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The goal is to extend the Artin comparison theorem from the setting of torsion
coefficients to the setting of adic coefficients. We will essentially be following the
presentation of [Conrad, §§1.4.7–1.4.8], and we should repeat the note from there that
the main argument of §1 is due to Deligne.

0.1 NOTATION — Throughout,Λ is a complete discrete valuation ring with uniformizer `,
characteristic zero fraction field K , and finite residue fieldΛ0 :=Λ/`Λ.

§1 Adic analytification

1.1 NOTATION — Throughout this section we let X be a finite-type C-scheme.

1.2 DE�NITION — Suppose given an objectF• in the Artin-Rees category ofΛ-sheaves on
X . We may analytifyFn Fan

n , and obtain an objectG• in the Artin-Rees category of
Λ-sheaves on X an. We then define

Fan
• := limG• = limFan

n ,

a sheaf ofΛ-modules on X an. As taking limits is a functor on the Artin-Rees category
ofΛ-sheaves on X an, this construction defines a functor from the Artin-Rees category
ofΛ-sheaves on X to the category of sheaves ofΛ-modules on X an.

Our aim in this section is to demonstrate that this adic analytification construction
has good properties. The key result is the following.

1.3 LEMMA — LetF• be a constructibleΛ-sheaf on X . Then, for x ∈ X (C), the canonical
map

ιx :
(
Fan

•
)

x = (
limFan

n

)
x lim

(
Fan

n

)
x ' lim(Fn)x = (F•)x

is an isomorphism.

Before proving this lemma, let us give some consequences.

1.4 COROLLARY — The analytification functorF• Fan• defined in (1.2) is exact.

PROOF — On both sides of the functor exactness may be checked on stalks, so this is
immediate from (1.3).

1.5 COROLLARY — Let j : U X be an open immersion.

(a) LetF• be a constructibleΛ-sheaf onU . Then the canonical map

j an
! (Fan

• ) lim j an
! (Fan

n ) = (
j!(F•)

)an

is an isomorphism.
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(b) LetF• be a constructibleΛ-sheaf on X . Then the canonical map

( j an)∗(Fan
• ) lim( j an)∗(Fan

n ) = (
j∗(F•)

)an

is an isomorphism.

PROOF — (a) It follows from (1.3) that the map induces isomorphisms on stalks.

(b) This is immediate from ( j an)∗ preserving limits.

1.6 COROLLARY — Let i : Z X be an closed immersion.

(a) LetF• be a constructibleΛ-sheaf on Z . Then the canonical map

i an
∗ (Fan

• ) lim i an
∗ (Fan

n ) = (i∗(F•))an

is an isomorphism.

(b) LetF• be a constructibleΛ-sheaf on X . Then the canonical map

(i an)∗(Fan
• ) lim(i an)∗(Fan

n ) = (
i∗(F•)

)an

is an isomorphism.

PROOF — (a) This is immediate from pushforward i an∗ preserving limits.

(b) Let j : U X be the open complement of i : Z X . We have an exact sequence

0 j! j∗F• F• i∗i∗F• 0

which by (1.4) analytifies to an exact sequence

0
(

j! j∗F•
)an

Fan
•

(
i∗i∗F•

)an 0.

We also have an exact sequence

0 j an
! ( j an)∗Fan

• Fan
• i an

∗ (i an)∗Fan
• 0.

By (1.5) and (a) we get

j an
! ( j an)∗Fan

•
∼ (

j! j∗F•
)an , i an

∗
(
i∗F•

)an ∼ (
i∗i∗F•

)an .

From all this we deduce that the canonical map

i an
∗ (i an)∗Fan

• i an
∗

(
i∗F•

)an

is an isomorphism, which implies the claim.

