
9 Lecture 9: Spectrality of Cont(A)

9.1 Introduction

This lecture is devoted to prove spectrality of Cont(A). Next time this will be used to prove spectrality,
and in particular quasi-compactness, of affinoid adic spectra (once these are defined). The way to
achieve spectrality of Cont(A) is by giving an “algebraic” description of the notion of continuous
valuations on a Huber ring A, achieved in terms of cofinality of values of valuations. The idea is to
give an algebraic description of continuity in terms of A and the ideal of A generated by the set A00

of topologically nilpotent elements of A. Continuity is stable under horizontal specializations, and the
idea is to exploit the algebraic input lying behind horizontal specializations.

More properties of analytic points

Recall Proposition 8.3.2 and its Corollary 8.3.3, summarized in the following:
Proposition 9.1.1 Let A be a Huber ring, and choose a couple of definition (A0, I). The point
v ∈ Spv(A) is analytic if and only if v(I) 6= 0. In particular, if A is Tate then

Cont(A) = Cont(A)an.

The reader should keep in mind the following:
Remark 9.1.2 The statement v(I) 6= 0 is equivalent to saying that v has non-open support. Without
mentioning the couple (A0, I), one may simply rephrase this by saying that there exists a topologically
nilpotent element a ∈ A00 which is not killed by v. In other words,

{p ∈ Spec(A) | p open} = V (A00 ·A)

and v is in Cont(A) if and only if v /∈ V (A00 · A). We stress once more the fact that A00 is not in
general an ideal of A, and that the ideal it generates in A may well be A itself: Tate rings contain
topologically nilpotent units by definition. If A is Tate then

A00 ·A = A,

so V (A00 ·A) = ∅; this rephrases the last statement in Proposition 9.1.1.

Rank-1 valuations v and w on a field K coincide as points in Spv(K) if (and only if) they induce the
same valuation topology. Indeed, in the rank-1 case the valuation ring is characterized in terms of the
topology on the fraction field as the set of power-bounded elements. But for higher-rank valuations
on a field it can (and often does!) happen that its topology coincides with that induced by a rank-1
valuation. We saw an instance of this in Example 6.2.1, and the following characterization of such all
such cases underlies the importance of rank-1 valuations (and hence of rigid-analytic geometry!) in
the general theory of adic spaces:
Proposition 9.1.3 Let K be a field, and v ∈ Spv(K) nontrivial. Let R ⊂ K be the valuation ring of
v. The following conditions are equivalent:

(1) There exists a rank-1 valuation w on K defining the same topology on K as v does.

(2) There exists a nonzero topologically nilpotent element in K.

(3) R has a prime ideal of height equal to 1.
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Proof. Assuming (1) holds, any $ 6= 0 in K such that w($) < 1 is topologically nilpotent because
w is of rank one, so (2) holds. Next assume (2) holds, so the valuation topology is non-trivial and
makes K a Huber ring by Proposition 6.2.3. More specifically, if $ ∈ K× is topologically nilpotent
then we may replace it by a suitable power so that $ lies in the open subring R and then R is a
ring of definition with I = $R as an ideal of definition. Note that I is a proper ideal (equivalently,
$ 6∈ R×) since all elements of I are topologically nilpotent. Let p be minimal among prime ideals of
R over I (i.e., it corresponds to a generic point of Spec(R/I)). This is a nonzero prime (since I 6= 0,
as $ 6= 0), and we claim that p has height 1, which is to say that it is minimal as a nonzero prime
ideal of the domain R. In other words, if q is a prime ideal of R strictly contained in p then we claim
that q = 0. The set of all ideals of a valuation ring is totally ordered by inclusion. (Indeed, if J, J ′ are
ideals in a valuation ring A and there exists a ∈ J and a′ ∈ J ′ with a 6∈ J ′ and a′ 6∈ J then we reach
a contradiction because either a ∈ a′A ⊂ J ′ or a′ ∈ aA ⊂ J .) Since I 6⊆ q (as otherwise p would not
be minimal over I), it follows that q ( I = $R. In particular, $ 6∈ q. Every x ∈ q can be written as
x = $y for y ∈ R. Rather generally, if such an x has the form $nyn for some n ≥ 1 and yn ∈ R then
the membership $nyn = x ∈ q forces yn ∈ q since q is prime and $ 6∈ q. But then yn ∈ I = $R, so
yn = $yn+1 for some yn+1 ∈ R, so x = $n+1yn+1. This calculation shows that q ⊆ ∩n≥1In, and this
intersection vanishes since the I-adic topology of R is the v-adic topology, which is separated. This
proves q = 0 as claimed, so we have shown that (2) implies (3).

