
Zariski-Étale Comparison, Kummer and Artin-Schreier
Sequences, Cohomology of Curves

David Sherman

October 26, 2016

1 Comparison of the Zariski and Étale Sites

For a scheme S, let SZar denote the site induced by the Zariski topology on S and
Zar(S) the corresponding category of sheaves of sets. Then we have a continuous
map of Grothendieck topologies Sét

ι−→ SZar, where ι−1(U ⊂ S) is the inclusion of U
into S considered as an étale map.

This may seem a bit abstract, but the point is the following: just as with the
continuous map induced by a morphism of schemes, we can use ι to define pullback
and pushforward functors between Ét(S) and Zar(S). Concretely,

(ι∗F)(U) = F(U)

for F an étale sheaf and U a Zariski-open set in S. This is restriction to the Zariski
topology, and hence ι∗F is a sheaf. On the other hand, as is typical when defining
pullbacks, sheafification is necessary. So we first set

(ι∗F)pre(h : U → S) = lim−→
V⊇h(U)

F(V )

for F a Zariski sheaf. Note that the direct limit on the right above is actually equal
to F(h(U)), since étale maps are open. Still, (ι∗F)pre is typically not an étale sheaf.
Thus, we define ι∗F to be its étale sheafification.

As one should expect, (ι∗, ι∗) form an adjoint pair. Especially, this implies ι∗

is right-exact. Also familiar is that the construction of ι∗ implies that it commutes
with finite limits and finite fiber products, so ι∗ is exact. These properties also hold
when we restrict to abelian sheaves.

Now, there’s a natural map on global sections F(S) → (ι∗F)(S) (coming from
the map (ι∗F)pre → ι∗F). For F an abelian sheaf, exactness of ι∗ guarantees this
extends uniquely to a map of δ-functors (the source being a universal δ-functor):

H•(S,F)→ H•ét(S, ι
∗F).
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We call this the Zariski-étale comparison morphism. Note that we shouldn’t expect
this to be an isomorphism. For example, suppose S is an irreducible variety over C
and F is a finite constant sheaf. Then, as promised in Lecture 1, étale cohomology
with F coefficients will prove to be isomorphic to singular cohomology of S(C). On
the other hand, the higher Zariski cohomology vanishes! (for flasqueness reasons).
But there is an improvement of our comparison morphism for F an OS-module,
which we’ll see is an isomorphism when F is quasi-coherent (and ι∗F is replaced
with an appropriate “sheaf of modules” pullback).

2 Quasi-coherent Zariski-étale comparison

Assume for this section that F is an OS-module. We’d like to define a variant
of ι∗F that does something useful with the OS-module structure. As with quasi-
coherent pullback in usual sheaf theory, the variant involves tensoring. We thus need
a replacement for the étale site of the structure sheaf OS . The group scheme Ga

gives us a sheaf of rings on the étale site, which we denote by OSét
:

OSét
(U) := Ga,S(U) = OU (U).

We have a natural map of sheaves of rings (on Zar(S)) OS → ι∗OSét
. The adjoint

map ι∗OS → OSét
induces the map OS,s → Osh

S,s on stalks at a geometric point s over
s ∈ S. In particular, this is a flat extension of rings. We define the OSét

-module

Fét := OSét
⊗ι∗OS

ι∗F ,

and F  Fét is exact (by exactness of ι∗ and the flatness noted above). In particular,
we get an OS-module version of the Zariski-étale comparison morphism (and this
version is also δ-functorial):

H•(S,F)→ H•ét(S, ι
∗F)→ H•ét(S,Fét).

Now we can state the main theorem of this section:

Theorem 2.1. If the OS-module F is quasi-coherent, the map ΨS : H•(S,F) →
H•ét(S,Fét) defined above is an isomorphism.

Before proving the theorem, we need an alternate description of Fét:

Lemma 2.2. Let F be a quasi-coherent OS-module. The étale presheaf F̃ : (U
h−→

S)  Γ(U, h∗F) on Sét is naturally isomorphic to Fét (where h∗ denotes module
pullback for the Zariski topology). In particular, F̃ is an étale sheaf.

Proof. That F̃ is a sheaf follows from fpqc descent for quasi-coherent sheaves (since
any étale cover of S can be refined over open affines on S to one which is quasi-
compact over the base and hence is an fpqc cover).
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By inspection ÕS = OSét
. For arbitrary F , we have an evident natural morphism

F → ι∗F̃ which is linear over the morphism OS → ι∗OSét
. By adjunction, we get

a map ι∗F → F̃ which is linear over ι∗OS → OSét
. This extends by linearity to a

map Fét → F̃ . To see this is an isomorphism, we shall check on stalks at geometric
points.