1.7 COROLLARY — SupposeF• is a lisseΛ-sheaf on X . ThenFan• is a local system of finite
Λ-modules on X an.

PROOF — Wemay assumeF• is lisse strictly `-adic. Restricting to a (Zariski-)connected
component of X , we may assume X is connected. Then all stalks ofF• are (abstractly)
isomorphic (since (F•)x ' lim(Fn)x this follows from the property holding for the lo-
cally constant constructible sheavesFn , which is a consequence of their specialization
properties).
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Now fix x ∈ X (C). By (1.3) and strictness ofF• we have(
Fan

•
)

x

/
`n+1 (

Fan
•

)
x ' (Fn)x .

In particular we may find an openU ⊆ X an containing x and local sections s1, . . . , sr ∈
Fan• (U ) such that {(sν)x } projects to aΛ0-basis of (F0)x . By shrinkingU wemay assume
F0 is constant onU so that in fact {(sν)y } projects to aΛ0-basis of (F0)y for all y ∈U .

Now, for each y ∈U ,
(
Fan•

)
y ' (F•)y is a finiteΛ-module, so by Nakayama’s lemma

{(sν)y } generates
(
Fan•

)
y . Again shrinking U if necessary, we may assume that the

finitely many relations on {(sν)x } in
(
Fan•

)
x are satisfied by {(sν)y } in

(
Fan•

)
y for all

y ∈U .
We conclude that there is a finiteΛ-module M and a surjectionφ : M Fan• |U , for

M the constant sheaf onU with value M , such that the inducedmapφx : M
(
Fan•

)
x

is an isomorphism. Using (1.3) and our restriction to connected X , we know all the
stalks (

Fan
•

)
y ' (F•)y , y ∈U

are isomorphic. It follows that φmust be an isomorphism at every y ∈U , and hence
an isomorphism. This provesFan• is locally constant, as desired.

1.8 We nowwork towards proving (1.3), though we will only give the proof for the case that
F• is lisse; the details for general case ofF• constructible may be found in [Conrad,
§1.4.7]. The proof will require some preliminaries.

1.8.1 REMARK — Before beginning the argument, it’s perhaps worth pointing out where
intuitively the difficulty lies. TakingF• to be lisse strictly `-adic, we have a collection
of local systemsGn :=Fan

n on X an and want to show that

(limGn)x ' lim(Gn)x

at each point x ∈ X an. This might seem easy as theGn are locally constant. However,
it is not easy, as we don’t know that wemay find a single open neighborhood of x on
which all of theGn are constant. More precisely, while it is clear wemay accomplish
this in the case that X is smooth, as then x ∈ X an has a contractible neighborhood, it is
not clear in the non-smooth case. Our strategy below is to use alterations to bootstrap
from the smooth to the general case.

1.8.2 LEMMA — Let M be a complex manifold and D ⊆ M a normal crossings divisor. Then
there exists a base of opensW in M around D such that, for all local systemsG on M ,
the restriction mapG(W ) G(D) is an isomorphism.

PROOF — As we may replace M with an arbitrary open in M around D, it suffices to
find one suchW . In the local picture, M is a polydisk and D the zero locus of a product
of coordinate functions; both of these are contractible sets, on which any local system
is constant, so the claim is clear.

We can glue to bootstrap to the global case. Choose open neighborhoods W ′
d in

M of each d ∈ D which look like the local picture. Put a Riemannian metric on M
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and for each d ∈ D choose rd ≥ 0 small enough so that the open ball Wd := Brd (d) is
geodesically convex and B3rd (d) ⊆W ′

d . SetW :=⋃
d∈D Wd .

