
6 Lecture 6: More constructions with Huber rings

6.1 Introduction

Recall from Definition 5.2.4 that a Huber ring is a commutative topological ring A equipped with an
open subring A0, such that the subspace topology on A0 is I-adic for some finitely generated ideal I
of A0. This means that {In}n≥0 is a base of open neighborhoods of 0 ∈ A, and implies that A is a
non-archimedean ring (see Definition 5.2.1). We stress that the topology on a Huber ring A need not
be separated (i.e., Hausdorff) nor complete.

Recall from Lecture 5 that, given a Huber ring A with a subring of definition A0 which is I-adic with
respect to a finitely generated ideal I of A0, its completion was defined to be

A∧ := lim←−A/I
n

where the limit is in the sense of (additive) topological groups and is seen to carry a natural structure
of topological ring whose topology is in fact separated and complete. A subring of definition of A∧ is
given by A∧0 , the usual I-adic completion of A0 in the sense of commutative algebra, and we saw (by
a non-trivial theorem when A0 is not noetherian) that the inverse limit (same as subspace!) topology
on A∧0 is its I(A0)∧-adic topology that is moreover separated and complete.

This lecture is devoted to introduce a special class of Huber rings which will play the role of Tate
algebras (with “radii”) in rigid geometry. We will make use of the constructions discussed here to
define a good analogue of “rational domain” for adic spaces in the next lecture.

6.2 Topologically nilpotent units

We start off with an instructive class of Huber rings that play an essential technical role in later
developments with adic spaces. Let K be a nontrivially valued field, which is to say a field equipped
with a nontrivial valuation v : K → Γ ∪ {0} (perhaps with rank > 1; see Remark 2.2.4). Let R ⊂ K
be its valuation ring.

We view K as a topological ring A with base of open neighbourhoods of 0 given by

Aγ := {x ∈ K | v(x) < γ}, γ ∈ Γ,

so K is thereby a non-archimedean ring. Note that K is even a topological field, which is to say
that K× = K − {0} with its subspace topology is a topological group. Indeed, since multiplication is
continuous (as K is a topological ring) we just have to check that inversion is continuous near 1, or
in other words that for any γ ∈ Γ there exists δ ∈ Γ such that if v(x − 1) < δ then v(x−1 − 1) < γ.
Without loss of generality γ < 1, so v(x) = 1 and hence v(x−1−1) = v(1−x)/v(x) = v(x−1). Thus,
we may use δ = γ.

The question we wish to address is: when is K a Huber ring? By definition, we seek an open subring
A0 ⊂ K such that the topology on A0 is I-adic,for some finitely generated ideal I ⊂ A0. Such A0 may
well not be the valuation ring R, and therefore I may well not be principal! The easy case is when v
is a rank-1 valuation, and hence any pseudo-uniformizer $ (that is, $ ∈ R with 0 < v($) < 1) will
generate an ideal I = $R making R into an open subring of K with the I-adic topology.

Suppose we are given A0 ⊂ K =: A and a nonzero finitely generated ideal I ⊂ A0 with the desired
properties. Since we are assuming K is non-trivially valued, I must be nonzero since {0} is not an
open subset of A. Therefore, we may pick a nonzero element $ ∈ I. But {In}n≥0 is a base of
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open neighbourhoods of 0 in A, and they are open ideals of A0, so $ is topologically nilpotent in A.
Moreover, A = K is a field and $ is nonzero, so $ is a topologically nilpotent unit.

How do we recognize topologically nilpotent units in A = K? As a first attempt we might guess that
such elements are those nonzero elements $ ∈ A with v($) < 1. This is the case when the valuation
v is rank-1. Indeed, the “archimedean property” of rank-1 value groups gives that if 0 < v($) < 1
then (via an inclusion Γ ↪→ R×>0) we have v($n) = v($)n → 0 as n → ∞, and the principal ideal
I = $R is moreover open since multiplication by $ is an automorphism of the topological space K
(as multiplication by 1/$ is a continuous inverse).

But if v is a higher-rank valuation then the property of $ of being a pseudo-uniformizer generally
does not imply that $ is topologically nilpotent. This is illustrated by the rank-2 valuation ring
considered in Example 2.3.4 and Example 4.3.3:
Example 6.2.1 Let k be a field, and K = k((u))((t)). Let w be the rank two valuation produced
endowing the residue field k((u)) of k((u))[[t]] with the u-adic valuation, as in Example 2.3.4. Its
valuation ring is

R := k[[u]] + tk((u))[[t]],

with value group Γ := aZ × bZ for real numbers 0 < a, b < 1 with a := w(t) and b := w(u). The total
ordering on Γ is lexicographical, where the “t-factor” comes first. Such ordering arises naturally from
the construction explained in §2.3 and detailed in Example 4.3.3.