Recall that in ordinary sheaf theory, the stalk of a tensor product of sheaves is
the tensor product of the stalks. The same is true in the étale setting via the same
proof. Thus, the stalks of Fét and F̃ are each Osh

S,s ⊗OS,s
Fs in such a way that our

map induces the identity on stalks.

An important example/application of the above lemma is that if h : U → S is
étale then the restriction of Fét to the Zariski topology on U is the quasi-coherent
pullback h∗F :

(F̃ |U )(U ′ ⊂ U) = Γ(U ′, h|∗U ′F) = (h∗F)(U ′),

since quasi-coherent pullback to a Zariski open set is the same as restriction. Now
we are ready to prove the comparison theorem:

Proof. Amazingly, we’ll use the Čech-to-derived spectral sequence not just once, but
several times! For an open set U in S, the exact functor F  Fét induces a morphism
Hq(U,F|U ) → Hq

ét(U,Fét|U ) (this is our comparison morphism ΨU ). In particular,
these morphisms are functorial with respect to restrictions on U . Thus, they induce
a morphism of Zariski-presheaves Hq(F)→ Hq

ét(Fét).
So take an affine open cover U of S, and we get a morphism of the Čech-to-

derived spectral sequences of F and Fét corresponding to U.1 To prove the theorem,
it’s enough to prove the induced morphism on any particular page is an isomorphism
(because we have a morphism on the abutments compatible with the morphism on
spectral sequences; cf. Theorem 5.2.12 in Weibel’s Homological Algebra). Here comes
the trick: the individual morphisms, say on Ep,q2 -terms, are induced from morphisms
of the form Ψ

Ũ
, where Ũ is a finite intersection of elements of U. In particular, Ũ is

separated. So if the theorem holds for separated schemes, it holds for S.
Hence, we’ve reduced to showing the theorem for S separated. Now run the above

argument again, and in this case the Ũ are affine. Thus, it’s enough to show the
theorem in the case S is affine. Putting aside the spectral sequence (temporarily),
we can see that ΨS in degree zero is the isomorphism F(S)→ Γ(S, id∗SF) on global
sections. We claim that the higher cohomologies vanish for each. This is already
known in the Zariski case and, in fact, one can give a proof along the same lines for
the étale case.

1There’s a subtlety here, which is that Hq
ét(Fét) is really an étale presheaf and we want to

compute the étale version of the spectral sequence (because that’s the one that abuts to the étale
cohomology of Fét). But the opens in U and the overlaps thereof are Zariski open sets, so we can
just consider U as an étale cover and get the same spectral sequence, hence the same abutment.
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In particular, because S is affine, we can refine any étale cover by a finite one
U in which the open sets and their overlaps are all affine. We claim then that the
Čech complex for Fét with respect to the étale cover U is exact in nonzero degrees.
But by the lemma, the space of sections of Fét on such an overlap Ũ h−→ S is equal
to Γ(Ũ , h∗F). Or, more suggestively, if S = Spec R, Ũ = Spec R′, and M is
the underlying R-module for the quasi-coherent sheaf F , then Fét(Ũ) = M ⊗R R′.
Thus, by the proof of fpqc descent for quasi-coherent sheaves (cf.Néron Models, §6.1,
Lemma 2), the Čech complex is indeed exact in higher degrees (in degree zero, we
of course get global sections of F , as described above).

Now, we will appeal to Cartan’s lemma (cf. Grothendieck’s Tôhoku paper, §3.8,
Cor. 4) to see that the higher sheaf cohomology of Fét vanishes. Recall that Cartan’s
lemma says that if we have a base B of opens for the topology such that higher
Čech cohomology vanishes for all finite collections in B (not necessarily covering
all of S), then Čech cohomology on S is in fact isomorpic to sheaf cohomology. In
particular, if S itself is an element of B, this implies the vanishing of the higher
sheaf cohomology. Note also that the proof of Cartan’s lemma just has the Čech-to-
derived spectral sequence as its main ingredient, so it is valid in our situation with
the étale topology (using the same proof).

Finishing up, we can take étale maps from affines as our base B. The hypothesis
of Cartan’s lemma is satisfied by the exactness we showed above (the descent proof
we gave above is valid for all finite collections in B, replacing S by the disjoint union
of the members of such a collection, which is still affine), so we are done.