Let G be a local system on M . For each d ∈ D we know G(W ′
d ) G(W ′

d ∩D) is
an isomorphism. In factW ′

d andW ′
d ∩D are contractible, implyingG|W ′

d
is constant

and G(W ′
d ∩D) G(Wd ∩D) is injective. Also Wd is contractible (by convexity) so

G(W ′
d ) G(Wd ) is an isomorphism. We deduce thatG(Wd ) G(Wd ∩D) is injective

for each d ∈ D , and it follows thatG(W ) G(D) is injective.
We now argue for surjectivity. Fix s ∈ G(D). There exist (unique) s̃(d) ∈ G(W ′

d )

restricting to s(d) := s|W ′
d∩D ∈G(W ′

d ∩D). We just need to glue these into a section
s̃ ∈ G(W ), so it suffices to show that s̃(d)|Wd∩Wd ′ = s̃(d ′)|Wd∩Wd ′ for all d ,d ′ ∈ D. If
Wd ∩Wd ′ =; this is trivial. Otherwise, by symmetry wemay assume rd ′ ≤ rd , and then
Wd ∩Wd ′ being nonempty implies that

Wd ′ = Brd ′ (d ′) ⊆ B3rd (d) ⊆W ′
d .

In particular d ′ ∈W ′
d , implying

s̃(d)d = s̃(d)d ′ = s(d)d ′ = sd ′ = s(d ′)d ′ = s̃(d ′)d ′ .

Finally any w ∈Wd ∩Wd ′ admits paths to d and to d ′, so we get

s̃(d)w = s̃(d)d = s̃(d ′)d ′ = s̃(d ′)w ,

proving the desired gluability.

1.8.3 LEMMA — Let T ′ T be a quotient map of topological spaces. Let T ′′ := T ′×T T ′. Let
G be a sheaf of sets on T , and letG′ andG′′ be the pullbacks ofG to T ′ and T ′′. Then
the sequence

G(T ) G′(T ′) G′′(T ′′)

is an equalizer sequence.

PROOF — Let π : E T be the espace étalé associated toG, so that elements ofG(T )

are given by (continuous) sections of π. Similarly take π′ : E ′ T ′ and π′′ : E ′′ T ′′

associated toG′ andG′′; these are obtained by pulling back π to T ′ and T ′′, so E ′ '
E ×T T ′ and E ′′ ' E ×T T ′′. The claim now follows from the universal property of a
quotient map.

1.8.4 LEMMA — Suppose X is separated. Let Y be a (Zariski-)closed subset of X .

(a) Fix an openU ⊆ X an around Y an. There is an open V ⊆U around Y an such that,
for all local systemsG on X an, the restriction map

im(G(U ) G(V )) G(Y an)

is injective.

(b) There exists an openU ⊆ X an around Y an such that, for all local systemsG on
X an, the restriction mapG(U ) G(Y an) is surjective.

PROOF — Let g : X̃ X be the normalization of Xred, and Ỹ := g−1(Y ). Note that
X̃ is separated since X is. Thus we may apply de Jong’s alterations theorem to each
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connected/irreducible component X̃i of X̃ , together with the proper closed subsetX̃i ∩ Ỹ if X̃i ∩ Ỹ 6= X̃i

; otherwise.

We obtain a smooth quasi-projective C-scheme X0 and a generically finite surjective
proper map f : X0 X such that Y0 := f −1(Y ) = Y1 qY2 with Y1 a union of some
connected components of X0 and Y2 a strict normal crossings divisor in the remaining
components.

Applying (1.8.2) with M = X an
0 and D = Y an

2 , we find a baseB of opens W ⊆ X an
0

around Y an
0 for which restriction G(W ) G(Y an

0 ) is an isomorphism for all local
systemsG on X an

0 . With all this preparation in hand, we now address the two claims:

(a) Choose an openW0 ∈B contained inU0 := ( f an)−1(U ). As f is proper, f an : X an
0

X an is closed, so we may find an open V ⊆ U containing Y an such that V0 :=
f −1(V ) ⊆W0.

LetG be any local system on X an, setG0 := ( f an)∗(G), and consider the com-
mutative diagram

G(U ) G(V ) G(Y an)

G0(U0) G0(W0) G0(V0) G0(Y an
0 ).

We want to show that an element ofG(U ) that dies inG(Y an) already dies inG(V ).
To deduce this from the diagram, we observe that the analogous property holds for
G0(U0),G0(W0),G(Y an

0 ) sinceW0 ∈B, and that the mapG(V ) G(V0) is injective,
by stalk considerations, since f is surjective.

