5.2.2. Let GG be a t.d.-group with the property that all irreducible smooth representations
of G are admissible (cf. Corollary 7.3.5). If V' is a smooth representation of G which has finite
length, show that V' is admissible.

Corollary 5.2.3. The functor V +— V from R(G) to itself is exact.

Proof. Suppose that
0O—-Vi—-V, = V3 =0
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is an exact sequence of smooth representations. We want to show that
0— ?}, — \72 — 171 —0

is exact. For this, it will suffice to show that for all compact open subgroups K of GG, we have
that

0= VE VK S VE S0
is exact. This follows immediately from the fact that for any smooth representation V' of G, we
have VX = Hom(V*,C), so the functor V s V¥ is the composition of two exact functors. W

Corollary 5.2.4. A smooth representation (m,V') is irreducible and admissible if and only if its
contragredient is.

Proof. By Lemma 5.1.7, we only have to show that if V' is irreducible and admissible, then V is
irreducible. Assume that V' is irreducible and admissible, and suppose that

O—>V1—>‘7—>V},%O

is an exact sequence of smooth GG-modules. By Lemma 5.2.1, the sequence

O—>X~/3,—>‘N/—>XN/1—>O

is exact. Since V = V is irreducible, either 171 =0or 173 = 0, so either V;, = 0 or V3 = 0. Thus
V is irreducible. |

5.3. Some comments on integration. We first consider the type of functions in which we will
be most interested.

For a complex vector space V, we let C2°(G, V) denote the space of locally constant, V-
valued, compactly supported functions on G. That is, C°(G, V) is the set of f: G — V such
that f is compactly supported, and for each ¢ € G there exists an open subgroup K, in G
such that f(gx) = f(g) for all z € K,. When V' = C, we will write C°(G) rather than
C>(G, C). Note that there is a left action of G on C2°(G, V') given by the right regular action
(g- f)(z) = f(xg). For a compact open subgroup K of G, we let C.(G/K, V') denote the space
C>=(G, V)& of K-invariants of C>(G,V); that is, C.(G/K,V) is the space of all elements
f e C*(G, V) such that f(zg) = f(z) forall g € K.

Exercise 5.3.1. Show that C2°(G, V') (with the right regular action) is a smooth representation
of G — i.e., we can write

C®(G,V) = U C.(G/K,V).

compact open K <G

Conclude that the natural map
Cr(G)@V = Cx(G,V)

is an isomorphism of G-modules.
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Exercise 5.3.2. There is also a right action of G on C°(G, V') given by the following: for
f e CX(G,V)and x,g9 € G, we define (f - g)(x) = f(gz). Show that this action is smooth
as well — i.e., for each f € C°(G, V), there is a compact open subgroup Ky C G such that
flgz) = f(x) forallg € Kyandallx € G.

We now consider a left Haar measure dyg on GG. This is the (unique up to a positive real
number) o-regular nonzero Borel measure for which measy,,(C) = measy,,(gC') for all Borel
subsets C' of G and all g € G.

Let K and K’ be compact open subgroups of G. In this case, K’ N K is an open subgroup of
both K and K. Consequently, both [K: K'N K| and [K': K'N K] are finite. Since dyg is a left
Haar measure, we have
[K': K'N K|

measq,q(K') = [K': K' N K] - measy, (K'NK) = K: K'N K]

meas,,,(K).
Exercise 5.3.3. Let f € C>°(G, V). Show that

jQJKg%hg== S f(g) - measq,y(K)

GEG/K

for any compact open subgroup K of G such that f € C.(G/K, V).

Note that f — fG fdpg is a left invariant distribution on G. That is, it is a linear map

C>*(G) — C such that
[ t)deg = [ fg)dug
G G

forall f € C°(G)andall h € G.

5.4. The modulus character. Letx € G. Define “g = zgx~' forg € Gand*S := {*s|s € S}
for S C G any subset. If C' C G is a compact set then so is “C, and similarly if S C G is a Borel
set then “S is also a Borel set. Thus if we define d”g by measz,(S) = measg,,(*  S), then d*g
is again a left Haar measure. Since Haar measures are unique up to a positive real number, we
can define a function 6 on G by

d*g = d¢(x) - dyg.

Exercise 5.4.1. (1) The definition of d is independent of the choice of dyg.
(2) The function dg: G — R is a character whose kernel contains every compact open
subgroup of G. In particular, d¢ is a smooth character; we call it the modulus character
of G.
(3) The measure J5(g) - dyg is a right Haar measure on G with modulus character §;'.
(One defines the modulus character ¢, of a right Haar measure d, by requiring that
measg, ,(*S) = 0 (x) meas,, S for all Borel sets S C G).

Definition 5.4.2. A t.d.-group G is unimodular provided that ¢ = 1, or equivalently, any left
Haar measure on G is also a right Haar measure.

If G is unimodular, then as there is no question as to whether a Haar measure on G is left- or
right-translation invariant, so we usually denote it by dg.
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Example 5.4.3. Here are some examples of (obviously) unimodular groups we will encounter
(cf. Exercise 5.4.1(2)):

(1) any abelian group,

(2) any compact group,

(3) any group which can be written as a union of compact open subgroups (for example, the
Heisenberg group of Section 3).

We will soon discuss the most important example (for us) of a unimodular group.

Exercise 5.4.4. Let G = k, and let dg be a Haar measure on (the additive group) k. For z € £,
define a measure d(xg) on k by measg(,4)(S) = measqy(x.S), where S C k is a Borel set. Prove
that d(xg) = |z| - dg.

Example 5.4.5. If P is a proper parabolic subgroup of a reductive p-adic group, then P is not
unimodular. For example, consider the parabolic subgroup P of GL, (k) (for n € Zs5) with
Levi decomposition T'Ny. For ¢ € T and n € Ny we have ép,(tn) = dp,(t) - 6p,(n) = dp,(t)
(see part (1) of Exercise 5.4.6 below). To keep this example simple, let us suppose that ¢ =

diag(w’, w’, ..., @) with j; > j, > -+ > j,. By definition, we have
meas('S)
op,(t71) = ———=~
At meas(S)

for all Borel subsets S of Py with finite measure. Let us take .S to be the compact open subgroup
K obtained by intersecting 1 + M,, () with Py. A calculation shows that ‘K7 < K7, so

meas(K)
Sp,(t71) =
() [K;: tK1] - meas(K7) g+ j(?)

Exercise 5.4.6. Let P be a proper parabolic subgroup of G = GL,, (k) for some n > 2, and let
P = MN be a Levi decomposition of P.

(1) Show that there exist no nontrivial smooth characters N — R-y. Conclude that if p =
mn withm € M andn € N, then dp(mn) = dp(m).

(2) Let & C A, as in Section 4.1. Show that if ¢ € T} then dp,(t) = dp,(t).

(3) By using the Cartan decomposition and a well chosen compact open subgroup with Iwa-
hori decomposition, show that GG is unimodular.

(4) Show that p(m) = |det(Ad(m™1)|,)| for m € M. Here Ad denotes the action of P on
its Lie algebra, and n is the Lie algebra of /V in the Lie algebra of P.

All of the results in this exercise are true as stated when G is the group of k-points of any
reductive algebraic group over k.

5.5. A second look at induction. Let H < G be a closed subgroup of G and (o, W) a smooth
representation of H. The induced representation (R, Ind% (c)) has a natural subrepresentation
(R, c-Ind% (o)), called the compact induction of o from H to G, consisting of those functions
f € Ind% (o) whose support has compact image in H\G.
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Example 5.5.1. In Section 3 we showed that any f in the induced representation Inng X (resp.
Indgp(x) » X) has compact support modulo the inducing subgroup. In these cases, then, the inclu-

sion c-Ind, ¥ — Ind§, Y (resp. C—Indgp(x)z X — Indg/)(x)z X) is an isomorphism.

Lemma 5.5.2. Let K be a compact open subgroup of G. Fix a set of representatives {g} for
H\G/K. The C-linear map

5) (mdf(e)* — [ wtmese™
GEH\G/K
defined by f — (f(g))g is an isomorphism.

Proof. We leave it to the reader to check that the map is well-defined. Bijectivity is then clear.
|

Corollary 5.5.3. Let the notation be as in Lemma 5.5.2. The map in Equation (5) restricts to an
isomorphism

(c-Indf (o) — € WK™,
geH\G/K

Corollary 5.5.4. If H\G is compact and (o, W) is admissible then Ind%(c) = c-Ind$ (o) is
admissible.
Proof. For a compact open subgroup K of G, the set H\G/ K is finite. [ |
Corollary 5.5.5. The functors c-Ind$, Ind$, : R(H) — R(G) are exact.
Proof. Let

0—->W =Wy —=>W35—>0

be an exact sequence of smooth representations of /. We want to show that
0 — Ind§ Wy — Ind% Wy — Ind$ Wy — 0

is exact. For this, it will be enough to show that for all compact open subgroups K of G the
sequence

0 — (Ind% W)X — (IndG Wo)X — (Ind$; W3)X — 0

is exact. Fix a compact open subgroup K C GG. Lemma 5.5.2 identifies the above sequence with
the sequence

0—s H wHNKs™ H wiHNKs™) H WHNIKS™) g,
H\G/K H\G/K H\G/K
which is a product of sequences
0— WK WK - wk =0

which are exact by Lemma 5.2.1.
The same argument applies to c-Ind%. |
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6. THE JACQUET FUNCTOR AND JACQUET’S LEMMA

We suppose that we are in the setting of Section 4. That is, GG is the group of k-rational points
of a connected reductive group defined over k, etc. Let P be a parabolic subgroup of G' with
Levi decomposition P = M N.

6.1. A technical result.

Lemma 6.1.1. Let Ky be any compact t.d.-group, and let Ky, K3 C K, be compact subgroups
such that K1 = Ky K. If (7, V') is a smooth representation of K1, then

6[{1 = ngng-

Proof. Fix v € V. We need to show that ex,v = eg,ex,v. By Lemma 5.1.1, there is a normal
compact open subgroup N of K; which acts trivially on the (finite-dimensional) representation
Kv generated by v. Set K; = K;/(K; N N) fori = 1,2, 3, so each K is a finite group, and 7
descends to a representation of /;. We then have

eV = m(k)vdk;, = —
o= [ ol =

(where dk; is the normalized Haar measure on K).
Since ek, v € Kyv for each i = 1,2, 3, we have m(n)ex,v = ek,v for all n € N. Therefore,

1 —
€K, €KV Z 7(ko)ex,v
‘K2| ko efz

- D o

k26K2 k3€K3

\Emm\ _
K| - K| 2 k)
k GK

= €K, V.

Remark 6.1.2. Suppose that X C G has an Iwahori decomposition with respect to some para-
bolic subgroup P = M N,ie., K = K~ - K°- KT, where

K- =KNN, K'=KnM, ad K'=KnNN.

Then K~ K° = K°K~ and K*K° = K°K™ are groups, so Lemma 6.1.1 shows that ex =
ex+ - ego - ex—, where the product can be taken in any order.

6.2. The Jacquet functor. Let (7,V) € R(G) and (o, W) € R(M).

Since N is a normal subgroup of P with quotient P/N = M, we may extend (o, V) to a
smooth representation of P by defining o(mn) = o(m). Consider the representation Ind$ (o) €
R(G). From Corollary 5.5.4, this latter representation is an admissible representation of G if o
is an admissible representation of M.
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We now recall the definition of coinvariants from Subsection 3.3.2. We define
V(N):=V(N,1) =(n(n)v —v|veV,neN).

Since NV can be written as an increasing union of compact open subgroups, Exercise 3.3.10 shows
that
V(N) = {v € V|exv = 0 for some compact open subgroup K of N}.

We let Viy := Vv = V/V(NNV) denote the coinvariants of V; it is the maximal quotient of V' on
which N acts trivially.

Since N is a normal subgroup of P, V(N) is a P-subrepresentation of V', so Vy is a P-
representation on which N acts trivially. Consequently, for all W’ € 9R(P) on which N acts
trivially, we have

HOHIP(‘/, W,) = HOHIP(VN, W/> = HOHI]V[(VN, W/)
Therefore, we can recast Lemma 3.3.8 as follows.

Lemma 6.2.1 (Frobenius Reciprocity). For (7,V) € R(G) and (o, W) € R(M) we have
Homg(V, Ind% W) = Homy, (Viy, W).

It follows that the functor Ind$_,,,: (M) — R(G) is the right adjoint of the functor
V= Vit R(G) — R(M). We call the functor V' +— Vi the Jacquet functor.

Definition 6.2.2. For (7,V') € 23(G) and P a parabolic subgroup of G with Levi decomposition
P = MN, the M-representation (my, Vi) is called the Jacquet module of V' with respect to
P =MN.

Note that the Jacquet module depends on the choice of a Levi decomposition of P, which
corresponds to the choice of maximal torus. There are many such choices: one can show that N
acts simply transitively on the set of Levi subgroups M C P which give a Levi decomposition
P=MN.

6.3. Properties of the Jacquet functor.

Lemma 6.3.1. Let (7,V') € R(G), and let P be a parabolic subgroup of G with a Levi decom-
position P = M N.
() If (w,V) is a finitely generated G-module, then (my,Vy) is a finitely generated M-

module.

(2) The functor V — Vi from R(G) to R(M) is exact.

Proof. (1) Suppose that vy, v9, ..., v, 1s a set of generators for V. Choose a compact open
subgroup K of G so that v; € VE for 1 < i < ¢. From the Iwasawa decomposition (or,
more directly, since P\G is projective), P\G is compact. Thus we can choose a finite
set {g1, 92, - - -, gm } Of coset representatives for P\G /K. As a P-module, V' is therefore
generated by the finite set {m(g;)v;|1 < ¢ < ¢,1 < j < m}. Hence, since N acts
trivially on Vyy, Vi is generated as an }/-module by the images of the 7(g;)v; in V.
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(2) Since the functor of coinvariants is tautologically right exact, it suffices to show that if
p: W — V is an injective map between two objects in R(G), then py: Wy — Vi is
injective. Let W € ker py, and let w € W be a lift of w. Since px (W) = 0, there exists a
compact open subgroup K of N such that exp(w) = 0. Since p is a G-homomorphism,
we have 0 = exp(w) = p(exw). Since p is injective, we conclude that exw = 0, so
w = 0.

[

Theorem 6.3.2 (Jacquet’s lemma). If (7, V) € R(G) is admissible, P is a parabolic subgroup
of G with Levi decomposition P = M N, and K is a compact open subgroup of G admitting
an Iwahori factorization with respect to P = M N, then the projection map V- — Vy maps VX

surjectively onto (Vi )K™M,

Remark 6.3.3. In fact, this lemma is true for an arbitrary smooth representation of GG; however,
the proof is difficult. See [1].

Before proving Theorem 6.3.2, we note an important corollary: just as parabolic induction
carries an admissible representation of a Levi to an admissible representation of (7, the Jacquet
functor preserves admissibility. More precisely:

Corollary 6.3.4. Let P be a parabolic subgroup of G with Levi decomposition P = MN. If
(m, V') is an admissible representation of G, then (my, Vy) is an admissible representation of M.

Proof. Since there is a neighborhood basis of the identity in G consisting of compact open sub-
groups possessing Iwahori factorizations with respect to P = M N, this follows immediately
from Theorem 6.3.2. n

Proof of Theorem 6.3.2. Let j: V — Vy denote the P-representation quotient map. If v € V¥,
then for all £ € K N M, we have my(k)j(v) = j(m(k)v) = j(v). Consequently, j(VE) C
VEMM We now show that the other inclusion holds.

Without loss of generality, suppose that P = Fj is a standard parabolic subgroup for some
0 C A (and let M = Mjy, etc). Choose t € Ty such that |a(t)| < 1 forall &« € A ~\ 6. For
example, if G = GL, (k) and P = M N is the parabolic subgroup corresponding to the partition

(k1, k2, ..., ke) of n, we can take t to be the element
: ke _k ke ko ko ke
dlag(?‘,w‘,...,wi,w (-1 - gt 11,...,@,@,...,@/).
1 ko ke

Let N denote the unipotent radical of the parabolic opposite of P = M N with respect to M.
Define

Kt=KnN, K'=KnM, K =KNN.
The set
{t_mK_tm ]m - Z’ZO}

forms a neighborhood basis of the identity in V.
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First we claim that 7y (¢)j(V5) = j(VF). Letv € VX, Since t 'Kt C K~ and t ' K% =
K°, we have that e - 7(t)v = ego - w(t)v = m(t)v, so by Lemma 6.1.1,
jler - m(t)v) = jleg+ - exo - ex— - w(t)v)
= jlex+ - m(t)v) = ex+ - T (t)j(v)
= 7T-N(t).] (U)v
where the final equality holds since Kt C N acts trivially on V. Since j(v) was an arbi-
trary element of j(v"), we have shown that 7y (¢)j(VE) C j(VE). Since my(t) is invertible
on Vy and j(V) is finite-dimensional, we have that 7y (¢)j(VE) = j(VE). Consequently,
an(t™)j(VE) = j(VE) for any m € Z.
Let7 € VX', let v/ € V be any lift of 7, and let v = exo(v'). Thus j(v) = Tand v € VE",
Fix m > 0 such that ™ K ~t" < stabg(v), so K~ fixes 7(¢")v. Since ¢ is in the center of M,
it follows that K fixes (™ )v. As before, we have that

jler - m(t™)v) = ex+mn(t")j(v) = TN (™),

sov € Tn(t™™)j(VE) = j(VE). [ |

7. BASIC PROPERTIES OF SUPERCUSPIDAL REPRESENTATIONS

In this section we discuss various properties of supercuspidal representations.

7.1. Finite representations. In this subsection, GG denotes any t.d.-group.

Definition 7.1.1. A smooth representation (7, V') of G is finite provided that, for all v € V' and
all A € V, the matrix coefficient m, , is compactly supported.

Example 7.1.2. If the center of G is compact, then every supercuspidal representation of G is
finite.

Exercise 7.1.3. Show that if there exists a nonzero, finite representation (7,V) € R(G), then
the center of GG is compact.

Lemma 7.1.4. If  is finitely generated and finite, then 7 is admissible.

Proof. This proof is nearly identical to that of Lemma 3.1.4. In the proof of that lemma, the
representation was assumed to be irreducible (a) so that it would have one generator, and (b)
so that the center would act through a central character. Since our matrix coefficients are now
assumed to be compactly supported, we can replace the condition of irreducibility with that of
being finitely generated. |

Lemma 7.1.5. A smooth representation (w,V') of G is finite if and only if for all compact open
subgroups K of G and for all v € V, the function (g — exm(g)v) € C*(G,V) is compactly
supported.
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Proof. “<=" This is clear.

“=" Fix v € V and a compact open subgroup K of GG. Let V; denote the subrepresentatlon
of (m, V') generated by v. By Corollary 5.2.3, the natural map from V to V; is surjective, SO
the representation (7, V}) is finite. By Lemma 7.1.4, V; is admissible, so the dimension of
VX is finite. Choose a basis A1, Ay, ... A, for VX = Hom(V{¥,C). The support of the map
g — exm(g)v is contained in the union

U supp(m,\i’v),
1<i<k

which is compact. (Here supp(m,, ,,) denotes the support of the function m, ,.) [ |

7.2. The subgroup G'. Suppose again that G is the group of k-rational points of a connected
reductive group G defined over £.

Definition 7.2.1. We let Rat(G) denote the group of algebraic characters from G to GL; that
are defined over £.

Example 7.2.2. We have
Rat(GL,(k)) = {det": n € Z} and Rat(Sp,(k)) = {1}.

Definition 7.2.3. We define
G! = ﬂ ker || .

x€Rat(G)

Example 7.2.4. If G = k* then G' = R*. More generally, if G = GL,,(k) then
G'={y € G| det(y) € R*}.
One can prove that G has the following properties (see Exercise 7.2.6):

Remark 7.2.5. (1) Every compact subgroup of G belongs to G*. In particular, for all parabol-

ics P < (G with a Levi decomposition P = M N, we have N < G*.

(2) The group G' is an open, closed, normal, unimodular subgroup of G.

(3) The quotient G/G" is isomorphic to Z™, where m denotes the rank of the k-split part of
the center of G. In particular, if the center of GG is compact, then G = G 1

(4) The quotient G/(Z(G)G") is finite. In fact, Z(G)/(Z(G) N G') is a full rank sublattice
of G/G.

(5) The intersection Z(G) N G' is compact.

Exercise 7.2.6. Prove the facts given in Remark 7.2.5. Assume that G = GL, (k) for parts
(3)—(5). In particular, show that G/(Z(G)G') = Z/nZ in part (4).

It follows from Remark 7.2.5 that a representation (7, V") of G is smooth if and only if its
restriction to G is smooth as a representation of G*. We also have a Cartan decomposition for
G

H KowtKo.

wewNGL
teTt+nal
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Example 7.2.7. When G = GL,,(k), the element diag(w’*, @', . .., w’") belongs to T N G!
if and only if jy > jy > -+ > jnand j1 4 jo + - - - + jn = 0.

Definition 7.2.8. We define the group of unramified characters of GG to be

X(G) := Hom(G/G*,C*).

7.3. Various ways to think about supercuspidal representations. We have the following the-

orem, due to Jacquet and Harish-Chandra.

Theorem 7.3.1. Let (m,V') € R(G). The following statements are equivalent.

)
2)
3)

(m, V') is a supercuspidal representation of G.
resqgt T IS finite.
For all proper parabolics P of G with a Levi decomposition P = M N, we have Vi =

{0}

Proof. We will show (1) = (2) = (3) = (1).

“(D) = (2)"

“2) = (3)"

Letv e Vand \ € V. We must show that the function
g my.(g): G' = C

is compactly supported.

Let C' C G be the support of my,, let C* = C' N G, and let C! be the image of

C NG in GY/(G' N Z(G)). If we think of G'/(G' N Z(G)) as a (closed) subgroup
of G/Z(@), then since the image C' of C' in G/Z(G) is compact, we have that CT =
O N (GY(G' N Z(@))) is compact as well. Since G' N Z(G) is compact, C! is thus
compact.
Let P be a proper parabolic subgroup of GG with a Levi decomposition P = M N. With-
out loss of generality, we may assume that P is a standard parabolic subgroup corre-
sponding to some # C A. As in the proof of Jacquet’s lemma (Theorem 6.3.2), we
choose t € T,” N G' such that |a(t)] < 1 forall « € A \ 6. Note that {t™ | m € Z}
is not contained in any compact set since {|a(t™)| | m € Z} is not contained in any
compact subset of R.

For example, if G = GL,,(k) and P = M N corresponds to the partition (k1, k2, . . . , k¢)
of n, we can take ¢ to be the element

diag(a®, ... o, when . when | wh L mTR gTh ),
\ . ~~ 7 ~~ g NS ~~ ~~

k1 k2 ke—1 ke

Let v € V. We want to show that v € V(N). Choose a compact open subgroup K of
G with an Iwahori decomposition with respect to P = M N, such that v € V. Since
resgt m is finite, from Lemma 7.1.5 we have

exm(t™)v =0
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“3) = ()"

for all m sufficiently large. This implies that for all sufficiently large m we have
0 - et—mKth
== €t7m(K+)tm etfm(KO)tm etfm(Kf )th

where Kt = NNK, K = MNK,and K~ = NNK (as usual, N denotes the unipotent
radical of the parabolic opposite P = M N). Since t" belongs to the center of M and
t—mK~t™ C K, we conclude that

0 — etf'm(K+)t'metfm(KO)tmetfm(Kf)t'me = etfnL(K+)t7n'U.

Hence, v € V(N).
We will show that if (7, V") is not supercuspidal, then there exists a proper parabolic P
with Levi decomposition P = M N such that Vyy # {0}.

Suppose that there exist v € V and \ € V such that the matrix coefficient my,, does
not have compact support modulo the center of G. From the Cartan decomposition of G,
this implies that supp(m, ) N KowtK, # ) for infinitely many choices of w € w and
t € T". Since w and A are finite sets, there exist w € w, « € A, and {t,,} C T'" such
that

supp(my») N Kowt,, Ko #0  and  |a(ty,)| — 0as m — .

Choose a compact open normal subgroup K of K such that
(1) K has an Iwahori decomposition with respect to the maximal standard parabolic
P = Px_{qy with (standard) Levi decomposition P = M N, and
) veVEand A € VK.
Since the group K/ K is finite, we can choose ki, ky € K such that

supp(may) N k1 Kwt, Kky # 0

for each m. By replacing v with 7(ko)v € VE and A with 7(k; YA € VE, we may
assume that m, ,(wt,,) # 0 for all m € Zs(. Replacing v with 7(w)v, then, we have
My (tm) # 0 for all m. We therefore have

0 # may(tm) = A7 (tm)v) = (exnnA) (7 (tm)v)
= MernnT(tn)v) = )‘(W(tm)etgf(KmN)tmv)-
Consequently, for all m € Zso we have €,1 gy, v # 0. Since |a(ty)| — 0, we

conclude that the compact open subgroups ¢! (K N N)t,, fill out N, so eyv # 0 for all
compact open subgroups U of N. Consequently, v & V(N).

Remark 7.3.2. Let P = M N be any parabolic subgroup of GG, andletg € G. Then V (gNg~1) =
gV(N), so Vy = {0} if and only if V y,-1+ = {0}. Since any parabolic subgroup of G is
conjugate to a standard parabolic, we may replace “all proper parabolics P with “all proper
standard parabolics P’ in Theorem 7.3.1(3).
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Corollary 7.3.3. If (7,V) € R(G) is irreducible, then there exist a parabolic P = M N and an
irreducible supercuspidal o € R(M ) such that  is a subrepresentation of Ind]Gg .

Proof. Let P’ < P be standard parabolic subgroups of GG and choose Levi decompositions
P = MN and P = M'N’ so that M/ < M (N < N’ automatically). Moreover, P’ N\ M is a
standard parabolic subgroup of M with Levi decomposition M'(N'NM),and N' = N(N'NM).
It follows that V(N) C V(N') and Viy» = (V) (wvna)- In addition, every standard parabolic of
M arises in this way.

Let P be a standard parabolic subgroup that is minimal with respect to the property Viy # {0}.
The previous paragraph and Remark 7.3.2 make it clear that (7, Vi) is a supercuspidal object
in R(M).

By Lemma 6.3.1, Vly is a finitely generated M -module. Thus, by Lemma 3.3.5, Vi has an
irreducible quotient 0. The M -module o is supercuspidal and we have, via Frobenius reciprocity,

0 # Homy;(Viy, o) = Homg(V, Ind$ o).
n

From the above results, it is clear that supercuspidal representations play a distinguished role
in the representation theory of reductive p-adic groups. Unfortunately, outside of the general
linear group and related groups, we do not have a complete understanding of the supercuspidal
representations. We have the following very old conjecture.

Conjecture 7.34. If (7,V) € R(G) is irreducible and supercuspidal, then there exist an open
subgroup K of G which is compact modulo the center of G, and an irreducible smooth represen-
tation o of K, such that = = c-Ind$. .

We collect a few more consequences of Theorem 7.3.1.
Corollary 7.3.5. If (7,V) € R(G) is irreducible, then it is admissible.

Proof. By Corollary 7.3.3, there exist a parabolic subgroup P of G with Levi decomposition
P = MN and an irreducible supercuspidal representation o € R(M) such that V' embeds in
Ind$ 0. Therefore, it is enough to show that Ind$ o is admissible. Lemma 3.1.4 guarantees
that o is an admissible representation of M, so by Corollary 5.5.4, the representation IndIGD ois
admissible. ]

Corollary 7.3.6. Let (7,V) € R(G). Then

(1) 7 is irreducible if and only if its contragredient is.
(2) 7 is supercuspidal and irreducible if and only if its contragredient is.

Proof. By Corollary 7.3.5, an irreducible smooth representation is admissible, so the first state-
ment follows immediately from Corollary 5.2.4.

Assume that V' (resp. ‘N/) is irreducible, and let ' : V — V be the natural isomorphism. For
veV,AxeV,and g € GG, we have

mrwa(g) = F)(7F(9)A) = (F(9)M)(v) = M (g7 )v) = mau(g ),
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SO Mp(y), is compactly supported modulo the center of G if and only if m,, is. Thus V is
irreducible and supercuspidal if and only if V' is. [

Exercise 7.3.7. (1) Let (7,V) € R(G) be irreducible. Show that if one nonzero matrix
coefficient of 7 has compact support modulo the center of GG, then 7 is supercuspidal.
(2) (Mautner) Let K C G be an open subgroup which is compact modulo the center of G,
and let (o, TV) be an irreducible smooth representation of /. Show that if c-Ind%. o is
irreducible, then it is supercuspidal.