3 Cohomology of Curves

As described in Lectures 1 and 2, we get étale cohomology off the ground by starting
with the case of curves, then inducting using the Leray spectral sequence, base change
theorems, and fibrations. For the case of curves, we’ll need to use the quasi-coherent
comparison theorem of the previous section to get a handle on the cohomology. Let’s
state the main theorem in this direction:

Theorem 3.1. Let X be a separated, finite-type scheme of dimension ≤ 1 over a
separably closed field k. Let F be a torsion abelian sheaf on Xét. Then Hi

ét(X,F) = 0
if i > 2. If F is also constructible, then Hi

ét(X,F) is finite for i ≤ 2.
Moreover, if X is affine and sections of F are locally killed by an integer n not

divisible by char(k), then H2
ét(X,F) = 0. If X is instead proper and sections of F

are locally p-torsion with p = char(k) > 0 then H2
ét(X,F) = 0.

Remark 3.2. (i) We won’t give a full proof of this theorem. The reader can find
a proof of the prime-to-p torsion case in Ch. I, §5 of the Freitag–Kiehl book and
the core p-power torsion case near the end of SGA7 (see §2 of Exposé XXII,
which rests on some constructions given in §1 there). The rest of these remarks
sketch how one can reduce the theorem to a few more reasonable cases.
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(ii) The theorem is also just a nice packaging of the several basic results we need
into a single statement. That is to say, it’s not proved all at once. Also, note
that the curve case is the more significant one, since the étale site of a separably
closed field is not so interesting.

(iii) The truth of the theorem is insensitive to modifying F at finitely many closed
points of X. More precisely, if we have a map F → G (both constructible)
which is an isomorphism away from these points then we may replace F by G
in the statement of the theorem. Indeed the kernel and cokernel of this map
are supported at finitely many copies of a separably closed field, so their higher
cohomologies vanish.

(iv) Since the formation of étale sites is insensitive to integral radiciel surjections,
such as scalar extension from a separably closed field to its algebraic closure
or passing to the underlying reduced schemes, we can assume k is algebraically
closed andX is reduced and connected; here we are using identifications such as
H•ét(X,F) ' H•ét(Xk, π

∗F), where π : X ⊗ks k → X and F ∈ Ab(X). (Beware
that π∗Gm,k 6= Gm,k in general, another example of Yoneda-type arguments
failing for objects not in the category under consideration.)

(v) If f : X ′ → X is a finite map, then f∗ : Ab(X ′) → Ab(X) is exact due to
the behavior of strict henselization with respect to module-finite maps of rings
[EGA IV4, 18.6.8, 18.8.10] and Zariski’s Main Theorem (which ensures that
every étale cover of Spec (R) admits a section for any strictly henselian local
ring R), so Rqf∗ vanishes for q > 0. (In contrast, the analogous vanishing for
the Zariski topology is only valid for quasi-coherent sheaves!) By applying the
Leray spectral sequence and (iii), we can then replace X by its normalization,
which is smooth and connected (and separated).

(vi) One can also reduce the general torsion case to the case of constructible F
by taking direct limits; the good behavior of étale cohomology of noetherian
schemes with respect to direct limits of sheaves will be discussed in Evan’s talk
next week. By noetherianity of S, we may assume F is a Z/nZ-module for
some n (or similarly for the p-power torsion case). By constructibility, there is
a dense open U ⊂ X and a connected finite étale cover U ′ → U over which F
becomes constant. Letting h : X ′ → X be the normalization of X in U ′, we
have that F ′ := h∗F is constant over U ′, and the evident map F → h∗(F ′) is
monic (since h is surjective!) with constructible cokernel.

Since Hi
ét(X,h∗(F ′)) ' Hi

ét(X
′,F ′) by finiteness of h, by standing descending

induction considerations (check!) our task reduces to that of F ′ on X ′; i.e.,
we can assume there is a finite abelian group M such that F|U ' M |U for
some dense open j : U ↪→ X. The constructible sheaf j!(F|U ) = j!(M |U ) is a
subsheaf of each of F and M with cokernel supported at finitely many points,
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so by (iii) we can replace F with M ! In this way, we reduce to the case of the
constant sheaf Z/nZ (or, similarly, Z/prZ).

(vii) One can also the preceding argument and variants to compare the theorem
for X and a dense open subset U (especially an affine open). For example,
one deduces the extra vanishing for H2 of an affine curve by embedding it
in a smooth projective curve and comparing their Picard groups (especially,
surjectivity of the multiplication-by-n map on Pic0 of the projective curve leads
to surjectivity on Pic of the affine curve).