Finally, assume (3) and let p be a height-1 prime ideal of R,so Rp is a valuation ring ofK containing R.
The value group K×/R×p is a quotient of the value group K×/R× of v. Let w : K → (K×/R×p )∪ {0}
be the associated valuation. We claim that w is rank-1, which is to say that its nontrivial value group
is order-isomorphic to a subgroup of R×>0 (or equivalently R in additive notation). We need to show
that Γw is order-isomorphic to a subgroup of R×>0. By [Mat, Thm. 10.6] it is equivalent to show that
Γw satisfies the Archimedean axiom. This means that for any γ ∈ Γw with γ > 1, every γ′ ∈ Γw

satisfies γ′ < γn for some n > 0 (equivalently, 1/γ is cofinal in Γw). There is a very useful necessary
and sufficient condition for a totally ordered abelian group G to satisfy the Archimedean axiom: it
should have no nontrivial proper convex subgroups. The necessity of this condition is clear, and for
sufficiency suppose there are no such convex subgroups of G and consider g ∈ G with g > 1. Define
∆ to be the set of elements h ∈ G that satisfy g−n < h < gn for some n > 0 (which may depend
on h). Clearly ∆ contains 1 and is stable under inversion and multiplication, so it is a subgroup of
G, and by design ∆ is convex. Also, ∆ 6= 1 since g ∈ ∆ (as g > 1). The hypothesis on G then
forces ∆ = G, as desired. Thus, to prove that w is a rank-1 valuation we just need to check that its
nontrivial value group has no nontrivial proper convex subgroups. But in general there is a natural
inclusion-preserving bijection between the set of prime ideals of a valuation ring and the set of convex
subgroups of its value group, explained by combining both parts of [Wed, Prop. 2.14]. Thus, since
Rp has no nonzero non-maximal prime ideals (as p has height 1), it follows that Γw has no nonzero
proper convex subgroups.

To conclude the proof that (3) implies (1), it suffices to show that the w-topology on K coincides with
the initial v-topology associated to R. Rather generally, any pair of non-trivial valuations on a field
whose valuation rings do not general the field as a ring (e.g., this applies when one of the valuation
rings contains the other) define the same topology on the field [Bou, Ch.VI, §7.2, Prop. 3]. (This
reference also proves the more difficult converse that we do not need.)

Definition 9.1.4 We call a valuation v on a field K microbial if it satisfies the equivalent conditions
in Proposition 9.1.3.

We can now prove the following:
Proposition 9.1.5 Let A be a Huber ring and choose v ∈ Cont(A)an. Then v is microbial and has
a unique rank-1 generization w inside Cont(A)an. Moreover, v has no proper generization inside

2



Cont(A)an if and only if it is a rank-1 point.

Proof. If v were trivial then its support pv would be {v < 1} and hence would be open by continuity
of v, yet pv is non-open by analyticity. Thus, v is a non-trivial valuation. By Proposition 9.1.1 the
non-open prime pv is not contained in V (A00 · A). Hence, there exists some nonzero topologically
nilpotent element a ∈ A00 such that v(a) 6= 0. In particular the image of a in A/pv is nonzero and
topologically nilpotent for the quotient topology and thus for the v-topology since v is continuous on
A. It follows that the residue field κ(v) equipped with its non-trivial valuation arising from v satisfies
(2) in Proposition 9.1.3, so v is microbial. In particular, v admits a rank-1 vertical generization w.
Since w is non-trivial it inherits continuity from v, and its support is equal to pv so it is also analytic.
So we have produced a rank-1 generization of v inside Cont(A)an.

By Proposition 8.3.10, all generizations inside Cont(A)an are vertical, so to prove uniqueness of w we
just need to check that v has no other rank-1 vertical generization inside Spv(A). If v′ is a rank-1
vertical generization of v then it gives rise to a rank-1 valuation ring inside κ(v) that contains the
valuation ring of v, and the two resulting valuation topologies on κ(v) must coincide (as we saw at
the end of the proof of Proposition 9.1.3). But w also gives the same topology, and we have seen
earlier the elementary fact that rank-1 points in Spv(κ(v)) coincide if and only if they induce the
same topology on κ(v). Thus, v′ = w as desired.

If v does not have rank 1 then we have produced a proper generization of it inside Cont(A)an, and
if v is rank 1 then any point v′ ∈ Cont(A)an generizing v must be vertical and so corresponds to
a rank-1 valuation ring of κ(v) that contains the rank-1 valuation ring associated to v. But it is
elementary that there are no proper subrings of a field that strictly contain a rank-1 valuation ring,
so the valuation rings for v and v′ inside κ(v) are equal, forcing v′ = v as points of Spv(A).

Example 9.1.6 Let K be a field, and v be a microbial valuation on K. Endow K with the valuation
topology induced by v, thus making it into a non-archimedean ring (in fact a topological field). We
claim Cont(K) is the subspace of Spv(K) consisting of those valuations w on K whose valuation
topology on K coincides with that induced by v.

Since every valuation on a field has support (0), and this is not v-open since v is nontrivial, it follows
that

Cont(K) = Cont(K)an.

The microbial hypothesis on v implies that K contains a topologically nilpotent unit, so by continuity
every w ∈ Cont(K) admits a topologically nilpotent unit in K for the w-topology and thus is itself
microbial. By Proposition 9.1.3, w therefore admits a rank-1 generization that defines the same
topology as w. Thus, to prove that all such w induces the same topology as v we may assume v has
rank 1 and just need to check that (i) Cont(K) has no rank-1 points aside from v and (ii) any rank-1
point of Spv(K) whose topology coincides with that of v is equal to v.

