# The $\ell$-adic Fourier Transform 

Akshay Venkatesh*

Mary 24, 2017

## 1 Kloosterman sums

Let $\psi: \mathbf{F}_{p} \rightarrow \mathbf{C}^{\times}$or $\overline{\mathbf{Q}}_{p}^{\times}$be a character, e.g.

$$
x \mapsto e^{2 \pi i x / p} .
$$

An important property is that

$$
\sum_{a \in \mathbf{F}_{p}} \psi(a y)= \begin{cases}0 & y \neq 0  \tag{1.1}\\ p & y=0\end{cases}
$$

For $a \in \mathbf{F}_{p}^{*}$, the Kloosterman sum $K(a)$ is

$$
\begin{equation*}
K(a)=\sum_{x y=a} \psi(x+y)=\sum_{x \in \mathbf{F}_{p}, x \neq 0} \psi\left(a x+x^{-1}\right) . \tag{1.2}
\end{equation*}
$$

Example 1.1. $K(a)$ is always a real number, because the sum is symmetric with respect to complex conjugation. For $p=7$ and $a=1$, it is

$$
\zeta_{7}^{2}+\zeta_{7}^{-1} s+\zeta_{7}+\zeta_{7}^{-2}+\zeta_{7}+\zeta_{y}^{-1}
$$

Remark 1.2. The analogue of $K(a)$ over $\mathbf{R}$ would be something like

$$
\int_{\mathbf{R}} e^{i(a x+1 / x)} d x
$$

This isn't convergent, but

$$
\int_{\mathbf{R}} e^{-(a x+1 / x)} d x \sim \sqrt{a} K(\sqrt{a})
$$

where $K$ is a Bessel function. There is a parallel between these special functions and the special sheaves that will arise later.

[^0]This was first studied by Kloosterman, in analyzing the Hardy-Littlewood circle method. Obviously $|K(a)|<p$; Kloosterman wanted to show that $|K(a)|$ is much less than $p$. He showed that

$$
|K(a)| \leq p^{3 / 4}
$$

Weil later improved this to $|K(a)| \leq 2 \sqrt{p}$.
We'll discuss Kloosterman's proof. He studied the sum

$$
\sum_{a}|K(a)|^{4}
$$

and showed

$$
\sum_{a}|K(a)|^{4} \leq c p^{3}
$$

We start off by writing

$$
\sum_{a}|K(a)|^{4}=\sum_{a} \sum_{x, y, z, w} \psi\left(a(x+y-z-w)+\left(x^{-1}+y^{-1}-z^{-1}-w^{-1}\right)\right.
$$

Using (1.1), this is

$$
\begin{aligned}
& =p \sum_{x+y=z+w} \psi\left(x^{-1}+y^{-1}-z^{-1}-w^{-1}\right) \\
& =p\left(\sum_{\substack{x+y=z+w \\
x^{-1}+y^{-1} \neq z^{-1}+w^{-1}}} \psi\left(x^{-1}+y^{-1}-z^{-1}-w^{-1}\right)+\#\left\{\begin{array}{c}
x+y=z+w \\
x^{-1}+y^{-1}=z^{-1}+w^{-1}
\end{array}\right\}\right)
\end{aligned}
$$

Recall that we want to get a bound of $p^{3}$, while the trivial bound is about $p^{4}$. The second term $\#\left\{\begin{array}{c}x+y=z+w \\ x^{-1}+y^{-1}=z^{-1}+w^{-1}\end{array}\right\}$ has only about $p^{2}$ terms, so that's good. The first term is $p$ times a sum over $p^{3}$ things, so we need to do something intelligent there. Luckily, it has a scaling symmetry. The sum over each $\mathbf{F}_{p}^{*}$-orbits is -1 by (1.1).