8. SQUARE INTEGRABLE REPRESENTATIONS
8.1. Some generalities. We again suppose that G is a t.d.-group.

Lemma 8.1.1. Ler (7, V) € R(G) be finitely generated and let W be a complex vector space
(endowed with the trivial G-action). Then

(1) the natural map Endg (V) @c W — Homg(V,V ®c W) is an isomorphism, and
(2) if (w, V) is irreducible then W — Homg(V,V ®c W) is an isomorphism and the map
U — V ®c U is a bijective correspondence between the sets

{C-vector subspaces of W'} and { G-submodules in V-®@¢c W'}.

Proof. (1) Choose a basis W = &¢;C, so that our map is identified with

P Ende (V) — Home(V,E V).

Since V' is finitely generated, it has the property that for any morphism V' — @V there
exists a finite subset J C [ such that this morphism factors through & ;V — &,V if we
choose a finite generating set vy, - - - , v, € V then the image of each v; has only finitely
many nonzero summands in &; V. This provides an inverse to the map above.

(2) The isomorphism W — Homg(V,V ®c W) follows from (1) and Schur’s lemma. We
must show that if X is a G-submodule of V ®c W then X =V ®¢ U for some U C W.
The natural G-map ¢ : V ®c Homg(V, X) — X is compatible with the embedding
Homg(V, X) € Homg(V,V ®@c W) = W, and by part (1), it is injective. Choosing a
basis W = @;C, wesee that X C V @ W = @,V is a direct sum of copies of V; thus
 1s surjective.

|

Lemma 8.1.2. Let G and G5 be two t.d.-groups. If the representations (71, V1) € R(G1) and
(79, Vo) € R(Gy) are irreducible, then V) Q¢ Vs is an irreducible representation of G1 X Gs.

Proof. Let X be a (G x Gs)-submodule of V;®@¢ V5. Regarding X as a G;-module, Lemma 8.1.1
tells us that X = V] ®¢ U for some complex vector subspace U C Va. If U # {0} then since
any nonzero vector in U generates V5 as a Go-module, we must have X =V} ® V5. [ |

Lemma 8.1.3. Suppose (7,V) € R(G) is irreducible and admissible. If f: V x V — C is
bilinear and G-invariant, then there exists c; € C such that f(v,\) = cf - AN(v) forallv € V
and \ € V. In particular, f is degenerate if and only if f = 0.
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Proof. If f is degenerate then there exists some \ € V (or some v € V) such that flo,\) =0
forall v € V (resp. for all A € V). Thus the kernel of the G-map A — f(-,A) : V — V (resp.

v f(v,)):V — XN/) is nontrivial, so since V (resp. V) is irreducible, f = 0.
If f is nondegenerate, then we have two G-module isomorphisms of V' with V: the canonical

map . which maps v € V to (A — A(v)) and the map ¢; : v — f(v,-). By Schur’s lemma,
there is some c; € C* such that 5 = ¢y - . |

Lemma 8.1.4. Let G and G5 be two t.d.-groups, and let (m1,V)) € R(Gy) and (7, V3) €
R(Gy) be irreducible admissible representations. Then the natural (G X Gy)-map Vi @c Vo —
(Vi ®c Va2)™ is an isomorphism.

Proof. By Lemma 8.1.2, V; ®¢ V5 is an irreducible admissible (G; x G5)-module; thus by
Corollary 5.2.4, the representatlons VI, VQ, V1 Rc V2, and (V; ®c¢ V,)™ are all irreducible. Thus
since the map Vi ®c Vy — — (V1 ®c V,)™ is nonzero, it must be an isomorphism. [ |

8.2. Square integrable representations. Let Z(() denote the center of the t.d.-group G. We
suppose that G/Z(G) is unimodular, and we let dg* denote a Haar measure on G/Z(G).

Remark 8.2.1. In this subsection and the next one, all we actually assume is that Z(G) is a closed
subgroup of the center of G such that the quotient G/Z () is unimodular.

Example 8.2.2. When G is the group of k-points of a connected reductive group over k£, then by
Exercise 5.4.6, G is unimodular. Since Z(G) is unimodular, G/Z(G) is unimodular.

Definition 8.2.3. Let y be a unitary character of Z(G). We denote by L*(G/Z(G), dg*), the
space of functions in C'*°(G) for which

(1) f(gz) = x(2)f(g) forallg € G and z € Z(G), and

(2)
/ (o) dg* < .
G/7(G)

With respect to the right regular action and the inner product
b= [ o) Tolo) dy'
G/Z(G)

L*(G/Z(G),dg*), is a unitary representation of G.
Definition 8.2.4. A representation (7,V) € R(G) is square-integrable modulo the center or

discrete series provided that

(1) the center of G acts on V' by a unitary character y, and
(2) forallv € V and A\ € V, the matrix coefficient m, , belongs to L*(G/Z(G), dg*),.

A representation (7,V) € R(G) is essentially square-integrable modulo the center provided
that there is a smooth character w of GG such that m ® w is square-integrable modulo the center.

Exercise 8.2.5. If (7,V) € PR(G) is an irreducible representation that is essentially square-
integrable modulo the center, then it is admissible.
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Definition 8.2.6. For a character x of Z(G), we let R(G), denote the full subcategory of R(G)
whose objects transform with respect to y under the action of Z(G).

Lemma 8.2.7. If x is a unitary character of Z and (w,V') € R(G), is irreducible and square-
integrable modulo the center, then (mw, V') is unitary.

Proof. Fix 0 # X € V. We have a natural G-embedding m: V — L*(G/Z(Q), dg*), given by
m(v) = my, forv € V. For v,w € V, define

(v,w) :== (m(v), m(w)) 2 -

This defines a positive-definite, G-invariant, Hermitian form on V. [ |

8.3. Schur orthogonality. The next two lemmas constitute Schur orthogonality.
For a function f on a group G, we define f(g) := f(g~").

Lemma 8.3.1. If (7,V) € R(G) is irreducible and essentially square-integrable modulo the
center, then there exists a unique deg(m) € R such that for all vi,ve € V and A\, Ay € V, we
have

)\1 (U1> . /\Q(UQ)
deg(m)

Remark 8.3.2. The number deg() is called the formal degree of 7; it depends only on 7 and the
measure dg*. When (7, V') is an irreducible representation of a finite group G, one has

LS atah)- ol = 220

de()

where deg(m) = dimc V' is the ordinary degree of the (finite-dimensional) representation (7, V).

/ ML (9) - g0, (9) dg™ =
G/Z(G)

Proof. If deg(m) exists, then it is unique.

Without loss of generality, we may assume that (7, ') is square-integrable modulo the center.
Therefore, by Lemma 8.2.7, there is a positive-definite G-invariant Hermetian form (-, -) on V.

Consider the G'x G-module V®¢V . This is an irreducible admissible smooth representation of
G x G by Exercise 8.2.5, Corollary 5.2.4, and Lemma 8.1.2. By Lemma 8.1.4, the contragredient
of V @c V is naturally isomorphic as a (G x G)-module to V @¢ V.

Define a bilinear form on (V ®@¢ V) x (V ®¢ V) by

(Ul & >\17 >\2 & U2)1 = / M0 (g> ' mAzﬂ& (g) dg*
G/Z(G)

N / Ai(m(g)vr) - Aa(m(g™")va) dg™
G/Z(G)

The form (-, -); is (G x G)-invariant since dg* is unimodular. By Lemma 8.1.3, in order to show
that (-, -); is nondegenerate, it suffices to show that it is nonzero. Choose a nonzero v € V, and
define A\, € V by A\, (w) = (w,v). Note that

Ao(m(g™ ) = (n(g™Hv,v) = (v,7(g)v) = (x(g)v,v) = X(7(g)v),
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SO

(U®>\m/\v®v>1:/

Mo(w(g)0) - Mo(m(g™ o) dg” = / Mo(r(g)0) 2 dg” #0.
G/Z(G)

G/Z2(G)
Define another bilinear form on (V @¢ V) x (V @¢ V) by
(V1 @ A1, Ay @ v2)2 1= A (v2) - Aa(v1)

(identifying 1% ®c V' with the contragredient of V' ®¢ V, this is just the natural pairing (v, \) —
A(v)). The form (-, )5 is clearly (G x G)-invariant, and

(0 ® Aoy Ay @ 0)g = o] - [0 £ 0,
where v and )\, are defined as before.
Lemma 8.1.3 tells us that the two (G' X G)-invariant nondegenerate bilinear forms (-, -); and

(+,+)2 differ by a constant ¢ € C*; since (v ® A, A, ®v); and (v ® Ay, A, ® v)2 are both positive
real numbers, ¢ € R.,. [ |

Lemma 8.3.3. If (71, V1), (m2, V2) € R(G) are inequivalent irreducible representations with the
same central character that are square-integrable modulo the center; then for all v, € Vy, vy €
Vo, A1 € Vi, and Ny € Vs, we have

/ M0 (g) ’ m)\z,vz(g) dg* = 0.
G/Z(Q)

Proof. Fix A\, € ‘71 and vy € V5. We define a G-homomorphism from V; to 172 = Vj, by sending
v1 € Vj to the linear map

>‘2 = Mg 09 (g) ’ m)\lﬂ)l (g) dg*
G/Z(G)

for \; € XN/Q As Vj and V5 are assumed to be nonequivalent, this map must be zero. [ |

Corollary 8.3.4. Let (7;,V;) € R(G) be a set of inequivalent irreducible finite representations
of G. For each i, choose nonzero v; € V; and \; € V;. Then the functions my,,, : G — C are
linearly independent.

Proof. Since all of the matrix coefficients m,, ,, are compactly supported, they are all square-
integrable, so we may ignore the center of GG altogether (cf. Remark 8.2.1 and Exercise 7.1.3).
Suppose that there exist constants ¢; € C (with ¢; = 0 except for finitely many ¢) such that
> i Ci» My, = 0. Fix an index j, and choose \; € V; such that N(v;) = 1 and vj € Vj such
that \;(v;) = 1. Then the Schur orthogonality relations (Lemma 8.3.1 and Lemma 8.3.3) give

0 :/G (Z ci~mxi,m(9)> ST (g) dg”

=¢ /Gmxj,vj (9) - My (9) dg”
1

= C;

7 deg(m;)’
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soc; = 0. [ |

8.4. Application to supercuspidal representations. We continue to assume that G/Z(G) is
unimodular.

There is an obvious class of representations that are likely to be square-integrable modulo
the center: those whose matrix coefficients are compactly supported modulo the center, i.e.,
the supercuspidal representations. All that we need to require is that Z(G) acts by a unitary
character:

Lemma 8.4.1. A supercuspidal representation (, V') € R(G) is essentially square-integrable
modulo the center if and only if there exists a smooth character w of Z(G) such that Z(G) acts
by a unitary character under ™ @ w.

Example 8.4.2. Suppose that (G is the group of k-rational points of a connected, reductive,
algebraic group defined over k. Then any irreducible supercuspidal representation of G is auto-
matically essentially square-integrable modulo the center:

Lemma 8.4.3. If x is a smooth character of the center Z(G) of G, then there exists a unique
real-valued character w: G — Rsq which is trivial on G such that (resz w) - x is a unitary
character of Z(G).

Proof. We must show that the smooth character | X|_l extends uniquely to a homomorphism
G/G' — C* (note that || " is trivial on the compact group G' N Z(@)). This follows immedi-
ately from the fact that Z(G)/(Z(G) N G') is a full rank sublattice of G/G". ]

Let C be an abelian category. An object P in C is said to be projective provided that the functor
X — Hom(P, X) is exact. Equivalently, P is projective if and only if for any object X in C and
every surjective map ¢: X — P, there exists a map ¢: P — X such that p o) = 1p (cf. [9,
111, §41]).

Similarly, an object [ in C is injective provided that the functor X — Hom(X, I) is exact.
Equivalently, [ is injective if and only if for every injective map 7 : X — Y of objects of C,
every map ¢ : X — [ extendstoamap Y — [ (cf. [9, XX, §4]).

Lemma 8.4.4. Let (m,V) € R(G) be an irreducible, supercuspidal representation of G that
is essentially square-integrable modulo the center. Let x be the central character of G. Then
(m, V) is projective in R(G),.

Proof. Choose a nonzero Ay € V and fix vy € V such that Ag(vg) = deg(r). Define a map
m: V — c-Ind§ x by setting m(v) = my, . Since V is irreducible, the map m is an injective
G-homomorphism.

Let (o,U) € R(G),, and let o: U — V be a surjective G-map. Choose vy € U such that
©(ug) = vo. Define 7: c-Ind y — U by

7(f) = /G/Z(G)f(g‘ ) - o(g)uodg”.



51

Lety =7om:V — U. Forallkevandvev,wehave

Moo =a (o ([ sl atohmoar) )

_ / Hire(g) - e (9) dg”
/2(G)

A(v) = Ao(vo)
deg(m)

= A(v).

We conclude that ¢ o i) = 1. Thus (7, V) is projective in the category R(G),. [ |

Remark 8.4.5. If GG is the group of k-points of a connected reductive group defined over k, then
the converse is true as well: if 7 is a simple projective object in 93(G),,, then it is supercuspidal.

Lemma 8.4.6. Let (7, V) € R(G) be an irreducible, supercuspidal representation of G that
is essentially square-integrable modulo the center. Let x be the central character of G. Then
(m, V) is injective in R(G),.

Proof. We must show that the functor X — Hom(X, V') is exact when X € R(G),. Since Vis
also supercuspidal and irreducible, by Lemmas 8.4.4 and 5.2.1, the functor

X=X Homg(f/,)?)
is exact (note that X and V are in the category JR(G),~1). We have natural isomorphisms
Homg(f}, )?) = Homg(v, X") = Homg(v ®c X,C)

= Homg (X, V*) = Homg(X, V)
= Homg (X, V).

9. THE HECKE ALGEBRA H(G)
In this section, GG denotes any unimodular t.d.-group.

9.1. Idempotented rings. Let H be an associative ring (we do not assume that H is commutive
or has an identity element). Let I denote the set of idempotents in . That is,

[={heH|h®=h}

Lemma 9.1.1. Ife, f € I, then the following are equivalent.
(1) eHe C fHSf
(2)ec fHS
(3) e=fef
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Proof. “(1) = (2)": If eHe C fHf thene = eee € eHe C fHf.
“(2) = (3)”: If e € fH [ then there exists h € H such thate = fhf,so fef = f(fhf)f =

fhf =e.
“(3) = (1)”: This is clear. -

Definition 9.1.2. Lete, f € I. If the equivalent statements in Lemma 9.1.1 are satisfied by e and
f, then we write e < f.

Exercise 9.1.3. The relation < on [ is a partial order on /, with unique minimal element 0. If
1 € H, then 1 is the unique maximal element.

Definition 9.1.4. We call H an idempotented ring provided that for any finite subset S of H
there exists an e € [ such that ese = s forall s € S.

Exercise 9.1.5. Show that H is an idempotented ring if and only if
H = U eHe

ecl
and [ is filtered with respect to < (that is, any finite collection of elements in / is dominated by
an element of I). Can you find an example of a ring #H such that H = (J, ., eHe but H is not
idempotented? (I can’t.)

An idempotented ring H has a natural topology: a neighborhood basis of zero is
{H(1—e€)[ee I},

where we define H(1 —e) = {h — he | h € H}. We obtain a basis at any other point via left
translation. (Note that if e < f,thene = fef = ffef = fe,soif h € H, then

(h=hf)(1—e)=(h—hf)—(he —hfe) = (h—hf) — (he — he) = h — hf;
thus H(1 — f) C H(l —e).)

Exercise 9.1.6. Show that a net h, € H converges to the zero element if and only if for all
e € I there exists an A such that for all « > A we have h,e = 0. (Hint: for all e € I we have
H="HedH(l—e).)

9.2. The Hecke algebra H(G).
Definition 9.2.1. A distribution on G is any C-linear function C2°(G) — C.
As in Exercises 5.3.1 and 5.3.2, there is a left action of (G x G) on C°(G) given by
((91:92) - (@) = (g2 f - 9 )(@) = f (g1 '2g2).

This induces an action of (G x G) on the space of distributions on G: if T is a distribution, then
we set ((g1,92) - T)(f) =T((g ", 95") - f) for (g1, g2) € G x Gand f € CZ(G).

Remark 9.2.2. If K = { K} is a neighborhood basis of the identity of G consisting of compact
open subgroups, then { K x K | K € K} is a neighborhood basis of the identity in G x G.
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For any open set U C G, we can regard C2°(U) as a subspace of C°(G) via extension by
0; therefore, one can define the restriction resy 7' = resce () 1" of a distribution 7' to Cx(U).
We define the support supp(T’) of a distribution 7" to be the smallest closed set .S of G such that
resg\s 1" = 0; that is, the support of 7" is the complement of

U{U C G open | resy T = 0}.

We let H = H(G) denote the set of of locally constant, compactly supported distributions on
G. (A locally constant distribution is a distribution 7" such that for all f € C2°(G), there is some
compact open Ky C G x G such that T'((g1, g2) - f) = T'(f) for all (g1, g2) € K.) Equivalently,
‘H can be characterized as the set of locally constant, compactly supported, complex-valued
measures on G (or in other words C2°(G) - u where 1 is a Haar measure on G).

The complex vector space H is an algebra with respect to convolution. If ;; and po are two
measures in H, then convolution is defined via the product measure:

/G Fla) i« m)(o) = [ flang) dlm © )on. )

for f € C2°(G). Note that the (G x G)-action does not respect convolution.
Exercise 9.2.3. Let 77 and 75 be distributions in #, and let f € C°(G). Show that

(Ty + T3)(f) = Ta(g = Tu(R(9)f))-

If we fix a Haar measure dg on G, then the map f — f-dg defines a vector space isomorphism
from C°(G) to H(G).

Exercise 9.2.4. Show that the isomorphism above is an algebra isomorphism, where convolution
on C'°(@G) is defined by

(f1x fo)(h) = / fithg™) - falg) dg
e
for f1, fo € C°(G) and h € G. Show that it is also an isomorphism of (G x G)-modules.

Because it is often more convenient to deal with functions rather than distributions or mea-
sures, we will, unless specifically stated to the contrary, realize H(G) as the algebra C2°(G) with
respect to convolution.

Definition 9.2.5. For a compact open subgroup K of G, we let C.(G//K) denote the space of
K -bi-invariant functions in C>°(G); that is, C.(G//K) = C>°(G)K*K,

Definition 9.2.6. If K is a compact open subgroup of (7, then we define ex € H by

(K]
measq, (K)

€ C(G//K).

CKg —

Here, [K] denotes the characteristic function of K. Note that this definition depends on the
choice of measure dg.
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Alternatively, we can define e € H to be the distribution

emﬁzéﬂ@m,

where dx is the normalized Haar measure on K.
Remark9.2.7. If f € C.(G//K), for some compact open subgroup K of G, then

ex x frxeg =f=f*xex =ex* f.

In particular, ek is an idempotent element of /. Since we have a neighborhood basis of the
identity consisting of compact open subgroups, it follows that H is an idempotented ring (cf.
Exercise 9.1.5).

9.3. Modules over H(G). First we define a functor from 9R(G) to the category of H-modules.
If (m, V) € R(G), then we give V' the structure of an H-module via

fvzmnwzzy@mww@

for f € C*(G) and v € V. Itis easy to check that for f,h € H, n(f x h) = 7n(f)n(h). In
particular, if f € C.(G//K), then

m(f) =m(ex * [ xex) = m(ex)m(f)m(ex) = exm(f)ex-
(We are using ey in two roles — it will always be clear from context if we are to interpret ex as
an element of # or as an element of End¢ (V') for some representation space V. This overload

of notation is justified by the fact that 7(ex ) = ex.) Thus, if (7, V') is admissible, then 7(f) is a
finite rank operator for every f € C°(G).

Remark 9.3.1. When (7, V') is admissible, we can define the character distribution
©,: C*(G)—=C
by setting O, (f) := trw(f). We will discuss the character distributions of admissible represen-

tations at great length in some future course.

Definition 9.3.2. Let IV be complex vector space. If V' is a module for the C-algebra H = H(G),
then we say that V' is nondegenerate provided that V = HV.

Let (7, V) be a smooth representation of G. For any v € V, there exists a compact open
subgroup K of G with v € VE. Thus 7(ex)v = v, so (w,V) defines a nondegenerate H-
module.

Lemma 9.3.3. The functor from R(G) to the category of nondegenerate H-modules defines an
equivalence of categories.

Proof. Let V be a nondegenerate H-module. We must give V' the structure of a smooth G-
module. Fix v € V. By hypothesis, there exists h € H and w € V such that v = hw. Since
h € C.(G//K) for some compact open subgroup K of GG, we have

exv = ex(hw) = (ex * h)w = hw = v.
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It follows that the definition

i 9]
m(g) '_IK measq(K)

makes sense. It is left to the reader to verify that 7 is a group homomorphism that defines a
smooth representation of G.
Let (m,V) € R(G), letv € V, and let K C G be a compact open subgroup with v € V¥,
Then for h € G,
hK
w(h)v =m(h)exv = / m(hx)vdr = _hK](9)
K

d
. Teasa( K)W(g)v g,

so giving (7, V') the structure of a nondegenerate 7{-module recovers its G-module structure.
Conversely, let V' be a nondegenerate H-module, and let v and K be as before. For f €
C>(G) and h € G, we have

y Kk 9K1(h)
(f ex) / 19 measdg( ) dg /Gf(g)measdg(K) dg
since d(g~') = dg. Thus

fro=ren)v= [ 1o

which shows that giving V' the structure of a G-representation recovers its original H-module

lgK](h)
meas,,(K) odg.

structure. [ |

There is one more compatibility result that we need. Let L denote the left regular action of G
on H: that is,

(L(9) (@) = (9, D) (@) = fg~"x).

Lemma 9.3.4. Consider H as a nondegenerate H-module by left multiplication. This action is
the same as that induced by the left regular action L of G on H.: that is, for all f,h € H, we
have L(f)h = f % h. Conversely, left multiplication in H induces the left regular action of G on
H.

Proof. By Lemma 9.3.3, it suffices to prove the first statement. Let f,h € C°(G) and x € G.
We have
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9.4. Some equivalences. Fix a compact open subgroup K of GG, and let e = ex. As C-algebras,
we have C.(G//K) = eHe, where H = C2°(G). The algebra eHe is actually a ring with unit:
the element e is a two-sided identity. We say that an eHe-module W is unital provided that
e-w=wforallw e W.

We treat H as a right eHe-module. Since H = He & H(1 — e), we have that, as (right)
eHe-modules, He is a direct summand of H. It follows that for any unital eHe-module W, we
have

(6) H ®6’He W = HG ®e’He W

as a left {-module.

We define Irr(e?e) to be the set of equivalence classes of simple unital eHe-modules, Irr ()
to be the set of equivalence classes of irreducible nondegenerate H-modules, and Irr(H )€ to be
the subset of Irr(#) consisting of V' such that el # 0.

Definition 9.4.1. If V' is a nondegenerate 7-module, then we define the nondegenerate H-
module
Ve :=V/{v e VleHv = 0}.

Remark 9.4.2. V. is the largest quotient of V" having the property that every nonzero vector in V,
generates an H-module not annihilated by e.

Exercise 9.4.3. Let IV be a nondegenerate -module.
(1) Show that (V,). = V..
(2) Define a map ¢ : H Qe €V — V by p(h ® v) = h-v forv € eV. Show that
eH (ker ) = 0.
(3) Let V' be a nondegenerate 7-module, and let IV be a unital eHe-module. Show that
Vi eV and W — (H Q3 W) are adjoint functors. Explicitly,

Homy (H Qepe W, V') = Homgye (W, V) = Homeygy (W, €V).

Lemma 9.4.4. The map V +— eV gives a bijective correspondence between Irr(H )¢ and Irr(eHe).

In the opposite direction, we map W € Irr(eHe) to (H ®epie W)e.

Proof. First we show that if IV is a simple unital eHe-module, then there is a canonical isomor-
phism W = e(H ®cye W)e.. Indeed, from Equation (6) we have

B(H QeHe W)e = 6(7‘[6 ReHe W)e-
One checks that the maps
w—e®w and e(he ® w) — ehew

are well-defined inverse isomorphisms between W and e(He ®cye W)e.
We now show that if V' is a simple nondegenerate H-module for which eV # 0, then eV is a
simple eHe-module. Choose 0 # ev € eV. Since V is a simple 7-module, we have

(eHe)ev = (eH)ev = e(Hev) = eV.
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Since 0 # ewv was arbitrary, we conclude that eV is a simple eHe-module.

We now show that if W is a simple unital eHe-module, then (H ®cye W), is a simple H-
module. From above, we know that there is an element 0 # w' = ew’ € (H ®epe W)e. Since
(H @ere W)e)e = (H @epe W)e, we have

0+# eHw Ce(H Qepe W)e.

But from the first paragraph of the proof, this latter object is isomorphic to /. Since W is a
simple eHe-module, we conclude that

eHw' = (eHeH)w' = (eHe)eHw' = e(H Qepe W)e.

Thus,
Huw' = H(eHw') = He(H Qcpe W)e = (H Qepge W)e.

Since w’ was arbitrary, we conclude that (H ®.3, W) is irreducible.
Finally, we need to show that if V' is a simple nondegenerate #-module for which eV # 0,
then the natural map

h@evis he -v: (H QepeeV)e =V
is an isomorphism (it is well-defined by Exercise 9.4.3(2)). From the above paragraphs, we know

that (H ®¢pe €V)e is a simple H-module. Since the above map is nonzero, we conclude that it
is an isomorphism. |

Exercise 9.4.5. Generalize the previous lemma by proving that the functor from nondegenerate
‘H-modules to eHe-modules which sends V' — eV becomes an equivalence if we restrict to
modules with the property that HeV = V.

We let Irr(G) ™ denote the subset of Irr(G) consisting of those elements for which the space
of K-fixed vectors is nontrivial.

Corollary 9.4.6. The map V +— V& is a bijective correspondence between Irr(G)" and Irr(eHe).

Proof. The equivalence between 93((G) and the category of nondegenerate H-modules gives us a
natural correspondence between Irr(G) and Irr(#). Thus, the map V'~ VX induces a bijective

correspondence between Irr(G)% and Trr(#H)¢. The corollary now follows from Lemma 9.4.4.
]

9.5. The separation lemma. The goal of this subsection is to prove the following lemma.

Lemma 9.5.1 (Separation Lemma). Let h € H(G) be nonzero. There exists (7,V) € Irr(G)
such that w(h) # 0.

We will require the following result, which I believe is due to Jacobson [7].

Lemma 9.5.2. Let A be a C-algebra with unit of countable dimension. If a € A is not nilpotent,
then there exists a simple A-module M such that a - M # 0.
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Proof. Let 1 denote the unit of .A. Suppose that a ¢ C-1. We will show that there isa A € C* for
which a — A is not invertible. Then A/ A(a— \) is a nontrivial .A-module; since it is generated by
the image of 1, Zorn’s lemma guarantees us a simple quotient M (cf. the proof of Lemma 3.3.5).
We see that a does not kill M since any .A-submodule of A that contains a and A(a — \) is all
of A.

Suppose that a — \ is invertible for all A € C*. Since A has countable dimension, the elements
of {(a—pu)~! | p € C*} must be linearly dependent. Consequently, we can find a finite collection
of ¢; € C* and pu; € C* such that

Z ci(a — Mi)_l =0.

By multiplying through by the polynomial [[(a — p;) and factoring, we find that there exist
Aj € C*,nj € Z>1, and n € Z>( such that

a” H(a —\) =

Since a™ # 0, we conclude that some a — J; is a zero divisor of .4, contradicting the hypothesis
that it is invertible.

If a € C-1, then we only need to show that there exists a simple .A-module. As above, we can
construct a simple A-module by using Zorn’s Lemma to find a maximal proper .4-submodule of
A and taking the quotient. [

We can now prove the separation lemma.

Proof of Lemma 9.5.1. For f € H(G), define f* € H(G) by f*(g9) = f(g7'). A calculation
shows that (f = f*)* = f * f*.

