The $\ell\text{-adic}$ Fourier Transform

Akshay Venkatesh*

Mary 24, 2017

1 Kloosterman sums

Let $\psi \colon \mathbf{F}_p \to \mathbf{C}^{\times}$ or $\overline{\mathbf{Q}}_p^{\times}$ be a character, e.g.

$$x \mapsto e^{2\pi i x/p}.$$

An important property is that

$$\sum_{a \in \mathbf{F}_p} \psi(ay) = \begin{cases} 0 & y \neq 0, \\ p & y = 0 \end{cases}$$
(1.1)

For $a \in \mathbf{F}_p^*$, the *Kloosterman sum* K(a) is

$$K(a) = \sum_{xy=a} \psi(x+y) = \sum_{x \in \mathbf{F}_p, x \neq 0} \psi(ax+x^{-1}).$$
(1.2)

Example 1.1. K(a) is always a real number, because the sum is symmetric with respect to complex conjugation. For p = 7 and a = 1, it is

$$\zeta_7^2 + \zeta_7^{-1}s + \zeta_7 + \zeta_7^{-2} + \zeta_7 + \zeta_7^{-1}$$

Remark 1.2. The analogue of K(a) over **R** would be something like

$$\int_{\mathbf{R}} e^{i(ax+1/x)} \, dx.$$

This isn't convergent, but

$$\int_{\mathbf{R}} e^{-(ax+1/x)} \, dx \sim \sqrt{a} K(\sqrt{a})$$

where K is a Bessel function. There is a parallel between these special functions and the special sheaves that will arise later.

^{*}notes by Tony Feng

This was first studied by Kloosterman, in analyzing the Hardy-Littlewood circle method. Obviously |K(a)| < p; Kloosterman wanted to show that |K(a)| is much less than p. He showed that

$$|K(a)| \le p^{3/4}.$$

Weil later improved this to $|K(a)| \leq 2\sqrt{p}$.

We'll discuss Kloosterman's proof. He studied the sum

$$\sum_{a} |K(a)|^4$$

and showed

$$\sum_{a} |K(a)|^4 \le cp^3.$$

We start off by writing

$$\sum_{a} |K(a)|^4 = \sum_{a} \sum_{x,y,z,w} \psi(a(x+y-z-w) + (x^{-1}+y^{-1}-z^{-1}-w^{-1}))$$

Using (1.1), this is

$$= p \sum_{\substack{x+y=z+w \\ x^{-1}+y^{-1}\neq z^{-1}+w^{-1}}} \psi(x^{-1}+y^{-1}-z^{-1}-w^{-1}) + \# \left\{ \sum_{\substack{x+y=z+w \\ x^{-1}+y^{-1}\neq z^{-1}+w^{-1}}} \psi(x^{-1}+y^{-1}-z^{-1}-w^{-1}) + \# \left\{ \sum_{\substack{x-1+y-1=z^{-1}+w^{-1} \\ x^{-1}+y^{-1}\neq z^{-1}+w^{-1}}} \right\} \right)$$

Recall that we want to get a bound of p^3 , while the trivial bound is about p^4 . The second term $\# \left\{ \substack{x+y=z+w\\ x^{-1}+y^{-1}=z^{-1}+w^{-1} } \right\}$ has only about p^2 terms, so that's good. The first term is p times a sum over p^3 things, so we need to do something intelligent there. Luckily, it has a *scaling* symmetry. The sum over each \mathbf{F}_p^* -orbits is -1 by (1.1).

So, letting
$$N = \#\{x + y = z + w\}$$
 and $A = \#\left\{ \substack{x+y=z+w\\x^{-1}+y^{-1}=z^{-1}+w^{-1}} \right\}$, we get
$$\sum_{a} |K(a)|^4 = p\left(\frac{N-A}{p-1}(-1)+A\right).$$

To conclude that, note that N has size about p^3 , A has size about p^2 .

Remark 1.3. You can evaluate N and A exactly. For odd p, we think A = 3(p - 2)(p - 1). This gives

$$\sum_{a} |K(a)|^4 = 2p^3 + \text{ (lower order terms)}.$$

Kloosterman's argument is the earliest instance I know of the following principle:to bound a single value of a function, put that function in a family and raise it to a higher power. This idea was used again by Rankin in the context of modular forms, which Deligne said was an inspiration for his proof of the Weil conjectures.

2 The sheaf-function correspondence

We now want to implement this idea with sheaves. Let X be a variety over \mathbf{F}_p . Suppose you have a Weil sheaf \mathcal{F} on X, meaning a sheaf on $X_{\overline{\mathbf{F}}_p}$ with a Frobenius endomorphism. Then we get a function f on |X| or $X(\mathbf{F}_{p^n})$, given by f(x) = trace of geometric Frobenius at x.