So, letting $N=\#\{x+y=z+w\}$ and $A=\#\left\{\begin{array}{c}x+y=z+w \\ x^{-1}+y^{-1}=z^{-1}+w^{-1}\end{array}\right\}$, we get

$$
\sum_{a}|K(a)|^{4}=p\left(\frac{N-A}{p-1}(-1)+A\right)
$$

To conclude that, note that $N$ has size about $p^{3}, A$ has size about $p^{2}$.
Remark 1.3. You can evaluate $N$ and $A$ exactly.For odd $p$, we think $A=3(p-$ $2)(p-1)$. This gives

$$
\sum_{a}|K(a)|^{4}=2 p^{3}+(\text { lower order terms })
$$

Kloosterman's argument is the earliest instance I know of the following principle:to bound a single value of a function, put that function in a family and raise it to a higher power. This idea was used again by Rankin in the context of modular forms, which Deligne said was an inspiration for his proof of the Weil conjectures.

## 2 The sheaf-function correspondence

We now want to implement this idea with sheaves. Let $X$ be a variety over $\mathbf{F}_{p}$. Suppose you have a Weil sheaf $\mathcal{F}$ on $X$, meaning a sheaf on $X_{\overline{\mathbf{F}}_{p}}$ with a Frobenius endomorphism. Then we get a function $f$ on $|X|$ or $X\left(\mathbf{F}_{p^{n}}\right)$, given by $f(x)=$ trace of geometric Frobenius at $x$.
Remark 2.1. If for example $\mathcal{F}$ is lisse and semisimple, then the function $f$ determines the sheaf, because the Frobenii are dense in the monodromy group.

### 2.1 Translation of sheaf-theoretic operations

Operations on sheaves can be translated into operations on functions.

- The tensor product of sheaves translates into product of functions.

$$
\mathcal{F} \otimes \mathcal{G} \mapsto f_{\mathcal{F}} \cdot f_{\mathcal{G}}
$$

- The pulblack of sheaves translates into pullback of functions.

$$
\pi^{*} \mathcal{F} \mapsto f_{\mathcal{F}} \circ \pi
$$

- If $\mathcal{F}$ is pure of weight $w \in \mathbf{Z}$, then $\mathcal{F}^{\vee}$ correponds to the function $\bar{f} p^{-w \cdot d e g}$. For instance, the Kloosterman sums being real-valued corresponds to the Kloosterman sheaves being self-dual up to Tate twist.
- If $\mathcal{F}$ is in the derived category of Weil sheaves $\mathbb{}^{1}$ then

$$
R \pi!\mathcal{F} \mapsto \sum_{i}(-1)^{i} f_{H^{i} \mathcal{F}}
$$

With these conventions, the Lefschetz trace formula translates into the the statement that the derived pushforward of sheaf corresponds to the pushforward of $f$ as defined by

$$
y \in Y\left(\mathbf{F}_{p^{n}}\right) \mapsto \sum_{x \in X\left(\mathbf{F}_{\left.p^{m}\right), \pi(x)=y}\right.} f(x) .
$$

[^1]For example, given a map $\pi: X \rightarrow \mathbf{A}^{1}$, then the function

$$
y \in \mathbf{F}_{p^{m}} \mapsto \# X_{y}\left(\mathbf{F}_{p^{m}}\right)
$$

comes from $R \pi!\underline{\mathbf{Q}_{\ell}}$.
Example 2.2. We're going to make a sheaf corresponding to the function $\psi$.
We start out with the Artin-Schreier cover

$$
y^{p}-y=x \subset \mathbf{A}^{2} .
$$

This maps via the $x$-coordinate to $\mathbf{A}^{1}$, which is an étale cover. The Galois group is canonically $\mathbf{Z} / p \mathbf{Z}$, generated by $y \mapsto y+1$. In other words, this cover induces a map

$$
\pi_{1}\left(\mathbf{A}_{\mathbf{F}_{p}}^{1}\right) \rightarrow \mathbf{Z} / p \mathbf{Z} \xrightarrow{\psi} \overline{\mathbf{Q}}_{\ell}^{*}
$$

Let $\mathcal{L}_{\psi}$ be the corresponding rank 1 lisse sheaf on $\mathbf{A}^{1}$. We compute the associated function. We need to figure out where Frobenius goes. The Frobenius at $x \in$ $\mathbf{A}^{1}\left(\mathbf{F}_{p^{m}}\right)$ takes $(x, y) \mapsto\left(x^{p^{m}}, y^{p^{m}}\right)$. Of course $x^{p^{m}}=x$. We have

$$
\begin{aligned}
y^{p} & =y+x \\
y^{p^{2}} & =y^{p}+x^{p}=y+x+x^{p} \\
\vdots & \\
y^{p^{m}} & =y+x+x^{p}+\ldots+x^{p^{m-1}}
\end{aligned}
$$