Let h € H(G) be nonzero. Fix a compact open subgroup KX C G such that h € CC(G /I K).
Note that h* € C.(G//K). Define a = hxh*,s0a € C.(G//K) and a(e) = [ |h(g)|* dg, where
e € G is the identity. Since h # 0, we have a # 0. Therefore, since a = a*,

a>=axa=axa" € C°(G//K)

has a%(e) = [, |a(g)|” dg # 0. By induction, we have a®" # 0, (a®")* = a?", and a*" €
C(G//K) for all n € Z>,. Hence a is not nilpotent.
By Lemma 9.5.2, there exists a simple C.(G// K)-module V' upon which a, and thus h, acts
nontrivially. It follows that h acts nontrivially on the #-module V' = (H ®e¢ e, V')ex» Which
is simple by Lemma 9.4.4. |

10. SPLITTING REPRESENTATIONS

10.1. Splitting off finite representations. Most of the representation theory that follows can be
generalized in the following manner: replace “finite” with “square integrable” and replace R(G)
with 23(G), for a smooth unitary central character y. We choose not to present the material in
this level of generality because it greatly increases the typesetting demands and will not be used
in the sequel.

Fix a unimodular t.d.-group G and a finite, irreducible representation (7, V') € R(G).

We have already defined an action of G x G on H; we will also need:
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Definition 10.1.1. Let (o, W}), (02, W) € SR(G). Define an action of Gx G on Homg (W5, W)
by

((g1,92) - A)(w) = o (g1) A0 (g, w).
In particular, G x G acts on End(W) for (o, W) € R(G).

Remark 10.1.2. Let (o,W) € PR(G). A calculation shows that the algebra homomorphism
o : H — Endc (W) respects the above action of G x G on End¢(W).

Lemma 10.1.3. If (o1, W)), (09, W3) € R(G) are two admissible representations, then the map
7 Wy @¢c Wy — Home(Wy, Wa)®  givenby 7(w® \)(w') = A(w)w
is a (G x G))-module isomorphism.

Proof. One checks that 7 is a (G x G)-module homomorphism.
First we show that 7 is injective. Let

Zwi ® N €kerr, ie., Z)\i(w’) ~w; = 0 for all w’ € Wj.

Rewrite the sum ) |, w; ® A, so that the \; are linearly independent, and for each ¢, find w] € W,
such that \;(w}) = d;;. Then for each j,

By Remark 9.2.2, we have

Homg (Wy, Wy)> = U Homg (W, W) KXK.

K < G compact open

Thus, for a fixed compact open subgroup K of G, it is enough to show that 7 restricts to a
surjection

Wf@WII(—)Hom@(Wl,WQ)KXK.

For brevity, denote the above map by 7x; note that 7(W{ ® WlK ) is indeed contained in
Home (Wy, Wy) 5 <K One easily shows that Homg (W, Wo)5*X = Homc (W[, W), so since
W& @ WK and Home(W{, W) have the same (finite) dimension and 7 is injective, 7x is
surjective. |

Lemma 10.1.4. Let (7, V') € R(G) be finite and irreducible. The map
m: VeV —H givenby mv®@\) =deg(r) - .,
(G x G)-module injection.

Proof. Tt is immediate that m is a (G x G)-homomorphism. By Lemma 7.1.4, Corollary 5.2.4,
and Lemma 8.1.2, V ®c¢ V is an irreducible (G x G)-module. Hence, since m is not the zero
map, it is injective. |
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Lemma 10.1.5. The following diagram of (G x G)-modules commutes.

PR

V ®(C V —> EIld(C )OO

Remark 10.1.6. This shows that H surjects onto End¢ (V). In general, H has no unit, so Idy
is not a smooth vector of Endc(V). Indeed, Idy is smooth if and only if V' = VX for some
compact open subgroup K C G.

Proof. We have already verified that all of the maps are (G X G)-module homomorphisms. We
need to show that 7 = w om. Forv,w € V and A € V, we have

(mom(v@A))(w) = deg(n) - w(myo)w

= deg(m /mM g)wdg.

Thus for all ' € V, Schur orthogonality gives
N((mom(v® A))(w)) = N(A(w)v).
It follows that (m o m(v @ A\))(w) = A(w)v = 7(v @ A)(w). |

Lemma 10.1.7. Both ker(w) and m(V ®¢ V) are two-sided ideals in H, so there is a ring
isomorphism

H = ker(m) x m(V @¢ V).
Moreover, the composition mo 71 : Endc(V)* — H is a homomorphism of C-algebras which
respects the action of G x G.

Remark 10.1.8. Note that m, m, and 7 are algebra homomorphisms, where we give V' ®¢ Va
ring structure using the composition

VacVecVeeV oVeeCoeVEVeeV.

Proof. 1t is clear that the kernel of the ring homomorphism 7 is a two-sided ideal. Two calcula-
tions show that for any f € C°(G), v € V, A € V,and = € G, we have

(f o mx0)(2) = max(po()  and  (maw(@) * f) (@) = Mrer(p)0(2),
which shows that m(V ®¢ V) is a two-sided ideal in 7 as well.

Since 7 is an isomorphism, we have that H = ker(7w) & m(V ®c ‘7) as vector spaces. Since
ker() and m(V ®@¢ V) are two-sided ideals with trivial intersection, # = ker(m) x m(V @¢ V)
as rings (note IJ C I NJ =0).

The composition m o 77! is the algebra isomorphism Endc(V)® — m(V ®c¢ V) x {0}. It
respects the action of G x G since 7! and m do. [ |

Exercise 10.1.9. Prove directly that the composition m o 7! : End¢ (V) — H is a homomor-
phism of C-algebras (hint: use Schur orthogonality).
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Definition 10.1.10. Let ' C G be a compact open subgroup. Let ex = m(ex) € Ende(V)> be
the canonical projection onto VX, as defined in Subsection 3.1. Define €7, € H by
ef = (mo71 ') (ex).

Remark 10.1.11. Sometimes it is helpful to have an explicit realization of e7.. We have resg V' =
VE D (1 —ex)V and VE = Hom(VE, C). If vy, vy, ...,v, € VE is a basis of VF with dual
basis A1, A2, ..., \m € VX, then

ef = deg(m) - > it
j=1

Lemma 10.1.12. Ler (7,V') € R(G) be a finite irreducible representation, and let K < G be a
compact open subgroup. Then the following hold:

(1) ek is idempotent.
(2) If K" is a compact open subgroup of K, then €7, x ex = €}, and ek * €}, = €.
(3) For g € G we have ej. 1+ = (g,9) - €.

Proof. (1) This is immediate since €7 is the image of ex under the algebra homomorphism

TTLOT_107T.

(2) Let K’ < K be acompact open subgroup. As above, it suffices to show that 7 (e, xex ) =
m(ex * ef.,) = m(ef) Recalling Lemma 6.1.1, we calculate

m(eg xex) = m(e )m(ex) = exr o ex = e = m(ey)

(e x€f ) = m(eg)m(ef) = ex o exr = ex = w(ek).
(3) As above, it is enough to check that 7(e] ;- 1) = (g, 9) - m(€f). This is left to the reader.
|

Definition 10.1.13. For (o,W) € R(G), define e™: W — W as follows. Let w € W, and
choose a compact open subgroup K such that w € W Define

e"w = o(ef)w;
this is independent of the choice of K by Lemma 10.1.12 (2).

Note that €™ is the identity when W =V and 0 = 7.

Lemma 10.1.14. Let (7,V) € R(G) be a finite irreducible representation, and let (o, W) €
R(G). Then

(1) €™ € Endc(W) is idempotent, and

(2) €™ € Endg(W).

Proof. (1) Fix w € W and a compact open subgroup K of G such that w € WX. By
Lemma 10.1.12 (2), e"w € WX. We have
(e"oeMw = (o(ef) oo(ek))w = o(ef * el )w = o(ef)w = e w.

Thus €™ is idempotent.
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(2) Fix g € G. Without loss of generality, assume that w € VX N V959" We have

((9,9)-€Nw=10((g.9) - ef)w = (€], 1)w = €"w.

Consequently, for all g € G, we have o(g)e™ = e (g).
|

Lemma 10.1.15. Let (7, V') € R(G) be a finite irreducible representation. Let (o1, W), (09, W3) €
R(G) and f € Homg(Wy, Ws). Thene™ o f = oe.

In fancy language, Lemma 10.1.15 asserts that €™ is an element of the center of the category
R(G).
Proof. Fix w € W, and a compact open subgroup K such that w € W/, Then f(w) € W, so

Ble"w) = Bloi(ek)w) = o2(ef) B(w) = e"B(w).
|

Lemma 10.1.16. Let (7, V) € R(G) be a finite irreducible representation, and let (o, W) €
R(G). As G-modules, we have

W =W —1)W.
Moreover;, there exists an indexing set I such that
W =P, V)
I
as G-modules.

Proof. Only the final statement requires proof. It suffices to show that e is spanned by sub-
modules isomorphic to V' (cf. [9, XVII, §2]).

Letw € W, and find a compact open subgroup K of G such thatw € WX, so o(ef)w € e™W.
Since Hej C m(V ® \7) by Lemma 9.3.4 we can think of He% as a G-submodule of V' ® vV,
where the action of G on V @ V is given by ¢ - (v ® \) = (m(g)v) ® A, and the action of G on
He is the one induced by left multiplication. But V' ® Ve @ V as G-modules, so since Hel,
is a submodule, He}, = @@ V as well. The map

hxef — o(hxei)w: Hey — Hel - w

is then a G-homomorphism whose image, which is also isomorphic to a direct sum of copies of
V' (since it is a factor module of He7,), contains w. Since o (e} )w was an arbitrary element of
e™W, we are done. n

Lemma 10.1.17. The functor
e": R(G) = R(G)
defined by W +— e™W is exact.
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Proof. Tt is clear that e” is left-exact. Suppose that 5: (o1, W;) — (09, Ws) is a surjection of
smooth G-modules. For all wy € W), there exists a w; € W such that 5(w;) = €™w,, so

B(e™wy) = e"B(wy) = e"e"wy = e ws.
[ |

Lemma 10.1.18. Ler (7,V) € R(G) be a finite irreducible representation, and let (o, W) €
R(G). The following statements are equivalent:

(1) e": W — W is the zero map.

(2) W has no subquotient isomorphic to (w,V).

Proof. Suppose that e”: W — W is the zero map. Since €™ is exact, € is zero on every
submodule and (hence) every subquotient of I/. Since e™ is the identity on V', the representation
(7, V') cannot occur as a subquotient.

Now suppose that eV 2 {0}. In this case, Lemma 10.1.16 tells us that (7, V') occurs as a
direct summand of V. |

Corollary 10.1.19. Let (7, V) € R(G) be a finite irreducible representation, and let (o, W) €
R(G). Then
(1) e™W is the V -isotypic submodule of W,
(2) e™e™ = e™ e™ = 0 for all finite irreducible smooth representations (', V') not equivalent
toV, and
(3) (1 — e™)W is the unique G-complement to e™W .

Proof. The first two statements are immediate consequences of Lemma 10.1.16 and Lemma 10.1.18.
Suppose that 17’ is another G-complement to eI/, That is, we have

W=eWo(1l—e" )W and W=e"WaoW.

It will be enough to show that W' C (1 — e™)W. Since e” is exact, "W’ C e™W, so since
W' Nne™W = {0}, we have that "W’ = {0}. Thus for all w’ € W’ we have e"w’ = 0, so
w=(1—-e"w e (l—e")W. [ |

Corollary 10.1.20. Any finite irreducible (7,V) € R(G) is both projective and injective in
R(G).

Remark 10.1.21. Corollary 10.1.20 is a specific case of Lemmas 8.4.4 and 8.4.6.

Proof. Since Homg(V, W) = Homg(V,e™W), it follows from Lemma 10.1.16 that (7, V) is
projective. Since Homg (W, V') = Homg(e™W, V), it follows from Lemma 10.1.16 that (7, V')
is injective. L

Corollary 10.1.22. Any finite representation (o, W) € R(G) has a canonical decomposition
W - @ew

where the sum runs over the set of isomorphism classes of irreducible finite representations
(m, V) € R(G). Therefore, any finite smooth representation of G is semisimple.
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Remark 10.1.23. Corollary 10.1.22 is a generalization of Corollary 5.1.2.

Proof. Clearly the sum W' := @_e™W C W is direct. Consider the quotient representation
W/W'. Let (mw, V) be any irreducible finite smooth representation of GG. Since e” is exact and
e™W C W', we have that e™(WW/W') = 0. Thus W/W’ has no finite irreducible subquotient.
But since W is finite, so is any subquotient of W/W’, so W/W' must be zero. [

10.2. A consequence.

Definition 10.2.1. Let A be an abelian category with full subcategories A; indexed by 1. We say
that A = [ [, A; is a splitting of the category A provided that:

(1) each object V' of A has a unique decomposition
V=DV
I

where each V; € A;, and
(2) for V; € A; and V; € A;, we have Hom 4(V;,V;) = {0} when i # j.

The results of the previous subsection tell us that for any finite irreducible representation

(7, V) we can write
R(G) = R(G)(7) x R(G)(no-),
where R(G) () is the full subcategory of 93(G) whose objects are direct sums of copies of (7, V)
(i.e., an object in R(G) belongs to R(G) () provided that each of its irreducible subquotients is
equivalent to (7, V')), and R(G) (no- ) denotes the full subcategory of J3(G) consisting of those
representations for which no irreducible subquotient is equivalent to (7, V). Corollary 10.1.22
also shows that
R(G) = I RE)),
welrr(G)

where 93¢ (G) is the full subcategory of 93(G) consisting of the finite representations, and Irr ¢ (G)
is the subset of Irr(G) consisting of equivalence classes of finite representations.

We will soon show (Corollary 11.2.3) that when G is the group of k-points of a connected
reductive group defined over k, we have a splitting

RG) =Ry (G x [ REH@).
welry (G1)

Here R,,;(G) denotes the full subcategory of RR(G') consisting of those representations all of
whose nonzero subquotients are not finite.

10.3. Consequences for reductive groups. Let G be the group of k-rational points of a con-
nected reductive group.

Since G' is a normal subgroup of G, G acts on Irr(G') by g-o(h) = o(g ' hg) for o € Irr(G'),
g € G, and h € G'. Since this action factors through the finite group G/Z(G)G", the G-orbits
in Irr(G") are finite.

Let V € R(G), o € Irr(G'), and g € G. A standard calculation shows that 7(g) - V(o) =
V(g - o), where V(o) is the o-isotypic component of resg: V.
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Lemma 10.3.1. Let (71, V1), (m2, Va) € R(G) be irreducible supercuspidal representations.

(1) The elements of Irr(G') occurring in resg w1 form a single G-orbit.
(2) resg1 my is semisimple and of finite length.
(3) The following are equivalent.

(a) resg1 ™1 = resgt mo.

(b) There exists a x € X(G) such that m1 = 1 ® .

(c) Homga (71, m0) # {0}.

Proof. Since each (m;,V;) is supercuspidal, by Theorem 7.3.1 we have that resg: 7; is finite.
Corollary 10.1.22 gives us a decomposition

(7) resgr m; = @ Vi(o),

o€lrry(G1)
where V;(o) is the o-isotypic submodule in resg: V;.

(1) Since (my, V1) is irreducible, Equation (7) and the identity 7w(g) - V(o) = V(g - o) show
that the set of o such that V; (o) is nonzero must form a single G-orbit.

(2) Corollary 10.1.22 shows that res: m; is semisimple. Since every compact open subgroup
of G is contained in G', Corollary 7.3.5 gives that ress: m; 1s admissible; by (1) and
Lemma 5.1.6, resg: y is of finite length.

(3) Since every element of X (G) is trivial on G', we have that (3b) implies (3a). Since (3a)
implies (3c), it is enough to show that (3¢) implies (3b).

Suppose that (3c) is true. From (2) and Schur’s lemma, Homgi (V5, V7) is a finite-
dimensional complex vector space. We let G act on Homg1 (V3, V7) by

g-f=mlg)o fom(g)™"

forg € G and f € Home (Va,Vy). If g € Gl then g - f = f forall f € Homgi (Va, V1),
so the action of G on Homg (V5, V) factors through the lattice G/G*. Thus we have a
commuting family of invertible operators on a finite-dimensional complex vector space,
so by Exercise 10.3.2, there exist a nonzero eigenvector h € Homg:i(V3, V1) and a char-
acter x of G/G" such that

g-h=x(gh
for all g € G. By construction, h € Homg(m ® X, 1), so the two irreducible represen-
tations are equivalent since h # 0.

Exercise 10.3.2. Show that any commuting family of invertible operators on a finite-dimensional
complex vector space has a common nonzero eigenvector (use Exercises 2.1.8 and 3.3.6).

Definition 10.3.3. Define an equivalence relation on the irreducible supercuspidal representa-
tions of G by setting m ~ oy if 7 is equivalent to m ® x for some x € X(G). For an
irreducible supercuspidal representation 7 € PR(G), let [7] denote the equivalence class of 7
under the above relation.
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Let (7, V') be an irreducible supercuspidal representation of G. As above, we write

resgl ™= @ V(oy)
1

where V' (o;) denotes the o;-isotypic component of resg: 7, o; being an irreducible finite repre-
sentation of G'. Let W € R(G). As G'-modules, we have

resct W = e W @ e?W @ - - e W oW

where W’ = [[]"(1—e”)WW is the unique G*-complement to e” W @ e W & - - - D e’ W. Note
that 77/ can also be characterized as the unique G'-submodule of TV all of whose irreducible
subquotients are not equivalent to any of the o;.

Proposition 10.3.4. (1) The G'-submodule W' is G-invariant.
(2) For eachi and all g € G, we have 71(g) o e = el99) o 7(g).

Proof. (1) Letg € G. If (7, U) is an irreducible subquotient of W’ then g - 7 is an irreducible
subquotient of 7(¢g)WW’, so since {o; } is a G-orbit, there is no 7 such that g- 7 is equivalent
to o;. It follows that e?im(g)W’ = {0} for all i. By the uniqueness of W', then, we have
that w(g)W' = W',

(2) Letw € W, and write

w=w+ -+ wy, +uw,

where w; € e”W and w' € W’'. Fixi € {1,---,m}. Let g € G, and suppose that
g-o0;, = O'j, SO

m(g)e”m(g~ Yw = m(g)m(g~ w; = w; = e”w

since (g w; € V(o;) and w(g~H)w' € W'.

By Proposition 10.3.4, the map
e’ ::Ze‘”: W —=Ww
1
is a G-endomorphism. Since e”ie? = 0 for ¢ # j, we have that ™ is idempotent. Thus we have
a decomposition W = "W & (1 — e™)W as G-representations. As before, this shows that
R(G) = R(G)™ x R(G)(no-[n])

where 93(G)™ consists of those representations in 93(G) all of whose irreducible subquotients
are elements of [7] and 2R(G)(no-[r]) consists of those representations in PR(G) all of whose
irreducible subquotients do not belong to [].
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11. SPLITTING R(G), 11

In this section, GG is again the group of k-points of a connected reductive algebraic group
defined over k.

11.1. An application of Bernstein’s uniform admissibility theorem to finite irreducible rep-
resentations.

Corollary 11.1.1. Let K C G* C G be a compact open subgroup of G. There exists a compact
open subset S = S(K) of G such that for all (o,V) € Irr;(G") and all v € V, the support of
the function px., : G* — V given by

Prw(9) = exo(g)exv

is contained in S.

Proof. If K' C K is another compact open subgroup then the identity exex = exrex = ey
allows one to show that supp(pk.,) C supp(pkr,) - K. Thus it is enough to show that the
corollary is valid for a normal compact open subgroup /K of K| that has an Iwahori decompo-
sition with respect to Py = MyNy. By Corollary ??, we can choose an N = N(K) such that
dimc(VE) < N forall (0,V) € Irry(G1).

Fix a representation (o, V) € Irr;(G'). We first show that forallt € Tt NG and allv € V
we have e o (t)egv = 0. This is obvious if VE = exV = {0}, so we may assume that V¥ is
nonzero. Fix a nonzero v € VX, so px,(g) = exo(g)v forall g € G*. Let A € Home(VE, C),
so since (o, V') is finite,

Ao (g)v) = (exA)(o(g)v) = Aexa(g)v) =0

for all ¢ € G outside some compact set. Since dimc(Home(VE, C)) < N, there exists an
N’ € Zs; such that exa(t™N'"D)v # 0 and exo(tY )v = 0. We want N’ < N. It suffices to
prove that the elements of the set

{exo(t)v|0<i< N' —1}

are linearly independent. Indeed, let co, ¢y, . .., ¢(n7—1) € C such that
N'—1
0= Z ¢i-olext'er)v
i=0

By Lemma ??, we have that forall 1 < 7 < N/ —1,

N'—1 N'—1
0 = o(extex)’ Z ci-olextlex)v = Z Cli olext'ex)v.
This implies that cg = ¢; = - -+ = ¢vr—1) = 0.

Identifying 7" N G' with ZZZO for some ¢, let Sy C T N G* be the finite set

SN:{(al,CZQ,...,CLg) EZé0|a1,a2,...,ag§N}7
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and for 1 < j < (lett; € Sy be the jth unit coordinate (0,...,1,...,0). Lett € (TTNG') ~
Sn, so there is some 1 < 7 < ¢ such that ¢ - tg-_N) e Tt NG'. Forall v € V we have

(=)
j
Thus supp(px.,) N (TTNG') C Sy forallv € V.

In general, forg € G', wecanfind w € w,t € TT NG, and ky, ky € K such that exgex =
exkiwtkqer. Since ki, ko, and w normalize K, they commute with ey, so o(exger) = 0 (that
is, o(exgex) : V — V is the zero map) if and only if o(extex) = 0. Consequently, for all
v € V, the support of the map

olextex)v = o(extt; ex)o(extyex)v =0.

g — o(exger)v
is contained in .S = KowSy K. |

Corollary 11.1.2. Let K be a compact open subgroup of G. There exist only a finite number of
inequivalent finite irreducible representations of G* with K -fixed vectors.

Proof. Let S = S(K) be the compact open subset of G* given in Corollary 11.1.1. Let (7, V) €
Irr;(G') and choose nonzero v € VX and A € VK, soforall g € G,

maw(9) = A(m(g)v) = (exA)(m(g9)exv) = Aexm(g)exv)
and for all k1, ks € K,

Mo (ky ' gha) = (kiA)(m(gh2)v) = ma.(9)-

Thus m, » € C(S//K). Since C(S//K) is finite-dimensional and the matrix coefficients of in-
equivalent finite irreducible representations are linearly independent (Corollary 8.3.4), the corol-
lary follows. [

Corollary 11.1.3. Let K be a compact open subgroup of G. There are only finitely many equiv-
alence classes [rt] of irreducible supercuspidal representations of G with K -fixed vectors.

Proof. Since the equivalence class of an irreducible supercuspidal representation is determined
by its restriction to G, this follows from Corollary 11.1.2. |

Remark 11.1.4. Corollary 11.1.3 also holds for discrete series representations of G. That is, up
to twisting by an unramified character, there are only finitely many discrete series representations
of G with K-fixed vectors.

11.2. Further splitting the categories 3(G) and R(G").

Definition 11.2.1. Recall from Subsection 10.2 that 5R;(G") denotes the full subcategory of
R(G") consisting of the finite representations, and R,,;(G') denotes the full subcategory of
R(G') consisting of those representations all of whose irreducible subquotients are not finite.

Note that all of the irreducible subquotients of a finite representation are finite. Conversely, if
(o0, W) € R(G") is a representation whose irreducible subquotients are all finite, then clearly

w= € W

(m,V)elrr ¢ (G1)
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so (o, W) is finite.
Corollary 11.2.2. The category R(G") splits into
R(GY) = R (GY) x Ry (GH).

Proof. First note that for (7, V) € Irry(G') and (o, W) € R,,;(G"), we have Home: (V, W) =
Home: (W, V') = 0, so by Corollary 10.1.19, the same is true for any (7, V') € R(G').
Let (o, W) € R(G'). We need to show that there is a unique decomposition

W =W;® Wy,

where W; € R (G') and W,,; € R,,;(G") are subrepresentations of W.

Recall that for (m, V) € Irr;(G'), we have a projection map e™: W — W. If K is a compact
open subgroup of G that fixes w, then by definition, e™w = (e}, )w. Thus by Corollary 11.1.2,
e™w = 0 for all but finitely many 7. We may therefore define a G'-map e/ : W — W by

w —> Z e"w.

melrry (G1)

Since e™e™ = ( for inequivalent 71, m € Irr;(G), it follows that efel = el. Thus
W=eWao@l-e W

as G'-modules.
Since e"e/ = efe™ = €™ for (r,V) € Irr;(G'), we have

W = @ e"W.
(m,V)€lrr(G)

It follows that e/ TV is a maximal submodule of 1 whose irreducible subquotients are all finite.
As for (1 — e/ )W, since e™(1 — ef) = (e™ — e™e/) = €™ — €™ = 0 for all (1, V) € Irr;(G'), it
follows from Lemma 10.1.18 that (1 — e/)WW has no irreducible finite subquotient.

Lastly, we turn to the uniqueness of the decomposition. Suppose that there is another decom-
position

W=w,oW,,

for some subrepresentations W; € 9%;(G') and Wy ; € R,,;(G") of W. Since W} is finite, the
map el acts as the identity on W}; thus W]’c C Wy. On the other hand, el w 7 is zero: otherwise,
there would exist (7,V) € Trry(G") such that "W} . # 0, so by Lemma 10.1.18, W}, ; would
have an irreducible subquotient isomorphic to (7, V'), a contradiction. Thus W/ 7 C Wiy as well,
so the decomposition is unique. |

The fact that R ¢(G) splits (cf. Subsection 10.2) implies that R(G") splits even farther:
Corollary 11.2.3. The category R(G") splits into
NG =R (G x [ RG)(m).

welrry (GT)
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Definition 11.2.4. Let R..(G) denote the full subcategory of 2R((G) consisting of those repre-
sentations whose every irreducible subquotient is supercuspidal, and let 2R;,4(G) denote the full
subcategory of 2R(() consisting of those representations for which no irreducible subquotient is
supercuspidal. (This notation is motivated by Corollary 7.3.3.)

Corollary 11.2.5. The category R(G) splits into
R(G) = Re(G) x Rina(G).
Proof. Let V € R(G). Corollary 11.2.2 gives a unique decomposition
resgn V =V ® Vi

where V; € R;(G') and V,,; € R, ;(G"). Since this decomposition is unique, G stabilizes V;
and V,,r,s0V = V; @V, as G-modules. By Theorem 7.3.1, an irreducible representation of G'is
supercuspidal if and only if its restriction to G is finite, so V; € R..(G) and V;,; € Ripa(G). M

Corollary 11.2.6. The category R(G) splits into
R(G) =Rua(@) x [ RGO

m€lrrse(G)/~

Here Ity (G) is the set of isomorphism classes of irreducible supercuspidal representations of
(. Recall that for two irreducible supercuspidal representations 7y, mo of G we write m; ~ 7o
if there exists a x € X(G) such that 7 is equivalent to m ® ¥, and that we write [r] for the
equivalence class of m € Irry.(G).

Proof. By Corollary 11.2.5, it is enough to show
R(G)= [ RO
m€lrrse(G)/~
Let V € Ry (G). Write
resg, V = @ V)
(o)€lirs(GY) /G

where the sum is over G-orbits in Irr;(G*) and V(%) denotes the direct summand of resg: V
whose irreducible G'-subquotients all belong to the orbit (). The G-representation V(7 is
supercuspidal, and from Lemma 10.3.1 any two irreducible G-subquotients in V(?) are equivalent
with respect to ~.

Corollary 11.2.3 shows that if V € R(G)™ and W € R(G)™! where m; % 7y then
Homg(V, W) = Homg (W, V) = 0. |

12. A THEOREM OF HOWE

In this section, G is again the k-points of a connected reductive algebraic group defined over
k. Our goal is to prove the following result, due to Howe.

Theorem 12.0.7. If (7, V) € R(G), then 7 is finitely generated and admissible if and only if ©
has finite length.
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We need some preparation before we can prove the theorem.

Lemma 12.0.8. Let P be a standard parabolic subgroup of G with a Levi decomposition P =
MN, and let K be a normal subgroup of Ky. If (7,V) € R(G) is generated by its K-fixed
vectors, then Vy is generated by its (K N M)-fixed vectors.

Proof. Since G = PKj and K is a normal subgroup of K, we have that V' is spanned over C by
{m(p)v|v € VX and p € P}.
Therefore, Vyy is spanned over C by
{(r(p)v)n |v € VE and p € P}.

Writing p = mn for m € M and n € N, we have (7(p)v)y = 7n(m)(vy). Moreover, if
v € VE then vy € (Vy)X™M, The lemma follows. [ |

Lemma 12.0.9. Let K C G be a compact open subgroup, and let (7,V') € R(G) be a represen-
tation that has a subquotient which has nonzero K-fixed vectors. Then V has nonzero K-fixed
vectors.