Briefly, recall that Γ is a split extension of the value group of the t-adic valuation on K, which is aZ,
and of the u-adic valuation on k((u)), which is bZ. Geometrically, the t-adic valuation on K (with
valuation ring k((u))[[t]]) seen as a point in Spv(K) is a vertical generization of w; i.e., it is obtained as
w/H for the convex subgroup H := 1×bZ of Γ, as explained in Example 4.3.3. Let us define v := w/H ,
and recall that the picture is as follows, with η the trivial valuation on K:

Spv(K)

��

Spv(K)

η

��
v

��
w

Spec(K) (0)

That w is a specialization of v means in particular that every open subset of Spv(K) containing w
already contains v. We now interpret this in terms of the valuation topologies on K.

We claim that the valuation topologies on K arising from v and w coincide. Observe that the unit
t ∈ K× is topologically nilpotent for both topologies. Indeed, for v this is clear from the definition, and
for w we just have to check that for any γ = (ai, bj) there exists a large n so that (a, 1)n ≤ γ. That is,
we want (an−i, 1/bj) ≤ (1, 1). Taking n > i ensures an−i < 1, so the lexicographical ordering implies
(an−i, 1/bj) < (1, 1) regardless of the value of j. Hence, for the valuation rings R and Rv = k((u))[[t][
of w and v respectively, the collections {tnR} and {tnRv} for n ≥ 0 are respective bases of opens
around 0 for the two topologies. But tn+1Rv ⊂ tnR ⊂ tnRv, so the topologies coincide.
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Informally, the w-adic topology on K coincides with the “t-adic topology” even though w is a higher-
rank valuation. In particular, although w(u) < (1, 1) = 1Γw

, u is not topologically nilpotent (a purely
topological property) since we can see this in terms of the v-adic valuation. More concretely, t/un ∈ R
for all n ≥ 0, so w(t) ≤ w(u)n for all n ≥ 0. Similarly we see that 1/u is power-bounded in the w-adic
topology of K (a purely topological notion) yet this lies outside the w-adic valuation ring R.

Example 6.2.1 shows that given a nontrivially-valued field K with valuation v : K → Γ∪{0}, it is not
true that $ ∈ K× satisfying 0 < v($) < 1 is topologically nilpotent. Nevertheless, for our favourite
choice K = k((u))((t)) we can find a topologically nilpotent element t in K and this establishes the
Huber condition for K.

Remark 6.2.2 We remark that if K is a nontrivially-valued field then the trivial valuation is not
continuous in the sense of Definition 5.3.1 since {0} is not open. We also note that in Example 6.2.1
both w and its vertical generization v are continuous, and the only possible further vertical generization
of v is the trivial valuation η on K, which was not continuous.

In a later lecture we shall discuss the notion of analytic points in the “continuous” valuation spectrum
of a Huber ring A: these are the v ∈ Cont(A) having support pv ∈ Spec(A) not open (so w and
v in Example 6.2.1 are both analytic, while η is not, since it is not even in Cont(A)). We will see
that within the subspace of analytic points of Cont(A) there are no horizontal specializations, and
every analytic point is of rank ≥ 1, admitting a unique rank-1 vertical generization. For this reason,
rank-1 points will wind up playing an important role in the general theory of adic spaces, despite the
abundance of higher-rank points.

Here is a converse to the preceding considerations.
Proposition 6.2.3 Let K be a nontrivially-valued field with valuation ring R, and suppose there
exists a topologically nilpotent unit $ ∈ K×. Then K is Huber, with ring of definition A0 := R and
ideal of definition I = $eA0 for e large enough so that $e lies in the open subring R.

Proof. Replace $ by $e for large enough e such that $ ∈ R. Since $ is a unit in K, multiplication
by $ is invertible and continuous, and hence In = $nR is an open ideal of R for all nonnegative
integers n. We claim {$nR}n≥0 is a base of neighbourhoods of 0 in K.

