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1 Introduction

Throughout these notes, let κ be a finite field (of order q, say), X0 a normal geometrically
irreducible finite type κ-scheme, X := X0 ⊗κ κ. Let G0 be a smooth Weil Ql-sheaf on
X0, and let G be the pullback of F0 to X. Given a geometric point x of X0, recall that
the geometric Frobenius Fx at x acts on the stalk G0,x of G0, which is a finite-dimensional
Ql-vector space. Suppose that we are given an embedding τ : Ql ↪→ C. If for all geometric
points x of X and all eigenvalues α of Fx, we have

|τ(α)|2 = N(x)β

then we say that F0 is τ -pure of weight β.
The goal of this lecture is to show that sheaves that are τ -real (meaning that all of

the characteristic polynomials of Frobenius at all closed points have real coefficients after
applying τ) are also τ -pure (of some weight). The assumption of τ -realness may seem
excessively strong, but actually, one can produce from any sheaf G0 whatsoever a (τ -)real
one, by considering G0 ⊗ G0. In this manner, the purity of general sheaves will be reduced
to the real case.

While there are many details in the proof of purity of real sheaves, the basic idea of
the proof is quite simple. First, one uses the fact that purity holds for all one-dimensional
sheaves. This was treated in an earlier lecture, and is a consequence of the fact that any
character of the Weil group of X0 restricts to a finite-order character on the geometric
fundamental group (cf. [KW, Th. 3.1 and Cor.]). Now one tries to get at what one
hopes are the actual weights of a sheaf G0 by studying a poor man’s version, the so-called
determinant weights.

Definition 1.1. Let F0 be an irreducible component of rank r of the smooth Weil sheaf G0

on X0, and let β be the (τ)-weight of the one-dimensional sheaf ΛrF0. Then the number
β/r is called the determinant weight of G0 with respect to F0 and τ .

The first step is to study the arithmetic monodromy group, defined approximately as the
Zariski closure of the image of the Weil group in GL(V ), where V is the representation of the
Weil group associated to the sheaf G0 (this is not quite correct; the arithmetic monodromy
group is not actually a finite type group scheme, only a locally finite type one). The key
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point is that, via the degree map to the Weil group of κ/κ, there is a central element of
this group of positive degree. By Schur’s Lemma, this element acts as a scalar on every
irreducible constituent of G0. Since the weight of a one-dimensional sheaf may be measured
by looking at the eigenvalues of any element of positive degree, we may use this central
element, whose action is given simply by a scalar (at least on irreducible components) to
understand how determinant weights behave under various operations on sheaves.

Next, we turn to the study of real sheaves. In order to prove the desired purity, we
use a slicing argument to reduce to the case when X is an affine curve. For simplicity,
let us assume here that G0 is irreducible (we will treat the general case in the notes).
Poincaré duality first allows us to relate the eigenvalues of Frobenius on the representation
V associated to G0 to its eigenvalues on H2

c(X,G ). This will give an upper bound on the
eigenvalues of Frobenius

On the other hand, since G0 is (τ)-real, the characteristic polynomials of Frobenius on
the stalks of its even tensor powers G⊗2k0 have positive coefficients. Using the Lefschetz
trace formula ∏

x∈|X0|

τdet(1− Fxtd(x),G⊗2k0x )−1 =
τdet(1− Ft,H1

c(X,G
⊗2k))

τdet(1− Ft,H2
c(X,G

⊗2k))

(the product on the left is over the closed points of X0; there is no H0 term because
H0
c(X,G ) = 0 due to the affineness of X) and the positivity of the coefficients of all of

the terms on the left side, we are able to deduce an upper bound for the zeroes of each
term on the left; that is, a lower bound for the eigenvalues of Frobenius at at each closed
point x. Applying a similar argument to the dual sheaf of G0 yields the same lower bound.
Combining the upper and lower bounds therefore yields that the eigenvalues of Frobenius
at all points of X0 have the same weights. That is, G0 is τ -pure.