(b) Let X00 := X0 ×X X0. Let Y00 be the closed subset Y0 ×X Y0 ⊆ X00 (putting, say, the
reduced scheme structure on Y0 ⊆ X0 to form this fiber product).

Choose an openW0 ∈B. LetW00 :=W0 ×X W0, an open in X00 around Y00. By
(a) we may choose an open V00 ⊆W00 around Y00 such that, for all local systems
G00 on X00, the restriction map

1.8.4.1 im(G(W00) G(V00)) G(Y an
00 )

is injective. Again using that f is proper and hence f an closed, we may find an
openU ⊆ X an whose preimageU00 in X00 is contained inV00; this implies that also
U0 := ( f an)−1(U ) is contained inW0.

Now suppose given a local system G on X an and s ∈ G(Y an). Setting G0 :=
( f an)∗(G), we get a pullback s0 ∈G0(Y an

0 ). SinceW0 ∈B this extends (uniquely) to
a section s̃0 ∈G0(W0). To finish, we’d like to descend s̃0|U0 toU . LetG00 be the pull
back ofG to X an

00 . By the injectivity of (1.8.4.1) we deduce that the two pullbacks of
s̃0 toG00(V00) agree, and hence the two pullbacks of s̃0|U0 toG00(U00) agree. We are
then done by (1.8.3), as f an : U0 U is a closed surjection, hence a quotient map,
andU00 'U0 ×U U0.

PROOF OF (1.3) FORF• LISSE — The question is local on X so we may assume X is
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separated. We are assumingF• is lisse, and wemaymoreover assumeF• is lisse strictly
`-adic so that eachFn is locally constant constructible; then eachFan

n is a local system
on X an.

Fix x ∈ X (C). Applying (1.8.4) to Y = {x} ⊆ X , we may find a sequence of pairs of
opens Vm ⊆Um ⊆ X an around x such that:

(a) Um+1 ⊆Vm for m ∈ N;

(b) {Um}m∈N is a base at x (the ability to choose a countable base follows from the
fact that X an has the topology of a subspace in some affine space Cd );

(c) the restriction map

In,m := im
(
(Fan

n (Um) Fn(V an
m )

) (
Fan

n

)
x ' (Fn)x

is an isomorphism for all m,n ∈ N.

We now show that themap ιx :
(
Fan•

)
x (F•)x is bijective. For surjectivity, observe

that by (c) every element of (F•)x = lim(Fn)x arises from an element of lim In,m ⊆
Fan• (Vm) for any fixed m. For injectivity, observe that by (b) any element of sx ∈ (

Fan•
)

x

has a representative s ∈Fan• (Um) for some m ∈ N, and if it vanishes under ιx then by
(c) we must have s|Vm = 0, implying sx = 0.

§2 Adic comparison

We now arrive at the main result, the adic Artin comparison isomorphism:

2.1 THEOREM — Let f : X S be a separated morphism between finite-type C-schemes.
LetF• be a constructibleΛ-sheaf on X . Then, for p ≥ 0, the canonical maps(

Rp f!(F•)
)an limRp f an

! (Fan
n ) Rp f an

! (Fan• )(
Rp f∗(F•)

)an limRp f an∗ (Fan
n ) Rp f an∗ (Fan• )

α1 α2

β1 β2

are isomorphisms.

2.1.1 Alas, here we will only prove that α1,α2,β1 are isomorphisms. We first give the (easy)
argument for α1,β1.

PROOF OF (2.1) FOR α1,β1 — By definition we have(
Rp f!(F•)

)an ' lim
(
Rp f!(Fn)

)an.

We may assume F• is a constructible strictly `-adic sheaf, so that each Fn is con-
structible torsion. Then by the Artin comparison theorem for torsion coefficients we
have canonical isomorphisms

2.1.1.1
(
Rp f!(Fn)

)an ∼ Rp f an
! (Fan

n ).