Choose γ in the nontrivial value group Γ of the valuation on K associated to R, so we want to show
that for large enough n ≥ 0, we have

v($nx) < γ

for all x ∈ R. We have v(x) ≤ 1, so v($nx) ≤ v($n), and since $ is topologically nilpotent we have
that v($n) < γ for sufficiently large n ≥ 0. This proves the claim.

Remark 6.2.4 In the situation of Proposition 6.2.3, by inverting $ we recover K:

R[1/$] = K.

Indeed, choose x ∈ K so we seek some n ≥ 0 such that $nx ∈ R. We may assume x 6= 0. Then we
are reduced to showing that

v($)n ≤ 1/v(x) = v(1/x)

for some large n, where the right side is an element of Γ. But this is ensured by the fact that $ is
topologically nilpotent.

We have seen that a nontrivially-valued field with higher-rank value group may have its valuation
topology defined by powers of a single element. However, generally that topology is not the adic one
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defined by powers of the (nonzero) maximal ideal mR. Here are two examples (one of which is our
favourite usual one):
Example 6.2.5 (1) LetK be a non-archimedean field (i.e., complete for a nontrivial non-archimedean

absolute value) with valuation ring R such that mR = meR for some e > 1, as happens for Cp or
(the completion of) Qcyc

p . The mR-adic topology on R is not even Hausdorff.

(2) Consider R = k[[u]] + tk((u))[[t]] as in Example 6.2.1, with lexicographically ordered value group
aZ× bZ for a, b real numbers 0 < a, b < 1. Note that in contrast with the previous example, this
one does not have any infinitely divisible elements in the value group. We have seen that u lies
in the maximal ideal mR of R and is not topologically nilpotent (and for the same reason 1/u
is power-bounded in the topology of the valued field Frac(R) = R[1/t]), so the topology cannot
be mR-adic.

By the same reasoning, the same thing happens for any valuation ring whose maximal ideal
contains some element that is not topologically nilpotent. Likewise, in all such cases there are
power-bounded elements outside the valuation ring and inside the valued fraction field, namely
the reciprocal of any element of mR that is not topologically nilpotent.

In the preceding considerations, we studied a nontrivially-valued field K with valuation ring R and
found a topologically nilpotent unit $ ∈ K× which is sufficient to cover the topology on K = R[1/$].
This fits into a more general situation related to topologizing certain localizations of Huber rings. To
explain this, we first prove the following general fact:
Proposition 6.2.6 Let R be a ring, and $ ∈ R an element that is not a zero-divisor. We endow
R with the $-adic topology. Then R[1/$] has a unique structure of topological ring making the
topological ring R an open subring.

Proof. Since $ is not a zero-divisor, multiplication by $n is injective on R. If there is such a
topological ring structure then a neighborhood basis of 0 is given by $nR for all n ≥ 0, so likewise
for all x ∈ R[1/$] a neighborhood basis is given by x+$nR for n ≥ 0.

Conversely, let’s define a subset U ⊂ R[1/$] to be open if for every u ∈ U we have u+$nR ⊂ U for
sufficiently large n (depending on u). This is clearly a topology on R[1/$] makes R an open subspace
with its $-adic topology and that makes R[1/$] a topological group under addition, and the only
issue is to check that multiplication is continuous. For x, y ∈ R[1/$] we can pick m ≥ 0 such that
x, y ∈ $−mR, so for n ≥ m+N with N > 0 we have

(x+$nr)(y +$nr′) ∈ xy +$NR,

giving the desired continuity.

We give a non-example which we have already encountered.
Example 6.2.7 Let R := Zp[[x]], with the (p, x)-adic topology. We claim there does not exist any
extension of the (p, x)-adic topology on R to a topological ring structure on R[1/p] making R into
an open subring with the given topology, or even to a topological group structure making R an open
subgroup. Indeed, if there were then the openness of the inclusion of R into (1/p)R would imply that
pR is open in R for the (p, x)-adic topology, which is not true. (The elements xn converge to 0 for
the (p, x)-adic topology but xn 6∈ pR for all n ≥ 0.)
Remark 6.2.8 We recall Proposition 5.4.13, saying that given a Huber ring A, the subring of power-
bounded elements A0 is the filtered direct limit of the bounded subrings of A (that is, the subrings
of definition of A, by Proposition 5.4.8). Example 6.2.1 gives an example of Huber ring A (the field
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K) such that our ring of definition A0 (that is, R in the example) is strictly contained in A0. In fact,
since w(un) > w(t), 1/u is power-bounded, but it is not contained in R.

