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1 Kloosterman sums

Let ψ : Fp → C× or Q×p be a character, e.g.

x 7→ e2πix/p.

An important property is that

∑
a∈Fp

ψ(ay) =

{
0 y 6= 0,

p y = 0
(1.1)

For a ∈ F∗p, the Kloosterman sum K(a) is

K(a) =
∑
xy=a

ψ(x+ y) =
∑

x∈Fp,x 6=0

ψ(ax+ x−1). (1.2)

Example 1.1. K(a) is always a real number, because the sum is symmetric with
respect to complex conjugation. For p = 7 and a = 1, it is

ζ27 + ζ−17 s+ ζ7 + ζ−27 + ζ7 + ζ−1y .

Remark 1.2. The analogue of K(a) over R would be something like∫
R
ei(ax+1/x) dx.

This isn’t convergent, but ∫
R
e−(ax+1/x) dx ∼

√
aK(
√
a)

where K is a Bessel function. There is a parallel between these special functions and
the special sheaves that will arise later.

∗notes by Tony Feng
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This was first studied by Kloosterman, in analyzing the Hardy-Littlewood circle
method. Obviously |K(a)| < p; Kloosterman wanted to show that |K(a)| is much
less than p. He showed that

|K(a)| ≤ p3/4.

Weil later improved this to |K(a)| ≤ 2
√
p.

We’ll discuss Kloosterman’s proof. He studied the sum∑
a

|K(a)|4

and showed ∑
a

|K(a)|4 ≤ cp3.

We start off by writing∑
a

|K(a)|4 =
∑
a

∑
x,y,z,w

ψ(a(x+ y − z − w) + (x−1 + y−1 − z−1 − w−1)

Using (1.1), this is

= p
∑

x+y=z+w

ψ(x−1 + y−1 − z−1 − w−1)

= p

 ∑
x+y=z+w

x−1+y−1 6=z−1+w−1

ψ(x−1 + y−1 − z−1 − w−1) + #
{

x+y=z+w
x−1+y−1=z−1+w−1

}

Recall that we want to get a bound of p3, while the trivial bound is about p4. The
second term #

{
x+y=z+w

x−1+y−1=z−1+w−1

}
has only about p2 terms, so that’s good. The

first term is p times a sum over p3 things, so we need to do something intelligent
there. Luckily, it has a scaling symmetry. The sum over each F∗p-orbits is −1 by
(1.1).

So, letting N = #{x+ y = z + w} and A = #
{

x+y=z+w
x−1+y−1=z−1+w−1

}
, we get

∑
a

|K(a)|4 = p

(
N −A
p− 1

(−1) +A

)
.

To conclude that, note that N has size about p3, A has size about p2.

Remark 1.3. You can evaluate N and A exactly.For odd p, we think A = 3(p −
2)(p− 1). This gives∑

a

|K(a)|4 = 2p3 + (lower order terms).
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Kloosterman’s argument is the earliest instance I know of the following princi-
ple:to bound a single value of a function, put that function in a family and raise it
to a higher power. This idea was used again by Rankin in the context of modular
forms, which Deligne said was an inspiration for his proof of the Weil conjectures.

2 The sheaf-function correspondence

We now want to implement this idea with sheaves. Let X be a variety over Fp.
Suppose you have a Weil sheaf F on X, meaning a sheaf on XFp

with a Frobenius
endomorphism. Then we get a function f on |X| or X(Fpn), given by f(x) = trace
of geometric Frobenius at x.
Remark 2.1. If for example F is lisse and semisimple, then the function f deter-
mines the sheaf, because the Frobenii are dense in the monodromy group.

2.1 Translation of sheaf-theoretic operations

Operations on sheaves can be translated into operations on functions.

• The tensor product of sheaves translates into product of functions.

F ⊗ G 7→ fF · fG

• The pulblack of sheaves translates into pullback of functions.

π∗F 7→ fF ◦ π

• If F is pure of weight w ∈ Z, then F∨ correponds to the function fp−w·deg. For
instance, the Kloosterman sums being real-valued corresponds to the Kloost-
erman sheaves being self-dual up to Tate twist.

• If F is in the derived category of Weil sheaves1 then

Rπ!F 7→
∑
i

(−1)ifHiF

With these conventions, the Lefschetz trace formula translates into the the
statement that the derived pushforward of sheaf corresponds to the pushfor-
ward of f as defined by

y ∈ Y (Fpn) 7→
∑

x∈X(Fpm ),π(x)=y

f(x).