As α1 is precisely the map induced by these isomorphisms, it too is an isomorphism.
The same argument, with f! and f an

! replaced by f∗ and f an∗ , demonstrates that β1 is
an isomorphism.
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2.2 We now work towards proving the claim for α2, first establishing several tools that will
be needed in the proof.

2.2.1 TERMINOLOGY — Given a separated morphism of finite-type C-schemes f : X S,
we will say “α2( f ) is an isomorphism” if for this fixed morphism f the map α2 of (2.1)
is an isomorphism for all constructibleΛ-sheavesF• on X .

2.2.2 LEMMA — Let f : X S bea separatedmorphismoffinite typeC-schemes. For s ∈ S(C)

let fs : Xs Spec(C) be the fiber of f over s. Suppose α2( fs) is an isomorphism for all
s ∈ S(C). Then α2( f ) is an isomorphism.

PROOF — It suffices to show for each s ∈ San that the map on stalks

(α2)s :
(
Rp f an

! (Fan
• )

)
s

(
limRp f an

! (Fan
n )

)
s

is an isomorphism. By (2.1.1.1) and (1.3) the canonical map(
limRp f an

! (Fan
n )

)
s lim

(
Rp f an

! (Fan
n )

)
s

is an isomorphism. The claim thus follows from proper base change.

2.2.3 LEMMA — Let S := Spec(C). Suppose given a commutative diagram

Y X

S

g

h f

of separated morphisms between finite type C-schemes. Suppose that α2( f ),α2(g ) are
isomorphisms. Then α2(h) is an isomorphism.

PROOF — Let F• be a constructible Λ-sheaf on Y . For each n ∈ N we have a Leray
spectral sequence

Hp
c (X an;Rq g an

! (Fan
n )) =⇒ Hp+q

c (Y an;Fan
n );

let us denote this spectral sequence by En . We may assume thatF• is constructible
strictly `-adic, so eachFn (and henceFan

n ) is constructible. Then by the torsion Artin
comparison isomorphism we have

Rq g an
! (Fan

n ) ' (
Rq g !(Fn)

)an ,

which we know is constructible. We then similarly deduce that the cohomology groups

Hp
c (X an;Rq g an

! (Fan
n )), Hp+q

c (Y an;Fan
n )

are all finite. Therefore, for each p, q ≥ 0 the inverse systems{
Hp

c (X an;Rq g an
! (Fan

n ))
}

n∈N ,
{

Hp+q
c (Y an;Fan

n )
}

n∈N

satisfy the Mittag-Leffler condition. Taking inverse limits of these systems is therefore
exact, so that limEn gives a spectral sequence

limHp
c (X an;Rq g an

! (Fan
n )) =⇒ limHp+q

c (Y an;Fan
n ).
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We also have a Leray spectral sequence forF•,

Hp
c (X an;Rq g an

! (Fan
• )) =⇒ Hp+q

c (Y an;Fan
• );

let us denote this one by E•. There is a map of spectral sequences α2 : E• limEn

which on the initial page is given by the composition

Hp
c (X an;Rq g an

! (Fan
• ))

α2(g )
Hp

c (X an; limRq g an
! (Fan

n ))
α2( f )

limHp
c (X an;Rq g an

! (Fan
n ))

and on the abutment is given byα2(h). Our hypothesis implies that themap of spectral
sequences is an isomorphismon the initial page, andhence itmustbeon theabutments
as well.

2.2.4 LEMMA — Let S := Spec(C). Let f : X S be a separated morphism of finite type C-
schemes. Let j : U X be an open subscheme and let i : Z X denote its closed
complement (with the reduced scheme structure). Define

g := f ◦ j : U S, h := f ◦ i : Z S,

and suppose α2(g ),α2(h) are isomorphisms. Then α2( f ) is an isomorphism.