6.3 Topologizing localizations

In rigid-analytic geometry over a non-archimedean field k, for a k-affinoid algebra A we define the
relative Tate algebra

A〈X1, · · · , Xn〉 = {
∑
I

aIX
I | aI → 0 as |I| → ∞}

that is equal to A⊗̂kk〈X1 · · · , Xn〉 (where by X we mean (X1, · · · , Xn)). Note that A〈X1, · · · , Xn〉
is the universal example of a “complete” non-archimedean topological A-algebra B equipped with an
ordered n-tuple of power-bounded elements b1, · · · , bn. By “complete” we mean that all Cauchy nets
converge, and we implicitly include the separatedness assumption.

Rigid-analytic rational subdomains

Letting again A be a k-affinoid algebra, let t1, · · · , tn be units in A. Recall that A has an intrinsic
Banach topology, though the “sup-norm” is only such a norm when A is reduced (and in the non-
reduced case it is not a norm at all, since it vanishes on nonzero nilpotent elements). The Banach
A-algebra

(∗) A

〈
X1

t1
, · · · , Xn

tn

〉
corresponds to a rational subdomain of Sp A〈X1, · · · , Xn〉, namely

{(s, x) ∈ Sp(A)× An,an
k | |xi| ≤ |ti(s)| for all i}

where by x we mean (x1, · · · , xn), and by An,an
k we mean the analytic affine n-space over k. Informally,

this is a family of closed polyndiscs parameterized by Sp(A), with fiber over s ∈ Sp(A) having polyradii
{|ti(s)|}.

Explicitly, (∗) is given by {∑
I

aIX
I | aItI → 0 as |I| → ∞

}
.

This can be characterized in purely topological terms: it is the complete non-archimedean A-algebra
f : A→ B equipped with an ordered n-tuple of elements b1, · · · , bn ∈ B such that bi/f(ti) is power-
bounded for all i.

A slightly different variant

Let now f1, · · · , fn and g be elements of A with no common zero. Then we let

A

〈
f1

g
, · · · , fn

g

〉
:=

A〈X1, · · · , Xn〉
〈gXi − fi〉

.

Notice that since the fi’s and g have no common zero, g is a unit in A
〈
f1
g , · · · ,

fn
g

〉
(as a zero of g in

the MaxSpec of this k-affinoid algebra would project to a point in Sp(A) that is a common zero of the
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fi’s, a contradiction). We can interpret A
〈
f1
g , · · · ,

fn
g

〉
as the universal complete non-archimedean

A-algebra in which g is a unit and fi/g is power-bounded for all i.

Finally, back to Huber rings
Let A be a non-archimedean ring with no Hausdorff or completeness assumptions. We now address
the problem of finding suitable universal mapping properties for analogous constructions as for the
ones recalled above, but for “Tate algebras” over Huber rings. (The case of relative rational domains
will be addressed next time.) For technical reasons, it really simplifies matters to first carry out
constructions with universal topologies in the absence of completions, and then to bring in completions
only afterwards.

This is essentially a game of appropriately topologizing the polynomial ring A[X1, · · · , Xn], which we
shall denote as A[X] for brevity. In the sequel we shall indeed always write X for (X1, · · · , Xn) when
this will not cause confusion.

The idea is to describe the topology on A[X] in terms of a base of neighbourhoods around 0 in A.
We define:

U [X] :=

{∑
finite

uIX
I | uI ∈ U

}
⊂ A[X]

as additive subgroups of A[X], where U runs through elements of a base of open neighbourhoods of 0
in A. We therefore wonder if we can make U [X] into a neighbourhood base around 0 ∈ A[X] in order
to generate a topological ring structure on A[X].

We first observe that {f + U [X]}U is indeed a neighbourhood base around {f} in A[X], for all
f ∈ A[X], U running through a neighbourhood base of additive open subgroups of A. The only issue
is to ensure continuity of the multiplicative structure on A[X]. More precisely:
Lemma 6.3.1 Let R be a commutative ring, and Σ := {Hα} be a collection of additive subgroups of
R. These are a base of neighbourhoods for a (necessarily unique) non-archimedean ring structure on
R if and only if:

(1) for all H,H ′ ∈ Σ, H ∩H ′ contains some H ′′ in Σ,

(2) for all H ∈ Σ, there exists H ′ ∈ Σ such that H ·H ′ ⊆ H,

(3) for all r ∈ R and all H ∈ Σ, there exists H ′ ∈ Σ such that rH ′ ⊂ H.