Therefore, the Frobenius at $x$ takes

$$
(x, y) \mapsto(x, y+\underbrace{x+x^{p}+x^{p^{2}}+\ldots+x^{p^{m-1}}}_{\operatorname{Tr}_{\mathbf{F}_{p^{m}} / \mathbf{F}_{p}}(x)}) .
$$

The conclusion is that Frobenius acts on the stalk $\mathcal{L}_{\psi}$ as multiplication by $\psi\left(\operatorname{Tr}_{\mathbf{F}_{p^{m}} / \mathbf{F}_{p}}(x)\right)$. Therefore geometric Frobenius acts as multiplication by $\psi\left(-\operatorname{Tr}_{\mathbf{F}_{p^{m}} / \mathbf{F}_{p}}(x)\right)=\bar{\psi}\left(\operatorname{Tr}_{\mathbf{F}_{p^{m}} / \mathbf{F}_{p}}(x)\right)$.

### 2.2 The method of families

Suppose we have an open subset $U \subset \mathbf{A}^{1}$, and $\mathcal{G}$ is a Weil sheaf on $U$, associated to a function $g$. Assume $g \geq 0$. (This can be arranged by taking the sum of $\mathcal{G}$ with its conjugate.)

We can then bound a single value of $g$ by a sum:

$$
g(x) \leq \sum_{x \in \mathbf{F}_{p^{n}}} g(x) .
$$

Of course this isn't sharp, but if you apply this to large powers of $g$ then it will be sharp.

To simplify things, assume $H_{c}^{0}(G)=0$. Then

$$
\sum_{x \in U\left(\mathbf{F}_{p^{m}}\right)} g(x)=\sum_{\beta=\text { eig. of } F \text { on } H_{c}^{2}} \beta^{m}-\sum_{\alpha=\text { eig. of } F \text { on } H_{c}^{1}} \alpha^{m} .
$$

We can easily analyze the $\beta$ 's, by using Poincaré duality to relate $H_{c}^{2}$ to the coinvariants of geometric $\pi_{1}$. But the point is that $\max |\alpha| \leq \max |\beta|$, which allows you to ignore $\alpha$. Why? This is because the expression is positive.
Remark 2.3. This same observation appears elsewhere. For instance, the Weil bound is not optimal. For a curve it gives $p+1+2 g \sqrt{p}$, but this can't be attained because it would give a negative number of points over $\mathbf{F}_{p^{2}}$.

This argument (applied to a high power of $g$ ) is the engine that provides the bounds in the proof.

The central part of the proof will be the following statement: if $\mathcal{F}$ is pure of weight $w$ on $U \subset \mathbf{A}^{1}$, then the weights of $H_{c}^{1}(U, \mathcal{F})$ are $\leq w+1$. In terms of the functions $f_{\mathcal{F}}$ associated to $\mathcal{F}$, this statement translates to the bound

$$
\sum_{x \in U\left(\mathbf{F}_{\left.p^{n}\right)}\right.} f_{\mathcal{F}}(x) \leq p^{m(w+1) / 2} .
$$

If $H_{c}^{0}=0$ and $H_{c}^{2}=0$ (it is easy to reduce to this case), then

$$
\operatorname{Tr}\left(\text { Frob }^{m}, H_{c}^{1}\right)=-\sum_{x \in U\left(\mathbf{F}_{p^{n}}\right)} f_{\mathcal{F}}(x)
$$

so this becomes a question of bounding the eigenvalues of Frobenius on cohomology.
To obtain this estimate, we try to embed it into a family. We want to find a function $g$ on $\mathbf{A}^{1}$ (associated to a sheaf) such that $g\left(0 \in \mathbf{F}_{p^{m}}\right)=\sum f_{\mathcal{F}}(x)$. Then we'll use the method of families. The punchline is that we take $g$ to be the Fourier transform of $f$. Si next we'll make a sheaf associated to the function $g=\mathrm{FT}(f)$, defined by

$$
\mathrm{FT}\left(f_{\mathcal{F}}\right)(y)=\sum_{x \in \mathbf{F}_{p^{m}}} f_{\mathcal{F}}(x) \psi \circ \operatorname{Tr}(y x)
$$

for $y \in \mathbf{F}_{p^{m}}$.