PROOF — LetF• be a constructibleΛ-sheaf on X . For each n ∈ N we have an excision
sequence

· · · Hp
c (U an,Fan

n ) Hp
c (X an,Fan

n ) Hp
c (Z an,Fan

n ) Hp+1
c (U an,Fan

n ) · · · .

We may assume thatF• is constructible strictly `-adic, so eachFn is constructible.
As in the proof of (2.2.3), torsion Artin comparison implies that all these cohomology
groups are finite, and hence for each p ≥ 0 the inverse systems{

Hc(U an,Fan
n )

}
n∈N ,

{
Hc(X an,Fan

n )
}

n∈N ,
{
Hc(Z an,Fan

n )
}

n∈N

all satisfy theMittag-Leffler condition. Taking inverse limits of these systems is therefore
exact, so the sequence

· · · limHp
c (U an,Fan

n ) limHp
c (X an,Fan

n ) limHp
c (Z an,Fan

n ) · · ·
remains exact.

We also have an excision sequence for F•, and, using (1.5) and (1.6), we get a
commutative diagram

· · · Hp
c (U an,Fan• ) Hp

c (X an,Fan• ) Hp
c (Z an,Fan• ) · · ·

· · · limHp
c (U an,Fan

n ) limHp
c (X an,Fan

n ) limHp
c (Z an,Fan

n ) · · ·
α2(g ) α2( f ) α2(h)

with exact rows. The claim now follows from the five-lemma.

2.2.5 LEMMA — Suppose f : X S is a finite morphism of finite-type C-schemes. Then
α2( f ) is an isomorphism.
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PROOF — In this situation f! = f∗ and f∗ is exact. So Rp f an
! vanishes for p > 0 and we

need only check, forF• a constructibleΛ-sheaf on X , that

α2 : f an
∗ (Fan

• ) lim f an
∗ (Fan

n )

is an isomorphism. This follows from the fact that f∗ preserves limits.

2.2.6 LEMMA — Let T be a topological space. Let {Fn}n∈N be an inverse system of abelian
sheaves on T . Assume that:

(a) there is a basisU of T such that:

(a.1) the inverse system {Fn(U )}n∈N satisfies the Mittag-Leffler criterion for all
U ∈U;

(a.2) Hp (U ;Fn) ' 0 for allU ∈U, p > 0,n ∈ N;

(b) for each p ≥ 0 the inverse system of abelian groups
{
Hp (T ;Fn)

}
n∈N satisfies the

Mittag-Leffler criterion.

Then, for p ≥ 0, the canonical map

Hp (T, limFn) limHp (T,Fn)

is an isomorphism.

PROOF — Let Ab denote the category of abelian groups and Ab(T ) the category of
abelian sheaves on T ; let AbN and Ab(T )N denote the categories of inverse systems in
Ab and Ab(T ). As Γ : Ab(T ) Ab preserves limits, we get a commutative diagram of
left-exact functors

Ab(T )N Ab(T )

AbN Ab.

lim

Γ Γ

lim

Taking (total) right-derived functors, we see that RΓ◦Rlim ' Rlim◦RΓ, so we have

RΓ(T,RlimFn) ' RlimRΓ(T,Fn).

On the left-hand side, assumption (a) implies thatRlimFn ' limFn [Stacks, Tag 0BKS].
To address the right-hand side, consider the Grothendieck spectral sequence

Rq limHp (T,Fn) =⇒ Hp+q (RlimRΓ(T,Fn)).

In the same way, assumption (b) implies that Rq limHp (T,Fn) ' 0 for all q > 0, so the
spectral sequence immediately degenerates. Combining this with the prior observa-
tions, we obtain isomorphisms

Hp (T, limFn) ' limHp (T,Fn),

which one should check arise from the canonical map, as desired.1

1I learned this argument from a comment on http://mathoverflow.net/q/65249.
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2.2.7 LEMMA — Let S := Spec(C). Suppose f : X S is a smooth morphism of finite-type
C-schemes. Then

β2 : Hp (X an;Fan
• ) limHp (X an;Fan

n )

is an isomorphism for all lisseΛ-sheavesF• on X .