2 Semisimplicity of Geometric Monodromy

Let (V, ρ) be the Ql-representation corresponding to G0. Define the geometric monodromy
group Ggeom to be the Zariski closure of ρ(π1(X,x)) ⊂ GL(V ). This is a smooth linear
algebraic group over Ql. Every element of ρ(W(X0, x)) normalizes Ggeom, so choosing an
arbitrary element σ ∈W(X0, x) of degree 1, we get a section W(κ/κ) →W(X0, x), which
yields an action of W(κ/κ) on Ggeom. We may therefore define the arithmetic monodromy
group G by

Ggeom := W(κ/κ) nGgeom

This is a locally finite type group scheme over Ql. Here is the main result of this section.

Proposition 2.1. Let G0 be a geometrically semisimple smooth sheaf.

(i) Ggeom is a semisimple algebraic group.
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(ii) Let Z denote the center of G(Ql). Then the map Z →W(κ/κ) has finite kernel and
cokernel. In particular, Z contains an element of positive degree.

Proof. (i) We can replace X0 by a connected étale covering and thereby assume that Ggeom

is connected. First we check that Ggeom is reductive. This follows from general principles.
Indeed, let U be the unipotent radical of G. Let W ⊂ V be a nonzero irreducible G-
subspace. Then WU 6= 0 by the Lie-Kolchin Theorem. Since U is normal in G, WU is
G-invariant, hence WU = W . Since V is a semisimple G-representation, it is generated by
its irreducible subrepresentations, hence V U = V . Since ρ is a faithful representation of
Ggeom (by definition), it follows that U = 1, so G is reductive.

Now we turn to semisimplicity, where there is actual content. Let T be the maximal
central torus of Ggeom. We want to show that T = 0. Choose σ ∈ W(X0, x) of degree
1. Since T is a characteristic subgroup of Ggeom, conjugation by ρ(σ) preserves it. There
are only finitely many outer automorphisms of the reductive Ggeom preserving T . (This
follows from the structure theory of reductive and semisimple groups, which imply that
such automorphisms are determined by the induced automorphism of the Dynkin diagram
of the semisimple derived group of Ggeom.) Therefore, replacing σ with some power σn,
the induced conjugation action on Ggeom is inner. We may replace κ with an extension of
degree n, hence renaming σn as σ, we may continue to assume that σ has degree 1, and
that

ζ · h · ζ−1 = g−1 · h · g

for some g ∈ Ggeom(Ql), and functorially for all h ∈ Ggeom, where ζ := ρ(σ) has degree 1.
Then gζ lies in the center of G(Ql).

This degree 1 element therefore defines a splitting G(Q1) ' Ggeom(Ql) × Z. We use
this splitting to define a map W(X0, x) → Ggeom(Ql) as the composition of ρ and projec-
tion onto the first factor. If Ggeom is not semisimple, then it admits a nontrivial character
Ggeom → Gm, which then extends to a character W(X0, x) → Ql

× whose restriction to
π1(X,x) has Zariski dense image inside Gm. But this is impossible, by [KW, Th. 3.1].

(ii) The finiteness of the kernel follows immediately from the semisimplicity of Ggeom, which
implies that Ggeom(Ql) has finite center. The finiteness of the cokernel is equivalent to the
assertion that Z contains an element of positive degree. The whole argument here involves
dealing with the potential disconnectedness of Ggeom. (If Ggeom is connected, then the
element gζ constructed in part (i) is central of positive degree.) An essentially equivalent
argument to the one above allows us to construct an element z ∈ G(Ql) of degree 1 such
that ζ := zm commutes with G0

geom(Ql) for some m > 0, and (replacing m with a multiple
of itself) such that conjugation by ζ acts trivially on the finite group Ggeom/G

0
geom.

Then for any g ∈ G(Ql), the map φg : Z→ G0
geom(Ql) defined by

φg(n) := gζng−1ζ−n
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defines a cocycle of Z valued in G0
geom(Ql). That is, φg(n+m) = φg(n)ζnφg(m)ζ−n. Since

ζ acts trivially on G0
geom, this map therefore defines a homomorphisms φg : Z→ G0

geom(Ql).
One easily checks that

φ(gg′g−1)g = φg

φg′g(n) = g′φg(n)(g′)−1

for all g ∈ Ggeom(Ql), g′ ∈ G0
geom(Ql). So we deduce (since G0

geom is normal in Ggeom)
that φg(n) = g′φg(n)(g′)−1. Hence φg takes values in the center of the semisimple group
G0

geom(Ql). This center is finite, say of order n, so φg(n) = 0 for all g ∈ Ggeom(Ql). That
is, ζn commutes with Ggeom(Ql). Since G(Ql) is generated by Ggeom and by z, we deduce
that ζ ∈ Z, and this gives us our central element of nonzero degree.