## 3 Fourier transform

Let $\mathcal{F}$ be a sheaf on $\mathbf{A}^{1}$. We make a new sheaf $\mathrm{FT}_{\psi} \mathcal{F}$ such that

$$
f_{\mathrm{FT}_{\psi}}(y)=\sum_{x \in \mathbf{F}_{p^{m}}} f_{\mathcal{F}}(x) \psi \circ \operatorname{Tr}(y x) .
$$

We just replicate the Fourier transform step-by-step.

We start with $\mathcal{F}$, pull it back to $\mathbf{A}^{2}$ via $(x, y) \mapsto x$. Then we tensor with $m^{*} \mathcal{L}_{\psi}$, where $m(x, y)=x y$. Finally, to sum over the first variable we push forward via $(x, y) \mapsto y$. The last step is to shift by degree 1 , basically to preserve the property of being a sheaf (but it still might not quite).

Denote this functor by $\mathrm{FT}_{\psi}$.
Theorem 3.1. We have

$$
\mathrm{FT}_{\bar{\psi}} \circ F T_{\psi}=\operatorname{Id}(u p \text { to Tate twist). }
$$

This mirrors the usual calculation

$$
\begin{aligned}
\sum_{y} \psi(-y z) \sum_{x} f(x) \psi(y x) & =\sum_{x, y} f(x) \psi(y(x-z)) \\
& =p^{m} f(z)
\end{aligned}
$$

The proof replicates this calculation at the level of sheaves. The only step that wasn't formal was the calculation

$$
\sum_{a \in \mathbf{F}_{p}} \psi(a y)= \begin{cases}0 & y \neq 0 \\ p & \end{cases}
$$

so we need a sheaf-theoretic analogue of it, which is

$$
H_{c}^{*}\left(\mathbf{A}_{\overline{\mathbf{F}}_{p}}^{1}, L_{\psi}\right)=0 .
$$

To prove this, recall that the sheaf $L_{\psi}$ came from the covering

$$
y^{p}-y=x
$$

by taking the $\psi$-component of the pushforward of the constant sheaf. Then $H_{c}^{*}$ is the $\psi^{ \pm 1}$-component of $H_{c}^{*}\left(C, \overline{\mathbf{Q}}_{\ell}\right)$, which is $0\left(\right.$ since $\left.C=\mathbf{A}^{1}\right)$.

The idea of the proof of the Weil conjectures is to bound $F$-eigenvalues on $H_{c}^{1}(U \subset$ $\left.\mathbf{A}^{1}, \mathcal{G}\right)$, which is the fiber at 0 of $\mathrm{FT}_{\psi}(\mathcal{G})$.

## 4 Kloosterman sheaves

Recall that we defined the Kloosterman function

$$
K(a)=\sum_{x y=a} \psi(x+y)=\sum_{x \in \mathbf{F}_{p}, x \neq 0} \psi\left(a x+x^{-1}\right) .
$$

We're going to make a sheaf Kl on $\mathbf{G}_{m}$ such that

$$
f_{\mathrm{K} 1}\left(a \in \mathbf{F}_{p^{m}}\right)=\sum_{x \in \mathbf{F}_{p^{*}}^{*}} \psi \circ \operatorname{Tr}\left(a x+x^{-1}\right) .
$$

We start with $L_{\psi}$ on $\mathbf{G}_{m}$ to get $\psi(x)$, apply inversion to get $\psi\left(x^{-1}\right)$, and apply $\mathrm{FT}_{\psi}$.
This gives a lisse sheaf Kl on $\mathbf{G}_{m}$, pure of weight 1 . Since $\operatorname{rank}(\mathrm{Kl})=2$, this corresponds to a representation $\pi_{1}\left(\mathbf{G}_{m}\right) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbf{Q}}_{\ell}\right)$ whose Zariski closure is $\mathrm{SL}_{2}$ (the real-ness suggests the sheaf is self-dual).