Proof. Let W, C W C V be G-submodules such that (/W)X # {0}. By Lemma 5.2.1, the
sequence

0— WK —Wr¥ — Ww/w)X —o0

is exact, so WX C V¥ is nonzero. [ |

Lemma 12.0.10. Let K be a normal compact open subgroup of Ky that has an Iwahori fac-
torization with respect to all standard parabolic subgroups of G. Let (m,V) € R(G). If VE
generates V', then every supercuspidal subquotient of V' has nonzero K -fixed vectors.

Proof. Firstlet (7', V') be an irreducible supercuspidal subquotient of (7, V). In this case, Corol-
lary 11.2.6 gives us a decomposition

vV =yl ® 1/no-[]

as G-representations, where T := VI™'l € /(G)"' is nonzero. Since V' is generated by its K -
fixed vectors, 1 is generated by its K -fixed vectors, so W # {0}. Write resgi 7' = @ V'(0;),
where the sum runs over a simple G-orbit of finite irreducible representations o; of G, and
V'(0;) is isomorphic to a direct sum of copies of ;. We can also write W = @ W (o;) as G*-
modules, with the sum running over the same set of ;; since K C G*, this shows that some o;
has K-fixed vectors. Thus V'’ has K-fixed vectors.

Now let (o, W) be any supercuspidal subquotient of (7, V). Any irreducible subquotient 7’
of W is an irreducible supercuspidal subquotient of (7, V"), so 7’ has nonzero K-fixed vectors.
Thus ¢ has nonzero K-fixed vectors by Lemma 12.0.9. |

Corollary 12.0.11. Let K and (7,V') be as in Lemma 12.0.10. If VX generates V, then every
subquotient of V' has nonzero K -fixed vectors.
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Proof. First let (7', V') be an irreducible subquotient of (7, V). If 7’ is supercuspidal then it
has nonzero K -fixed vectors by Lemma 12.0.10, so we may assume that 7’ is not supercuspidal.
Choose a standard parabolic P with Levi decomposition P = M N for which 7y is supercus-
pidal. From Lemma 12.0.8 we have that V}y is generated by its (K N M)-fixed vectors. Since
V}; is a subquotient of Vi, it follows from Lemma 12.0.10 (as applied to the group M and the
compact open subgroup K N M < Ky N M) that (V) E"M) js nonzero. By Jacquet’s Lemma
(Theorem 6.3.2), we have that (V')% surjects onto (V)X™ so V has nonzero K -fixed vectors.

Any subquotient (o, W) of (7, V') has an irreducible subquotient which is either supercuspidal
or not supercuspidal. In either case, Lemmas 12.0.9 and 12.0.10 and the above imply that 11 has
nonzero K -fixed vectors. u

Corollary 12.0.12. Let K be a normal compact open subgroup of K, that has an Iwahori fac-
torization with respect to all standard parabolic subgroups of G. Let (m,V) € R(G). If VE
generates V', then every submodule of V' is generated by its K -fixed vectors.

Proof. Let W be a submodule of V, and let W’ be the submodule of W generated by W5, We
need to show that W/ = W. Since WX = W'K and taking K-fixed vectors is exact, every
subquotient of /W’ has no nonzero K-fixed vectors. Since every subquotient of W/W' is a
subquotient of V, it follows from Corollary 12.0.11 that W = W". |

Proof of Theorem 12.0.7. “=-": Suppose that V' is generated by vy, vs,...,v,.. There exists a
compact open normal subgroup K of K admitting an Iwahori factorization with respect to all
standard parabolics such that v; € V¥ for all 7. That is, V is generated by V. Since V is
admissible, the dimension of V¥ is finite.

Let

(}=VoGgVigWhG V=V

be any proper filtration of V. From Corollary 12.0.12, we must have that V;* C V. forall i < j.
Consequently, s < dime(VE) < oo, so the length of V' is at most dime (V).

“«<": This is true by Exercises 5.2.2 and 5.1.10 and Corollary 7.3.5. |

13. THE BERNSTEIN CENTER FOR CUSPIDAL COMPONENTS

In this section, G is again the k-points of a connected reductive algebraic group defined over
k. Fix an irreducible, supercuspidal (7, V) € 9R(G) and a finite, irreducible (o, W) € R(G")
occurring in resg: 7. In this section, we shall describe both the set Irr(93(G)™) of equivalence
classes of simple objects in 93(G)!™ and the center of the category R(G)[™, defined as follows.

Definition 13.0.13. Let A be a category. We define the center 3(A) of A to be the collection
End(Id4) = Hom(Id 4,1d 4) (cf. Definition 2.5.1). That is, an element z of 3(.A) is a rule which
associates to each object V€ A amap zy : V — V such that for any two objects V;,V, € A
and any morphism f : V; — V5, we have zy, o f = f o zy,.

Example 13.0.14. Let G be a unimodular t.d.-group and let (7, V') € 9R(G) be a finite irreducible

representation. Then by Lemma 10.1.15, the natural transformation e™ : W — W is in the center
of R(G).
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Remark 13.0.15. When A is an abelian category and 3(.A) is a set, 3(.A) is a commutative ring
with unit. (I am not sure under what conditions 3(.A) is a set.)

Exercise 13.0.16. Let R be a (not necessarily commutative) ring with identity, and let A be the
category of R-modules. Show that 3(.4) is isomorphic to the center of R as rings. (The center of
R is the subring of all elements € R such that rs = sr forall s € R.)

13.1. A first categorical equivalence. Recall that G acts on R(G*) by
g-o' =0 olnt(g™")
for (o/,W') € R(G") and g € G, where Int(g~') : G — G is conjugation by g~
Definition 13.1.1.
G, :={9 € G|g- o isequivalent to o}.

Remark 13.1.2. Since G'Z(G) < G, < G and G/G'Z(@) is finite and abelian, G, is a normal
subgroup of G and G/, is finite and abelian.

Definition 13.1.3. We let R(G,)? denote the full subcategory of PR(G,) consisting of those
representations I for which resg: W is o-isotypic.

Remark 13.1.4. Since the map

fe Y flgh): resgi(cIndizo) — P (g0 W)
geG, /Gt G€Gs/GH

is an isomorphism, it follows that c—Indgi’ o€ R(G,)°.
Lemma 13.1.5. The functors
(1,U) — Indg (1) : R(G,)” — R(G)
and
(7', V') — (resq, ©',e7 V') : R(G)™ — R(G,)
define an equivalence of categories.
Proof. Denote the above functors by « and (3, respectively.

First we show that § o « is naturally isomorphic to the identity. Let (7,U) € R(G,)’, so
Boa(U)= e resg Indgo U. The map

f— Z f(g™h) : resq, Indgg U— @ (g-7,0)
9€G/Gs 9eG/Gs

is an isomorphism of G,-modules, so f — f(1) is a natural isomorphism e res¢, Indga U=
(1,U).

We now show that o o 3 is naturally isomorphic to the identity. Let (7', V') € R(G)[". By
Frobenius reciprocity, the map

e? € Homg, (resg, V', e’V’) definesamap E° € Homg(V’,Indg e”V")
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given by

,1.0_)

E”(v)(9) = ¢” (7' (g)v) = 7'(g) -
Since /(g7 1)(eWV') = V', the map v +— E7(v)(g~") restricts to an isomorphism e(9?) 1/’ =

.

(g-(e?7"),e?V’) for all g € G. This combined with the decomposition

resg, V' = @ eIV’
9eG/Gs

and the above identification of resg, Indga e?V' with @y 6, (9 - (e77'),e7V’) show that £7
is a (natural) isomorphism. [

Remark 13.1.6. Since R(G)[™ is naturally equivalent to R(G,)?, the centers 3(9R(G)™) and
3(MR(G,)?) are naturally isomorphic as C-algebras. If we denote the map between centers by
z + 27, then unwinding the definitions in Lemma 13.1.5, we find that 2, (u) = (21,46 (fu))(1),

where f, € Indga U is defined by
a(g)u ifge G,
fulg) = .
0 ifg € G,.

Also note that for all ¢ € X(G) we have 2%, o,y = € Zrgy = 2(T @ ¢) - Ideo (rgy) Where
z(m ® 1) € Cis the scalar by which z acts on 7 ® 1.

13.2. A second categorical equivalence. Unfortunately, it is not true (in general) that there
exists a representation of G, whose restriction to G' is . However, there is always a projective
representation G, — PGL(W) lifting the projectivization of o (that is, the composition of o :
G' — GL(W) with the projection GL(W) — PGL(W)), as follows: by definition, g~! -0 = o
when g € G,, so there is a P(g) € GL(W) such that

g~ o= "PlgaPg)

by Schur’s lemma, the operator P(g) is determined up to an element of C*, so its image in
PGL(W) is well-defined. We therefore have a homomorphism P : G, — PGL(W) which
extends the projectivization of o (recall that g - o is defined to be o o Int(¢g~')). There may not
exist a way to normalize P(g) so that P(hg) = P(h)P(g) in GL(W) for all h, g € G,, since P
would extend o to (5, in that case.

Definition 13.2.1. Define a subgroup G, of Gy x GL(W) by
Gy :={(g9.P)|g € G,and P € GL(W) such that g' - 0 = PoP~'}.
We do not endow CNJU with a topology.
Remark 13.2.2. (1) The group G, is a central extension
15 C* =Gy =Gy — 1

of G, by C*, where the first map is z — (1, z) and the second is projection onto the first
factor.
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(2) The map
g1 (g1,0(q1)) : G'— éo‘

is an embedding of G' into éa. It follows that the representation (o, W) of éa given by
W =W and (g, P)w = Puw is an extension of o, so it is irreducible.

Definition 13.2.3. Let B be the category of representations of G, on which G* — G, acts

trivially and each z € C* < G, acts by 21,

Lemma 13.2.4. The categories B and R(G,,)? are equivalent.

Proof. This is a glorified version of the standard result that the category of C-vector spaces
is equivalent to the category whose objects are the (o, 1W)-isotypic semisimple representations
of G*; this equivalence is realized by the functors V + V @ W (V a C-vector space) and
W' +— Homg: (W, W’) (W’ a representation of G1).
Define a functor a: B — R(G,)? by (7, U) = (r, W ®¢ U), where
7(9,)(w @ u) := Pw ® 7(g,, P)u

for any element (g,, P) € C~¥J in the fiber of g,. Since any other element in the fiber of g, has the
form (g, 2P) for some z € C*, the representation 7 is well-defined. Finally, for any g; € G!
we have

T(g1)(w @ u) = o(g1)w @ 7(g1,0(q1))u = o(g1)w @ u,

so our construction indeed yields an object in R(G, ).
In the opposite direction, define a functor 3: (G, ) — B by

B(r,U) = (7, Home: (W, 1)),
where, for f € Home: (W, U), we define
(7(9o, P) )@ = 7(90) f(P~ @)
for (g,, P) € G,. To verify that this construction generates an object of 3, we note that
(F(L,2)f)(@) = T()f(=7'D) = 27" f(@)
for = € C* and
(791, 0(g)) ) (@) = 7(g91) f(o(g1)~'@) = f(o(g1)o(g1)" @) = f(@)

for g; € G' and (g,, P) € G,.
It is left to the reader to verify that o o 3 and § o « are naturally isomorphic to the identity
functors. |

Remark 13.2.5. A representation (7/,V’) € R(G)I™ corresponds to Homgl(W, e’V') € B
under the equivalences of categories given in Lemma 13.1.5 and the proof of Lemma 13.2.4.
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Remark 13.2.6. Since R(G,,)7 is equivalent to B, 3(9R(G,)?) is naturally isomorphic to 3(B) as
a C-algebra. If we denote the map between centers by z° + 25, then for all @ € W we have

~ Bi~\ _ o ~ ~
W ® 25 (4) = zw®ﬁ(w ®U).
Also note that for all ¢ € X(G) we have
B pr— . P —
ZHomcl (Wﬂ”(ﬂ'@’d))) T Z(ﬂ— ® 1/)) IdHomcl(W,eU(mg)w))

where z — 27 — 2B,

13.3. An algebraic structure for Irr(93(G)[™). As noted above, we have a central extension
1—>CX—>C~}J—>GU—>1.
which gives us a central extension
1o C* = Gy/G' = G, /GY — 1.

Let MJ = ég /G, so the category B can be described as the category of Ma—modules on which

each z € C* acts by 2~ 1.

Lemma 13.3.1. [f (7, XN/) is an irreducible representation of Mg on which z € C — Ma acts by
271, then the natural map

C— EndMU (V)

is an isomorphism.

Proof. By Remark 2.1.6, it suffices to show that the dimension of V is countable. Let 7 € V

be nonzero, so {7(m)v : m € M,} spans V. Since C* < M, acts by scalars and since
M,/C* = G,/G" is countable, the result follows. |

Let C be the center of MU, so by Lemma 13.3.1, C acts by a character on any irreducible
representation of M, in the category B. Let pry : M, — G, /G be the projection map, and let
M :=G/G' M, = G,/G", and C := pr,(C). Then we have

Z(G)G'/G' < C <M, <M,
so M,/C = M, /C is finite and abelian.

Lemma 13.3.2. For every homomorphism x : C — CX for which x(z) = 27! for all z € C*,
there exists a unique irreducible representation of M, having (nontrivial) central character .

Proof. Consider the central extension
1—>5—>]T4/0—>]T/[/U/5—>1.

As Ma / C is finite and abelian, from Section 3.5.1 it is enough to show that the bimultiplicative
form

() M, /C x M,/C = C givenby (7, 7m3) = x((m1,ms)) = X(mmamy 'm3")
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is nondegenerate. Let (g;, P;) € G, be a lift of m; for i = 1,2. Since the derived group of GG is a
subgroup of G, we have (g1, g2) € G, so since

o((91.92) -0 -0((91.92)) 7" = (91,92) " - 0 = (Pr, P2)o(Pr, Po) 7,

we have (P1, P2) = 2(g1,92) - 0((g1, 92)) for some (g1, g2) € C*. Thus (m1,m2) = 2(g1, g2) €
C* — M,, so (my,ms) = 2(g1, g2)""; in particular, z(g;, go) does not depend on the choice of
lifts of ™y and my. If (g1, P1) € G, has the property that 2(g1,92) = 1 for all (g9, P) € G,
then the commutator ((g1, P1), (927 P)) in G, is contained in the image of G2, so the image of
(g1, P1) in M, is contained in C. This shows that (-, -} is nondegenerate. [ ]

Corollary 13.3.3. Ler ¢,¢)' € X(G). The representation m @ 1 is equivalent to T @ ' if and
only if resc ¢ = resc .

Proof. Let x and x’ be the central characters of the irreducible representations
Home: (W, ¢’ (7 ® 1)) and Home: (W, €7 (7 @ ¢'))

of M, respectively. It is clear that if (g, P) € G, is a lift of an element of C' then / (9, P) =
x(g, P) - ¥(g)"*'(g), so x = ¥ if and only if resc 1) = resc ¢’. The result now follows from
Lemmas 13.1.5, 13.2.4, and 13.3.2 (and cf. Remark 13.2.5). [ ]

Since M /C' is finite, the group

F:={¢y € X(GQ)| resc ¢ = 1}
is finite. Let T denote the C-torus for which T(C) = Hom(M,C*) = X(G). Explicitly, since
M = 7™ is a lattice, Hom(M, C*) = (C*)", so T = (G,,,)" = Spec(C[Ty, T} ', ..., T, T;1]).
Corollary 13.3.3 shows that Irr(93(G)[™) is a principal homogeneous space for the torus (T /F)(C) =
X(@)/F = Hom(C,C*) (recall that C' > Z(G)G*/G" is a full-rank sublattice of the lattice M).

In this way, we endow Irr(9%(G)[™) with the structure of a complex algebraic variety.
13.4. A realization of 3(93(G)[™). Here we present a description of the center of %(G)[".

Lemma 13.4.1. The map
2 ("= z(r))
identifies 3(R(G) ™) with the C-algebra of regular functions on the algebraic variety Irr (R(G) ™).

Proof. We know that 3(9‘{(G)[“]) is natural isomorphic to 3(B) as a C-algebra, so we begin by
studying 3(B). Let C[C* — M, »] denote the group algebra of M,, with z € C* < M, identified
with 271 € C. Thus the category B is naturally equivalent to the category of C[C* — MU]—
modules. As C[C* < M,] has a unit element, by Exercise 13.0.16, 3(1) is naturally isomorphic
as a C-algebra to the center of C[C* — M. »], which is C[C* < C].

The natural surjection C' — C has kernel C* < C, so it induces an isomorphism

C[C* — C] — C[C]

of C-algebras, where C[C] is the group algebra of C. As C[C] is the ring of regular functions
on T/F, each element of C[C] is completely determined by its values on (T/F)(C). Since
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Irr(R(G)) is a principal homogeneous space for (T/F)(C), by Remarks 13.1.6 and 13.2.6,
the map 2z + (¢ +— z(m ® 1)) identifies 3(9(G)™) with the ring of regular functions on
Irr(R(G)I).

|
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Warning: What follows has not been edited or read seriously.

13.5. The B-Schur lemma and progenerators. Put B := C[G/G"], the ring of regular func-
tions on X(G). We define the universal character xu,: G/G* — B by xu(g9) = b, where
by(x) = x(g) for x € X(G). However, it is perhaps better to think of y,, as the regular repre-
sentation, that is, as a map from G/G" to End(B) where xua(g)b = bb,.

We put Vg := V ®¢ B. This is a (G, B)-module. The action of G is given by 75 = T & Yun:

m5(g9)(v ® b) = w(g)v @ bb,.

The action of B on Vj is given by translation: b'(v ® b) = b ® b'b. Note that if K is a compact
open subgroup of G, then VX is the free B-module V¥ @ B.
For ¢ € X(G) we have the G-module morphism

SPy; - (WBaV(X)B) - (7T®¢,V)
which sends v ® b to b(1))v. The kernel of this map is m,, V3 where m,, is the maximal ideal

{be B: b(v) =0}
in B.

Lemma 13.5.1. If T € End(p)(Vs), then there exists by € B such that T acts on Vi by
multiplication by br.

Proof. Since sp,, is a G-map, 7" induces a G-morphism Tyy: (7@, V) = (@1, V). AsT R
is irreducible, from Schur’s lemma we have that 7}, is a scalar multiple of Idy .

Fix a compact open subgroup K of (G. Since 7' commutes with the action of G, we have a
map

TK):VEeB—-VE®B

which can be represented by a square matrix with entries in B.

However, for all 1 € X(G), we have T, (K): VX — V& is given by scalar multiplication.
As B is the ring of regular functions on X(G), we conclude that there is a b € B so that T'(K)
is scalar multipliciation by b. By varying /i, the lemma follows. |

Lemma 13.5.2. The representation (73, V) € R(G)™ is a progenerator for R(G)™.

An object IT € R(G)™ is called a progenerator provided that II is projective and finitely
generated and every object in 93(G)!™ occurs as a quotient of a direct sum of copies of II.

Proof. After fixing a set of representatives for G /G' we have
7 ® C[G/GY] = c-Ind& (resg )

under the G-equivariant map f — > ¢ /1 f(9) ® g.
Set II := C—Indgl (resgi 7). Since resg: 7 has finite length, IT is finitely generated. We now
show that II is projective, that is,
X — Homg(I1, X)
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is exact on 93(G)™). Note that
Homg (11, X ) = Home (X, 1)

— Homg (X, c-Ind&, resg )

= Homgi (resg X, rescr )

= Homgu (resgr m, resgr X).
As resgr X is semisimple for every object in 93(G)™, we have that IT is projective.

Finally, to see that II is a generator, it is enough to show that given X & %(G)[”], there is

a nonzero map from II to X. Let X’ C X be a finitely generated G-subspace of X. Any
irreducible subquotient of X’ looks like 7 ® ¢ for some ¢» € X(G). Since II is projective and

spy I = m ® 1), we conclude that there is a nonzero map from IT to X’. Thus Homg(II, X) is
nonzero. [ |

14. CASSELMAN’S PERFECT PAIRING

14.1. Renormalization. We have discussed the material in this subsection, but the details of the
proof have not yet coalesced — essentially, you need a right invariant measure on P ~. G to make
this all work.

We re-normalize induction and Jacqueting as follows. If P = M N is a parabolic subgroup of
G and 0 € R(M) while T € R(G), then

i% = Ind$ 5113/20
and

rém = (5;1/27TN.
We have a “new” version of Frobenius reciprocity:

Homg (7, i%0) = Homy, (rGm, o).

It is also true that

(i5(0)] = i3(5).
14.2. Statement of the result. Suppose © C A. Weset P = Py, M = My, N = Ny, and
Ty =Ty For all ¢ > 0 we set

Ti(e)={teT, | |a(t) <e forall a € A\ 6}.

Let P = M N denote the parabolic subgroup opposite P = M N.

Example 14.2.1. For example, for GL,, (k) and P = M N corresponding to the partition (nq, na, . . ., 7y)
of n, an element of T} (¢) looks like

ko ko ko1

: k1 k1 ke_1
diag(w™, ..., @, @™, . .., w2, ., w L w W v
g g N g

v~ v~ v~ N
ni n2 ng—1 nye

with (k; — k1) > —log,(¢) for 1 <7 < (£ —1).

’w,” ke)
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Theorem 14.2.2 (Casselman’s perfect pairing). Suppose (7,V') € R(G) is admissible. There
exists a unique M-invariant nondegenerate bilinear pairing { , Y p on rGV x r%V satisfying the
following condition:

Forall (v,\) € V x V there exists an e > 0 such that for all t € Ty () we have
(rE(0jr(v), jp (V) e = 85"(1) - M (t)o).
Here jp: V. — Vi is the quotient map.
Before beginning the proof of this theorem, we prove some straightforward consequences.
Corollary 14.2.3. Suppose (7,V') € R(G) is admissible. We have
(revy = 7"}@,17.

Proof. Since V is admissible, both 7$V and V are admissible. Consequently, both (r$V )~ and
rGV are admissible.

Since (, )p is nondegenerate and M -invariant, for each compact open subgroup K of M the
M -equivariant map

p=r (w = (w, ) p)

from rg\7 to Hom(r§V, C) induces an injective map from (7‘%‘7)[{ to Hom((r&V)¥, C). How-
ever, since (r$V ) and TgV are admissible, the induced map must be surjective. Moreover, the
fact that they are admissible also tells us that

Hom((rgV)",C) = ((rgV )",
Since K was arbitrary, the result follows. [ |

Corollary 14.2.4. Suppose (o, W) € R(M) and (7,V') € R(G) are admissible representations.
We have

Homg (i%0, V) = Homy, (0, r4V).

Proof. Since (m, V) and (o, W) are both admissible, we have V = V and W = W. Thus

Homyy (o, 75V) = Homy, ((rGV),5)
= Homy, (r$V,5)
= Homg(V, i%5)
= Home(V, (ifo))

= Homg(i%0, V).
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14.2.1. A proof of uniqueness. Let S denote the set of C-valued sequences on Z>,. We define
the translation operator
T:S—S§

by (T's)(n) = s(n+ 1) forn € Z>pand s € S.

Definition 14.2.5. A sequence s € S is called T-finite provided that
Ss = (T™s|m € Zx)

is finite dimensional.

If s € S is T-finite, then there exists a finite indexing set [ and (a;, d;) € C X Z>( indexed by
1 € I so that

Ss = @ ker(ress, (T — a;)™).
T

In other words, S; is a direct sum of generalized eigenspaces for the action of 7" on S;.

Example 14.2.6. If « € C and d = 1, then s = (a,a? a® a*,...) is an element of the one-
dimensional generalized eigenspace ker(7" — a).

Exercise 14.2.7. Show that an element s of the generalized eigenspace ker(T — a)? can be
characterized as follows. If a = 0, then s(n) = 0 for all n > d. If a # 0, then s(n) = p(n) - a”,
where p is a polynomial of degree less than d.
If s € S is T-finite, then we can write
s =59+ s
where so(n) = 0 for all n sufficiently large and
Sn) = piln)-af
I
for a finite indexing set I. Here the p; are polynomials indexed by 7, and the a; € C* are indexed
by I.
Lemma 14.2.8. Fix (9, \) € 18V x r&V. Fort € Ty, the sequence
s(n) = (rg(t")o, \)p
is T-finite. Moreover, each generalized eigenvalue for the action of T on S is nonzero.
Proof. Fix a compact open subgroup K of M so that v is K-fixed. Since r$V is admissible,
the space (r§V)¥ is finite dimensional. Since ¢t € Ty, we have t is in the center of M and so
r&(t)v € (r$V)X — in fact, the action of 7§ (¢) on (r§V)¥ is invertible.
Consider the T-module map from (r§V )% to S which sends ¥’ to s where sy(n) is given by
(rSt™v’, \)p.

(Here T acts through ¢ on (r§V)%.) Since (r$V )X is finite dimensional, S; is finite dimensional.

Since r(t) acts invertibly on (r&V )X, the generalized eigenvalues for the action of 7" on S are

nonzero. n
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A proof of the uniqueness of the pairing. Suppose (, )’» is another M-invariant nondegenerate

pairing satisfying the condition of Theorem 14.2.2. Fix (v,\) € V X V. It will be enough to
show

<jP<U)7 jP/\>P - <jP(U)7 jP)\>/P
Since both pairings satisfy the condition of Theorem 14.2.2, there is an € > 0 such that for all
t € Ty (g) we have

(rE(®)ip(v), jpA) p = (rE()jp(v), ipA)p.
Fix t € T} (). For n € Zs define
s(n) == (rg(t")jp(v), jpA)p and s'(n) == (r5(t")jp(v), jpA)p-

By hypothesis, we have s(n) = s'(n) for all n > 0. We need to show that s(0) = s'(0).
From Lemma 14.2.8 we can write

s(n) =Y pin)aj and '(n) = pli(n)(ay)"

for a finite indexing set I (resp., I’), polynomials p; indexed by I (resp. p}, indexed by I’), and
a; € C* indexed by I (resp. a, € C* indexed by I’). Since s(n) = s'(n) for all n > 0, we
conclude that s(0) = s'(0). [ |

14.3. A proof of existence.

14.3.1. The map s%. Suppose K is a compact open subgroup of G which has an Iwahori factor-
ization with respect to P = M N. We begin by constructing a section s% : (r§V )5 — VK,

Definition 14.3.1. For ¢t € T, we define
oK = 5;1/2(15) -extek.

From Lemma ?? it follows that o * off = ©F, for t,t' € T,;. Moreover, for all v € VX we
have pfv € VK and

®) Jr() - v) =r5(t) - jp(v).
Indeed,
ir(ei - v) = 6p12(0) - Grlexter - )
since exv = v
= 65"2(t) - jplex+ex—exom(t)v)
since ¢ is in the center of M and jp is a P-module map
= 0p"%() - Gp(m(t)err-exo - v)
since’ K~ C K~ and epriv = v
=rg(t) - jp(v).

Lemma 14.3.2. There exists an € > 0 such that
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(1) forallt € Ty, () we have

VE Nker(jp) C ker(m(p;)),

KnM
)

(2) forall t € Ty, () we have jp maps oKV isomorphically onto (r§(V)) and

(3) forall t,t' € Ty,(e) we have oK VE = pEVE,

Proof. We begin by choosing . For all v € ker jp there exists a compact open subgroup N’ < N
so that eyrv = 0. Since V¥ is finite dimensional, we can find a compact open subgroup N’ < N
so that exvv = 0 for all v € VE Nker jp. Choose € > 0 so that for all ¢ € T};(¢) we have
IN'<KNN.

“(1)” Fix t € Ty;(¢). For v € VE Nker(jp), we have

oK v = 5};1/2(75) cexlex v
= 6, 2(t) - ex-m(t) - (€1 por - 0)
=0
since ' K+ > N’ if and only if K+ > tN'.
“(2)” Fix t € Ty;(g). We first show that jp: pEXVE — (r&(V))E™M is injective. Suppose
v € VX such that (jp o X )v = 0. We need to show that ¢ - v = 0. From Equation (8) we have
0=rz(t) jr(v).

This implies that jp(v) = 0. From Lemma 14.3.2 (1), we conclude that v € ker ().