Assertion (ii) is immediate from the fact that a rank-1 point is recovered from its associated topology
on K (in such cases the valuation ring is precisely the set of power-bounded elements). As for (i), if a
rank-1 valuation v′ on K is continuous for the v-topology then any topologically nilpotent a ∈ K for
the v-topology must satisfy v′(a) < 1 since v′(an) → 0 for the order topology on Γv′ ∪ {0}. But all
elements of mv are topologically nilpotent for the v-topology since v has rank 1, so mv ⊆ mv′ . Thus,

K −Rv = (mv − {0})−1 ⊆ (mv′ − {0})−1 = K −Rv′ ,

giving that Rv′ ⊆ Rv. But Rv 6= K and Rv′ is a rank-1 valuation ring, forcing Rv′ = Rv since
there are no rings strictly between a rank-1 valuation ring and its fraction field (always false in higher
rank!).
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For a Huber ring A and (A0, I) a couple of definition for A, Remark 8.4.3 gave

rad(I ·A) = rad(A00 ·A).

Since I · A is a finitely generated ideal of A, this equality of radicals has geometric meaning: recall
from Proposition 3.2.1 that for any commutative ring A an open subset U ⊂ Spec(A) is quasi-compact
if and only if Spec(A) − U has the form Spec(A/J) for some finitely generated ideal J of A, which
is to say that the unique radical ideal defining the closed complement of U is also the radical of a
finitely generated ideal. (In particular, Spec(A)− V (A00 ·A) is quasi-compact.)

The setup for “algebraic” description of continuity of valuations on Huber rings

Definition 9.1.7 If Γ is a totally ordered abelian group and H ⊂ Γ is a subgroup, we say that
γ ∈ Γ ∪ {0} is cofinal for H if for all h ∈ H there exists a sufficiently large integer n ≥ 0 such that
γn < h.

Note that 0 is always cofinal for any subgroup H ⊆ Γ.

Now let us consider a commutative ring A, and an ideal J ⊂ A such that its radical is equal to the
radical of a finitely generated ideal. We have seen that an example of such an ideal is A00 · A in a
Huber ring A. For Huber rings A, the points of Spv(A) over Spec(A) − V (A00 · A) are precisely the
analytic points, so for general commutative rings A and J as above we will imitate this and focus on
the preimage under the natural continuous map Spv(A) → Spec(A) of the quasi-compact open set
Spec(A)− V (J); these are the valuations v on A such that v(J) 6= 0.

The picture is a Cartesian diagram of topological spaces:

Spv(A)

��

{v ∈ Spv(A) | v(J) 6= 0}? _oo

��

Spec(A) Spec(A)− V (J)? _oo

For v ∈ Spv(A) we shall study the property of v(a) of being cofinal in Γv for a ∈ J , and in order to
do so we shall separately consider two cases: v(J) ∩ cΓv = ∅, and v(J) ∩ cΓv 6= ∅. To that end, we
first recall some notions related to horizontal specialization and give geometric intepretations of when
v(J) ∩ cΓv is empty or non-empty.

For v ∈ Spv(A) the horizontal specializations of v in Spv(A) are given by

w|H : a 7→
{
v(a) if a ∈ H

0 if a /∈ H

for H a convex subgroup of Γv containing the characteristic subgroup cΓv, and we had the following:
Theorem 9.1.8 There is a bijection

{horizontal specializations of v} ↔ {v-convex primes},

via the formation of supports. Moreover, for two such specializations w and w′ of v, w specializes to
w′ if and only if pw ⊂ pw′ (i.e., pw specializes to pw′ in Spec(A)). An inverse is given by assigning
to any v-convex prime q of A the valuation

wq : a 7→
{
v(a) if a /∈ q,

0 if a ∈ q.

4



In geometric terms, v|cΓv
is to be viewed as the “most special” among the horizontal specializations

of v. Also, keep in mind that the above bijection is not between the set of v-convex primes of A and
the set of convex subgroups of Γv containing cΓv (see Example 4.4.1!).
Remark 9.1.9 Let v ∈ Spv(A). For any convex subgroup H of Γv, the containment

v(J) ∩H ⊆ v(rad(J)) ∩H

is an equality, because Γv/H is torsion-free (in fact even totally ordered). In particular, the condition
of whether v(J) ∩H is empty or not only depends on J through its radical.
Remark 9.1.10 Let v ∈ Spv(A), and let H be a convex subgroup of Γv containing cΓv. Then we
have that v(J)∩H is nonempty if and only if v|H does not kill J , which is in turn equivalent to saying
that v|H lies over Spec(A)− V (J). Note that in the case v(J) ∩H 6= ∅, necessarily v(J) 6= 0!

When v(J) 6= 0, if v(J) ∩H is empty then v|H kills J and hence lies over the vanishing locus of J .

[making picture!]

The upshot of Remark 9.1.10 is that the condition

v(J) ∩ cΓv 6= ∅

means exactly that all horizontal specializations of v lie over Spec(A)− V (J).

Understanding the condition v(J) ∩ cΓv 6= ∅

The next lemma says that checking whether v(J) ∩ cΓv is empty or not is equivalent to checking
whether v(J) ∩ v(A)≥1 is empty or not.
Lemma 9.1.11 Let A be a ring, J an ideal of A and v ∈ Spv(A). Then v(J) ∩ cΓv 6= ∅ if and only
if v(J) ∩ v(A)≥1 6= ∅.