Suppose we want to understand $\mathrm{Kl}_{a}$ for $a \in \overline{\mathbf{F}}_{p}$. Take $a=1$. It is the $\psi$ component of $H_{c}^{1}\left(y^{p}-y=x+x^{-1}\right)$. We will show that $\operatorname{dim} H_{c}^{1}\left(y^{p}-y=x+x^{-1}\right)=$ $2(p-1)+1$. This strongly suggests that, because there are $p-1$ characters $\psi$, each piece has dimension 2.

If you actually want to compute, you have to understand the behavior of the sheaf at $\infty$. Consider

$$
y^{p}-y=x+x^{-1} \rightarrow \mathbf{G}_{m}
$$

and compactify it to $X \rightarrow \mathbf{P}^{1}$, of degree $p$.
By Riemann-Hurwitz,

$$
2 g_{X}-2=p(-2)+\operatorname{deg}(\text { ram. divisor }) .
$$

The ramification is supported at $0, \infty$. Since the equation $y^{p}-y=x+x^{-1}$ is symmetric, the answer will be the same at both points, so we just to the calculation 0 . Localizing at 0 , we need to consider the field extension $L / K$ where $K=\mathbf{F}_{p}((x))$ and $L=K(y)$ with $y^{p}-y=x+x^{-1}$. Since $v(x)=1$, we have $v(y)=-1 / p, \tau=y^{-1}$ is a uniformizer. The discriminant is the field extension

$$
\prod_{i \neq j}\left(\tau_{i}-\tau_{j}\right)
$$

Since the conjugates just add, a typical term is

$$
\frac{1}{y+1}-\frac{1}{y}=\frac{-1}{y(y+1)}
$$

with valuation $2 / p$. So the discriminant has valuation $p(p-1)(2 / p)=2(p-1)$. (This is double what one would expect in characteristic 0 .) So the conclusion is that

$$
2 g_{X}-2=p(-2)+4(p-1) \Longrightarrow \operatorname{dim} H^{1}(X)=2(p-1)
$$

To get $C$ from the compactified guy, you delete 2 points so

$$
\operatorname{dim} H^{1}(C)=2(p-1)+1
$$

So we've verified that rank $\mathrm{KL}=2$.
Remark 4.1. This is related to the fact that the $K$-Bessel function from Remark 1.2 satisfies a second-order differential equation.

Let's return to the estimate:

$$
\sum|K(a)|^{4} \sim 2 p^{3} .
$$

This sum can be interpreted as

$$
\sum \operatorname{Tr}\left(F \mid H_{c}^{i}\left(\mathrm{Kl} \otimes \mathrm{Kl}^{\vee} \otimes \mathrm{Kl} \otimes \mathrm{Kl}^{\vee}\right)(-1)^{i}\right.
$$

By Deligne, $H_{c}^{1}$ contributes a second-order term, so the leading term comes from

$$
H_{c}^{2}=\left(V \otimes V^{\vee} \otimes V \otimes V^{\vee}\right)_{\pi_{1}^{\text {geom }}(-1)}=\left(V \otimes V^{\vee} \otimes V \otimes V^{\vee}\right)^{\pi_{1}^{\text {geom }}}
$$

We can interpret $V \otimes V^{\vee} \otimes V \otimes V^{\vee}=\operatorname{End}\left(V \otimes V^{\vee}\right)$. So we want to compute

$$
\operatorname{dim} \operatorname{End}\left(V \otimes V^{\vee}\right)^{\pi_{1}^{\text {geom }}}
$$

We have an irreducible decomposition of $V \otimes V^{\vee}$ into the direct sum of a 3-dimensional representation and a 1 -dimensional representation, so there are indeed two independent $\pi_{1}^{\text {geom }}$-equivariant endomorphisms.


[^0]:    *notes by Tony Feng

[^1]:    ${ }^{1}$ Although we have glided over this point in this seminar, the construction of the "derived category of $\ell$-adic sheaves" (or Weil sheaves) is actually quite subtle. It is not obtained by the naïve construction taking the derived category of a category of $\ell$-adic sheaves, although this is often what one pretends for practical purposes. Suffice it to say that working rigorously with the "derived category of $\ell$-adic sheaves" requires a good deal more care than one might think; "arguments" which treat this category as a genuine derived category are merely reasoning by analogy.