We now show that jp: @XVE — (r§(V))E™M is surjective. Suppose w € (r&(V))5"M,

Since ¢ is in the center of M, we have r&(t)~1w € (r§(V))X™™ . Thanks to Jacquet’s Lemma

(Theorem 6.3.2), there exists a v; € VE so that jp(v;) = r4(t) " 1w. Put v = ¢Xv;. We have
v € i VE and jp(v) = jp(pfv) = w.
“(3)” Without loss of generality, ¢ < 1. Fix t,t' € T};(g). We have

V= ol on VE C o vE
and
oV =iV = ool VE C o VE.
Since tt' € T,;(¢), we conclude from Lemma 14.3.2 (2) that
pr VE = o Vi = pf V.
[ |

Definition 14.3.3. Suppose ¢ is chosen as in Lemma 14.3.2 and ¢ € T},(¢). We define SE :=
OB (VE) c VE and let sB : (r§V)5™ — SK denote the inverse to jp: SE — (r&(V))EMM,

Corollary 14.3.4. If K is a compact open subgroup of G which has an Iwahori factorization
with respect to P = M N, then

VE =S5 @ (VE nker(jp)).
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Proof. From Jacquet’s lemma (Theorem 6.3.2), we have jp(V) = (rGV)(E0M)_ Therefore, the
result follows from the fact that jp(SE) = (r§V)ENM), ]

Note that S5 and s are independent of the choice of ¢; we would also like to understand how
they depend on the choice of K.

Lemma 14.3.5. Suppose K., Ky are two compact open subgroups of G both having Iwahori
decomposition with respectto P = M N. If K1 < Ko, then

Ko K,
Sp” =€k, 0 S5p.

Proof. Choose ¢ so that the statements of Lemma 14.3.2 are valid for both K and for K5 in the
role of K.
Fix t € T} (). Choose w € (r§(V))52™M_ From Jacquet’s Lemma (Theorem 6.3.2) and the

fact that ¢ lies in the center of M, we can find a v; € V2 so that jp(v;) = r&(t~1)w. We have

sk (w) = o v, = 6,1 2(1) - exgter, - v

= 51;1/2(t) " €K, (€K1teK1)€K2 "V = echpf(l

= ex,5p" ().

14.4. Defining the pairing (, ) . By considering
Tyi(e) = {t7" |t € Ty (e)}

and the parabolic P = M N opposite P = M N, we may define sg and S f—f for the contragredient
representation.

Lemma 14.4.1. Suppose K is a compact open subgroup of G having an Iwahori decomposition
with respect to P = MN. For all v € SE and for all A € VX Nker(jp) we have A\(v) = 0.

Proof. Choose v € SK and A € VE Nker(jp).

Choose ¢ so that the statements of Lemma 14.3.2 are valid for both V, with respect to T, (¢)
and K, and for V, with respect to T,,(¢) and K. Choose t € T}, (¢).

Since SE = 7(F)VE, there exists v’ € V& so that v = 7(pX)v’. We have

AMv) = A(g ') = (7 () A) (V)

Since A € VX Nker(j5), from Lemma 14.3.2 (1) we have m(p/, )\ = |

Lemma 14.4.2. Suppose w € r§V and p € (V) Choose a compact open subgroup K having
Iwahori factorization with respect to P = M N so that w and 1 are both (K N M)-fixed. The
number (sgw, s 1) is independent of K.

Proof. Suppose K' is another compact open subgroup of G such that K’ has an Iwahori factor-
ization with respect to P = M N and w and p are (K’ N M)-fixed. We need to show

<5§w7 S?u) = <51[§lw7 3115{/:“>-
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Without loss of generality, we may assume K’ < K.
We consider
(spw,spu) — (sp w, s p)
from Lemma 14.3.5

= (exsp B u) —

!
exsp W, exSp [ K1)

<5P w,Sp K
— (5w, excsS ) — (55w, 5 1)
— (5w, (exc — 1)k )

But (1 — ex)s% s in VX Nker(jp). From Lemma 14.4.1 we conclude that

(55w, K1) = (58 w, 55 1),

We now know that the following definition makes sense.

Definition 14.4.3. Suppose w € r8V and u € 4 (V) We define

(w, u)p = (5w, s5p)

where K is any compact open subgroup having an Iwahori factorization with respect to P =
M N so that w and p are both (K N M)-fixed.
Exercise 14.4.4. Show that (, ) p is M-invariant. Recall that 6p(m) = 6,5(m)~! forallm € M.

Lemma 14.4.5. The pairing {, )p on rGV x TGV is nondegenerate.

Proof. Suppose 0 # w € r%V. Let K be a compact open subgroup having an Iwahori factor-
ization with respect to P = M N so that w is (K N M)-fixed. Since the restriction of (, ) to
VE x V& is nondegenerate, there is a A € V¥ so that A\(sEw) # 0. From Lemma 14.4.1, we
know A\ & ker(jp). From Corollary 14.3.4 we have
VE = SE @ (VX nker(jp)) and VE = SE & (VX Nker(jp)).
Thus, there is a y1 € rgf/ so that (sBw, s’ 1) # 0. [ |
14.5. Completing the proof of Theorem 14.2.2. To finish the proof of Theorem 14.2.2, we
need to show that (, ) p has the property:
For all (v, \) € V x V there exists an ¢ > 0 such that for all ¢ € T} () we have

(rE@ip ). ip(W)p = 55 (1) - Am(t)o).

Suppose (v, \) € V X V. Choose a compact open subgroup of K having an Iwahori factoriza-
tion with respect to P = M N so that v and A are both K-fixed. Choose ¢ so that the statements
of Lemma 14.3.2 are valid for both V', with respect to T]\J/}(e) and K, and V, with respect to
T,;(¢) and K. For all t € T}, () we have

A7 (t)v) = Mexm(t)exv)
= op()A(gf" (v))
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Since A — s jp\ € ker(jp) N V¥, from Lemma 14.4.1 we have
A (t)v) = 6p(t) - (1 (v), 557p(N))
= 04%() - (sErE()ip(v), sEip (V)
= 05°(1) - (rE(Wr(v), Jp (V)

15. CASSELMAN’S SQUARE INTEGRABILITY CRITERION

Suppose that 7 € R(G) is admissible and P is a standard parabolic subgroup of G with a Levi
decomposition P = M N. From Jacquet’s lemma (Theorem 6.3.2) r&r is admissible. For each
compact open subgroup K of M and each t € T); we have ' K = K. Thus we may write

(rim) = €@ (rm)<
x€Tm

where Y is a smooth character of 7, and (r%w)f is the generalized eigenspace
{v € r§7™| there exists d € Z>q such that (WN(t)5;1/2(t) —x(t)% =0 forall t € Ty}
If K’ < K is another compact open subgroup of M, then

(r,%)fj C (rgw)fl.

Hence

G T G _\K'
(rpm)y = lin (rpm)y
K'<K
(where the colimit is taken over compact open subgroups of M contained in K') makes sense and

o = D (i),

XET]\/I

we can write

since colimits commute with colimits. If the space (r$7), in nonzero, then we call x a normal-
ized exponent of T relative to P = M N.
In this section we prove:

Theorem 15.0.1 (Casselman’s Square integrability criterion). Suppose m € R(G) is irreducible
with unitary central character. T is square integrable modulo Z(G) if and only if for all standard
proper parabolics P with Levi decomposition P = M N and for all normalized exponents x of
7 relative to P = M N we have |x| < 1on Ty N\ Tg.

Proof. Fix a proper parabolic subgroup P = M N of (. Define an equivalence relation on TQ,+
by

t; ~ ty provided that t,t,' € Tg.
We have T} / ~= 74, for some d € Z,. We also have

G= [ KiZtwkK,

tETJ/N;wEw
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and if K has an Iwahori factorization with respect to P = M N, then
[KZ: KZNYKZ)]=[K: KN'K] = dp, ().

“=" Let X be a normalized exponent of m with respect to P = MN. Suppose v € V such
that 0 # rSv is an eigenvector for y. Choose \ € V such that (rSv,r4 rgA)p # 0. Choose a
compact open subgroup K of G with an Iwahori factorization with respect to P = M N so that
(v,\) € VE x VE_ From Theorem 14.2.2 there is an s € T}, so that for all ¢ € T}; we have

A7 (st)v) = 5];1/2(8 t) - (r&(st)rSw, T’P/\>
= 55" (st)x(st) - (rGu, 7S\ p

We then have

% >/ Imaw(9))? dg*
G/z

> Z Imy(st)]? - measgg- (K ZstK)

teTy;/~

= Z (rSv,mGA\) - x(st)dp 1/2(575)‘ - 0p(st) - measyy+ (K 2)
teTy /~

= measqy- (KZ) - |(rfv, v\ p - x(s) - >0 ().

teTy;/~

Let t4,ts,...,%, be a generating set for TAZ / ~, that is, for all ¢t € TAZ / ~ there exist
ki, ko, ... kny € Z>o such that t = Htl?“. We then have

°O>ZZ ZHIX

=0 k2= m=0 1=1

For the last item to converge, we must have |y(¢)| < 1 forallt € T); N T.

“«<" Suppose (v, A) € V' X V. Choose a compact open subgroup K < K, having an Iwahori
decomposition with respect to every standard parabolic P = M N. From the Cartan decomposi-
tion, there exist g1, go, - - . , gm € stabg(K) so that

G= 1T KZgitg, K.
1<i,j<m;teTy /~
Thus, it is enough to show
> mna(gitg;)| op,(t) < oo
teTy /~

for each pair (4, 7) with 1 <4, j < m. After replacing v by 7(g;)v and A by 7(g; ')\, we may
assume that g; = g; = 1.
From Theorem 14.2.2, there is an sy € TJr so that

mu(sot) = 2 (s0t) - (G, (sot)rG v, 1N p
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forall t € T@+ . After writing T’g@v as a sum of generalized eigenvectors for the action of 7 on
T%V, we see that there is a polynomial () (regarded as a function on Ty; = Z? for some d) so
that

<T1€0(30t)7“g@(v)a réA)p = Z Q(s0t)x(s0t)

where the sum is over normalized exponents of m with respect to Py = My Ny. Since resy+ Ix| <
1, we conclude that

D moalsot)] op,(sot) = Y @ (sot)| [x(s0t)]
teTy /~ teTy

converges.
We have taken care of the “interior of the cone TJ ”. For each o € A, we can find a finite
subset

{Sa,17 Sa,2y - Sa,ja}
of T so that
TJ/N: SOT@+/N H(H H Sa,iT{—;}/N>'
a€A 1<i<ja

By repeating the above argument, for each a € A and each s, ; we can find an s{ € T{J; } SO
that

mv’)\ 50’180 ° 5P (SO,Z‘SO )

converges. The result follows by induction. |

16. RESTRICTION INDUCTION

16.1. Statement of main result. In this section, we shall prove the following result.

Theorem 16.1.1. Suppose P = M N and () = LU are two standard parabolic subgroups of G
and (o, W) € R(M). As a representation of L,

GG
TQlpo

has a filtration for which the associated graded pieces are

-1

- M
tLrw-1PwW ’ Twa_lﬂMo-

where w runs over representatives in G for the double coset space Wy \W/W = P\G/Q.

Remark 16.1.2. In each double coset of W, \W/W/ it is possible to choose a representative w
so that L N w~!Pw is a standard parabolic in L and wQw~* N M is a standard parabolic in M.
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16.2. The setting. We now introduce a take on induction that will prove useful in our attack on
Theorem 16.1.1.

Suppose G is the usual kind of group. That is, G has a neighborhood basis of the identity
consisting of compact open subgroups and for each compact open subgroup K of G, G/K is
countable.

We now present a few definitions.

Definition 16.2.1. We let A denote the set of left invariant complex measures on G.

We have Ay = C - dyg. The set Ag carries two natural G actions. Namely, if g € G and
dp € Ag, then R, - du = dg(g~')dp and L, - du = du. Unless otherwise specified, we shall
always treat A as a left (resp. right) G-module via right translations (resp. left translations).

We recall that H ¢ denotes the set of locally constant compactly supported measures on G. As
in subsection 9.2, H is an algebra with respect to convolution, and it carries natural left and
right actions of G: g - djy = Ly - dpand dp - g = dp - Ry—1. We treat C2°(G) as a left G-
module via right translation and as a right G-module via left translation. We give C°(G) @c Ag
the structure of a GG-bimodule via the diagonal and the actions described above. With these
conventions, there is a G-bimodule isomorphism C°(G) ®¢ Ag = H which sends f @ dyx to
the measure f(z71)d,(z71).

Suppose (71, V1) and (2, V3) are two left G-modules. We define

Vi@ Vo i= (Vi @c Va)/{gv1 ® gua — v1 @ va).

Note that V; ®¢ V5 is simply (V] ®¢ V5 ), the coinvariants of V; ®¢ Va with respect to the diagonal
action of G. In particular V; ®¢c C = (V})¢.
On the other hand, if V; is a right G-module and V5 is a left G-module, then

Vi @ Vo = (Vi @y, Va)

Example 16.2.2. We examine the case when V; = Hg. Suppose duy, dus € Hg and vy € V5.
Treating H¢ as a right G-module, we have

L(dp)dps @ va = (dpug * dpis) @ ve = (dpta - djer) @ ve = dptg @ m2(dptr)vo.
If we treat H as a left G-module, then we have
R(dpa)dpn ® vo = (dp * dpa) @ va = dpia - dpy ® vo = dpg & ma(dpa)vs.
Note that although we have not defined V; ®4,, V> for two left G-modules V; and V5,

Lemma 16.2.3. Suppose (7,V) € R(G). We have He @u, V =V and (Hg @c V)e =V
under the maps induced by dy ® v — w(dp)v.

Proof. One checks that the maps induced by du®@v +— 7(dp)v are well defined and G-equivariant®
Since (7, V') is a smooth representation, for every v € V there exists a compact open subgroup K

SThat is (duydpus) @ v and dpy @ 7(dpz)v get mapped to the same place and R(g)dp @ 7(g)v and dp @ v do as
well.
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of G such that exw = w. Let dk denote the normalized Haar measure on K. Since 7(dk) = e,
we see that the map is surjective.

Suppose > . (dp; ® v;) € He ®¢ V such that Y, w(du;)v; = 0. We can choose a compact
open subgroup K of G and a normalized Haar measure dk on K so that L(du;)dk = dyu; for
each ¢. Thus

Y dpi v =Y L(dp)dk @v; =Y dk @ m(dp;)v; = 0
and so the map is injective. |

16.3. A proposition of Tate. Suppose H is a closed subgroup of G. We treat C°(G) (resp. Ay)
as a right (resp. left) H-module via left (resp. right) translations. We treat C°(G) ®3,, (W ®¢
Ay) as aleft G-module via g - (¢ ® (w ® dp)) = g¢ ® (gw ® gdp) = Ry @ (0(g)w @ Rydp).

Lemma 16.3.1. If K is a compact open subgroup of G and (o, W) € R(H), then

(C(G) @y (WRcAn) = @ C(H/(HNIK)) @y, (W Rc Ap).
geEH\G/K

Proof. We have
(C(G) ®ay (W @ Ap))™ = e (C2(G) @y (W @c Apy))
=ex (C7(Glex ® CF(G)(1 = ex)) @y (W ®&c Ap))
= C(G/K) @y (W @c Ap)

= P C.HgE/E) @, (W @c Ap)
geH\G/K

P CH/HNK) @y, (W @c Ap).

GEH\G/K

I

Proposition 16.3.2 (Tate). Suppose H is a closed subgroup of G and (o, W) € R(H).

(1) We have an isomorphism
C(G) @y (W ®c Ap) = c-Indf(0)

via the map which sends [ ® (w @ dgh) to (g — [, f(h™'g)o(h)w dgh).
(2) We have
Homy (He, W)™ = Ind% (o).

Proof. We begin with statement (1). Since both sides of the equation are smooth representations,
it is enough to show that for each compact open subgroup K of G, the K-fixed vectors of the
left-hand side are isomorphic to the K -fixed vectors of the right hand side.

Fix a compact open subgroup K of G. From Lemma 16.3.1, we have that the K-fixed vectors
of the left-hand side are isomorphic to

P C.(H/HNIK) @y, (WRcAy).
geH\G/K
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If we knew that
Co(H/HNIK) @y (W @c Ayr) =2 WHIK,

then from Lemma 5.5.2 we’d be done.
By putting G = H in Lemma 16.3.1, we are asking that

(C>(H) @y, (W @¢ Ag))fn = Wwkn

for all compact open subgroups Ky of H. However, this is true for all compact open subgroups
Ky of H if and only if

CX(H) @y, W ecAy) =W
which is true if and only if
(CX(H) ®@c Ap) @y, W=W
which is true if and only if
Hu @y, W=W,

the conclusion of Lemma 16.2.3.
We now turn our attention to statement (2). Note that for all V' € J3(G) we have

Homp (resy V. W) = Hompy(He @y, V., W) = Hompy (He @c V)a, W)

= Homgxn(Ha @c V, W) = Homg(V, Homy (He, W))

= Homg(V, Hompy (He, W)™).
Since, up to isomorphism, Indg W is the unique object in R(G) for which

Homg(V, Ind$ W) = Homy (resy V, W),
we are done. |
Lemma 16.3.3. If (o, W) € R(H), then
((c-IndG W) ®¢ Ag) = e-Ind% (W @c Agx)).
Proof. From Proposition 16.3.2 we have
c-Ind% (W @¢ Ag) =2 He @, (W ¢ Agy).

So, it is enough to show
(Ho ®uyy W) 22 IndG(W).
From Proposition 16.3.2 we have
Ind$ W = Homp (Hg, W)™
= Homp(Hg, Home (W, C))>
=~ Home(Heg @y, W, C)>
= (He @,y W
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16.4. An application: forms on G/H. In Proposition 16.3.2 if we take W = Ay, then then
C2(G) @y C = c-Ind$ (Ag)

and the latter object may be idenitified (non-canonically) with c—Indg 0p. Tensoring the isomor-
phism of 16.3.2(a) with Ag ®¢ A, we have the relation

He Ru,y (W Rc Ay ®c Kg) = C—Indg Ww.
If we take W = Ay ®¢ Ag and plug this into the above relation, then we have
HG ®7—[H Cx C—Indg(&H) Rc AG

and the latter object may be idenitified (non-canonically) with c-Ind% (65) ® d¢.
Since

Homg(He @4, C,C) = Homgyxu(He, C) = C,

we have that Homg(c-Ind% (6) ® d¢, C) is one-dimensional. Let
/ dg/dh: c-Ind$(6y) ® 6 — C
H\G

be a nonzero (G-equivariant map; this is unique up to scaling by an element of C*. We can fix
d¢h and d,.g so that the following diagram commutes.

e V Wg/dh

) c-Ind (6s1) ® 8

Here (o(f))(9) = dc(9) [y f(h'g) - du(h)dsh. Note that [y, , dg/dh takes positive values
on

{f € -Ind$(65") @ 0¢ | f > 0 and f # 0}

The lemma below follows immediately from the above discussion
Lemma 16.4.1. If (o, W) € R(H ) is unitary with positive definite Hermitian form ( , )y, then
-Ind% (W ® 6,7 @ 6

is unitary with respect to the postive definite Hermitian form

(fi. f2) == /H U1(0) o) dj.
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16.5. (-spaces.

Definition 16.5.1. An /-space is a Hausdorff space such that each point has a neighborhood basis
consisiting of compact open subsets.

Remark 16.5.2. An open (resp., closed, resp. locally closed (that is, the intersection of a closed
and open set)) subset of an /-space is again an /-space.

Definition 16.5.3. For an /-space X, we let C'>°(X) denote the set of localy constant, compactly
supported, complex valued functions on X.

Exercise 16.5.4. If X is an {-space and f € C'°(X), then f(X) s finite and {z € X | f(z) # 0}
is open.

Lemma 16.5.5. Suppose 7 C X is closed. Let U = X ~. Z. We have
0—CXU)—=>CX(X)—=>Cx(Z)—0
is exact. The first map is extension by zero and the last map is restriction.

Proof. We only need to check that the last map is surjective. Suppose f € C°(Z). Without loss
of generality, f = [C’] where C” is a compact open subset of Z and [C’] denotes the characteristic
function of C’. Since we can choose a compact open subset C' in X such that ' = C'N Z, the
result follows. |

Suppose G is a topological ¢-group and H < G. Fix (o, W) € R(H).
Definition 16.5.6. If U C G is open and HU = U, then we define
(c-IndG(W))y :={f: G = W | f € c-Ind$(W) and supp(f) C U}.
Lemma 16.5.7. If U is open, then
0 = (c-Ind% (W))y — (c-IndG W) = CX(G\U) @y (W @ Ag) = 0
is exact.

Proof. We have
0= C*U) = CXG) - CPG\U)—=0

is exact and so
C®(U) @y (W@ Ag) — c-IndS (W) = C(G\U) @y (W @ Ay) = 0
1s exact. We need to show
a: C(U) @y (W@ Ay) = c-Ind$ (W)

is injective with image c-Ind% (W)
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We first consider the case when U is closed. In this case the injective map C2°(U) — C°(G)
has a left inverse f — f - [U]. Thus, « is injective and

Im(a) =Im(CE(U) @y (W& Ag) — CX(G) @y (W @ Ag))

— Im(C2(U) @n (W @A) "B C2(Q) @ (W ® An))

— Im(c-IndS (W) & c-nd& (W)

= (c-IndG W)y
In general, we consider the projection map pr: G — H\G. Since H\G is a directed union of

compact open subsets, by looking at pr~! of compact open subsets in pr(U) we can write U as
a directed union of closed, open subsets C' of U for which HC' = C'. Thus

C*(U) = lim C°(C),
c
and the result follows immediately from the case when U is closed. ]

Now we can analyze rgigW with P = M N, (Q = LU standard parabolics and W a smooth
representation of M.

Proof of 16.1.1. First, Q/G\ P is finite. We can order the double cosets 0; = Qu1 P,...,0; =
Qw; P in such a way that 61,60, U 65,0, Ub, U3, ..., 0, U---Ub; are all open in GG. This fact is
verified by the following lemma found in [?] on page 7, which is proved using the Baire category
theorem.

Lemma 16.5.8. Suppose G is an (-space and G/ K is countable for all compact open subgroups
K C G. Suppose G acts continuously on X. Assume G has finitely many orbits. Then there
exists an open orbit X, and for every xq € X, the map G — X given by g — gxq is open, so
that Xy = G/ stab(xz) as topological spaces.

We now continue with our proof of 16.1.1. Let U = 0,,Us = 6, Ubs,... U, =60, U---6,.
From the above results,

(c-IndG W)y, C (c-IndG W)y, C -+ C (c-IndG W)y, = c-Ind$ W.

These are left ()-modules. Take Jacquet modules with respect to U; by exactness of this opera-
tion, we have

[(c-Ind% W),y € -+ C [(e-IndG W)y, ]o = (c-Ind§ W)y
We consider successive quotients of this filtration. By exactness,

[(C—Indg Wu,lu B (C-IndJGD W)y,
[(cIndE W)y, Ju | (c-Indg W)y )

Jj—1

and both of these are
(C2(0;) @3, W'
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where W/ = W ®¢ Ap. Now simplify
C(0;) @3 W= CZ(PwQ) @y, W
(w = wj).
We show that
C(PwQ) @y, W= -Indg 1y, W
(W' is a representation of P; composing with w™'Pw — P, W” = ') Replace Q with
wQw ™t and still call it (). (Of course, wQw ™" is possibly nonstandard parabolic.) With the new
(@, we are looking to prove
C2(PQ) @y, W' = c-IndF o W',
Now C°(P x Q) = C*(P) ®c C(Q) and PQ = (P x Q)/(P N Q). From before,

CE(PQ) = CZ((P xQ)/(PNQ))

= C—Indgrx1 Ilj 1

— C2(Q X P) @pgep Shp
= (C(Q) ®c CZ(P)) @ngnr Sghp-

So
OSO(PQ) Onup W' = OSO(Q) ®HQnP 5QOP ®HQ0P O§o<P) Onp W

= Ogo(Q) ®HQnP (W/ ® 5Q0P>
= c-Indgp W'
To complete the proof, we need to calculate ( ). To this end, note that
v =Coy C(Q) ®png (W & dprng)
=0dq ® CX(Q/U) ®png (W ® dpng)
X 0 ® (CZ(L) ®@prg W @ dpng),
where the final isomorphism is noncanonical. Now U N P and () N N are normal in () N P; so
is their product.

Define P, := (imageof QN Pin L = Q/U) = (QNP)/(UN P) and Q) := (image of Q N
PinM =P/N)=(QnNP)/(QNN).PutJ =(QNP)/(UNP)-(QNN). This is a group.
It is isomorphic to a Levi component of a parabolic of G. We have short exact sequences

l—QNN/UNN —P, — J—1
1—UNP/UNN —Qy — J —1
where the first terms are the unipotent radicals of P, and (), respectively, and the final terms

are Levi components of P, and (), respectively.

Now
CSO(L) K Png W ® (San = [CCOO(L) RQuap W ® 6PQQ]PL

= [CZ(L) @c (W ® épno)unplp -
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So
6o ® (C7(L) ®gnp W ® dpng) = g ® [C°(L) ®c (W @ dpng)unrplp,
=0 @ [C°(L) ®c (W @ 6pn@)wnp)/wnn)lpy -
Note that (W ® dpno) wnp)/wnn) is the Jacquet module for the representation IV of M and that
everything after the d, is c—IndILDL?.

Putting in all the relevant modulus functions, we get that the piece of rgigW corresponding
to our given double coset Q) P (new () is given by

LM 1/2¢1/2 ¢1/2 1 ¢1/2
ZPLTQM(% 002 0P 0grpop, )W.

It suffices to show that the product of modulus functions is trivial as a quasi-character on .J.
We claim that

12 o1 <1/2  1/2 o—1/2 o—1/2¢1/2
(*) 5QN15Q0P5PL o 5QM§QVTP 5Q0P6PL
—_——

1/2 1/2

mMonN Mynp

where, forz € Q N P,
munp(z) = |det(z™", Lie(U N P))’F,QON(x) = |det(z™", Lie(Q N N))‘F.
The equalities in (x) come from exact sequences 1 - QNN — QNP — Qy — 1, etc. It
remains to show that
dogmaonnIpmynp = 1.

(@ is the conjugate of a standard parabolic by an element of the Weyl group. Furthermore,
L > My, M D My, J=LNM D My, B= MyNy. We can restrict these quasi-characters to
My C J.

We need that for every x € M,

(%) det(x, Lie(Q/Q N N)) = det(z, Lie(P/U N P))~".

Both sides are products of roots on M. Get that a root « contributes to the left-hand side of (xx)
if and only if « is not in U and not in N. A root « contributes to the right-hand side of (xx) if
and only if o is not in IV and not in N. It is easy to see that o contributes to the left-hand side if
and only if —« contributes to the right-hand side.

We conclude that rgiga has a filtration for which the associated graded pieces are given by

- M
Lnw—1pw O WO Twa71O'

where w € W, \W/Wi. [ |

17. SOME APPLICATIONS OF THEOREM 16.1.1

17.1. Some preliminary results.

Lemma 17.1.1. Suppose that P is a proper parabolic subgroup of G with a Levi decomposition
P = MN. Suppose that o € R(M). Each irreducible subquotient of i%0 is not supercuspidal.
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Proof. Suppose Vi C V; are two G-subrepresentations of i%o such that V5/V] is an irreducible
supercuspidal representation. Since irreducible supercuspidal representations are projective (Lemma 8.4.4),
from Frobenius reciprocity we have

0 # Homg(Va/V4,i%0) = Homy, (rS(Va/ V1), 0).
However, since V5 /V] is supercuspidal, we have 7§ (V/V;) = 0, a contradiction. |

Corollary 17.1.2. Suppose P is a proper parabolic subgroup of G with Levi decomposition
P = MN and o € R(M). If i%o is not of finite length, then there exists a proper parabolic
subgroup Q) of G with a Levi decomposition (Q = LU such that the L-representation rgiga is

not of finite length.

Proof. From Lemma 17.1.1, for each irreducible subquotient 7 of ig, there exists a standard
parabolic () such that 7”87‘ is nonzero. Since there are only a finite number of standard parabolics
and a nonfinite number of Jordan-Holder factors, the result follows. [ |

17.2. Some actual applications. Suppose P and () are standard parabolic subgroups of G with
(standard) Levi decompositions P = M N and Q = LU. Suppose (o, W) € (M) is irreducible
supercuspidal.

Lemma 17.2.1. Suppose w € Ng(T}) is a representative for an element of the double coset
space W \W /W = P\G/Q. We have

LM {{0} wQu M # M

L -
2 —1pyy—1W T -1 g =
Lnw—1Pw wQw—1NM .I, 1 1
1 rw-1pp® O wQuwNM = M.