Remark 2.1. If for example \mathcal{F} is lisse and semisimple, then the function f determines the sheaf, because the Frobenii are dense in the monodromy group.

2.1 Translation of sheaf-theoretic operations

Operations on sheaves can be translated into operations on functions.

• The tensor product of sheaves translates into product of functions.

$$\mathcal{F} \otimes \mathcal{G} \mapsto f_{\mathcal{F}} \cdot f_{\mathcal{G}}$$

• The pulblack of sheaves translates into pullback of functions.

$$\pi^*\mathcal{F} \mapsto f_{\mathcal{F}} \circ \pi$$

- If \mathcal{F} is pure of weight $w \in \mathbb{Z}$, then \mathcal{F}^{\vee} corresponds to the function $\overline{f}p^{-w \cdot \deg}$. For instance, the Kloosterman sums being real-valued corresponds to the Kloosterman sheaves being self-dual up to Tate twist.
- If \mathcal{F} is in the derived category of Weil sheaves¹ then

$$R\pi_{!}\mathcal{F}\mapsto \sum_{i}(-1)^{i}f_{H^{i}\mathcal{F}}$$

With these conventions, the Lefschetz trace formula translates into the the statement that the derived pushforward of sheaf corresponds to the pushforward of f as defined by

$$y \in Y(\mathbf{F}_{p^n}) \mapsto \sum_{x \in X(\mathbf{F}_{p^m}), \pi(x)=y} f(x).$$

¹Although we have glided over this point in this seminar, the construction of the "derived category of ℓ -adic sheaves" (or Weil sheaves) is actually quite subtle. It is not obtained by the naïve construction taking the derived category of a category of ℓ -adic sheaves, although this is often what one pretends for practical purposes. Suffice it to say that working rigorously with the "derived category of ℓ -adic sheaves" requires a good deal more care than one might think; "arguments" which treat this category as a genuine derived category are merely reasoning by analogy.

For example, given a map $\pi: X \to \mathbf{A}^1$, then the function

$$y \in \mathbf{F}_{p^m} \mapsto \# X_y(\mathbf{F}_{p^m})$$

comes from $R\pi_! \mathbf{Q}_{\ell}$.

Example 2.2. We're going to make a sheaf corresponding to the function ψ .

We start out with the Artin-Schreier cover

$$y^p - y = x \subset \mathbf{A}^2.$$

This maps via the x-coordinate to \mathbf{A}^1 , which is an étale cover. The Galois group is canonically $\mathbf{Z}/p\mathbf{Z}$, generated by $y \mapsto y+1$. In other words, this cover induces a map

$$\pi_1(\mathbf{A}^1_{\mathbf{F}_p}) \to \mathbf{Z}/p\mathbf{Z} \xrightarrow{\psi} \overline{\mathbf{Q}}_\ell^*.$$

Let \mathcal{L}_{ψ} be the corresponding rank 1 lisse sheaf on \mathbf{A}^1 . We compute the associated function. We need to figure out where Frobenius goes. The Frobenius at $x \in \mathbf{A}^1(\mathbf{F}_{p^m})$ takes $(x, y) \mapsto (x^{p^m}, y^{p^m})$. Of course $x^{p^m} = x$. We have

$$y^{p} = y + x$$

$$y^{p^{2}} = y^{p} + x^{p} = y + x + x^{p}$$

$$\vdots$$

$$y^{p^{m}} = y + x + x^{p} + \ldots + x^{p^{m-1}}$$

Therefore, the Frobenius at x takes

$$(x,y) \mapsto (x,y + \underbrace{x + x^p + x^{p^2} + \ldots + x^{p^{m-1}}}_{\operatorname{Tr}_{\mathbf{F}_p(x)}}).$$

The conclusion is that Frobenius acts on the stalk \mathcal{L}_{ψ} as multiplication by $\psi(\operatorname{Tr}_{\mathbf{F}_{p^m}/\mathbf{F}_p}(x))$. Therefore *geometric* Frobenius acts as multiplication by $\psi(-\operatorname{Tr}_{\mathbf{F}_{p^m}/\mathbf{F}_p}(x)) = \overline{\psi}(\operatorname{Tr}_{\mathbf{F}_{p^m}/\mathbf{F}_p}(x))$.

2.2 The method of families

Suppose we have an open subset $U \subset \mathbf{A}^1$, and \mathcal{G} is a Weil sheaf on U, associated to a function g. Assume $g \geq 0$. (This can be arranged by taking the sum of \mathcal{G} with its conjugate.)