Proof. Certainly if v(J)∩v(A)≥1 is nonempty, so is v(J)∩cΓv. Conversely, suppose there exists a ∈ J
such that v(a) ∈ cΓv. If v(a) ≥ 1 we are done. Let’s assume v(a) < 1. By definition of cΓv there exist
b, b′ ∈ A such that v(b), v(b′) ≥ 1 and

v(b′)

v(b)
≤ v(a) < 1.

It follows
1 ≤ v(b′) ≤ v(b)v(a) = v(ab),

and since ab ∈ J we conclude.

Remark 9.1.12 We can draw two consequences from the assumption v(J) ∩ cΓv 6= ∅:

(1) For any convex subgroup H ⊂ Γv containing cΓv, some element of v(J) (e.g., anything in
v(J) ∩ v(A)≥1 6= ∅) is not cofinal for H.

(2) Every horizontal specialization of v lies over Spec(A) − V (J) (since if v(a) ∈ cΓv then for
any convex subgroup H of Γv containing cΓv clearly (v|H )(a) = v(a) 6= 0). Conversely, if
this property holds for all horizontal specializations then by considering the most special case
H = cΓv we see that v(J) ∩ cΓv is non-empty. So this gives a precise geometric visualization of
the condition v(J) ∩ cΓv 6= ∅.
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Understanding the condition v(J) ∩ cΓv = ∅

The following result will be given a nice geometric interpretation via horizontal specialization in §9.2,
and it is a striking contrast with both parts of Remark 9.1.12.
Proposition 9.1.13 Let A be a ring, and v ∈ Spv(A) with value group Γv. Let J be an ideal of A
such that its radical is equal to the radical of a finitely generated ideal, and assume v(J) ∩ cΓv = ∅
(i.e., the most special horizontal specialization v|cΓc

lies over V (J)).

(1) There exist convex subgroups H ⊆ Γv containing cΓv with the property that all elements of v(J)
are cofinal for H, and among all such H there is one HJ that contains all others.

(2) If moreover v(J) 6= 0 (so cΓv 6= Γv) then necessarily HJ 6= cΓv, v(J) ∩ HJ 6= ∅, and HJ is
contained in every convex subgroup H of Γv satisfying v(J)∩H 6= ∅. Geometrically, if v lies over
Spec(A)−V (J) then so does the horizontal specialization v|HJ

and it is the “unique most special”
such specialization in the sense that every horizontal specializations of v over Spec(A) − V (J)
is a horizontal generization of v|HJ

.

Proof. If v(J) = 0 then certainly v(J) ∩ cΓv = ∅. In this case HJ = Γv does the job.

We now assume v(J) 6= 0. Let H be a convex subgroup of Γv containing cΓv and disjoint from v(J)
(e.g., cΓv is one such H). Note that v(J) ∩H = ∅ if and only if we have

v(rad(J)) ∩H = ∅.

Indeed, if a ∈ rad(J) and v(a) ∈ H then v(an) ∈ H for any n > 0, so take n large enough to ensure
an ∈ J . It follows that our problem only depends on J through its radical, so we may assume J itself
is finitely generated: say

J = (a1, . . . , an).

Since v(J) 6= 0, some v(ai) is non-zero. The valuation of the generators a1, . . . , an of J attains a
maximum, which we call h, so h 6= 0. Note that h 6∈ H since h ∈ v(J). In particular, h < 1 since
v(A)≥1 ⊆ cΓv ⊆ H and likewise h 6∈ cΓv. We call

HJ := {γ ∈ Γv | hn ≤ γ ≤ h−n for some n ≥ 0};

this is the convex subgroup “generated” by h inside Γv, and h ∈ HJ since h < 1; in particular,
v(J) ∩HJ 6= ∅.

We now show that HJ satisfies the required properties.

Step 1: HJ strictly contains cΓv We saw above that necessarily h < 1. Since h does not lie in
the convex subgroup cΓv, it follows that h < γ for all γ ∈ cΓv. (Indeed, if for some such γ we have
γ ≤ h then the h is sandwiches between γ and 1, forcing h ∈ cΓv by convexity.) Applying inversion
to the relation h < cΓv, we obtain

h < cΓv < h−1,

and being HJ a convex subgroup of Γv by construction, necessarily cΓv ⊆ HJ . The inclusion is strict,
since h /∈ cΓv.
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Step 2: v(J) is cofinal for HJ By design, for any γ ∈ HJ there exists n > 0 such that hn < γ, so
v(ai)

n ≤ hn < γ for all i. Hence, the set

{a ∈ A | v(a) cofinal for HJ}

contains a1, . . . , an. We want this set to contain the ideal J generated by the ai’s, so it suffices for
this set to be an ideal itself. We cannot merely argue by “A-linearity” since v(A) might not be ≤ 1
inside Γv. Nonetheless, since cΓv is strictly contained in HJ the hypotheses of the following surprising
lemma are satisfied for HJ and thereby gives the required ideal property:
Lemma 9.1.14 Let A be a ring, and v ∈ Spv(A). Let H be a subgroup of Γv which strictly contains
cΓv. Then

a := {a ∈ A | v(a) is cofinal for H}

is a radical ideal of A.

The surprise is that cofinality relative to H defines an ideal even when v(a) > 1 for some a ∈ A.