Proof. If wQw ™' N M # M, then wQw ™' N M is a proper parabolic subgroup of M. Since
o is a supercuspidal representation of M, we have ri‘}/’Qw_lm 10 = {0}. On the other hand, if
wQw ™ N M = M, then rﬁwi,lmMa = r%a =o0. [ |

Lemma 17.2.2. Suppose (m, V') is an irreducible subquotient of i%0 and 7 € R(L) is irreducible
and supercuspidal. If T occurs as a subrepresentation of igT, then there exists a representative
w in G of an element of the double coset space Wy \W /W, such that

w'Mw=Land w ' o027

Proof. Since 7 occurs as a subrepresentation of 287, from Frobenius reciprocity we have Hom L(rgw, T) #

0 and so 7 occurs as an irreducible subquotient in rgiga. From Theorem 16.1.1 we have

Cp W rﬁgw_lﬂ )0 for some double coset representative w. From
Lemma 17.2.1 we have that 7 occurs in i¥ _,p, w™ -0 and wQuw ™ N M = M. As 7 is
supercuspidal, from Lemma 17.1.1 we conclude that L N w™'Pw = L. Since L and M are

standard, we conclude that . = w 'Mwand w™! - o = 7. [ |

. .L
that 7 occurs in 77,

Corollary 17.2.3. If w is an irreducible subquotient of i%0, then there exists a parabolic P' with
Levi decomposition P' = M N’ such that 7 occurs as a subrepresentation of i%,0.



99

Proof. Suppose that 7 is an irreducible subquotient of i%o. From Corollary 7.3.3, there exists
a standard parabolic )" with a Levi decomposition )’ = L'U’ and 7 € R(L’) supercuspidal
and irreducible such that 7 is a subrepresentation of ig,T. From Lemma 17.2.2, there exists a
representative w for an element of Wy, \W /W, such that w™' - ¢ = 7 and w™'Mw = L. If we
set P = wQ'w™!, the result follows. [ ]

We can restate the above results in a some what fancier way.

Definition 17.2.4. Suppose H is a subgroup of G, 0 € R(H), and g € G. We define the
representation g - o of gHg™ ' by g - o(¢) = o(g g) for ¢ € gHg™".

Definition 17.2.5. Suppose F; is a parabolic subgroup of G with a Levi decomposition P, =
M;N;. Let o; € R(M;) be irreducible and supercuspidal. We call (M, 0;) a cuspidal datum and
write

(M, 01) ~ (Ms, 09)

1

provided that there exists g € G such that gM,9™ = Ms and g - 05 = 0.

The following corollary is a recasting of our prior results.

Corollary 17.2.6. Suppose m € R(G) is irreducible and (M, 01) and (M, 05) are two cuspidal
data. If P; is a parabolic subgroup of G with Levi decomposition P; = M;N; and o; is an
irreducible subquotient of r§m, then (My, 01) ~ (My, 03).

We also have:

Corollary 17.2.7. Suppose m € R(G) is irreducible. Up to the relation ~, there exists a unique
cuspidal datum (M', ') such that = occurs as a subrepresentation of i%,o’.

17.3. The Bernstein spectrum. In this subsection, we introduce the definition of B(G), the

Bernstein spectrum of G.

Definition 17.3.1. If M is the Levi component of a parabolic subgroup of GG, then we let P (M)
denote the finite set of parabolic subgroups of G which have M as a Levi component.

Definition 17.3.2. Suppose (M, 1) and (M,, 72) are two cuspidal data. We write (M, 1) ~
(Ms, 72) provided that there exist g € G and x € X(Mz) such that

(1) ng = M2 and
2)g MENRRYX.

Remark 17.3.3. The relation ~ is an equivalence relation, and if (M, ;) and (Ms, 75) are two
cuspidal data for which (M, 1) ~ (Ms, 12), then (M, 7y) = (Ms, T5).

Definition 17.3.4. If (M, 7) is a cuspidal datum, then [M, 7| denotes the equivalence class of
(M, ) with respect to ~.

Definition 17.3.5. The set of equivalence classes [M, 7] is called the Bernstein spectrum of G
and is denoted B(G).
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17.4. Defining 2R(G)L-7),
Lemma 17.4.1. Suppose (7,V') € R(G). If for each cuspidal datum (L, o) and for all parabol-
ics Q € P(L) we have
{0} =€ 0 7’877 € R(L)
then V = {0}.
Proof. If V' # {0}, then there exists a parabolic subgroup ) which is minimal with respect to

the property rgw # {0}. Let Q = LU be a Levi decomposition of (). For any proper parabolic
subgroup P of L, we have

TILﬂ“gﬂ' = {0}.
Therefore, r§m € Ry (L). From Corollary 11.2.6, the discussion following Definition 10.3.3,
and our hypothesis, it follows that r§m = {0}, a contradiction. [

It will be convenient to introduce the following notation.
Definition 17.4.2. If L is a Levi component of a parabolic subgroup of G, then for o € R(L)

G -G
Lo = @ Qo

QEP(L)

rém = GB rQ7r

QeP(L)

we define

and for 7 € R(G) we define

Lemma 17.4.3. Fix a cuspidal datum (L, o). For (m,V) € R(QG), the following statements are
equivalent.

(1) 7 is a subrepresentation of an element of i (R(L)).

(2)  is a subquotient of an element of i (R(L)1)).

(3) If (M, 1) is a cuspidal datum such that (M, 7) & [L,o], then e™ o r§n = {0} for all
parabolic subgroups P € P(M).

(4) Each irreducible subquotient of ™ occurs as a subrepresentation of ig(cr ® x) for some
X € X(L) and some parabolic Q € P(L).

(5) If No(L)? := staby, ) 0, then for all parabolic subgroups () € P(L) we have 7‘8# €
D ey /Ner)e R(L)97). Moreover, the natural G-homomorphism

@ ZQ oe’ o TQﬂ'
QeP(L
is injective.
Remark 17.4.4. In item (5) above, the map ¢ is obtained as follows. Suppose @@ € P(L).

The projection map e”: RR(L) — R(L)! induces an element of HomL(rQw e? o rgm). From
Frobenius reciprocity, we then have an element ¢ € Homg(m,i§ 0 e” o rgm).
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Proof. Ttis clear that (5) = (1) = (2). We shall show (2) = (3) = (5) and (3) & (4).

“(2) = (3)”: Since the Jacquet functor is exact and preserves direct sums, it is enough to show
that if ' € R(L)l! and (M, 7) & [L, 0], then e” 0 7§ o igo’ = {0} for all parabolic subgroups
PeP(M)and Q € P(L).

Without loss of generality, we may assume that P and () are in standard position. From

Theorem 16.1.1 we know that e” o r$ o igo’ has a filtration with associated graded pieces

T M -1 L !
€ Olyrw-1Qu®W TLAwPw—10

L
LNwPw

supercuspidal, from Lemma 17.1.1 we have that €7 (i y7r,- 19w ™" -0”) = O unless MNw ™' Quw =

-1 — [. Since 7 is

Since ¢’ is supercuspidal, we have that R _,0"is zero unless L N wPw
M. Thus, the only way the associated graded piece can be nonzero is if wMw™' = L and
w - T = o. But this means that (M, 7) € [L, o], a contradiction.

“(3) = (5): Let Q be a parabolic subgroup of G in P(L). We first show that r§m € R.c(L).
Indeed, if r§7m & Rq(L), then there exists a parabolic subgroup P € P(M) such that P N L is a
proper parabolic subgroup of L which is minimal with respect to the property that {0} # 7§47 =
rparrgm. Thus rEm € MR(M) and so from Corollary 11.2.6 and the discussion following
Definition 10.3.3 there exists a cuspidal datum (M, 7) for which e” o r&7 # {0}. Since M is not
conjugate to L, this contradicts (3).

Therefore, we have r&m € Rqc(L). In fact, it follows from the above paragraph and (3) that
re D wL
9eNG(L)/Ng (L) L7

Finally, from Lemma 17.4.1 we need to show that for each cuspidal datum (M, 7) and for all
parabolic subgroups P € P (M) we have

{0} = e™ 07§ (ker ).

Since ker ¢ C 7, if (M, 7) & [L, o], then this follows from (3).
Thus, we must show that for any parabolic subgroup @)’ € P(L) we have

e” org (ker ) = {0}.
Note that if () is any parabolic subgroup of G in P(L) and

po: T %igoe”orgw,
is the natural map, then

ker p = ﬂ ker ¢q.

QeP(L)
Thus, to show that e” o r§, (ker p) = {0} for all Q" € P(L), it will be enough to show that
e” org(ker pg) = {0} forall Q € P(L).
Fix @ € P(L). Since e” and 7“8 are exact functors, we have the exact sequence

0—e’o rg(kergpQ) — e’ 0 7"87T — e’ 0 ?"g o ig(e” o TSﬂ').

From Theorem 16.1.1 the last term is isomorphic (as an L-module) to e o T’gﬂ'. Thus, e? o

r§(ker pq) = {0}
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“(4) = (3)”: If (M, 7) is a cuspidal datum and (M, 7) & [L, o], then from Theorem 16.1.1
we have e o 7 0 ig(0c ® x) = {0} for all x € X(L) and for all parabolic subgroups P €
P(M). Thus, if every irreducible subquotient of 7 occurs as a subrepresentation of (0 ® x)
for some x € X (L) and some parabolic () € P(L), then since ¢” and 7“8 are both exact, we have
e” or§m = {0}.

“(3) = (4)”: Let 7’ be an irreducible subquotient of 7. There exist a cuspidal datum (M, 7)
and a parabolic P € P (M) such that 7’ occurs as a subrepresentation of i%7. This implies that
e” o r§m # {0}. Thus we have (M, 7) € [L,o]. Free to conjugate by elements of G, for some
parabolic ) € P(L) we have e orgn’ # 0. This implies Homy (r§n’, e” or&n’) # 0. Therefore,
for some x € X(L), we have Homy(r§n’,0 ® x) # 0. From Frobenius reciprocity, we have
that 7" occurs as a subrepresentation of (o ® ). [

Lemma 17.4.5. Suppose (Ly,01) and (Lo, 09) are two cuspidal data. Suppose [Lq,01] #
[LQ,O'Q].

(1) If (m,V) € R(G) satisfies any of the five statements of Lemma 17.4.3 with respect to
both (Ly,01) and (Lo, 02), then V = {0}.

(2) If m; € R(G) satisfies any of the five statments of Lemma 17.4.3 with respect to (L;, 0;),
then Homg (7, m3) = 0.

Proof. We begin with the first statement. From Lemma 17.4.3 (3) we have
e ormr = {0}

for each cuspidal datum (M, 7) and each parabolic subgroup P of G in P(M ). From Lemma 17.4.1
we have that 7 = {0}.

For the second statement, suppose that f € Homg(m, 7). Since f(m) satisfies all of the
statements of Lemma 17.4.3 with respect to both (L;, 01) and (Lo, 02), we have that f(m;) =
{0}. |

Definition 17.4.6. Let (L, o) be a cuspidal datum. We let 53(G)°l denote the full subcate-
gory of R(GG) whose objects are smooth representations of G that satisfy any of the equivalent
statements listed in Lemma 17.4.3.

17.5. The Bernstein decomposition.

Definition 17.5.1. A representation V' € J3(G) is said to be split if we can write

v= P )V([L,o])

[L,o]eB(G
with V([L, 0]) € R(G)L.

If [L, o] € B(G), then we define Irry, ,(G) to be the set of equivalence classes of irreducible
representations in (G-,

Lemma 17.5.2. If V|, V5 € R(G) with V; split and Vi C Vs, then V is split.



103

Proof. Since Vj is split, we can write
i @ Vi)
[L,o]eB(G)
with V3 ([L, 0]) € R(G) =), We define
Vi([L, o)) = Va([L, 0]) N'V3
and consider
W =Vi/(®.01es@) VA([L, 0]))-
In order to establish the result, it will be enough to show that ¥ has no irreducible subquotients.
Fix [M, 7] € B(G). Let B(G) = B(G) \ {[M, 7]}. Consider the projection operator
P Ve €D Va(lL, o).
[L,o]eB(G)
This projection induces a map
P W= ( @ VlLo)/( D %([L o])).
[Lo]eB(G) [L o]€B(G
Since V5 is split, we have ker(pryy, ;) = Va([M, 7]). This 1mphes that the kernel of the map
tesv, b = D VallLo)
[L,o]eB(G)

is Vi([M, 7]). Therefore, Pr(), ,; injects W into a subquotient of

Therefore, any irreducible subquotient of ¥ belongs to’
U Irryz 1 (G).
[L,o]eB(G)
As [M, 7] was arbitrary and
Irr(G) = U Irryz, 0)(G),
[L,0]€B(G)

we conclude that every irreducible subquotient of 11 is the zero representation. |
Lemma 17.5.3. If (7,V) € R(G) and v € V, then ¢°rSv = 0 for almost all [L, o] € B(Q).

Proof. Suppose v € V. Since, up to conjugation, there are only finitely many Levi subgroups
of G, it will be enough to show that for a fixed L, e“r$v = 0 for almost all o € PR..(L) (up to
twisting by an element of X(L).

Choose a compact open subgroup of G for which v is K-fixed. Since r$v is K N M-fixed,
from Corollary 11.1.2 there are only finitely many pairs [L, o] for which e?r%v # 0. |

7Literally: is an element of an element of
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Lemma 17.54. For each V' € R(G), the map from V' to

G o,..G
O @ o

[L,o] PEP(L

vl—>z Z g — e’rn(g)v)

[L,o] PEP(L

given by

is injective
Proof. The kernel of the map will be a G-module V'’ for which
e’ r¢V’ = {0}
for all [L, o] € 8. Such a G-module must be trivial. |

Exercise 17.5.5. Define is.: R(G) — R(G) by
isc(V) := @ @ iGoe orGV
[L,0], L#G PEP(L)
for V€ R(G). Show that the kernel of ig. is R (G)sc.

The following theorem follows from Lemma 17.5.2 and Lemma 17.5.4.

Theorem 17.5.6.
RG = [ RE)HL
[L,0]eB(G)

18. LANGLANDS’ CLASSIFICATION

18.1. Tempered representations.

Definition 18.1.1. A representation = € JR(() is said to be tempered provided that 7 is admissi-
ble and for all standard parabolics P with Levi decomposition P = M N and for all normalized
exponents of 7 relative to P = M N we have || < 1 on T},

Remark 18.1.2. If 7 is tempered, then every normalized exponent of 7 relative to GG is unitary.
In particular, if 7 is irreducible and tempered, then its central character is unitary.

Remark 18.1.3. If 7 € R(G) is irreducible and square integrable modulo Z(G), then from
Casselman’s square integrability criterion (Theorem 15.0.1) and Corollary 7.3.5, 7 is tempered.

Our immediate goal is to understand how tempered representations behave with respect to
induction and Jacqueting.

Lemma 18.1.4. Suppose m € R(G) is tempered. Suppose P is a standard parabolic with Levi
decomposition P = M N and x is a normalized exponent of m with respect to P = M N. If x is
a unitary character of Ty, then

(Tgﬂx

is a tempered representation of M.
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Proof. The standard parabolics in M come from standard parabolics () in G that are contained
in P. If () has Levi decomposition () = LU, then the standard parabolic ) N M of M has
Levi decomposition L(¢) N M). Thus, it follows from the transitivity of Jacqueting that any
normalized exponent ¢ of (r&m), with respect to @ N M is a normalized exponent of m with
respect to (). Consequently, since 7 is tempered, we have that [xg| < 1 on

) {teTr]| |a(t)] <1 forall a € A}.
We need to show that |xg| < 1 on the set
{teTr| |a(t)| <1 forall o € Ay}

Here Ay is 6 where M = Mjy. If t belongs to this set, then there exists ¢t; € T), and t5 in the
set defined by statement (9) such that ¢ = ¢,¢5. Thus, it will be enough to show that |xg| < 1 on
T»s. However, this follows immediately from the fact that

resm, XQ = X

and Y is a unitary character. ]

Lemma 18.1.5. Suppose P is a standard parabolic subgroup of G with Levi decomposition
P = MN. Ifoc € R(M) is tempered, then i%o is tempered.

Proof. Fix a standard parabolic subgroup () of G with Levi decomposition () = LU. Fix a
normalized exponent  of i%c relative to . We must show that |x| < 1 on

(10) {teTr| |a(t)] <1 forall« € A}.

From Theorem 16.1.1, as an L-module, (rgiga) , has afiltration with associated graded pieces

-1 M
’ Twa_lﬂMo-)X

(71 P
where w runs over representatives in GG for the double coset space Wy, \W /W, = P\G/Q. From
Remark 16.1.2 we can assume that L N w~!Pw is a standard parabolic in L and wQw ' N M is
a standard parabolic in M.

Since o is a tempered representation of M/, we have that every normalized exponent of o with

respect to wQw ! N M has absolute value less than or equal to one on the set
{t € Tyrw-1nnr ] |a(t)] <1 forall o € Ay}

Consequently, every character y of T~,-117,, for which (w™? 'szwafl )y # {0} has x| <1
on
{t < Tme—le ’ \a(t)| < 1 forall o € Aw_le}'
Therefore, every character ¢ of Ty, for which (% 1 p, 0" - 70, 142,0)w 7 {0} has || < 1
on the subset
{teTy| |a(t) <1 forall « € A}

of the set
{t < Tme—le’ \a(t)| < 1 forall o € Aw_le}'
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Lemma 18.1.6. Suppose 1 € R(G) is irreducible and tempered. If for each proper standard
parabolic P of G with Levi decomposition P = M N and for each normalized exponent x of
with respect to P = M N we have X is not unitary, then 7 is square integrable modulo the center

of G.

Proof. Suppose P is a standard proper parabolic subgroup of G with Levi decomposition P =
MN. Let x be a normalized exponent of 7 relative to P = MN. In order to use the square
integrability criterion (Theorem 15.0.1), we must show that |y| < 1 on T,

Suppose first that P is a maximal standard proper parabolic subgroup of GG. Since 7 is tem-
pered, we have |y| < 1 on Ty, \ T74. Thus, since Ty /T is free of rank one, we have that either
Ix| = 1on Ty, or |x| < 1 on Ty, \ T7. By hypothesis, the latter condition must hold.

Let P, P, ..., P,, denote the standard proper maximal parabolic subgroups of GG than contain
P. Suppose that P, = M; N; is the Levi decomposition of P;. We have M C M, for each . Thus,
if x is an exponent of 7 relative to P = M N, then its restriction y; to T}y, is an exponent of 7
with respect to P; = M; N;.

Suppose ¢ € Ty; \ T¢:. There exist t; € T} such that ¢t = tt5 - - - t,,,. We have

X (@) =[xl (@) [x] (B2) - -~ [x] (Em) = [xal (810) [x2| (F2) - - [xom] (8) < 1.

Theorem 18.1.7. Suppose m € R(G) is irreducible. We have that v is tempered if and only if
there exist a standard parabolic P with Levi decomposition P = M N and an irreducible square
integrable modulo Z (M) representation o € R(M) for which T is a subrepresentation of i%o.

Remark 18.1.8. It follows from this theorem that every irreducible tempered representation is
unitary. Consequently, every tempered representation is unitary.

Proof. “<": This is Lemma 18.1.5.

“="": Choose a standard parabolic P with Levi decomposition P = M N which is minimal
with respect to the property: there exists a normalized exponent of 7 relative to P = M N which
is unitary. Since G has this property, P must exist. Let x denote the unitary normalized exponent.
Lemma 18.1.4 tells us that (rm), is tempered. Since 7 is irreducible, from Lemma 6.3.1 we
have that (r&), is finitely generated. From Lemma 3.3.5, we can choose an irreducible quotient
o of (r§¢m),. From Lemma 18.1.6 and the minimality of P = M N, it follows that o is square
integrable modulo the center of M. The result now follows from Frobenius Reciprocity. |

18.2. Real exponents.

18.2.1. Some definitions. We begin with some standard definitions. Suppose 7' denotes the
group of k-rational points of a k-split torus T of G.

Definition 18.2.1. We define X.(7") to be the group of one parameter subgroups of 7', that is,
the set of algebraic homomorphisms from GL; to T.
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It is standard to denote the group Rat(7") by X*(7"). We have a perfect pairing (, ): X, (7) x
X*(T) — Z defined by the equation

X0 A(t) =t

for y € X*(T") and A € X (7).
Recall that
T° = m ker | x|
XE€X*(T)
(see Definitions 7.2.1 and 7.2.3).

Exercise 18.2.2. Show that the map A — (=) induces an isomorphism of X, (7") with T'/T°.

Suppose P is a standard parabolic subgroup with a Levi decomposition P = M N.
We define

ay = X*(TM) X7z R7

and, because it plays a central role, we set ag := ayy,. Similarly, we define
Cl?\/[ = X*(TM) X7z R,

and

g i= Ay,
We extend the perfect pairing (, ) on X, (T) x X*(T)/) to a pairing on ay; x aj,;. Since W
acts on both X, (Tp) and X*(7}), it naturally acts on both ay and aj.

We identify aj, with the subspace of Wj,-fixed elements in aj. With respect to this identifica-
tion, the projection map from ay to aj, which sends v € aj to

1
— wy
(W] wGZWM
agrees with the natural restriction map from aj; to aj,.
We have a natural inclusion from a,; into ag. Moreover, if a* denotes the perpendicular in ag
to a}; (C aj), then ay = ap; & al.
Note that the set of roots ® injects into a’é. For v € aa, we write v > 0 if v can be written as
a linear combination of simple roots with nonnegative coefficients. We write v > 0 if v > 0 and
v # 0. For v,V € aj, we write v > v/ (resp. v > /) provided that v — v/ > 0 (resp. v — v/ > 0).
(Note: If Ty # {1}, then any element of a; which projects to a nontrivial element in af, will fail
to be “positive”.)
We define
Cp:={veay|(ar)>0foral a € AN\ Ay}

and
Cp:={veay,|{av)>0forall a € A~ Ay}

Here & denotes the unique one parameter subgroup in ap for which

we (V) =v — (&, v)a
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for the simple reflection w,, corresponding to o. We set C' := Cp, and C = 613@; C' is usually
called the standard Weyl chamber in a;.

Exercise 18.2.3. (1) For the group GL,,(k), let M be the standard parabolic corresponding
to the partition n = ny + ng + - - - + ng. Explicitly realize a}, and the map a; — a};.
(2) For the groups GLy(k) and SL3(k), draw a picture illustrating the sets a},, Cp, and C'p
for all possible standard parabolics P with Levi decompositions P = M N.

Exercise 18.2.4. Let ¢ denote the projection map a; — aj,. Show that if v € C' := Cp,, then
v > ¢(v). Show that ¢ takes C' := Cp, onto C'p and ¢ takes the set {v € ajj| v > 0} # C onto

{v € aly | resgueay |aea=a()<oy v < 0}
so that v > 0 implies ¢(v) > 0.

18.2.2. Characters of M. Suppose P is a standard parabolic subgroup of G' with Levi decom-
position P = M N. We now wish to show that the set a}, is in natural bijective correspondence
with the set Xt (M) of positive real-valued unramified characters of M.

We have Th; /TS, = Tar/(Tar N M) is a full rank sublattice of M /M? of finite index. Conse-
quently, for every xy € X*(T)y), there exists a unique x' € X" (M) such that x'(¢) = |x(t)|,, for
all t € Ty;. We therefore get a map from a}, = X*(T)/) ®z R to X (M) by sending x ® r to
(m = X' (m)").

In the reverse direction, suppose that ¢ € X*(M). We define ||¢|| : X.(Th) ® R — R by
sending A @ r € X*(Ty) @ Rtor - log, (¥(A(w™))).

These two maps are inverses of each other. To simplify our notation, we will think of v € aj,
as being both an element of a}, and as an element of X (/).

18.2.3. Real exponents.

Definition 18.2.5. Suppose 7 € R((G) is admissible and P is a standard parabolic with Levi
decomposition P = MN. An element v € aj, (C ay) is called a real exponent of 7 relative to
P = MN provided that there exists a normalized exponent y of 7 relative to P = M N such
that (A ®@ s) = |x| (A @ s) 1= s - log, (Ix(M@™))le)-

Exercise 18.2.6. Show that 7 € 93(G) is tempered if and only if 7 is admissible and for each
standard parabolic subgroup P with Levi decomposition P = M N and for each real exponent
v € aj,; of 7 relative to P = M N we have v > 0.

18.3. The Langlands’ classification theorem. Fix a standard parabolic subgroup P of G with
Levi decomposition P = M N. Let o denote a tempered representation of M. Choose v € Cp.
Thinking of v as an element of X (M), we look at the representation

iS(0 @v).

It will turn out that this representation has a unique irreducible quotient (called the Langlands’
quotient) . Moreover, a different choice of data (P’, o', ') produces the same Langlands’ quo-
tient if and only if P’ = P, ¢’ = ¢ and v/ = v. Finally, we will show that any irreducible smooth
representation occurs as a Langlands’ quotient.
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18.4. Some preliminaries. Fix a standard parabolic subgroup P of GG with Levi decomposition
P = MN. Let 0 denote a tempered representation of M. Choose v € Cp.

Lemma 18.4.1. Suppose () is a standard parabolic subgroup of G with Levi decomposition
Q = LU. If V' € a} C aj is a real exponent of i%(c0 @ v) relative to Q = LU (the parabolic
opposite Q = LU ), then V' < v.

The proof is very similar to that of Lemma 18.1.5.

Proof. As an L-module, rgig(a ® v) has a filtration with associated graded pieces

-1

L M
Urw-1pw W Tw@w—lmM(U ®v)

for w € Wy, \W/W. We need to show that if x is a smooth character of 77, for which

(ifﬂw—lew_l : Ti\u/[@wflm]\/[(o- ® V))X 7é {0}7
then v — |x| > 0.
Any real exponent of ¢ ® v relative to wQw ™' N M has the form

*
vVt e O Lw—1NM

*

(wherev € ay, Cay, _
with respect to wPgw ™" N M. That is, ; is a non negative linear combination of simple roots

1)+ Since o 1s a tempered representation of M, we have u > 0 in aj,

of M which are positive with respect to wPgw ™" N M. Therefore, if ¢ is a smooth character of
T7 w1010 Such that

(W™ G ar)e # {0},

1

then || € @}, -1,, has the form w'v 4+ w™'x where 1 is a non negative linear combination

of simple roots of w ™! Mw which are negative with respect to Py N w ™' Mw.
If ¢/ is a smooth character of 77, for which

(iﬁﬁwflpwwil ' Ti\u/léwflnM(o- ® V))w % {0}7

Y| € a} looks like

then, from the above,
w4+ wp
where T denotes the image of v € aj ., -1,,, 10 a7 under the natural projection map. We have
w™lpy < 0inaj.
Since v € C, we have v > 7 and v — w—'v > 0. Thus

v—Ix| > 7 —wlv—wlp

(11) >v—wly
>0

Definition 18.4.2. If 0 € 23(M) is admissible, then we define
o, = B0,

where the sum is over those characters y of T}, for which |x| = v.
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We let P = M N denote the parabolic opposite P = M N.

Corollary 18.4.3.
(r%ig(a QX)) ZoQu.
Proof. As an M -representation, T%ig(a ® 1) has a filtration with associated graded pieces

- ri\z/lﬁwﬂmM(a ® V)

for w € Wy, \W/Wy,. If we can show that for w ¢ W), and y € T we have

- M
" Mrw-1pwW

(M Pt Typm1onr (0 @ 1))y # {0}
implies |x| < v, then we shall be done.
Fix w ¢ W), and y as in the previous paragraph. From Equation (11), it is enough to show

1

that the projection of v — w™" v into a}, is not zero.

Since v € Cp, by looking at the reduced expression of w as a product of simple reflections
w, for & € A we see that that there exists 3 € A ~ A; such that v — w™lv > v — wgv. (The
length of the reduced expression of w is equal to the minimal number of hyperplanes we must
cross as we travel from v to w_ly.)

However, for all « € A ~\. Ay, we have (&, v) > 0. This implies

V—we=v—(v—{,r)a)
= (@, v)
> 0.

Consequently, the image of v — w, v in aj, is strictly positive.