Schur’s Lemma says that the element ζ ∈ Z of positive degree constructed above acts
by scalars on each irreducible component of G0, so the fact that weights of rank one sheaves
may be computed by looking at the eigenvalues of any element of positive degree (and of
course dividing the resulting “weight” by the degree of this element in order to determine
the weight of Frobenius) thanks to [KW, Th. 3.1], the scalar by which the element ζ ∈ Z
acts on each component may be used to determine the determinant weights of G0. This
immediately proves the first two assertions of the following corollary.

Corollary 2.2. Suppose given smooth sheaves F0,G0 on the normal geometrically irre-
ducible κ scheme X0 of finite type.

(i) If α1, . . . , αn are the determinant weights of F0 with respect to τ , and β1, . . . , βm are
those of G0, then the αi + βj are those of F0 ⊗ G0.

(ii) For γ ∈ R, let r(γ) denote the sum of the ranks of all irreducible constituents of F0

which have determinant weight γ with respect to τ . Then the determinant weights of
ΛrF0 are the numbers

∑
γ∈R n(γ)γ with

∑
γ∈R n(γ) = r, 0 ≤ n(γ) ≤ r(γ), n(γ) ∈ Z.

Finally, we mention the following result.

Proposition 2.3. Let f0 : X ′0 → X0 be a κ-morphism with dense image between normal
geometrically irreducible κ-schemes of finite type, and let G0 be a smooth sheaf on X0. Then
G0 and f∗0G0 have the same determinant weights (with respect to any τ).

Proof. Let π : G′ → G be the induced map of arithmetic monodromy groups. By our earlier
discussion, it suffices to show that there is an element z′ ∈ Z ′ (with Z ′ the (Ql-points of
the) center of the arithmetic monodromy group of X ′0) that has positive degree and such
that π(z′) ∈ Z. Choose z′ ∈ Z ′ and z ∈ Z of positive degree. By replacing each of z′, z
with a suitable positive power, we may assume that they have the same degree and lie in
G0

geom(Ql). Then π(z′)z−1 ∈ G0
geom(Ql). But since the image of π has finite index in G,

(G′)0geom = G0
geom. It follows that π(z′)z−1 lies in the center of the semisimple group G0

geom,
which is finite. Hence, replacing z′, z with z′n, zn for some n > 0, we have π(z′) = z ∈ Z,
as desired.
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3 Real Sheaves

In order to prove the purity of real sheaves in general, we will first treat the case of affine
curves, for which there are few interesting cohomology groups, and so the situation is
quite simple. So (maintaining our usual notational conventions) let X0 be an affine normal
geometrically connected curve over κ, and let G0 be a smooth Weil Ql-sheaf on X0. Fix
a geometric point x lying over the closed point x of X0. Let π := π1(X,G ) denote the
geometric fundamental group, and let V be the representation of the Weil group W(X0, x)
corresponding to G0. Since H0(X,G ) = V π, Poincaré duality implies that H2

c(X,G ) =
Vπ(−1), where Vπ is as usual the space of coinvariants of V (that is, the largest quotient of
V on which π acts trivially). The Weil group W(κ/κ) acts on Vπ, and for every eigenvalue α
of the geometric Frobenius F : Vπ(−1)→ Vπ(−1), αq−1 is an eigenvalue of F on Vπ, hence
(αq−1)d(x) is an eigenvalue of Fx acting on G0x, where d(x) := [κ(x) : κ] is the degree of the
closed point x. Now W(κ/κ) acts on Vπ, so Vπ is a quotient sheaf of G0, hence we deduce
that its determinant weights appear among those of G0. We therefore have the following
lemma.

Lemma 3.1. Let α be an eigenvalue of F : H2
c(X,G )→ H2

c(X,G ). Then log(|τ(αq−1)|2)/log(q)
is a determinant weight of G0.

Now we turn to the study of real sheaves.

Definition 3.2. The Weil sheaf G0 on the finite type κ-scheme X0 is said to be τ -real if
for all closed points x of X0 and geometric points x over x, the characteristic polynomial
τdet(1− Fxt,G0x) of geometric Frobenius has real coefficients.