We remark that point (1) in the Lemma just encodes the fact that the Hα’s are a base of neigh-
bourhoods of 0 for an additive topological group structure on R. Point (2) just ensures that the
multiplication of R is continuous at 0, and point (3) handles products of translates of the form

(r + x) · (r′ + x′) = rr′ + rx′ + r′x+ xx′,

where rr′ is already “small” by point (2) but rx′ + r′x+ xx′ must be handled.

Application: (uncompleted!) relative Tate algebras

Let A be a non-archimedean topological ring, and let T1, · · · , Tn ⊂ A be finitely many finite nonempty
subsets. For example Ti may be a singleton {ti} for all i.

We define, for every multi-index I ∈ Nn:

T I := T i11 · · · · · T inn := {ξ1 · · · · · ξn | ξj ∈ T
ij
j , j = 1, · · · , n}
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where T ijj is the set of all ij-fold products (allowing repetitions) among elements in Tj .
Definition 6.3.2 We set

A[X]T := A[X1, · · · , Xn]

as an A-algebra, equipped with a neighbourhood base of 0 given by

U [TX] :=

{∑
finite

aIX
I | aI ∈ T I · U

}

for open additive subgroups U ⊂ A, where by T I · U we mean the set of all finite sums of monomials
ξ · u, for ξ ∈ T I and u ∈ U .
Remark 6.3.3 In Definition 6.3.2, one should think of the classical rigid setting, where (under mild
hypotheses) the completion A[X]T is going to correspond to the adic space of points v with the
property that v(xitij) ≤ 1 for all tij ∈ Ti and all i.
Remark 6.3.4 We warn the reader that the notation U [TX] used to denote{∑

finite

aIX
I | aI ∈ T IU for all I

}

is different from that in [Wed], where the same set is denoted by U[X] (suppressing the mention of T ).
Thus, when referring to [Wed] the reader should first read [Wed, Rem. 5.4.7] and keep in mind this
Remark.

We now determine precisely when Definition 6.3.2 gives a topological ring structure on A[X]T , which
is to say when A[X]T satisfies the conditions in Lemma 6.3.1 with Σ := {U [TX]}U for U running
over additive subgroups of A forming a neighbourhood base around 0 for the topology on A.

Property (1) always holds. Indeed, for all U, V open additive subgroups of A we have

U [TX] ∩ V [TX] ⊃ (U ∩ V )[TX].

Likewise, (2) always holds. This requires showing that if U is an open additive subgroup of A then
there exists an open additive subgroup V ⊂ A such that

V [TX] · V [TX] ⊂ U [TX].

Consider V for which V 2 ⊂ U . Since T I ·T J = T I+J (with clear meaning of notation), for such V we
just need to check that vXI0 · V [TX] ⊂ U [TX] for any I0 and v ∈ V , which is obviously true.

We now check exactly when (3) holds. Fix f ∈ A[X] and U ⊂ A. We seek a V ⊂ A such that

fV [TX] ⊂ U [TX].

Additivity is not an issue, so without loss of generality we can assume f = aXI for some a ∈ A and
some multi-index I ∈ Nn. (This is why it is technically convenient that we focus now on topologizing
merely a polynomial ring, postponing consideration of completions until later.)

Since A[X] is commutative and A is a topological ring, we can actually absorb a in V and we are
reduced to the case f(X) = XI0 for some fixed multi-index I0 ∈ Nn. By iteration, we may even
assume f(X) = Xi0 for some fixed i0 ∈ {1, · · · , n}. For every open additive subgroup U ⊂ A we
therefore seek a V ⊂ A with the property that

Xi0V [TX] ⊂ U [TX].
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The typical element of V [TX] will be, by definition, of the form∑
I

aIX
I ,

where the sun runs over finitely many multi-indexes, and aI ∈ T IV for such I’s. We therefore seek V
such that for all such aI ’s we get ∑

I

aIX
ei0+I ∈ U [TX]

where ei0 is the standard vector with coordinates 0 at every slot but the i0th, which is 1.

Since additivity is handled by definition of the V [TX]’s, we are reduced to analyzing each aIXei0+I

separately. It is therefore necessary and sufficient to find V ⊂ A such that whenever aI ∈ T IV we
have

aIX
ei0+I ∈ U [TX].