We can then bound a single value of g by a sum:

$$g(x) \le \sum_{x \in \mathbf{F}_{p^n}} g(x).$$

Of course this isn't sharp, but if you apply this to large powers of g then it will be sharp.

To simplify things, assume $H_c^0(G) = 0$. Then

$$\sum_{x \in U(\mathbf{F}_{p^m})} g(x) = \sum_{\beta = \text{ eig. of } F \text{ on } H_c^2} \beta^m - \sum_{\alpha = \text{ eig. of } F \text{ on } H_c^1} \alpha^m.$$

We can easily analyze the β 's, by using Poincaré duality to relate H_c^2 to the coinvariants of geometric π_1 . But the point is that $\max |\alpha| \leq \max |\beta|$, which allows you to ignore α . Why? This is because the expression is positive.

Remark 2.3. This same observation appears elsewhere. For instance, the Weil bound is not optimal. For a curve it gives $p + 1 + 2g\sqrt{p}$, but this can't be attained because it would give a negative number of points over \mathbf{F}_{p^2} .

This argument (applied to a high power of g) is the engine that provides the bounds in the proof.

The central part of the proof will be the following statement: if \mathcal{F} is pure of weight w on $U \subset \mathbf{A}^1$, then the weights of $H^1_c(U, \mathcal{F})$ are $\leq w + 1$. In terms of the functions $f_{\mathcal{F}}$ associated to \mathcal{F} , this statement translates to the bound

$$\sum_{x \in U(\mathbf{F}_{p^n})} f_{\mathcal{F}}(x) \le p^{m(w+1)/2}.$$

If $H_c^0 = 0$ and $H_c^2 = 0$ (it is easy to reduce to this case), then

$$\operatorname{Tr}(\operatorname{Frob}^m, H_c^1) = -\sum_{x \in U(\mathbf{F}_{p^n})} f_{\mathcal{F}}(x)$$

so this becomes a question of bounding the eigenvalues of Frobenius on cohomology.

To obtain this estimate, we try to embed it into a family. We want to find a function g on \mathbf{A}^1 (associated to a sheaf) such that $g(0 \in \mathbf{F}_{p^m}) = \sum f_{\mathcal{F}}(x)$. Then we'll use the method of families. The punchline is that we take g to be the Fourier transform of f. Si next we'll make a sheaf associated to the function $g = \mathrm{FT}(f)$, defined by

$$\operatorname{FT}(f_{\mathcal{F}})(y) = \sum_{x \in \mathbf{F}_{p^m}} f_{\mathcal{F}}(x)\psi \circ \operatorname{Tr}(yx)$$

for $y \in \mathbf{F}_{p^m}$.

3 Fourier transform

Let \mathcal{F} be a sheaf on \mathbf{A}^1 . We make a new sheaf $\mathrm{FT}_{\psi} \mathcal{F}$ such that

$$f_{\mathrm{FT}_{\psi}}(y) = \sum_{x \in \mathbf{F}_{p^m}} f_{\mathcal{F}}(x)\psi \circ \mathrm{Tr}(yx).$$

We just replicate the Fourier transform step-by-step.

We start with \mathcal{F} , pull it back to \mathbf{A}^2 via $(x, y) \mapsto x$. Then we tensor with $m^* \mathcal{L}_{\psi}$, where m(x, y) = xy. Finally, to sum over the first variable we push forward via $(x, y) \mapsto y$. The last step is to shift by degree 1, basically to preserve the property of being a sheaf (but it still might not quite).

Denote this functor by FT_{ψ} .

Theorem 3.1. We have

$$\operatorname{FT}_{\overline{\psi}} \circ FT_{\psi} = \operatorname{Id}(up \ to \ Tate \ twist).$$

This mirrors the usual calculation

$$\sum_{y} \psi(-yz) \sum_{x} f(x)\psi(yx) = \sum_{x,y} f(x)\psi(y(x-z))$$
$$= p^{m}f(z).$$

The proof replicates this calculation at the level of sheaves. The only step that wasn't formal was the calculation

$$\sum_{a \in \mathbf{F}_p} \psi(ay) = \begin{cases} 0 & y \neq 0\\ p & \end{cases}$$

so we need a sheaf-theoretic analogue of it, which is

$$H_c^*(\mathbf{A}_{\overline{\mathbf{F}}_p}^1, L_{\psi}) = 0.$$

To prove this, recall that the sheaf L_{ψ} came from the covering

$$y^p - y = x$$

by taking the ψ -component of the pushforward of the constant sheaf. Then H_c^* is the $\psi^{\pm 1}$ -component of $H_c^*(C, \overline{\mathbf{Q}}_{\ell})$, which is 0 (since $C = \mathbf{A}^1$).