Proof. Let a, b ∈ a. We want to show v(a+ b) is again cofinal for H. By the ultrametric inequality,

v(a+ b) ≤ max{v(a), v(b)}

and hence, since both v(a) and v(b) are cofinal for H, so is v(a + b). Now let a ∈ a, and b ∈ A. If
v(b) ≤ 1, then v(ab) ≤ v(a), and we are done. Suppose v(b) > 1. Then v(b) is contained in cΓv ⊆ H.
We now use the assumption that cΓv is strictly contained in H, and that v(b) > 1. There exists
h0 ∈ H not in cΓv, and by convexity of cΓv we know that h0 is either strictly larger or strictly smaller
than all elements of cΓv. Passing to its inverse if necessary, we can arrange that

h0 < cΓv.

It follows h−10 > cΓv, and we have v(a)nh−10 < 1 for sufficiently large n ≥ 0. Finally,

v(ab)n+N = v(a)n+Nv(b)n+N < v(a)n+Nh−10 < v(a)N

for N ≥ 1, and we conclude that v(ab) is cofinal for H since v(a) is cofinal for H. Thus, a is indeed
an ideal of A.

If an ∈ a then for any h ∈ H we have v(an)m < hn for all large m, so v(a)m < h for all large m, so
a ∈ a. That is, a is radical.

Step 3: HJ is maximal Indeed, if H is any convex subgroup of Γv containing cΓv and such that
v(J) is cofinal for H, then in particular h is cofinal for H. It follows H≤1 ⊆ HJ by convexity of HJ ,
and then H ⊆ HJ .

It remains to address the minimality property for HJ . Clearly v(J) ∩ HJ 6= ∅, as h is in the
intersection. We want to prove that HJ is contained in every convex subgroup H ⊆ Γv satisfying

v(J) ∩H 6= ∅.

We instead briefly sketch the idea, and refer the reader to [Wed, Lemma 7.2]. The assumption
v(J) ∩ cΓv = ∅ is used again to deduce that any such H strictly contains cΓv, and convexity of H
and the choice of h do the job to show HJ is contained in H.
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9.2 The key construction

Using Remark 9.1.12 and Proposition 9.1.13, we are led to make the following definition.
Definition 9.2.1 Let A be a ring, and v ∈ Spv(A), with value group Γv. Let J be an ideal of A
whose radical coincides with the radical of a finitely generated radical. We set:

cΓv(J) :=

{
HJ if v(J) ∩ cΓv = ∅
cΓv if v(J) ∩ cΓv 6= ∅.

The “reasonableness” of the definition when v(J) ∩ cΓv is non-empty (which can only happen when
v(J) 6= 0) is explained by the minimality aspect of Proposition 9.1.13(3), even though that proposition
only concerns cases with v(J) disjoint from cΓv). Note also that always cΓv(A) = cΓv (since 1 ∈ v(A)).

The geometric idea underlying the definition of cΓv(J) is that the associated horizontal specialization
v|cΓc(J)

of v is the one that is “just barely” still over Spec(A)− V (J) (with the understanding that it
is equal to v when v itself lies over V (J)). We summarize the basic properties of cΓv(J), unifying the
two cases of its dichotomous definition, in the following proposition (see especially part (3)).
Proposition 9.2.2 For A and J as above and v ∈ Spv(A), the subgroup cΓv(J) of Γv satisfies the
following properties:

(1) cΓv(J) is convex, and cΓv ⊆ cΓv(J).

(2) cΓv(J) = Γv if and only if every proper horizontal specialization of v lies over V (J) ⊂ Spec(A).

(3) cΓv(J) is minimal with respect to the property of being a convex subgroup of Γv that contains
cΓv and meets v(J).

(4) If v(J) ∩ cΓv = ∅ then cΓv(J) is maximal among the convex subgroups of Γv that contain cΓv

and relative to which all elements of v(J) are cofinal.

There is no ambiguity about the use of “minimal” and “maximal” above since the collection of con-
vex subgroups of a totally ordered abelian group is itself totally ordered under inclusion (see [Wed,
Rem. 1.10], an elementary proof by contradiction).

Proof. (1) is a consequence of Proposition 9.1.13 and the definition of cΓv, as are (3) and (4). But
(2) requires an argument (using (3) crucially), as follows.

If v(J) = 0 then (2) is trivially true since v lies already over V (J). Suppose instead v(J) 6= 0.
First assume cΓv(J) = Γv. Consider a proper horizontal specialization v|H , so H is a proper convex
subgroup of Γv containing cΓv. By (3), v(J)∩H must be empty, which implies exactly v|H (J) = 0; i.e.,
every proper horizontal specialization of v lies over V (J). Conversely, suppose every proper horizontal
specialization of v lies over V (J). Then for every proper convex subgroup H ( Γv containing cΓv the
specialization v|H has support in V (J), so v(J) ∩H must be empty. This says that among all proper
convex subgroups of Γv containing cΓv none meet v(J). Hence, Γv is the only convex subgroup of Γv

containing cΓv and meeting v(J) 6= 0, so by (3) it must equal cΓv(J).