1Although we have glided over this point in this seminar, the construction of the “derived cat-
egory of `-adic sheaves” (or Weil sheaves) is actually quite subtle. It is not obtained by the naïve
construction taking the derived category of a category of `-adic sheaves, although this is often what
one pretends for practical purposes. Suffice it to say that working rigorously with the “derived cat-
egory of `-adic sheaves” requires a good deal more care than one might think; “arguments” which
treat this category as a genuine derived category are merely reasoning by analogy.
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For example, given a map π : X → A1, then the function

y ∈ Fpm 7→ #Xy(Fpm)

comes from Rπ!Q`.

Example 2.2. We’re going to make a sheaf corresponding to the function ψ.
We start out with the Artin-Schreier cover

yp − y = x ⊂ A2.

This maps via the x-coordinate to A1, which is an étale cover. The Galois group is
canonically Z/pZ, generated by y 7→ y+1. In other words, this cover induces a map

π1(A
1
Fp)→ Z/pZ

ψ−→ Q
∗
` .

Let Lψ be the corresponding rank 1 lisse sheaf on A1. We compute the associated
function. We need to figure out where Frobenius goes. The Frobenius at x ∈
A1(Fpm) takes (x, y) 7→ (xp

m
, yp

m
). Of course xpm = x. We have

yp = y + x

yp
2
= yp + xp = y + x+ xp

...

yp
m
= y + x+ xp + . . .+ xp

m−1

Therefore, the Frobenius at x takes

(x, y) 7→ (x, y + x+ xp + xp
2
+ . . .+ xp

m−1︸ ︷︷ ︸
TrFpm/Fp (x)

).

The conclusion is that Frobenius acts on the stalk Lψ as multiplication by ψ(TrFpm/Fp(x)).
Therefore geometric Frobenius acts as multiplication by ψ(−TrFpm/Fp(x)) = ψ(TrFpm/Fp(x)).

2.2 The method of families

Suppose we have an open subset U ⊂ A1, and G is a Weil sheaf on U , associated to
a function g. Assume g ≥ 0. (This can be arranged by taking the sum of G with its
conjugate.)

We can then bound a single value of g by a sum:

g(x) ≤
∑
x∈Fpn

g(x).

Of course this isn’t sharp, but if you apply this to large powers of g then it will be
sharp.
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To simplify things, assume H0
c (G) = 0. Then∑

x∈U(Fpm )

g(x) =
∑

β= eig. of F on H2
c

βm −
∑

α= eig. of F on H1
c

αm.

We can easily analyze the β’s, by using Poincaré duality to relate H2
c to the coin-

variants of geometric π1. But the point is that max |α| ≤ max |β|, which allows you
to ignore α. Why? This is because the expression is positive.

Remark 2.3. This same observation appears elsewhere. For instance, the Weil
bound is not optimal. For a curve it gives p+ 1 + 2g

√
p, but this can’t be attained

because it would give a negative number of points over Fp2 .

This argument (applied to a high power of g) is the engine that provides the
bounds in the proof.

The central part of the proof will be the following statement: if F is pure of
weight w on U ⊂ A1, then the weights of H1

c (U,F) are ≤ w + 1. In terms of the
functions fF associated to F , this statement translates to the bound∑

x∈U(Fpn )

fF (x) ≤ pm(w+1)/2.

If H0
c = 0 and H2

c = 0 (it is easy to reduce to this case), then

Tr(Frobm, H1
c ) = −

∑
x∈U(Fpn )

fF (x)

so this becomes a question of bounding the eigenvalues of Frobenius on cohomology.
To obtain this estimate, we try to embed it into a family. We want to find a

function g on A1 (associated to a sheaf) such that g(0 ∈ Fpm) =
∑
fF (x). Then

we’ll use the method of families. The punchline is that we take g to be the Fourier
transform of f . Si next we’ll make a sheaf associated to the function g = FT(f),
defined by

FT(fF )(y) =
∑

x∈Fpm
fF (x)ψ ◦ Tr(yx)

for y ∈ Fpm .

3 Fourier transform

Let F be a sheaf on A1. We make a new sheaf FTψ F such that

fFTψ(y) =
∑

x∈Fpm
fF (x)ψ ◦ Tr(yx).

We just replicate the Fourier transform step-by-step.
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We start with F , pull it back to A2 via (x, y) 7→ x. Then we tensor with m∗Lψ,
where m(x, y) = xy. Finally, to sum over the first variable we push forward via
(x, y) 7→ y. The last step is to shift by degree 1, basically to preserve the property
of being a sheaf (but it still might not quite).