Suppose now that G0 is τ -real. Then the logarithmic derivative of the power series
τdet(1− Fxt,G⊗k0x )−1 is

f(t) :=

∞∑
n=1

τ(Tr(Fnx )k)tn−1

so τdet(1 − Fxt,G⊗k0x )−1 = e
∫
f(t)dt. In particular, G0x is still τ -real, and if k is even, then

the inverse of its characteristic polynomial has positive coefficients. We will now use this
positivity in order to deduce τ -purity.

Lemma 3.3. Let G0 be a smooth Weil sheaf on a geometrically connected smooth affine
curve X0 over κ. If G0 is τ -real, then all of its irreducible components are τ -pure. The
τ -weights are the determinant weights of the corresponding constituents.

Proof. The second assertion follows immediately once we have the first. We therefore
only have to show the τ -purity of the constituents. We first use Lemma 3.1 in order to
give an upper bound for the eigenvalue of Frobenius on H2

c(X,G ). Let β denote the largest
determinant weight of G0. Then 2kβ is the largest determinant weight of G⊗2k0 by Corollary
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2.2(i). If t0 is a zero of τdet(1 − Ft,H2
c(X,G

⊗2k)), then t−10 is an eigenvalue of F acting
on H2

c(X,G
⊗2k). By Lemma 3.1, therefore, log(t−10 q−1)2/log(q) is a determinant weight of

G⊗2k0 , hence |t−10 q−1|2 ≤ q2kβ since 2kβ is the maximum determinant weight of G⊗2k0 . That
is,

|t0| ≥ q−(2kβ+2)/2

On the other hand, the Lefschetz trace formula gives∏
x∈|X0|

τdet(1− Fxtd(x),G⊗2k0x )−1 =
τdet(1− Ft,H1

c(X,G
⊗2k))

τdet(1− Ft,H2
c(X,G

⊗2k))

(here, |X0| denotes the set of closed points of X0) since H0
c(X,G ) = 0 because X is affine.

The product on the left therefore converges for all |t| < q−(2kβ+2)/2. Since all factors
have nonnegative coefficients (This is where the τ -realness gets used!) and constant term
1, each local L-factor converges on the same radius. Therefore, for each x ∈ |X0|, the
polynomial τdet(1−Fxtd(x),G⊗2k0x ) is zero-free for |t| < q−(2kβ+2)/2. Let α be an eigenvalue
of Fx : G0x → G0x. Then α2k is an eigenvalue of Fx acting on G⊗2k0x . The above inequality
then implies that

|τ(α)|2 ≤ qd(x)(2kβ+2)/2k = N(x)β+
1
k

Letting k →∞ then gives
τ(α)2 ≤ N(x)β

That is, for every closed point x ∈ X0, and every eigenvalue α of Fx : G0x → G0x, we have

|τ(α)|2 ≤ N(x)β (3.1)

where β is the largest determinant weight of G0 with respect to τ . To illustrate how the
proof may now be completed, let us first consider the special case in which G0 is irreducible.
Then β is its only determinant weight, and −β is the only determinant weight of the dual
sheaf G0, which is also τ -real. Applying the above inequality to this dual sheaf then yields
|τ(1/α)|2 ≤ N(x)−β , i.e., τ(α)|2 ≥ N(x)β . Combining this with the reverse inequality (3.1)
then yields |τ(α)|2 = N(x)β for every eigenvalue of the Frobenius Fx acting on G0x; that is,
G0 is τ -pure of weight β.

In the general, not necessarily irreducible case, the argument is more complicated but
proceeds along similar lines. It is tempting to try to replace G0 with each of its irreducible
components; the problem is that these need not be τ -real, so we have to do something a bit
different. We will do this by considering various exterior powers of G0. We first may assume
that G0 is semisimple, by replacing it with its semisimplification (which has no effect on the
characteristic polynomials, hence no effect on τ -realness). Suppose that the determinant
weights of G0 are γ1 > γ2 > · · · > γr. Let G0(i) denote the the direct sum of all irreducible
constituents of G0 of determinant weight γi, and let r(i) denote the rank of G0(i). For any
0 ≤ n < r, let N =