Let us recast the geometric meaning of Proposition 9.2.2 in terms that will be useful for what follows.
By part (1), cΓv(J) is a convex subgroup containing cΓv, so v|cΓv(J)

makes sense as a horizontal
specialization of v. In particular, the assignment

r : v 7−→ v|cΓv(J)
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makes sense as a map of sets Spv(A) → Spv(A). By part (2), r(v) = v if and only if all proper
horizontal specializations of v lie over V (J); this is a vacuous condition if there are no proper horizontal
specializations, and it is a trivial condition if v itself lies over V (J). Part (3) says that when v
lies over Spec(A) − V (J) then r(v) is the “most special” among specializations of v which lie over
Spec(A)−V (J). So the map r should be viewed over Spec(A)−V (J) as carrying each v to the “last”
among its horizontal specializations that do not lie over V (J). If v(J) ∩ cΓv is nonempty then even
the most special among all horizontal specializations, namely v|cΓv

, does not lie over V (J). But if
v(J)∩ cΓv is empty then all proper horizontal specializations of r(v) lie over V (J) but r(v) does not.
So r acts as the identity on the part of Spv(A) over V (J) and in general the geometric interpretation
(and the transitivity of the relation “horizontal specialization”) makes it clear that r(r(v)) = r(v) for
any v whatsoever.

To summarize, r is a retraction of the entire space Spv(A) onto the union of the locus over V (J)
and the subset of the locus over Spec(A) − V (J) that is its “interior edge” relative to horizontal
specialization.

The preceding considerations motivate interest in the following definition:
Definition 9.2.3 For a ring A and ideal J such that rad(J) is the radical of a finitely generated
ideal, define

Spv(A, J) := {v ∈ Spv(A) | r(v) = v} = {v ∈ Spv(A) | cΓv(J) = Γv}.

Thus, r is a retraction of Spv(A) onto Spv(A, J). As we have seen above,

Spv(A, J) ⊇ {v ∈ Spv(A) | v(J) = 0}.

Since the case J = A is relevant to the case of Tate rings later on, we note that the space Spv(A,A) :=
{v | cΓv = Γv} can be described geometrically as the locus of points v ∈ Spv(A) with no proper
horizontal specializations (since if H is any proper convex subgroup of the group Γv and H ⊇ cΓv

then necessarily v|H 6= v: some a ∈ A− pv must satisfy v(a) 6∈ H since Γv is generated by v(A− pv),
so supp(v|H ) contains a whereas supp(v) does not contain a).

Here is a concrete description of Spv(A, J) in the spirit of continuity conditions for valuations on
Huber rings (though presently A is just a commutative ring):
Lemma 9.2.4 Let a1, . . . , an satisfy rad(a1, . . . , an) = rad(J). For v ∈ Spv(A), the following are
equivalent:

(1) cΓv(J) = Γv (i.e., v ∈ Spv(A, J)).

(2) Γv = cΓv or v(a) is cofinal for Γv for all a ∈ J .

(3) Γv = cΓv or v(a1), . . . , v(an) are all cofinal for Γv.

Proof. (1) and (2) are equivalent by Definition 9.2.3 and Proposition 9.1.13. (2) trivially implies (3).
On the other hand, by Lemma 9.1.14 and Proposition 9.2.2, (3) implies (2) as well: indeed either
Γv = cΓv, or if not then the assumptions of Lemma 9.1.14 are satisfied.

The technical importance of Spv(A, J) is due to:
Proposition 9.2.5 Let A and J be as above, and give Spv(A, J) the subspace topology from Spv(A).
Then:

(1) X := Spv(A, J) is a spectral space.
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(2) A base of quasi-compact open sets for the topology of X is given by

X(T/s) := {v ∈ X | v(g1) ≤ v(s) 6= 0, . . . , v(gn) ≤ v(s) 6= 0}

for non-empty finite sets T = {g1, . . . , gn} such that J ⊆ rad(T ·A).

(3) The retraction r : Spv(A)→ Spv(A, J) is a spectral map (in particular, continuous).

(4) If v ∈ Spv(A) lies over Spec(A)− V (J) then so does r(v).

Proof. The proof of (4) has been given in our discussion of the geometric meaning of r. We divide the
proof of the rest into steps. As we have seen a few times already, we may and do assume J is finitely
generated.

Proof of (2) apart from quasi-compactness: Choose any such T and s, so

X(T/s) = X ∩ Spv(A)(T/s)

is open in X. To check that these open sets are stable under finite intersection, first note that

X(T/s) = X

(
T ∪ {s}

s

)
,

so we are reduced to the case in which T contains s. Pick two finite nonempty subsets T and T ′ in
A, and s ∈ T and s′ ∈ T ′ with the property

J ⊆ rad(T ·A) ∩ rad(T ′ ·A).

If we define T ′′ := {t · t′, t ∈ T and t′ ∈ T ′} then (ss′ ∈ T ′′ and) the ideal rad(T ′′ ·A) contains J since
it contains J2. Thus, X(T ′′/ss′) makes sense and clearly

X(T/s) ∩X(T ′/s′) ⊆ X(T ′′/ss′).

The reverse inclusion holds because if v(tt′) ≤ v(ss′) 6= 0 for some t ∈ T and t′ ∈ T ′ then it is not
possible that both v(t) > v(s) and v(t′) > v(s′).

For the topological base assertion in (2) it remains to show that given v ∈ Spv(A, J) and any open
neighbourhood U of v in Spv(A), there exists an open neighbourhood of v in U ∩ Spv(A, J) given by
such an X(T/s). We first assume cΓv = Γv. By definition of the topology on Spv(A), we can choose
t1, . . . , tn, s ∈ A such that

v ∈ Spv(A)

(
t1, . . . , tn

s

)
⊆ U.