Denote this functor by FTψ.

Theorem 3.1. We have

FTψ ◦FTψ = Id (up to Tate twist).

This mirrors the usual calculation∑
y

ψ(−yz)
∑
x

f(x)ψ(yx) =
∑
x,y

f(x)ψ(y(x− z))

= pmf(z).

The proof replicates this calculation at the level of sheaves. The only step that
wasn’t formal was the calculation∑

a∈Fp

ψ(ay) =

{
0 y 6= 0

p

so we need a sheaf-theoretic analogue of it, which is

H∗c (A
1
Fp
, Lψ) = 0.

To prove this, recall that the sheaf Lψ came from the covering

yp − y = x

by taking the ψ-component of the pushforward of the constant sheaf. Then H∗c is
the ψ±1-component of H∗c (C,Q`), which is 0 (since C = A1).

The idea of the proof of the Weil conjectures is to bound F -eigenvalues onH1
c (U ⊂

A1,G), which is the fiber at 0of FTψ(G).

4 Kloosterman sheaves

Recall that we defined the Kloosterman function

K(a) =
∑
xy=a

ψ(x+ y) =
∑

x∈Fp,x 6=0

ψ(ax+ x−1).

We’re going to make a sheaf Kl on Gm such that

fKl(a ∈ Fpm) =
∑

x∈F∗
pm

ψ ◦ Tr(ax+ x−1).
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We start with Lψ on Gm to get ψ(x), apply inversion to get ψ(x−1), and apply FTψ.
This gives a lisse sheaf Kl on Gm, pure of weight 1. Since rank(Kl) = 2, this

corresponds to a representation π1(Gm) → GL2(Q`) whose Zariski closure is SL2

(the real-ness suggests the sheaf is self-dual).
Suppose we want to understand Kla for a ∈ Fp. Take a = 1. It is the ψ-

component of H1
c (y

p−y = x+x−1). We will show that dimH1
c (y

p−y = x+x−1) =
2(p− 1)+ 1. This strongly suggests that, because there are p− 1 characters ψ, each
piece has dimension 2.

If you actually want to compute, you have to understand the behavior of the
sheaf at ∞. Consider

yp − y = x+ x−1 → Gm

and compactify it to X → P1, of degree p.
By Riemann-Hurwitz,

2gX − 2 = p(−2) + deg(ram. divisor).

The ramification is supported at 0,∞. Since the equation yp − y = x + x−1 is
symmetric, the answer will be the same at both points, so we just to the calculation
0. Localizing at 0, we need to consider the field extension L/K where K = Fp((x))
and L = K(y) with yp−y = x+x−1. Since v(x) = 1, we have v(y) = −1/p, τ = y−1

is a uniformizer. The discriminant is the field extension∏
i 6=j

(τi − τj)

Since the conjugates just add, a typical term is

1

y + 1
− 1

y
=

−1
y(y + 1)

with valuation 2/p. So the discriminant has valuation p(p − 1)(2/p) = 2(p − 1).
(This is double what one would expect in characteristic 0.) So the conclusion is that

2gX − 2 = p(−2) + 4(p− 1) =⇒ dimH1(X) = 2(p− 1).

To get C from the compactified guy, you delete 2 points so

dimH1(C) = 2(p− 1) + 1.

So we’ve verified that rankKL = 2.

Remark 4.1. This is related to the fact that the K-Bessel function from Remark
1.2 satisfies a second -order differential equation.
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Let’s return to the estimate:∑
|K(a)|4 ∼ 2p3.

This sum can be interpreted as∑
Tr(F |H i

c(Kl⊗Kl∨ ⊗Kl⊗Kl∨)(−1)i.

By Deligne, H1
c contributes a second-order term, so the leading term comes from

H2
c = (V ⊗ V ∨ ⊗ V ⊗ V ∨)πgeom

1
(−1) = (V ⊗ V ∨ ⊗ V ⊗ V ∨)π

geom
1

We can interpret V ⊗ V ∨ ⊗ V ⊗ V ∨ = End(V ⊗ V ∨). So we want to compute

dimEnd(V ⊗ V ∨)π
geom
1 .

We have an irreducible decomposition of V⊗V ∨ into the direct sum of a 3-dimensional
representation and a 1-dimensional representation, so there are indeed two indepen-
dent πgeom1 -equivariant endomorphisms.
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