This is equivalent to saying that for all I

T IV ⊂ Ti0T IU,

which is equivalent to requiring that for every additive open subgroup U ⊂ A there is an additive
open subgroup V ⊂ A such that

V ⊂ Ti0U,
which is to say Ti0U is open for all such U and all i0. If we iterate we can translate the condition of
A[X]T being a (non-archimedean) topological ring to exactly the openness of T I · U for all I and all
U (or equivalently the openness of Ti0U for all i0 and all U).

We now specialize to our case of interest: A a Huber ring. In this case we will show that T · U is
open under a natural hypothesis that is reminscent of the condition “no common zeros” used to define
rational domains in the rigid-analytic case (since an open ideal in an affinoid algebra is necessary the
entire ring):
Proposition 6.3.5 Let A be a Huber ring, and T a finite subset of A generating an open ideal. Then
T · U is open in A for all open subgroups U ⊂ A.

Proof. The ideal generated by T is T · A, and this is open by hypothesis. But if S and S′ are open
subsets of A around 0 then the additive subgroup S · S′ of finite sums of products ss′ for s ∈ A and
s′ ∈ S′ is open because A is Huber. (Indeed, if A0 is a ring of definition and I is an ideal of definition
in A0 then by openness of S and S′ there are large n, n′ > 0 such that In ⊂ S and In

′ ⊂ S′. Hence,
the additive subgroup S · S′ contains In · In′

= In+n′
and therefore is a neighborhood of 0 in A, so it

is open.) Thus, (T · A)n = Tn · A is open for all n ≥ 1 (where Tn means the set of n-fold products
among elements of T ).

Now fix n > 0 and an open subgroup U of A, and we aim to show that the additive subgroup Tn · U
of A is open, or equivalently that it contains an open set around 0. Choose a ring of definition A0,
and choose an ideal of definition I of A0 that is contained in the open subset Tn · A of A around 0.
(Namely, pick some ideal of definition of A0 and then replace it with a very large power.) We seek a
large e so that Ie ⊂ Tn · A. By definition of “ideal of definition”, I has a finite set G of generators.
Thus, G ⊂ Tn · A and hence we can find a finite subset F ⊂ A such that G ⊂ Tn · F (the set of
products of elements of F against n-fold products among elements of T ). By finiteness of F and
openness of U around 0, we can choose m > 0 large such that F · Im ⊂ U . Thus,

Tn · U ⊇ Tn · F · Im ⊇ G · Im = Im+1

(the final equality by definition of G as a generating set for I as an ideal of the ring A0).
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This concludes the proof that the assignement of Σ := {U [TX]}U , for U running over the open
additive subgroups of A, defines a base of neighbourhoods for a non-archimedean topological ring
structure on A[X]T , for A a Huber ring.

We have shown the following:
Proposition 6.3.6 Let A be a Huber ring, and T = {T1, . . . , Tn} a collection of non-empty finite
subsets of A such that Ti0U is open for all open additive subgroups U ⊂ A and all i0. Then the
non-archimedean A-algebra A[X]T is initial among non-archimedean A-algebras f : A → B equipped
with an ordered n-tuple of b1, · · · , bn ∈ B such that the elements

f(tij)bi ∈ B

are power-bounded for all i and all tij ∈ Ti.

Proof. The essential point is to check that A[X]T satisfies the asserted power-boundedness property;
the rest is then easy to check (and left to the reader). That is, for all i and all tij ∈ Ti we claim that
the element

tijXi ∈ A[X]T

is power-bounded. For all m ≥ 1 we have

(tijXi)
m ∈ TmeiXmei

for any i and any tij ∈ Ti. On the other hand,

T I0XI0U [TX] ⊂ U [TX]

for all I0 and all open additive subgroup U ⊂ A. We apply this to I0 = mei form ≥ 0 to conclude.

A non-example:
Example 6.3.7 Let A := Zp[[x]], equipped with the (p, x)-adic topology, and let T := {p}. Then T
does not generate an open ideal, and calling I := (p, x), none of the additive subgroups pInA ⊂ A,
n ≥ 0, is I-adically open.

Next time we will pass to completions, record the universal property as such (relative to maps from
A to complete non-archimedean rings), and then especially carry out analogous constructions for
certain rings of fractions (recovering a Huber-ring variant of the formation of rational domains in
rigid-analytic geometry, this being the key reason we consider T1, . . . , Tn that are finite non-empty
sets and not merely singletons inside A).
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