∑n
i=1 r(i). Then the τ -real sheaf

ΛN+1G0 = G0(n+ 1)⊗ni=1 det(G0(i))⊕ . . .
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has largest determinant weight γn+1 +
∑n

i=1 r(i)γi by Corollary 2.2. One particular eigen-
value of Fx : ΛN+1G0 → ΛN+1G0 is α(n+1)

i

∏n
i=1

∏r(i)
j=1 α

(i)
j , where α(i)

1 , . . . , α
(i)
r(i) are the

eigenvalues (with multiplicity) of Fx : G0(i)x → G0(i)x. Applying the inequality (3.1) above
therefore shows that

|τ(α
(n+1)
i

n∏
i=1

r(i)∏
j=1

α
(i)
j )|2 ≤ N(x)γn+1+

∑n
i=1 r(i)γi

By the definition of determinant weights, we also have

|τ(
∏

αj)|2 = N(x)rγi

where the αj are the eigenvalues of Fx on a given irreducible component of G0(i) of rank r.
Multiplying this over all such irreducible of all G0(i) (1 ≤ i ≤ n) yields

|τ(

n∏
i=1

r(i)∏
j=1

α
(i)
j )|2 = N(x)

∑n
i=1 r(i)γi

hence
|τ(α

(n)
i )|2 ≤ N(x)γn

for all 1 ≤ n ≤ r, and all 1 ≤ i ≤ r(n). As above, applying the same argument to the dual
sheaf yields the opposite inequality, and thereby completes the proof.

Now we sketch the proof of the general case (beyond the case of affine curves).

Theorem 3.4. Let X be a finite κ-scheme, G0 a τ -real Weil sheaf on X0.

(i) The sheaf G0 is τ -mixed.

(ii) If X0 is irreducible and normal and G0 is smooth, then the irreducible constituents of
G0 are τ -pure.

Proof. Part (ii) follows from (i) and [KW, Th. I.2.8(3)]. For part (i), we may assume that
X0 is reduced (since the étale sites of X0 and (X0)red agree). Let j0 : U0 ↪→ X0 be an open
embedding. Then the exact sequence

0 −→ (j0)!j
∗
0G0 −→ G0 −→ (i0)∗i

∗
0G0 −→ 0

shows that it suffices to show that j∗0G0 and i∗0G0 are τ -mixed. This allows us to proceed
by Noetherian induction. So we only need to find a nonempty U0 ⊂ X0 such that j∗0G0 is
τ -mixed. We may also replace κ with a finite extension field, since pulling back and then
pushing forward G0 by such an extension, the resulting sheaf contains G0 as a subsheaf, so
if the pullback is τ -mixed, then so is G0.
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We may therefore assume that X0 is a smooth irreducible affine κ-scheme of finite
type and that G0 is a smooth sheaf on X0. Replacing κ with its algebraic closure inside
the function field of X0, we may also assume that X0 is geometrically irreducible. If
dim(X0) = 1, then we are done by Lemma 3.3, so we may assume that dim(X0) > 1. We
may also extend κ and thereby assume that all irreducible constituents of G0 are absolutely
irreducible.

Embed X0 into some projective space PN
0 . Let F0 be an irreducible constituent of G0.

We want to show that there is some nonempty open U0 ⊂ X0 such that F0|U0 is τ -pure.
Consider the linear subspaces L of PN of codimension dim(X0) − 1. Those L for which
L ∩X is a nonempty smooth irreducible curve such that F |C is irreducible form a dense
open in the Grassmannian of all codimension dim(X) − 1 linear subspaces, by a suitable
Bertini Theorem [KW, App. B, Th. 1]. For such an L, there is a finite extension κ′/κ
and a curve C0 ⊂ X0 ⊗κ κ′ such that C0 ⊗κ′ κ = C. Then the pullback of F0toC0 is an
irreducible constituent of the corresponding pullback of G0 (which is still τ -real), hence it
is τ -pure of weight equal to the determinant weight of F0 by Lemma 3.3. Letting L vary
over the good open subset of the Grassmannian mentioned above, we see that there is a
nonempty open subscheme U ⊂ X such that all points x ∈ U lie in a good linear subspace.
The open set U descends to an open U ′ over some finite extension κ′/κ, and we may then
set U0 to be the intersection of the finitely many Galois conjugates of U ′.
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