We claim we can arrange the choice of such ti’s and s such that one of the ti’s is 1 (so trivially
J ⊆ rad(t1, . . . , tn)).

Assume first v(s) ≥ 1. Then we simply append an extra t′ := 1 to the ti’s.

Let now v(s) < 1. It follows v(s−1) = v(s)−1 ≥ 1, and v(s)−1 ∈ Γv = cΓv. We claim that
v(s)−1 ≤ v(a) for some a ∈ A. In this case we will have

1 ≤ v(as)

and therefore
v ∈ X

(
t1a, . . . , tna, 1

sa

)
⊆ U,
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as required. Since v(s) ∈ Γv = cΓv, there exist a′, a ∈ A such that v(a′), v(a) ≥ 1 and v(a′)/v(a) ≤
v(s). If v(as) ≥ 1 then we are done, so we may assume v(as) < 1, or equivalently v(s) < 1/v(a).
Thus,

v(s) ≥ v(a′)/v(a) > v(a′)v(s),

so v(a′) < 1, a contradiction.

Now assume Γv 6= cΓv. Let {a1, . . . , am} be generators for J . Since v(s) 6= 0, by Lemma 9.2.4 (3) we
know that for sufficiently large k ≥ 0,

v(ai)
k ≤ v(s) for all i = 1, . . . ,m.

This implies

v ∈ X
(
t1, . . . , tn, a

k
1 , . . . , a

k
m

s

)
⊆ U.

This new collection of “numerators” clearly does the job.

Proof of (3): We let s ∈ A, T ⊂ A be a finite nonempty subset of A, and I ⊂ rad(T ·A). Let

U := X(T/s) and U ′ := Spv(A)(T/s).

We know that U ′ is quasi-compact from our work on the spectrality of Spv(A). We claim U ′ = r−1(U),
which will achieve continuity of r due to the settled part of (2), and also the spectrality once U is
known to be quasi-compact (the part of (2) not yet proved). We know U ⊆ U ′, and every point of
r−1(U) is a horizontal generization of a point of U . Since U ′ is open, it is stable under generization
and hence contains r−1(U).

Now choose w ∈ U ′ and we have to show r(w) ∈ U . If w lies over V (J) then r(w) = w ∈ U ′ ∩X =
X(T/s) = U . Assume now w(J) 6= 0. Thus, w lies over Spec(A)− V (J), so the same holds for r(w).
That is, r(w) does not kill J . But J ⊆ rad(T · A) by hypothesis, so r(w) cannot kill T . That is,
r(w)(t0) 6= 0 for some t0 ∈ T . We have by assumption

w(t) ≤ w(s) 6= 0

for all t ∈ T .

It is a general fact that if v′ = v|H is a horizontal specialization of v ∈ Spv(A) and a, b ∈ A satisfy
v(a) ≤ v(b) then v′(a) ≤ v′(b). Indeed, this is obvious if v′(b) 6= 0 (i.e., v(b) ∈ H) since in such cases
v′(b) = v(b) whereas always v′(a) is equal either to v(a) or to 0 (depending on whether or not v(a) ∈
H). So we just need to rule out the possibility v(b) 6∈ H yet v(a) ∈ H. But v(A)≥1 ⊆ cΓv ⊆ H, so if
v(b) 6∈ H then v(b) < 1, so convexity of H and the inequalities v(a) ≤ v(b) < 1 would force v(a) 6∈ H.
Applying this general conclusion to the horizontal specialization v′ = r(w), we have r(w)(t) ≤ r(w)(s)
for all t ∈ T . Taking t = t0 thereby prevents r(w)(s) from vanishing, so r(w) ∈ U ′ ∩X = U .

End of the proof Consider the Boolean algebra generated by the subsets X(T/s) of X, and endow
X with the topology that this algebra generates (so each X(T/s) is open and closed for this new
topology). The key lies in (3), where we proved that for any member U of this algebra, r−1(U) is
constructible in the spectral space Spv(A). Using Theorem 3.3.9 (Hochster’s criterion) one deduces
thatX is spectral and that everyX(T/s) is quasi-compact, so also r is spectral. See the last paragraph
of the proof of [H1, Prop. 2.6] for the details. (This argument uses the quasi-compactness of the
constructible topology of spectral spaces, applied to the spectral space Spv(A).)
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9.3 The Main Theorem

Recall we started seeking a suitable algebraic description of continuity for valuations on A. Now A
shall be a Huber ring, and our constructions from the previous section do finally produce the desired
description! It turns out that cofinality captures continuity when we choose the appropriate J :
Theorem 9.3.1 Let A be a Huber ring, and (A0, I) a couple of definition. Then we have:

Cont(A) = {v ∈ Spv(A,A00 ·A) | v(a) < 1 for all a ∈ A00}.

Note first of all that rad(A00 ·A) = rad(I ·A), so since I ·A is a finitely generated ideal of A it follows
that the construction explained throughout the previous section is applicable.

The Theorem implies that v ∈ Spv(A) is continuous if and only if for every a ∈ I the value v(a) is
cofinal in Γv (not just v(a) < 1; in Example 10.2.3 we will illustrate that this is weaker than cofinality
for higher-rank v). In fact, we can push this a bit further in terms of a finite generating set of I as
an ideal of A0, subject to (necessary) boundedness for v on the entirety of A0; see Corollary 9.3.3.