1

Thus, the image of v — w™ v > v — wsv in a},; under projection is strictly positive. |

Lemma 18.4.4.
Homg (i (0 ®@ v),i%(0c @ v)) = C.
Proof. Let x, denote the central character of o ® v. we have v = |resr,, (xo)|. Therefore,
Homg (i% (0 ® v),i%(0c ® v)) = Hompy (r§ifio ® v,0 @ v)
= Hom ((r%io @ v)y,, 0 @ v)
Since, from Corollary 18.4.3, we have
(rSi(c @ v))y, C (rSi%(c®v)), 2o,
it follows that
Homg (i%(0 ® v),i%(c ® v)) = Hompy ((r&iS(oc @ v)),,0 @ v)
= Homy(c ® v,0 @ 1)
which, from Schur’s lemma, is isomorphic to C. [ |
Theorem 18.4.5. Choose 0 # o € Homg(i%(0 ® v),i%(c ® v)). The G-module i%(c &

v)/ ker(«) is the unique irreducible quotient of i%(c @ v) and the unique irreducible submodule
of i%(a R V).
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Once this theorem is proved, the following definition will make sense.

Definition 18.4.6. We define the Langlands’ quotient J(P,o,v) to be the unique irreducible
quotient of 1% (0 ® v).

Proof. Choose 0 # o € Homg (i%(0 ®@ v),i%(0 @ v)).

We first show that i% (o ® v) has a unique irreducible quotient. It will be enough to show that
every proper G-submodule of i%(c ® v) is contained in ker(«). For this, it is enough to show
that if v € i%(0 ® v) such that (G - v) # i%(0 ® v), then v € ker(«). From the construction of
the maps in the proof of Frobenius Reciprocity, it will be enough to show that for each g € G the
image of (gv)y € r$i% (0 ® v) under the projection onto the direct summand (r$iG (o ® v)), is
zero.

Fix such a v. Since we can realize the contragredient of i%(oc ® v) as i%(c ® ) where 7,7
denote the contragredients of o and v, respectively, there exists 0 # A € i%(d ® v) such that for
all g1, go € G we have (g1A)(g2v) = 0. By replacing A with g\ for some g € G, we may assume
that \(1) € 0 ® v is nonzero. Then, for all compact opens subgroups N’ of N we have

(enN)(L) = A1),

Consequently, the element Ay of r5i% (& ® 7/) has nonzero image in 7 @ v C r$i% (5 @ v).
From Casselman’s perfect pairing (Theorem 15.0.1), we have that the contragredient of r%i%(c®
v) is isomorphic to r%ig(a ® v). Let (o denote the central character of o ® v. From Corol-
lary 18.4.3 we have that
(T’glg(’& ® 77)))?0
which is the contragredient of
(r5it(0 @ 1))y
1s isomorphic to
ocRU.
Therefore the only copy of ¢ ® 7 in r%i%( @ ) occurs as a direct summand. Therefore, without
loss of generality, we may assume that A\ € 0 ® V.
If we denote by (, )y Casselman’s perfect pairing between

rSi%(oc @ v) and ri% (6 ® D),

then for fixed g € G and for all m € M, we have that
(mAn, (gv)w)n = 0.

(This is true because (mA)(gv) = 0 forall m € M.) Thus if  denotes the map from i%(c®v) —
o @ v obtained by composing Jacqueting with projection:

Gloov) = rSiGcor) = (%iGcov)), Xoov
then

(mAn, ¢(gv))n = 0.
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This shows that the component of (gv) in the direct summand o ® v of r$iG(c ® v) is zero.
Since this was true for all g € G, we conclude that v € ker(«).

Finally, we note that the image of « in i%(a ® v) is irreducible. The fact that it is unique
follows from the fact that its contragredient, 2'%(5 ® V), has a unique irreducible quotient from

the above. [ |

Remark 18.4.7. In the proof of Theorem 18.4.5, we actually showed that ker(«) is contained in
ker(p o ).

18.5. Uniqueness of the datum (P, o, v).

Lemma 18.5.1. Suppose 7 € R(G) is irreducible. We have that m = J(P, o, v) if and only if

(1) for all standard parabolics () of G with Levi decomposition () = LU and for each real
exponent V' € aj C a; of m relative to Q = LU (the parabolic opposite Q = LU) we
have V' < v and

(2)

(rSm), 2o

Proof. “=": Since J(P,o,v) is a quotient of i%(c @ v), Item (1) follows from Lemma 18.4.1.
As for Item (2), from the exactness of

0 — ker(a) = i%(c®@v) =7 =0

we have the exact sequence

0= (rSker(a)), = (rSiG(c®v)), — (rSm), — 0.

Since (r$i%(c ® v)), = o ® v, it will be enough to show that (1% ker(a)), = {0}. However,
this follows from Remark 18.4.7.

“«": From Item 2 we have that T%?T surjects onto (r%w),, which is isomorphic to o ® v.
Therefore, from Frobenius reciprocity we have that 7 is a subrepresentation of i%(a ® v). The

result now follows from the uniqueness of J(P, o, v). |

Lemma 18.5.2. Suppose (P',0’,V') is another datum. (The standarad parabolic P' has a Levi
decomposition P’ = M'N'.) We have
J(P,o,v) = J(P' o' V)
if and only if
P=P,oc~=¢ and v="1"
Proof. “<": There is nothing to prove.

“=": Since J(P,o,v) has v as a real exponent with respect to the parabolic opposite P =
MN and J(P',0o’,1') has /' as a real exponent with respect to the parabolic opposite P’ =
M’'N’, we conclude from Lemma 18.5.1 (1) that v < v/ and v/ < v. Therefore, v = v/ which
implies P = P’. Finally, we have

cvrSI(Pov), = rSI(Pd.v), 2 v

This implies that o = ¢’. [ |
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18.6. Surjectivity. In this subsection, we show that every irreducible smooth representation of
G occurs as a Langlands’ quotient.
Note that

c-Tler
where the union is over the set of standard parabolics P with Levi decomposition P = M N.
We fix a W-invariant inner form on a;. As usual, this gives us a I¥/-invariant metric on a;.

Definition 18.6.1. For v € aj we denote by 14 the unique element of C which is closest to v.

Remark 18.6.2. If v € aj and vy € Cp for some standard parabolic P with a Levi decomposition
P = M N, then we have that (19 — v) is perpendicular to a},. It follows that we can write

(vgp—v) = Z Calt
aEA
with Ca € Rzo. Thus %0} > V.

Remark 18.6.3. Suppose vy € Cp as in Remark 18.6.2. An element u € aj \ C has pg = vy if
and only if the image of ;» under the projection from a; to aj, is vo.

Lemma 18.6.4. Suppose i, v € ay. If v > p, then vy > .

Proof. Since vy > v and (1) = 1, without loss of generality we may assume that v = 1. Let
() denote the standard parabolic with Levi decomposition () = LU for which py € Cq. If
denotes the image of = € a; under the projection map a; — aj, then vy > Ty > 1t = pip. |

Lemma 18.6.5. Suppose P is a standard parabolic subgroup of G with Levi decomposition
P = MN. Let v = vy € Cp. Denote by x — T the projection map from aj to ay,. If u € a
such that i = v, then g > v. Moreover, if 1o = v, then p < v.

Proof. Since 1 = vy, there exists a subset I of Aj; such that
[L:V0+ana— Z Ca X

with ¢, € Rx¢. Since

from Lemma 18.6.4 we have 1o > (v — ZaeAM\I Ca)o = vo. If pg = vp, then vy = po >
1. |

Lemma 18.6.6. Suppose m € R(QG) is irreducible and P (resp. Q) is a standard parabolic with
Levi decomposition P = MN (resp. Q = LU). If v € Cp is a real exponent of 7 relative to
Q = LU, the parabolic opposite Q = LU, then () C P and v is a real exponent of T relative to
the parabolic P = M N opposite P = MN.
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Proof. If v € Cp C aj is a real exponent of 7 relative to @ = LU, then v € a} implies that
a3, C aj which implies Ty, C T}, which implies M D L which implies P D (). Now

{O} i (T%W)v = (TgmMrgﬂ>u

M q
= g (TP
Therefore, v is a real exponent of 7 relative to P = M N. |

Theorem 18.6.7. For each m € R(G) which is irreducible, there exists a standard parabolic
P with Levi decomposition P = M N, an irreducible tempered representation o € R(M ), and
v € Cp such that m = J(P,o,v).

Proof. From Lemma 18.4.5 it will be enough to find a triple (P, o, /) as above so that 7 occurs
as a subrepresentation of i%(c @ v/).

Let E(r) denote the set of v € C' for which there exists a standard parabolic () with Levi
decomposition Q = LU and v € a} such that v is a real exponent for 7 relative to Q = LU, the
parabolic opposite () = LU.

If x denotes the central character of , then |resy, x| € ai; = Cg C C, so E(w) is not
empty. Moreover, since 7 is irreducible, for each () = LU as above, the Jacquet module 7’% is
admissible and finitely generated, hence, from Theorem 12.0.7 Tgﬂ' has finite length. Therefore,
the set £ () has finite cardinality.

Choose v € E(m) maximal with respect to >. Suppose v € Cp for some standard parabolic
P with Levi decomposition P = M N. From Lemma 18.6.6 and the definition of E(7), v is an
exponent of 7 relative to P = M N, the parabolic opposite P = MN. Thus, (rSm), € R(M)
is nontrivial and finitely generated, hence it has an irreducible quotient, o’. Since r%w surjects

onto ¢’ via the maps

rSr — (%), = o,
from Frobenius reciprocity we have that 7 is a subrepresentation of z'%a’ .Seto =o' @v L It
will be enough to show that o is tempered.

Let Q C P be a standard parabolic of G with Levi decomposition Q = LU. Let Q = LU
denote the parabolic opposite () = LU. We need to show that if 1 € aj is a real exponent of o
relative to Q N M = (L N M)(U N M), then 11 < 0. Note that a, C aj.

Suppose /i € a} is a real exponent of o relative to @ N M = (L N M)(U N M). Any such u
looks like i/ — v for some real exponent 1/ € a% of 7 relative to Q = LU such that the image 77’
in a}, of 1/ under the projection map a}, — aj is v. (Note that this latter condition implies that
v and £/ have the same image under projection onto ay;.)

We consider two cases: either i/ € Cgor i/ € a} \ Co.

In the first case, we have ¢/ € E(m) and ¢/ = (1')o. Since i’ = v = v, from Lemma 18.6.5

we have
!

p = (o > v =vr.
Thus, since p//, v are comparable elements of £'(7) and v is a maximal element of F(7), we have
i = v. Consequently, u = p/ — v = 0.
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In the second case, we have i/ € aj ~ GQ and 7' = vy. Consequently, we must have
(')o = vo. From Lemma 18.6.5, we have i/ < v. Consequently, = ¢/ — v < 0. [ |

19. SOLUTIONS

Solution to Exercise 1.0.2

(1) This is clear from the definition.

(2) The statement is clear if r; = 0 or vy = 0. If r; = p% - a;/b; where p { a; and p { b;
for i = 1,2, then i1y = p“***2 - ajay/(b1by), so since p 1 ajas and p | byby, we have
|7y - 7”2|p = frl\p : |7”2|p-

(3) Again suppose r; = p%i - a;/b; for i = 1,2 as before, and assume that ¢; > /5. Then

P 2a1by + brag
b1y

If /; > /{5 then p does not divide the numerator or the denominator, so |r; + r2|p =

¢
T t+re=p>

p~ = max(|ri|,, |ra|,). If £ = £, then p may divide the numerator but not the denom-
inator, so |r; + 7"2|p <pt.

Solution to Exercise 1.0.3
We showed in the solution to Exercise 1.0.2(3) that if |ri[, # |r2|, then the inequality is
an equality. The converse is false: set r; = ro = 0. If p is odd, there are also nontrivial
counterexamples: take r, = 7o = 1, for instance. If p is two, however, and r; = 20 . q; /b; have
the same 2-adic norm for ¢ = 1, 2, then a,b, + byas is even, so the 2-adic norm of
s a1b2 + bras
b1be

is strictly smaller than max(|ry|,,|r2|,). Thus |rq + 72|, = max(|r],,|rs|,) implies either

T +Tre=2p

71|y # 72| Or 1 =19 = 0.

Solution to Exercise 1.0.4

Since the map x — = is an increasing function, it is clear that all three parts of Exercise 1.0.2
are satisfied by |- For v > 0, let B,(p,a) = {z € Q| |z[5 < 7} be the ball of radius 7 around
0 in the metric |- . Then B,a(p, @) = B,(p, 1), which shows that both metrics complete to Q.

Ifo>1then|l+ 1| =2%>2=[1"+]1
We claim that |-|* does satisfy the triangle inequality for o < 1. Suppose that o € (0, 1], and
let a,b € R. We have |a + b| < |a| + |b], so it suffices to show that (a + b)* < a* + b for
a,b € Rsq. Dividing through by (a + b)®, we may assume that a, b € [0, 1] and that a + b = 1.
Then a® > a and b* > b, so a® + b* > 1, as required.

“, s0 |-|* does not satisfy the triangle inequality.

Solution to Exercise 1.0.5
Fix n € Z, and let m < n. Since ™ is compact, £™ /" is finite. The result follows since

kjon =, 9"/,

Solution to Exercise 1.0.8
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Let G be an /-group and suppose A C G has more than one element. Using translations,
we see that every point of GG has a basis consisting of compact open subsets. The Hausdorff
condition implies that if =,y € A are distinct then we can choose a compact open neighborhood
K of x such thaty ¢ A. Now K is closed (again because G is Hausdorff) and open, so G \ K is
also closed and open, whence A = (AN K)[[(A\ K) is disconnected.

The converse sometimes goes under the name of van Dantzig’s theorem. See, for instance,
Theorem 1.34 in The Structure of Compact Groups by Karl Heinrich Hofmann and Sidney A.
Morris.

Solution to Exercise 2.0.9

(1) Suppose G has a countable base of open sets, and let X' C G be an open subgroup. For
g € G,letmy : G — G be the multiplication map h — gh. Then m, is a homeomor-
phism with inverse my-1, so gK = my(K)isopenforall g € G. If {U; |i € N}isa
countable base of GG, then for all g € G, there is some ¢ € N such that U; C gK; since
the cosets {gK | g € G'} are disjoint, there are therefore a countable number of them.

(2) We already know that the sets K,,, n > 1 form a countable neighborhood base of 1 € k*.
Therefore {zK,, | n > 1, x € k*} is a basis for the topology of £*. But Q* is dense in
k>, so forany n > 1 and any = € k*, there is a ¢ € Q* such that ¢~ 'z € K,,; thus there
are only countably many cosets x K, above.

Solution to Exercise 2.1.8
Let A € Endg(V). Since V is finite-dimensional, A has a nonzero eigenvalue \. Thus the
G-map A — X has nontrivial kernel, so since V' is irreducible, A — A = 0, i.e., A = \.

Solution to Exercise 2.2.1

Choose an open neighborhood U C C* of 1 which does not contain any nontrivial subgroup
of C*: for instance, one can take U = {z € C | |z — 1| < 3}. Then ¢~*(U) is an open
neighborhood of the identity in G, so we can find a compact open subgroup K C ¢~ *(U). But
now ¢ (K) C U is a subgroup, so by our choice of U we have ¢)(K) = {1}, or in other symbols
K C ker. This implies that ker 1) is open, so in particular v is smooth.

For a non-unitary character of £*, choose a uniformizer 7 € k*, or equivalently an isomor-
phism £* = R* x Z. Then for any z € C*, there is a unique homomorphism ¢ : £* — C*
such that ¢)(R*) = {1} and () = z. In particular, we can choose z € C* \ S*.

Solution to Exercise 2.2.2

First consider the projection R — f, which is a ring homomorphism, so that it induces a
homomorphism R* — §* on units. It is not hard to see that this map is surjective, since R* =
R\ . The kernel of this map consists of elements of R* which difffer from 1 by an element of
©,ie. 1+, sothat R*/(1+ ) = §*.

The proof of the second assertion is more interesting. Choose a uniformizer 7 € & and
consider the map R — (1 + #*)/(1 + ©**1) which sends z +— z7* (mod 1 + ©**!). The
calculation

(1 + 271 +yr*) =14 (2 + y)7* + pyr?*
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shows that this is a homomorphism with respect to addition on R and multiplication on the
target. The kernel consists of those z € R such that xm® € ©*+1, which is just €, so R/ =
(14 #%)(1 + ©**+1) as claimed.

The fact that #R* /(14 ™) = (¢ — 1)¢™ ' now follows from an induction on the short exact
sequences

1= (140)/(146™) = R*/(1+6™) — R*/(1+9) — Land 1 — (1-+9™ 1) /(1+™) — R*/(1+6™)

Solution to Exercise 2.2.4

Letvy € X(k*). Since ® is unramified, we can use the isomorphism of £~ with Zx R* to think
of 1 as a character of Z, that is, a group homomorphism Z — C*. Since Z is cyclic, the group
of all such characters can be identified with C* via the map ) — 1(1). These identifications are
compatible with the map 1) — ¥ (w).

Solution to Exercise 2.3.1
To begin, we have

m(2)m(y) = (év(;c)) <(1)v(1y)> _ (é”(x)?}(y)) _ (év(a;y)) — n(zy)

so (m, V) is a representation of k*. Since resgx 7 is trivial, (m, V') is smooth. Suppose that
C- (¢) is a proper k*-submodule of V. Then

(@) (3) = (") =< (})
for some c € C*. If b A Othenc = 1,s0a+ b = a and b = 0, a contradiction. Thus b = 0, so
the only proper k*-submodule of V' is C - ((1)) Thus (7, V') cannot completely decompose.

Solution to Exercise 2.4.1
Let h € GG be such that ¢)(h) # 1. By translation invariance of the Haar measure we have

/w dg—/@bhgdg—/w ) dy,

which implies that the integral is zero.

Solution to Exercise 2.4.2
(1) Lety € R* and v € V. We have

T(y)es(v) =7(y) [ d()r(z)do = . U(@)m(yz) de.

RX

Since dx is a Haar measure, we can translate by y~! to show that
T(y)eyp(v) = [ Oy 'a)m(z) de =y ey(v)
RX

which is just (y)e, (v) since resgx 1 is unitary.
(2) Letv € V. We have

— [Tt [Fem@ dedy = [ [Tt ddy.
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Since dy is a Haar measure, this is

/ P (yr )Y (x d:z:dy—/w /zp x)v dx dy.

We claim that f(v f 1/1 z)vdr = 0. Indeed, by part (1) above, for every
y € R* we have w< )f(v) = w >f<v>, so if f(v) # 0 then v(y) = ¥/(y). Alter-
natively, [ ¢)(x)y'(x) dx is just the Hermetian product of two nonequivalent irreducible
representations ¢ and v’ of a finite quotient group of R*, and is therefore zero. In any
case, this implies that e, - e, (v) = 0 as required.

(3) In part (2) we showed that forv € V,

ey ey(v /¢ /¢ udxdy—/¢ /vdxdy:ew(v).

Solution to Exercise 2.5.6

Denote the functor (7, V') — Homyx (Cj; ®c B, V) by F. Since V is t-isotypic, we have
that Hompx (Cy, V) = resgpx V naturally. Exactness and faithfulness of F' are then a direct
consequence of Lemma 2.5.4. It remains to show that F' induces a bijection of objects and
maps. Define a functor GG from the category of B-modules to SR¥(k*) as follows. Let M be a
B-module, and let m € M and z € k*. Set w(z)m := 1(z) ev, -m, and set G(M) := (m, M).
Note that G(M) is indeed a smooth k*-representation since B is a C-algebra and ¢ () ev, = 1
when ¢(z) = 1. With these identifications, the map ¢ — ¢(1 ® 1) is a natural isomorphism
of Homyx (C; ®c B, M) with M as B-modules, for any B-module M. The same map is a
k*-isomorphism of Homyx (C 7 ®c B, V) to V, for any smooth representation V. Thus G is the
inverse functor to ', so F' defines an equivalence of categories.

Solution to Exercise 2.5.7

These three categories are actually isomorphic. A representation of Z is a complex vector
space V' together with a homomorphism Z — GL(V'), which is uniquely determined by the
image of 1, and moreover can be any 7' € GL(V'). So we see that the objects correspond to pairs
(V,T) of the kind just described. A morphism of Z-representations on vector spaces V' and W
is a linear map ¢ : V' — W which intertwines the Z-actions, meaning that if S € GL(V') and
T € GL(W) are the images of 1 then ¢ o 7" = S™ o ¢ for all n € Z. But this equivalent to
poT = Sop,so R(Z) is really the same as (i.e. isomorphic to as a category) the category
of pairs described in the exercise. Also, R(Z) is isomorphic to C[t,¢~1]-mod because C[t, ']
is isomorphic to the group alegbra C[Z]| via the unique C-algebra homomorphism which sends
t — 1, and one knows that the category of representations of a discrete group G is isomorphic to
C[G]-mod.

Solution to Exercise 3.0.9

We inductively define a character A of k/R by defining compatible characters of ©£"/R for
each n < (. Note that for any n € Z, the map = + " — wx + ©"*! defines an isomorphism
prot/pn — on [t so ot [ 2§ =2 7 for each n, where [f] = p™



119

Let Ay : R/R — C* be the trivial homomorphism. Let n < 0, and suppose that there exists
a character A, : ¢"/R — C*. Let5,...,5,, be m order-p generators of ¥"~1/9" — i.e.,
pr=l/pn = (5)) @ - - - & (5,,) — and let s; be any liftin "' of 5;. For 1 <14 < m, let o; € C*
be an mth root of A, (ms;); choose a; # 1. Set

Ay i(dis1+ -+ dpsm + 8) == o/fl coeadm AL (s)
where each d; € Z and s € ™. If
disi+ -+ dpSm+s=dis1+ - +d,$m+ 5

then both sides of the above equation project onto the same element of £"~! /9™, so for each 1,
d; — d; = k; - m for some k; € Z. Thus s — s’ = Y, k; - ms;, s0 Ap(s — &) = [[; An(ms;)¥ =
[1, ™. Thus

Oé?l . O{gnm . An(s) — Ofllll . .aﬁiﬂ . An<8/>

which proves that A,,_; is well-defined. Clearly A,,_; is then a (nontrivial) homomorphism which
agrees with A, on ©"/R.

We can now define A : k/R — C* by A(z) = A,(z), where n < 0 is any integer such that
2 € ©". This induces a nontrivial smooth character of k.

Alternatively, this claim follows from Lemma 3.5.11: Since C* is an injective object in the
category of abelian groups, we can extend any nontrivial homomorphism R/§ = § — C* to all
of k/®.

Solution to Exercise 3.0.10

First we do the exercise for f. Let A : f — C* be a nontrivial additive character of f. We claim
that the map % : 7 +— Az is an isomorphism of f with?. Clearly ¢ is a homomorphism. Suppose
that Az = 1 and that T # 0. Then for all § € §, Az(yz~') = A(y) = 1, which contradicts the
assumption that A is nontrivial. Thus % is injective.

We prove surjectivity by counting. Let p be the characteristic of f, so ¢ = p" for some n > 0,
and f = [ as additive groups. Since any finite subgroup of S 1 is cyclic, the image of any
homomorphism A’ : §f — C* must be contained in the subgroup of the pth-roots of unity, so we
can think of A" as a Z-module homomorphism I} — IF,,. But any such Z-module homomorphism
is also an [F),-vector space homomorphism, so we can identify?with the vector space dual (IF})*
of IF). Since (F})* has p" = ¢ elements,  must also be a surjection. (Or one can use the
representation theory of finite groups: to wit, if GG is any finite abelian group, then there are |G|
irreducible representations of (=, each of which is a unitary character.)

Denote the map = — A, by ¢. As above, ¢ is an injective group homomorphism; we must
show that it is surjective. Replacing A by A= for some m € Z if necessary, we may assume
that A is trivial on & but not on R. Let A’ € % be any character, and assume without loss of
generality that A’ is trivial on € also. Thus A and A’ induce characters A and A on f=R/®,
A being nontrivial. Consequently, by what we showed above, we can find an zy € R such that
Ay, = A on R. Then (A_; A') 1 = A, o1 AL__, is trivial on ©, so we can find an 2, € R
such that A,, = A_, 1A, on R, i.e., Ay sy, agrees with A’ on ™' R. Continuing in this
fashion, we can find g, x1, 29,... € R such that A, | o)1 pwms,, = A" on w™ ™R, for each
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m > 0. Setting x = x¢ + ww, + w2y + - - - (Which exists since k is complete), then, we have
that A, = A’ as required.

Next we show that ¢ is continuous. Let B(K,U) = {\ € k | N'(K) C U} be an element
of the subbasis for the topology of /k?, where U C C is any set (recall that C has the discrete
topology) and K C k is compact. Let z € ¢ '(B(K,U)), i.e., A(xK) C U. Suppose that A is
trivial on €, and note that X' C ¢™ for some m € Z, since { K N €™ | m € Z} is an open cover
of K. Thus "1 K C ©,s0 A((x + ¢mHNK) = A(zK), ie., z + @™+ c o™ Y(B(K,U)).
Thus ¢ is continuous.

It remains to show that ¢! is continuous; it suffices to show that for all m € Z, there exist K
and U such that B(K,U) = ¢(#™). Choose m € Z, and suppose again that A is trivial on § but
noton R. Set K = @ ™" and U = {1},s0 A, € B(K,U) if and only if A, is trivial on ©~™+1,
which is true if and only if v(x) > m, i.e., x € P™.

Solution to Exercise 3.0.11

Let IV be a finite-dimensional k-vector space, and let ¢ : W* — W be given by ¢(\)(v) =
A(A(v)). Tt is clear that ¢ is an injective homomorphism. Moreover, if we give W the structure
of a k-vector space by setting (z - x)(v) = x(zv) forxz € k, x € W,and v € W, then ¢ is
a linear map. If W = k" then W = Hom(EP] k,C*) = @] Hom(k,C*) = k™. This shows
that any character of W is unitary. We effectively showed that dimk% = 1 in the previous
exercise, so dimy, W=n= dimy W*, so ¢ must be an isomorphism. One shows that ¢ is also a
homeomorphism using the homeomorphisms ko ko k*, W* = (k*)™, and W g,

Solution to Exercise 3.0.12
Define amap f : A" — ((A)r)" by f(a)(A) = Xa). IfAX =~ - X - (N)~! for some X € A
and v € ' then

fl@(\) =XN("a—a)=1

since Y~ 'a = a. Thus f is well-defined.
Suppose that f(a) = 1, so A(a) = 1 for all A € A. This shows that a = 1 since the natural

map A — Ais injective (to see this, use Lemma 3.5.11). Thus f is injective.

Let A € ((ﬁ)p)’\ The projection A — (g)p allows us to extend A to A, so by hypothesis,
there is some a € A such that A(\) = A(a) for all A € A. We must show that a € A". Suppose
that there were some v € I such that ya # a, and find some \ € A such that AMya —a) # 1.
Since A is trivial on A(T), we have

L=A"A- A=Ay a—a)
a contradiction. Thus a € AT,

Solution to Exercise 3.1.2
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For v € V, we have

€2y — /K () /K ()0 ds iy
_ /K < /K W(xlxg)vdxg) day
_ /K < /K ﬁ(@)q]m) iy

= / (exv)dry = egv
K

so ey is a projection operator. Thus exV C VX; the other inclusion is clear since our Haar
measure dz is normalized. Forany v € V, we have v = (1—eg )v+egv,s0V = (1—ex)V+VE.
Ifve(l—ex)VNVEthenv =w — egw for some w € V,and v = exv = ex(w — egw) =
exw — exw = 0, so the sum is direct. Since dx is a Haar measure, we see that for z € K and
veV,ex(r(x)v) =exv =m7(x) - exv, so (1 —ex)V and V¥ are both K-modules.

For A € V and v € V, we have

(ex\)(v) = /K (F(2)\ v de = /K Ar(z~No) dz = A ( /K ﬂ(x_l)vd:p) = AMexv).

We are free to move the v and the A in and out of the integral sign because the integral is a
finite sum and everything is linear, and d(z~') = dx by the uniqueness of the normalized Haar
measure. The above identity combined with the decompositions V' = (1 — ex)V & VE and
V = (1 — ex)V @ VE show that the restriction map VX — Homg(VE, C) is injective. It
remains to point out that if we extend any A € Home(VE, C)toall of V = (1 — ex)V @ VE in
the obvious way, then \ € VE.

Solution to Exercise 3.3.6

We proceed by induction on the dimension of V. Clearly any one-dimensional representation
is irreducible.

Suppose that n := dim¢ V' > 1, and assume that any complex representation of G with di-
mension less than n has an irreducible subrepresentation. Suppose that (7, V') is not irreducible.
Let W C V be a nonzero proper subrepresentation of V. Since dim¢ W < n, by the inductive
hypothesis, W has an irreducible subrepresentation.

Solution to Exercise 3.3.10

For convenience, define I (K, v) := [, 1 K (x)w dx for a compact open subgroup K C
F and a vectorv € V.