The idea of the proof of the Weil conjectures is to bound F-eigenvalues on $H^1_c(U \subset \mathbf{A}^1, \mathcal{G})$, which is the fiber at 0 of $\mathrm{FT}_{\psi}(\mathcal{G})$.

4 Kloosterman sheaves

Recall that we defined the Kloosterman function

$$K(a) = \sum_{xy=a} \psi(x+y) = \sum_{x \in \mathbf{F}_p, x \neq 0} \psi(ax+x^{-1}).$$

We're going to make a sheaf Kl on \mathbf{G}_m such that

$$f_{\mathrm{Kl}}(a \in \mathbf{F}_{p^m}) = \sum_{x \in \mathbf{F}_{p^m}^*} \psi \circ \mathrm{Tr}(ax + x^{-1}).$$

We start with L_{ψ} on \mathbf{G}_m to get $\psi(x)$, apply inversion to get $\psi(x^{-1})$, and apply FT_{ψ} .

This gives a lisse sheaf Kl on \mathbf{G}_m , pure of weight 1. Since rank(Kl) = 2, this corresponds to a representation $\pi_1(\mathbf{G}_m) \to \operatorname{GL}_2(\overline{\mathbf{Q}}_\ell)$ whose Zariski closure is SL_2 (the real-ness suggests the sheaf is self-dual).

Suppose we want to understand Kl_a for $a \in \overline{\mathbf{F}}_p$. Take a = 1. It is the ψ component of $H_c^1(y^p - y = x + x^{-1})$. We will show that dim $H_c^1(y^p - y = x + x^{-1}) = 2(p-1) + 1$. This strongly suggests that, because there are p-1 characters ψ , each
piece has dimension 2.

If you actually want to compute, you have to understand the behavior of the sheaf at ∞ . Consider

$$y^p - y = x + x^{-1} \to \mathbf{G}_m$$

and compactify it to $X \to \mathbf{P}^1$, of degree p.

By Riemann-Hurwitz,

$$2g_X - 2 = p(-2) + \deg(\text{ram. divisor}).$$

The ramification is supported at $0, \infty$. Since the equation $y^p - y = x + x^{-1}$ is symmetric, the answer will be the same at both points, so we just to the calculation 0. Localizing at 0, we need to consider the field extension L/K where $K = \mathbf{F}_p((x))$ and L = K(y) with $y^p - y = x + x^{-1}$. Since v(x) = 1, we have v(y) = -1/p, $\tau = y^{-1}$ is a uniformizer. The discriminant is the field extension

$$\prod_{i\neq j} (\tau_i - \tau_j)$$

Since the conjugates just add, a typical term is

$$\frac{1}{y+1} - \frac{1}{y} = \frac{-1}{y(y+1)}$$

with valuation 2/p. So the discriminant has valuation p(p-1)(2/p) = 2(p-1). (This is double what one would expect in characteristic 0.) So the conclusion is that

$$2g_X - 2 = p(-2) + 4(p-1) \implies \dim H^1(X) = 2(p-1).$$

To get C from the compactified guy, you delete 2 points so

$$\dim H^1(C) = 2(p-1) + 1.$$

So we've verified that $\operatorname{rank} \mathrm{KL} = 2$.

Remark 4.1. This is related to the fact that the K-Bessel function from Remark 1.2 satisfies a *second*-order differential equation.

Let's return to the estimate:

$$\sum |K(a)|^4 \sim 2p^3.$$

This sum can be interpreted as

$$\sum \operatorname{Tr}(F|H_c^i(\mathrm{Kl}\otimes \mathrm{Kl}^{\vee}\otimes \mathrm{Kl}\otimes \mathrm{Kl}^{\vee})(-1)^i.$$

By Deligne, H_c^1 contributes a second-order term, so the leading term comes from

$$H_c^2 = (V \otimes V^{\vee} \otimes V \otimes V^{\vee})_{\pi_1^{\text{geom}}}(-1) = (V \otimes V^{\vee} \otimes V \otimes V^{\vee})^{\pi_1^{\text{geom}}}$$

We can interpret $V \otimes V^{\vee} \otimes V \otimes V^{\vee} = \text{End}(V \otimes V^{\vee})$. So we want to compute

dim End
$$(V \otimes V^{\vee})^{\pi_1^{\text{geom}}}$$
.

We have an irreducible decomposition of $V \otimes V^{\vee}$ into the direct sum of a 3-dimensional representation and a 1-dimensional representation, so there are indeed two independent $\pi_1^{\rm geom}$ -equivariant endomorphisms.