Granting Theorem 9.3.1 for a moment, we finally prove spectrality of Cont(A):
Corollary 9.3.2 Let A be a Huber ring, and (A0, I) a couple of definition. Then Cont(A) is closed
in Spv(A, I ·A), which is spectral. In particular, Cont(A) is spectral and thus quasi-compact.

Proof. Indeed,

Spv(A, I ·A)− Cont(A) =
⋃
a∈I

Spv(A, I ·A)

(
1

a

)
,

which is open. By §3.3 (Lecture 3), since Cont(A) is a closed subspace of a spectral space, it is
spectral.

We now prove Theorem 9.3.1. The reader may refer also to [Wed, Thm. 7.10], and to [H1, Thm. 3.1].

Proof of Theorem 9.3.1.

Step 1: Cont(A) ⊆ right side. Let v ∈ Cont(A). For all a ∈ A00 the continuity of v implies
both v(a) < 1 and the cofinality of v(a) for Γv. Now Lemma 9.2.4 yields cΓv(A00 · A) = Γv, so
v ∈ Spv(A,A00 ·A).

Step 2: cofinality. To show that the right side is contained in the left side, choose v ∈ Spv(A, I ·A)
such that v(a) < 1 for all a ∈ I. We first check that v(a) is cofinal for Γv for all a ∈ I. This is immediate
if cΓv 6= Γv by Lemma 9.2.4(2). Assume now cΓv = Γv. We have to show that for any γ in Γv and a
in I, if n is large enough (depending on a and γ) then v(a)n < γ. The case γ ≥ 1 is trivial (as v(a) < 1
by hypothesis), so assume γ < 1. But γ ∈ cΓv, so it is bounded below by a fraction v(b′)/v(b) with
b, b′ in A such that v(b), v(b′) ≥ 1. Hence,

1/v(b) ≤ v(b′)/v(b) ≤ γ.

Thus, we are reduced to show that for large enough n (such n depending on a) we have v(a)n < 1/v(b),
or equivalently v(anb) < 1. But anb→ 0 in A as n→∞ since a is in I, so for n sufficiently large we
have anb ∈ I and hence (by our initial hypotheses on v!) v(anb) < 1, as required.
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Step 3: continuity. We finally deduce continuity for v as in Step 2. Let T := {a1, . . . , an} be a
set of generators for I as an ideal of A0. Since Γv is totally ordered, upon reindexing we can assume

v(a1) ≥ v(a2) ≥ · · · ≥ v(an).

For any m-fold product a of the ai’s we have v(a) ≤ v(a1)m, so by the established cofinality of v(a1)
in Γv it follows that for all γ ∈ Γv and sufficiently large m ≥ 0 we have

v(a) < γ.

Since v(b) < 1 for all b ∈ I by hypothesis (!), for such m ≥ 0 we have

v(Tm · I) < γ.

But Tm · I = Im+1, so this displayed inequality expresses exactly that v is continuous.

Corollary 9.3.3 Let A be a Huber ring with couple of definition (A0, I), and let {a1, . . . , an} be a
finite generating set of I as an A0-module. For v ∈ Spv(A), the following are equivalent:

(1) v is continuous;

(2) v(a) is cofinal in Γv for all a ∈ I,

(3) γi := v(ai) is cofinal in Γv for all i and when γ := maxi γi 6= 0 then v(a) < 1/γ for all a ∈ A0.

This is an “algebraic” description of continuity (up to the fact that the specification of (A0, I) is of
topological nature). beware that it is not necessary for v ∈ Cont(A) that v(a) ≤ 1 for all a ∈ A0; we
will give pervasive counterexamples with higher-rank v in Example 10.2.4.

Proof. Trivially (1) implies (2) due to topological nilpotence of elements of I. To see that (2) implies
(3) we first note that cofinal elements of Γv must be < 1, so since aai ∈ I for all a ∈ A0 we see that
v(aai) < 1 for all i and all a ∈ A0. This implies v(a) < 1/γi whenever γi 6= 0. Thus, if γ := maxi γi
is nonzero then necessarily v(a) < 1/γ for all a ∈ A0.

Finally, assume γi is cofinal in Γv for all i and moreover that if some γi is nonzero (so γ 6= 0) then in
fact v(a) < 1/γ for all a ∈ A0. We want to show that v is continuous. If all γi vanish then certainly
v(I) = {0}, so v is trivially continuous (as it factors through the discrete quotient A/I ·A of A). Thus,
now we assume some γi is nonzero, so γ 6= 0 and by hypothesis v(a) < 1/γ for all a ∈ A0. Hence, for
any i we have

v(aai) = γiv(a) ≤ γv(a) < 1,

so every A0-linear combination b of the ai’s satisfies v(b) < 1. Such linear combinations exhaust I,
so v(b) < 1 for all b ∈ I, and hence v(a) < 1 for all a ∈ A00 (as any such a satisfies am ∈ I for some
m > 0, since I is open around 0). By Theorem 9.3.1, continuity of such v is reduced to checking that
v ∈ Spv(A,A00 · A). Since rad(

∑
Aai) = rad(A00 · A), by Lemma 9.2.4 we are done because v(ai) is

cofinal in Γv for all i by hypothesis.
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