First we show that if I(K,w) = 0 then /(K’,w) = 0 for every compact open subgroup
K’ D K. Indeed, for any y € K’, we have

/ (@) - m(e)wde = / b (ya) - (yrywde = () - w(y) (K, w) = 0,
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Choosing a (finite) set {y} of coset representatives for K’/ K, we have
I(K' w) = Z/ Y () - m(z)wdr = 0.
yK

Let W be the set of all w € V for which I(K,w) = 0 for some compact open subgroup
K C F. Letw € W, and let K be such that w € [(K,w). Since {K,}>°, is an open cover
of K, we have that K C K, for some n > 1. Let f € F, and let n be large enough that K,
contains K and f. Then

N @) (e f)wde = (f) | @ (@)m(z)wde =0,
Ky Kn
which shows that W is an F'-submodule of V. In addition, for v € V, we have

v @) (@) (w (v — (f)v) do

KTL

= [ @ de =) | o7 @) dr =0,

which proves that V' (F, ) C W.
Now let w € W, and choose a ' C F such that [(K,w) = 0. Assume without loss of
generality that [, dz = 1. Then we have

w=w— /K V()T (z)w d
— /K(w — 7 H2)7(v)w) dx
- [ (@) = v(@) - (o @)

The last integral is a finite sum of the form ) . ¢;(7(x;) — ¢(z1))v;, sow € V(F, ).

Solution to Exercise 3.4.1

Let X, X' be two characters of SZ which restrict to x on Z. Then X(X’)~! is trivial on Z, so it
reduces to a character on SZ/Z = S = k. Since A(s) := x([0, 0, s]) is also a smooth character
of k, by Exercise 3.0.10 there is some s € k such that

X([Ov 0, 8:9\]) - A§(5> - %([87 0, 0])(%/)_1([87 0, O])
for all s € k. Rearranging, this gives
5(//<[57 0, 0]) = X([07 0, —537)%([57 0, O]) = 55?([57 0, 0])

forall s € k,i.e., X' = X5 Thus S acts transitively.
We have that Xz = Yz if and only if x([0,0, s(§—5")]) = 1 forall s € k. Since x is nontrivial,
it follows that 5 = 5. Thus the action is simply transitive.

Solution to Exercise 3.5.1
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Let a,b, c € H; by abuse of notation, write a, b, ¢ for their images in P too. We have that
{ab, c){a,c) b, c)™' = X(abcb_la_lc_l)X(cac_la_l)x(cbc_lb_l)
x(abeb e ra ) x(cbe b7
(abcb ¢ Hebe b Ha™h)
V(1) =

since cbc™ b~ € Z. As for the second variable, since (-, -) is alternating, we have

{a,bc) = (be,a)™" = ({b,a)(c,a))" = {(a,b){(a,c).

Solution to Exercise 3.5.3

(1) We calculate
[a,b,d][d, e, flla,b,c] " [d, e, f] ' =[0,0,ea — bd] € Z.

(2) If p € H/Z is nonzero then the above equation makes it clear that there is some g € H/Z
such that (p, ) # 1 since Y is nontrivial.

(3) The only thlng to show is that the image S of S in P is a maximal isotropic subgroup (the
proof for S is the same). Since S is abelian, it is clear that S is isotropic. Let [s,0,0] € S
and [a,b,0] € H/Z. We have

<[87 0, 0]7 [CL, b, 0]> = X([07 0, bS])

so since  is nontrivial, either b = 0 or ([s, 0, 0], [a, b, 0]) # 1 for some s € k.

(4) Recall that x is a nontrivial character of Z = k, and that P = k & k. Let n be the unique
integer such that  is trivial on §" but not on ©"~ 1. Let K,,, = ¢™ @& ¢™ for m € Z, so it
is clear that

K+ =1{[d,e0]| x(ea —bd) = 1forall a,b € p™} = "™ @ "™,
For any ¢ € P, we have that

(qKw)"={pe P|{p,a') = (p,q){p,p) = 1forallp’ € K,,} = {q}" N K,

since if p € (¢K,,)* then (p,q){p,1) = (p,q) = 1. Since {g}* is the kernel of the map
p > (p,q), {q}~ is closed, so (¢K,,)" is also a compact open subgroup.

Now let K C P be any compact open subgroup, and find an m such that K, C K.
Then K/K,, is finite, so K is a finite union of subsets ¢; K,,,. Thus K+ = (,(¢: K,,)" is
also a compact open subgroup.

Solution to Exercise 3.5.6
Let K be a compact open subgroup of H, let f € Inng(Z)K , and let stz € K, where
seSteS andze Z Wehave §- stz = sz - (s 1555 1)5t, so

f3) = f(5-stz) = X(s2) - (s71,3) - f(3D)
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forall § € S. Assume that K N (SZ) C kerX, and set { = 1 and z = 1. Thus f(5) = 0 when
there is an s € K N .S such that (s71,8) # 1, i.e., f(5) = 0 outside of the set

(58| (s",5) =1foralls € KNS}

By Remark 3.5.2(1), this set is compact, and it is clearly determined by K. Setting s = 1
and z = 1, we also see that f is locally constant with respect to K N S, so the dimension of
Ind%, (X)® must be finite.

The above proof shows that the restriction of any f € Ind%,(Y) to S is locally constant and
compactly supported, so C’é’o(g’ ) = Ind,(Y) as complex vector spaces.

Solution to Exercise 3.5.9

This is nearly identical to the solution for Exercise 3.0.9. Any element of S has a represen-
tation as (s})"(s5)"2 - -+ (s),)™ for r; € Z that is unique up to translations of r; by d,. It follows
that if s}'s5? - - - s7» 2 and sgisgé -+ sz are two representations of the same element of SZ then
for each i, we have r; — r; = m;d; for some m; € Z. Since s;”"di € Z, we have

1_( /)71 P A —T5 *Tﬂ, L T2 . T
=(2)"z-s, e R A R

_ n—1 midy —r! —7‘/2 ro r
—(Z) Z.Sl .Snn...82 .82...3nn

B (Z,)_lz . STldl 837»2(12 ... Szlndn
s0 2712 = gmdrgladz . gmndn Since each o is a d;th root of x(s5*), we have

Tn

gz — (2
atay’ - (2) = aptay’ - e x(2)

/

which shows that X is well-defined. For any i, j, we have (sj,s’) = 1 since S’ is isotropic, so

/
. T
—Ti J

X (s s;j s; 's; 7) = 1, which shows that X is a character. It is obvious that Y agrees with x on
Z.

Solution to Exercise 4.0.15

Let (7, V') be a finite-dimensional representation of GL,,(k). Then 7 has open kernel (choose
a finite spanning set for V' and intersect their stabilizers), so in particular K = ker 7M1 Ny is open
in Ny. By the calculation in Example 4.0.14 we have N = U’ K, so in fact 7|y, is trivial.
Now it suffices to show that the conjugates of N generate SL, (k): certainly they generate a
normal subgroup, and the only (closed) proper normal subgroups of SL,, (k) are subgroups of the
center, which is finite.

Solution to Exercise 5.1.5

First note that for any ¢ € Homg (W, V') we have that o(W,,) C V (o), so Homg (W,, V) =
Homg (W,,V(o)). Suppose first that dime V(0) < oo. Choose a decomposition V(o) =
@T(U) W, of V(c) into a direct sum of copies of W,. Then we have

m() m()

m()
Homy (W,, V(o)) & Homg | W, @ W, | = @5 Homg (W, W,) =P C
1 1 1
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so dim¢(Homg (W,,V)) = m(o). If m(o) = oo then the middle equality above no longer
holds, but one can still choose infinitely many linearly independent K -maps W, — V(o).

Solution to Exercise 5.1.10

Let V' be a smooth G-module that is not finitely generated. Let v; € V' be nonzero, and set
Vi = (v1) (i.e., V] is the G-module generated by v;). Choose v, € V' \ V1, and set Vo = (v1, vg).
Continuing in this fashion, we construct an infinite proper filtration

{}=icVichhc.-
of V', which shows that V' does not have finite length.

Solution to Exercise 5.2.2

We prove the statement by induction on the length of V. If V' has length 1 then V' is simple,
so by hypothesis, V' is admissible.

Suppose that the length of V' is n, and that the statement is true for all smooth representations
of length less than n. Let

{O=hecWng---CV,=V
be a filtration of V' such that each V;/V;_; is simple. Note that the length of V,,_; isn — 1. We
have an exact sequence
00—V, —V—V/V,.1 —0

which gives rise to an exact sequence

0—VE —VE 5 (V/V,_)F —0

for any compact open subgroup K C G. By the inductive hypothesis, VX , is finite-dimensional,
and (V/V,_1)¥ is finite-dimensional since V/V;,_; is simple. Thus dim¢ VE < oo, so V is
admissible.

Solution to Exercise 5.3.1

Let f € CX(G,V),let S C G be the support of f, and for g € G let K, be a compact open
subgroup of G such that f(gz) = f(g) forall x € K,. The set {¢K, | g € S} is an open cover
of S, so it has a finite subcover {g; K, | ¢ = 1,...,n}. Setting K = (\._, K,,, we have that
feC®G V)X =C.(G/K,V).

Define ¢ : C*(G) @V — CX(G,V) by o(f @ v)(z) = f(z)v. Setting g - (f ® v) =
(g - f) ® v, we see that ¢ is a G-map. First we show that ¢ is surjective. Let f € C>(G,V),
so f € C.(G/K,V) for some compact open subgroup K. Let gi,...,¢9, € G be such that f
is supported on g1 K U --- Ll g, K, and let v; = f(g;). For each i, let [¢; K] € C°(G) be the
characteristic function of ¢; K. Thus f = p([(1 K] @ v1 + -+ - + [g. K] @ vy,).

It remains to show that ¢ is injective. Indeed, suppose that p(f; @ vy + -+ + f, ®v,) = 0
for some f; € C°(G) and v; € V. Let K be a compact open subgroup such that each f; €
C.(G/K). Thus each f; is a linear combination of characteristic functions of cosets of G/ K, so
we may assume that each f; = [¢g; K] for some g; € G, and that g, X = g;K = i = j. But
then

e(fioui+- -+ fn®uv,)(g) =v; =0,
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which shows that ¢ is injective.

Solution to Exercise 5.3.2

Let f € C°(G,V), and let K C G be a compact open subgroup such that f € C.(G/K,V).
Choose z1,...,x, € G such that f is supported on 21K U --- U z,K. Let K/ C G be the
compact open subgroup (., z; Kx; ! soif g € K’ and z € G, then 2 € ;K if and only if
gx € x;K. Therefore, if v ¢ 1K U---Uuz,K then f(gz) = f(z) = 0. On the other hand,
suppose that z = x;y for some y € K, and let z € K be such that g = x;zz; !, Then we have

flgz) = f(riza7" - ziy) = f(zizy) = f(2:) = f(2),

so f(gz) = f(x) forall z € G.

Solution to Exercise 5.3.3
Let K be any compact open subgroup of G such that f € C.(G/K,V),andletgy,...,g, € G
be elements such that f is supported on g; K U - - - U g, K. Then we have

/Gf(g) deg = Z . f(g) deg = Zf(gi) /vK deg = Zf(gz‘) - measq,q(K).

Solution to Exercise 5.4.1

(1) Let d}g be any other left Haar measure on G, so d;,g = ¢ - dyg for some ¢ € R. Then
for any Borel set S C GG and any = € (G, we have

measdzg(flS) =c- measdeg(flS) = ¢+ 0g(r) measq,y S = dg(r) measy, S.
(2) Letz,y € G, and let S C G be some Borel set such that measg,, S # 0, co. We have
dc(xy) measy,, S = measgy,, ((a’"y)fls) = 0¢(y)dc(z) measg,q S

so d¢ is a character. Let K C G be any compact open subgroup. For any z € K,
*' K = K, so since measq,, X = measdeg(flK ) is nonzero and noninfinite, we must
have i (z) = 1.

(3) Define a measure d,.g on GG by setting fs d.g = fs dc(g)deg for a Borel set S C G. For
any z € G, we have

/s;n d,g = /Sx dc(g)deg = /:Clsx oa(z71g)dog = dg(z7h) /S(Sc(g)d”jg
~3(a™) [ dcta)ialo)des = [ dog

which shows that d,. is a right Haar measure. In addition,

/Q:Sa:l o= /J:Sle %c(9) deg = /SéG(g) dm_lg
~ el /556’(9) deg = 5G<:v>‘1/5 drg

which shows that the modulus character of d,.g is 551. (Or one could note that i (g) 'd,g
and 0(;(g)d,g are both left Haar measures, where d¢; is the modulus character of d,.g.)
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Solution to Exercise 5.4.4
Let S C k be a Borel set, and let y € k. We have

measy(zq) (Y + S) = measqy(xy + x5) = measqy(xS) = measg(zg) S,

which shows that d(xg) is a Haar measure, and therefore d(xg) = ¢ - dg for some ¢ € Ry,. It
remains to calculate c. Suppose that v(x) < 0. We have

meas (zq) B = measq, (@) — [@”(z) : Rl measyy R = g '@ measq, R = |z| - measg, R.
The proof where v(z) > 0 is the same, replacing [¢*(®) : R] with [R : 9¥(®)]~1,

Solution to Exercise 5.4.6

(1) First note that the only compact subgroup of R+ is trivial. Let y : N — R., be a
smooth character, so x(K) = {1} for any compact subgroup KX C N. Since N is the
increasing union of compact subgroups, y must be trivial. Since Jp restricts to a smooth
character of N, we have 0p(mn) = dp(m)op(n) = op(m).

(2) Let K C G be a compact open subgroup with an Iwahori decomposition with respect
to Py = MyNy, and let K; be a compact open subgroup of K N ‘K which also has an
Iwahori decomposition with respect to Py = MyN,. Define K+, K°, Ki°, and K? as
usual. Then we have

5 (1) = meas(K°K*)  [K'K*t: K{K{| -meas(K{K{)  [K°K": K{K{]
P meas(PKUKT) — [PKOIK : KOK[] - meas(KOK; ) [FKOK+: KVK;|

One also calculates that
[KO : KO][K+ : K+]
[K°KT: KK = Kon Ki Nl éﬂ = [K°: KY[KT : K]
. 1 1

(since M N N is trivial), and similarly for [ K%K+ : K)K["]. Since ¢ is in the center of
My, we have K = K°. Thus
[K°: KY[KT : K{] [KT: K]

6P9(t) = [tK(] . K?][tK"r : Kf] - [tK+ : KlJr]

Much like in Example 5.4.5, then, we calculate that
o, (1) = T la®)™ = 6,(t)
acdt

since a(t) = 1 for all a € 6 by the definition of 7.
This proof deserves an example. Let G = GL3(k), and write " = {a, 8, a + [}.
Suppose that # = {a}, so we can take

P9=(1i1> M9:<II ) N9:<1 I)
* * 1
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Suppose that t = diag(w?, @?, @), and let D = |d — ¢|. Then

. 1+0 o e 1+07 P P
K = O P P so we can take K, = PP PP PP )

A A W PP PP 4P
Then we have
[KT: K] [©: 9P [p:eP _
PK+:K{] [T oD [ped = 1L hor

~yeDT

(3) Let g € G. By the Cartan decomposition, we can write g = x1txy, Where x1, 25 € K

and ¢t € T". Since K is compact, dg(x1) = dg(x2) = 1, so it suffices to show that
dc(t) = 1. Let K C G be a compact open subgroup with an Iwahori decomposition with
respect to Py = MyNy, and let K; C G be a compact open subgroup of K N ‘K with an
Iwahori factorization with respect to Py = MyNy. Define K*, K, Kif, KY as before. A
calculation similar to the one in part (2) shows that

(KT Kf[K™ : K]

o(t) = K+ K[ PK-: K|

In part (2), we also showed that

[K*: K] _
[tK-i— K+ H |oz |
acdt

and similarly,

= T et =TT e

acd— acd—

which completes the proof.

(4) Denote the map m — | det(Ad(m™1)|,)] : M — R by d. Since § is a smooth character,

as in part (3), it suffices to show that 0(¢) = dp(t) fort € T". Let K C G be a compact
open subgroup with an Iwahori decomposition with respect to P = M N, and define
Ky, K* K° Kif, K9 as before. In part (2), we effectively showed that
K°: K)| [KT: K
so(t) =t B I B R T e
tKO: K?|[PK* : K] K

04691

where 6; C @ is the set of roots whose eigenspaces make up the Lie algebra n. By part
(3), M is unimodular, so [K° : K?] = ['K? : KY|. Since t acts diagonally on the root
spaces in n by «/(t), we therefore have §(t) = 0p(t).

Solution to Exercise 7.1.3

Let W = V;/V, be an irreducible subquotient of V', where V, C Vi C V are subrepresenta-
tions. Thus the center Z of GG acts by a character y on W. Choose a nonzero v € W, and let
v € V4 be any lift of . Find X € W such that (@) = 1 — we can do this since 7 € WX for
some compact open subgroup K C G,and WK = Hom¢ (WX, C). Let A € V; be the i image of
A under the natural map W — Vi By Corollary 5.2.3, the restriction map V = Vs surjective,
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so A extends to a linear map V' — C. By hypothesis, the support supp(m. ,,) of the matrix coef-
ficient m, ,, is compact. Since Z acts by x on W, for z € Z, we have that 7(2)v = x(2)v + w,
where w € V5. Thus

may(2) = A@(2)v) = Ax(2)v +w) = Ax(2)v) = x(2) # 0

since A is trivial on V5 by definition. Thus Z C supp(m, ), so since Z is a closed subset of a
compact set, Z is compact.

Solution to Exercise 7.2.6

(1) Let x € Rat(G), so |x| : G — Ry is a continuous character. Since the only compact
subgroup of R is trivial, | x| must be trivial on every compact open subgroup of G.

(2) Since G! is an intersection of normal subgroups (the kernel of any homomorphism is
normal), it is also a normal subgroup. For each x € Rat(G), the character |x| : G — Rxg
is continuous, so ker |y| = |x| ™" (1) is closed; thus G is closed as well. Since G is
a subgroup that contains a compact open subgroup, it must also be open. Any Haar
measure on (G restricts to a Haar measure on G, so G is unimodular since G is.

(3) When G = GL,(k), G* = ker ,80 G/G" = Im|det| = {¢™ | m € Z} = 7Z. Since
Z(G) = k*, the k-split part of Z (&) has rank 1.

@) Ifa-1, € Z(G) (where 1,, € GL, (k) is the identity) then |det(a - 1,)| = |a
|det| (Z(G)) = {¢™ | m € Z} is the index-n subgroup of G/G'. Thus G/(Z(G)G') =
(G/GY)/(Z(G)/(2(G) N GY)) = Z/nLL.

(5) In our case, Z(G) N G' is the compact group R* - 1,

Solution to Exercise 7.3.7

(1) Suppose that the support C' of m, , is compact modulo the center Z of GG for some
nonzero A € Vandv € V. Let X' € V and v/ € V be arbitrary. By Corollary 7.3.6, both
V and V are irreducible, so we can find ¢;,h; € G and ¢;,d; € Cfor1 < i < m and
1 < 5 < n such that

Z g)\ and v = Zdj ~m(h;)v
i=1 j=1
Thus for x € G,
My (z) = N(m chd M (g; ' xgj)v),
so the support of my , is contained in

U 9:Cg; ",

which is also compact modulo Z.
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(2) Let (7, V) denote the representation c-Ind$ o, and suppose that (7, V) is irreducible.
Choose a nonzero w € W, and let i C K be a compact open subgroup such that
w € Wi, Define f,, € c-Ind%- o by

fol) = {a(x)w ifre K

0 otherwise.

Thus f, is fixed by K7, which is a compact open subgroup of G as well. Define \ €
Home(VEr C) by A\(f) = f(1) and extend A to all of V, so A € V. Note that \(f,,) =
w # 0. For x € GG, we have

X, fu (z) = M7 () - fu) = fu(z)

which is zero unless € K. Thus the support of m, y, is compact modulo Z, so by part
(1), (7, V') is supercuspidal.

Solution to Exercise 8.2.5

Let (7, V) € R(G), and let w : G — C* be a smooth character. First we claim that if 7 ® w is
admissible, then 7 is admissible. Let X' C G be a compact open subgroup on which w is trivial,
and let K’ C G be any compact open subgroup. Then since w is trivial on K, any vector v € V
is fixed by &’ N K under 7 if and only if v is fixed by K’ N K under 7 ® w. Thus VE'"E 5 V&
is finite-dimensional.

By the previous paragraph, we may assume that (7, V') is an irreducible representation that
is square-integrable modulo the center. Suppose that (7, V') is not admissible, so there exists
a compact open subgroup K C G, a vector v € V¥, and elements g1, g2, 93,... € G such
that the vectors exm(g1)v, exm(g2)v, exm(gs)v, ... € VE are linearly independent. Choose
A € VE = Home(VE, C) such that A(exm(g;)v) = 1 foralli > 1. Let K be the image of K in
G/Z, so K is a compact open subgroup. Then we have

/G el dy” = / A (g)v)[? dg*

G/Z

N /G/Z [(exA)(m(g)v)|* dg*

- /G  Wexrlol dg

= Y |Mexm(g)v)]” - measyy (K)
9e(G/2)/K

> 3~ exr(go) - measyy (F)

pry OO,
a contradiction.

Solution to Exercise 9.1.3
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Since e = eee, the relation < is reflexive. If e = fef and f = efe then

e=ce=(fefle= flefe)=[f =1,

so < is antisymmetric. If eHe C fHf and fHf C gHg then clearly eHe C gHg, so < is
transitive.
Clearly 0 < e for all e € I, so by antisymmetry, 0 is the unique minimal element of /.

Solution to Exercise 9.1.5
Let x € H, so {z} C H is a finite subset. By hypothesis, there exists an e € I such that
exe = x. Thus
H = U eHe.
ecl
Let S C I be any finite set of idempotents. We can find an element f € [ with the property that

e = fef foralle € S, so I is filtered with respect to <.

Conversely, suppose that H = | .., eHe, and that I is filtered with respect to <. Let S C H
be any finite subset, and for each s € S, lete, € [ and x, € H be elements such that s = e,z e,.
Find f € I suchthate, < f forall s € S. Then for s € .S, we have

fsf = f(esmses)f = f(fesf)ms(fesf)f = (fes.f)xs(fesf) = €E5TsEg = S.

Solution to Exercise 9.1.6

By definition, h, — 0 if and only if for all e € I, there exists an A such that for all « > A,
he € H(1 —e). If hy, = h(1 — e) thet h, - ¢ = he — he = 0; conversely, if h, - ¢ = 0 then
ho =ho- (1 —e) € H(l —e).

Solution to Exercise 9.2.3
Suppose that Ty = [, duy(g) and T = [, dpua(g). Then

Ty(g s Ti(gf)) = /G Ty(R(g2) ) dpia(ge) = /G / F(9192) dys(gn) dpsa(g2) = (Th # To)(f).

Solution to Exercise 9.2.4
For f1, fo € C°(G) and f € C*(G), we have

/Gf(gl)(fl*fz)(gl)dglZ/G/Gf(gl)fl(glgz_l)ﬁ(gz) dga dgy
= [ | fon)iton ) dos g

For (hy, hy) € G, we have

/G f(haghs) f1(g) dg = / F(9)f1(hi gha) dg

since dg is unimodular.

Solution to Exercise 9.4.3

(1) Let v € V, such that eHv = 0. Let v € V be a lift of v, so eHeHv = 0. Thus
eeeHv = eHv = 0, s0 v = 0. It follows that (V). = V..
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(2) Suppose that
olhy@evy + -+ h, ®ev,) = hie-vy + -+ hpe v, =0.
Let eh € eH. We have

Zehhi ® ev; = Zehhie KU, =1 (ehz hievZ) =0.

(3) First note that for any f € Homy (W, V), f(w) = f(e-w) =e- f(w),so f(W) C eV.
Thus Homepye (W, V') = Homeye (W, €V).
Let f € Homy (H ®epe W, V). Defineamap g : W — V by g(w) = f(e ® w), so for
ehe € eHe, we have

g(ehe - w) = f(e® (ehe)w) = f(ehe @ w) = ehe - f(e @ w)

since [ is an ‘H-map.
Conversely, for g € Homy(W, V), defineamap f : HQcy W — V by f(h@w) =
h - g(w). This is well-defined since for eh'e € eHe, we have

heh'e - g(w) = f(h(eh'e) @ w) = f(h @ (eh'e)w) = h - g(ehe - w).
The maps f — g and g — f are clearly inverse.

Solution to Exercise 10.1.9
We know that m o 771 is a C-linear map; we must prove that it respects multiplication. First
note that for v, v, v” € V and A\, \' € V, we have

(Tlo@A)or(0 @ X)) (") =7(v @ N)(N(W")") = AW)N (V") = 7(v @ AW )N)(V").
This gives the induced multiplication law on V' ®¢ V, so we must show that
deg(m)? - 1y, * My = deg(m)A(V') - Ty,

Indeed, for z € (G, we have

deg(m) - (T * My ) (z) = deg(m) - /Gm,\,v(xg_l) - (g) dg

deg(m) - /G M r@-1)0(9) T (9) dg
(V') - N(m(z™ o)

(V') - ().

A
A

Solution to Exercise 10.3.2

Let A = {A; | i € I} be a commuting family of invertible operators on a finite-dimensional
complex vector space V. The set A defines a representation 7 of the abelian group @, Z on V
by setting 7((1);) = A;. Thus we can reformulate the question as follows: let (7, V') be a finite-
dimensional complex representation of an abelian group G. Then there is a nonzero eigenvector
which is common to 7(g) for all g € G.
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By Exencise 3.3.6, there is an irreducible subrepresentation W C V' of G. Since G is abelian,
7(g) € Endg (W) for all ¢ € G. It follows from Exercise 2.1.8 that W is one-dimensional, so
any nonzero element of W is an eigenvector of each 7 (g).

Solution to Exercise 13.0.16

Let Z be the center of R. Any z € Z defines an endomorphism 3, of any R-module M by
z > zxyif f: M — N is a map of R-modules, we have f(zz) = zf(x), so f o p3, = ¢% o f,
s0 ¢ € 3(A). Itis clear that p* = ¢ = z = 2/ (take M = R), so it remains to show that if
v € 3(A) then p = ¢* for some z € Z. Let ¢ € 3(.A). The map g : R — R is a R-module
endomorphism, so pr(x) = pr(x - 1) = xz, where z = pg(1). Let y € R, and define a map
Y : R — R of R-modules by Y(x) = xy. Since ¢ is in the center of .A, we have

yz = pro (1) = ¢ o pr(1) = 2y,

so z € Z. Let M be any R-module and let m € M, and define a R-map f : R — M by
f(x) = xm. Then

par(m) = a0 f(1) = fowr(l) = f(2) = 2m = @i (m),
so ¢ = *. Thus z — ¢? is a bijection of sets; it is clear that it is a ring isomorphism.

Solution to Exercise 14.2.7

Suppose s € ker(T — a)?. If a = 0, then s(n + d) = 0 for n € Z>, in which case s(n) = 0
whenever n > d.

Now assume a # 0. We proceed by induction on d. If d = 1, then T's — as = 0, so
s(n+1) — s(n)a = 0 for all n € Z>,. Hence s(n) = s(0)a™, and we can take p = s(0), a
polynomial of degree 0 < 1.

Now suppose the result holds for d > 1 and suppose s € ker(T — a)?*l. Then T's — as €
ker(T — a)?, so s(n + 1) — s(n)a = p(n)a" for all n € Z>( and some p € C[z] of degree < d.
Working from this equation, we deduce that

_ (é ‘ p(i)+s(0)> o

It suffices to prove that if p € C[z] has degree < d, and f(n) := 3.1 p(i), then f is a
polynomial function of degree < d + 1. Separating the expression for f(n) by degrees, this
reduces to the well-known result that Z;.:Ol i* is a polynomial function of n of degree k + 1.

Solution to Exercise 14.4.4
all (v, \) € V x V there exists an € > 0 such that for all ¢ € T;(¢) we have

Solution to Exercise 16.5.4
This result holds when X is any topological space and C'>°(X) is interpreted as the set of
locally constant compactly supported functions. Fix f € C>°(X) and let U, = f~ (). As f is
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locally constant, U, is a union of open sets and hence open. Now

e = a
aeCx

is a union of opens and hence open. Furthermore, f~1(C*) = X \ U and is also closed. Hence
supp(f) = f~1(C>). This set is compact by hypothesis. Furthermore, {U, | o € f(X)~ {0}}
is a disjoint open cover of supp( f) and hence finite. It follows that f(X) is finite.
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