PROOF — It suffices to consider a lisse strictly `-adic sheafF•; thus the sheavesFn are
locally constant constructible, and hence the sheavesFan

n are local systems. We now
have the following:

(a) Since f is smooth, X an is a complex manifold, and hence its topology has a basis
U consisting of contractible opens.

(a.1) The strictness ofF• implies that the transition mapsFn Fn−1 are sur-
jective, by strictness ofF•. This implies that the same holds for the analyti-
fied transition mapsFan

n Fan
n−1 (by exactness of analytification). As the

sheavesFan
n are local systems,Fan

n |U is constant for eachU ∈U, so we also
have thatFan

n (U ) Fn−1(U ) is surjective.

(a.2) That Fan
n are local systems also implies that Hp (U ;Fan

n ) ' 0 for all U ∈
U, p > 0,n ∈ N.

(b) The sheavesFn being (locally constant) constructible also implies that the coho-
mology groups

Hp (X an;Fan
n ) ' Hp (X ;Fn)

are finite. Thus, for each p ≥ 0, the system
{
Hp (X an;Fan

n )
}
satisfies the Mittag-

Leffler criterion.

That β2 is an isomorphism thus follows from (2.2.6).

PROOF OF (2.1) FOR α2 — By (2.2.2) we may reduce to the case that S = Spec(C). Then
by noetherian induction and (2.2.4) we may reduce to the case that X is affine. By
Noether normalization we have a factorization of f : X S as a composite

X
g

Ad
C Ad−1

C · · · A1
C S

where g is finite. Now applying (2.2.3) and (2.2.5) and then again (2.2.2), we are reduced
to the case that f : X S is a smooth curve over Spec(C). And again using noetherian
induction and (2.2.4), we may reduce to the case that furthermoreF• is lisse.

If f is proper then f! ' f∗ and α2 'β2 so by (2.2.7) we are done. Otherwise X an is a
punctured Riemann surface. Let us remind ourselves that our goal is to show

α2 : Hp
c (X an,Fan

• ) limHp
c (X an,Fan

n )

is an isomorphism. For any sheafG on X an we have

Hp
c (X an,G) ' colim

∆∗ Hp
X an\∆∗(X an;G),

where the colimit is over shrinking punctured-disk neighborhoods∆∗ of the punctures
of X an.
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By considering the excision sequence

· · · Hp
X an\∆∗(X an;G) Hp (X an;G) Hp (∆∗;G) · · ·

and noting that the homotopy type of ∆∗ does not change as it shrinks, we observe
that the transition maps in the direct system

{
Hp

X an\∆∗(X an;G)
}
∆∗ are isomorphisms

whenG is a local system. Wemay assumeF• to be lisse strictly `-adic, so the sheaves
Fan

n are local systems, and by (1.7)Fan• is a local system. We conclude from this and
the above excision sequence that it suffices to show that the canonical maps

Hp (X an;Fan
• ) limHp (X an;Fan

n ), Hp (∆∗;Fan
• ) limHp (∆∗;Fan

n )

are isomorphisms. We’re now done by (2.2.7).

2.3 REMARK — The adic Artin comparison isomorphism also holds for K - and K -sheaves
(recall K is the fraction field ofΛ). To deduce this from the result forΛ-sheaves (2.1)
one only needs to check that

Rp f an
! (K ⊗ΛFan

• ) ' K ⊗ΛRp f an
! (Fan

• ), Rp f an
∗ (K ⊗ΛFan

• ) ' K ⊗ΛRp f an
∗ (Fan

• ),

and similarly with K replaced by K . For pushforward with proper supports this follows
from the fact that Rp f an

! preserves colimits, as K ,K can be written as a colimit of finite
freeΛ-modules. As with (2.1), the situation for ordinary pushforward is more subtle
and will not be discussed here.
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