The upshot of the above remarks is that the fundamental case of interest is X
smooth, projective, and connected over k = k, and F is the constant sheaf coming
from Z/nZ with char(k) - n or Z/pZ with p = char(k) > 0. Noting that µn ' Z/nZ,
the key statement we need is the following:

Proposition 3.3. Let X be a connected, smooth, projective curve over an alge-
braically closed field k of characteristic p ≥ 0. Also, let n > 0 be an integer not
divisible by p. Then canonically H1

ét(X,µn) ' Pic(X)[n] and H2
ét(X,µn) ' Z/nZ.

Also, H0
ét(X,M) ' M for any finite abelian group M , H1

ét(X,Z/pZ) is finite, and
H2(X,Z/pZ) = 0. Finally, Hi

ét(X,Z/pZ) and Hi
ét(X,Z/nZ) vanish for i ≥ 3.

As alluded to above, the proof of the proposition relies on relating the étale
cohomology of finite constant sheaves to that of quasi-coherent sheaves. This is
where the Kummer and Artin-Schreier sequences enter.

3.1 Kummer and Artin-Schreier sequences

Now, let S be any k-scheme, where char(k) = p (we may have p = 0). For
this section, n denotes a positive integer not divisible by p. Then we have the
(commutative) S-group schemes Gm,S and Ga,S , representing U 7→ H0(U,O×U ) and
U 7→ H0(U,OU ), respectively. Also, we have the group homomorphisms Gm

xn−→ Gm

and Ga
tp−t−−−→ Ga. These have scheme-theoretic kernels µn and Fp, respectively. We

claim that, in fact, each homomorphism is surjective as a matter of étale sheaves:

Proposition 3.4. The Kummer sequence

1→ µn → Gm
xn−→ Gm → 1

is exact for the étale topology on S, and if p > 0 then so is the Artin–Schreier
sequence

0→ Fp → Ga
tp−t−−−→ Ga → 0.

Proof. The only part that remains to check is surjectivity. But we can check surjec-
tivity étale-locally. So, for the Kummer sequence, let U an étale S-scheme. We may
assume U = Spec A is affine, and consider a unit u ∈ A×. Then we’d like to show
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that u locally has an nth root. So consider A′ = A[T ]/(Tn−u). Because n is a unit
in k, Spec A′ is an étale cover of U (so it is also étale over S). By construction, u is
an nth power on Spec A′.

For the Artin-Schreier sequence (with p > 0), we apply the same general frame-
work. Thus, given b ∈ B, where Spec B → S is étale, we claim that b is étale-locally
of the form tp − t. Indeed, set B′ = B[T ]/(T p − T − b), and we see that Spec B′ is
an étale cover of Spec B (because char(k) = p).

In general, we can rewrite the constant sheaf Fp as Z/pZ, and the étale sheaf
Ga on S is just OSét

from the previous section. In particular, it has the form (OS)ét,
where OS is quasi-coherent on S. So we can immediately combine the long exact
sequence for Artin-Schreier with the previous section’s comparison theorem to get
our desired information about étale cohomology with Z/pZ-coefficients. We’d like to
do the same for the Kummer sequence and Z/nZ-coefficients, using that µn ' Z/nZ
upon choosing a primitive nth root of unity in the separably closed ground field k,
except for a serious problem: Gm isn’t a quasi-coherent sheaf.

Now we use our description of H1
ét(X,Gm) in terms of Čech cohomology; i.e.,

in terms of the Picard group of X. There’s a slight subtletly here: we know that
H1

ét(X,Gm) classifies étale Gm-torsors. We can view these as étale-locally trivial
OXét

-modules. And since OX is quasi-coherent (unlike Gm!), descent theory implies
that the classes of such torsors actually arise as Lét for conventional line bundles
L . So H1

ét(X,Gm) really is isomorphic to Pic(X). For degrees 2 and higher, our
foothold is Tsen’s theorem in Galois cohomology:

Theorem 3.5 (Tsen’s Theorem). Let K be a field of transcendence degree 1 over
an algebraically closed field k (i.e., the function field field of a smooth, connected
k-curve). Then the higher Galois cohomology vanishes: Hi(Ks/K,Gm) = 0, i > 0.

Strictly speaking, Tsen’s theorem is the case i = 2; the case i = 1 is, of course,
multiplicative Hilbert 90, and we can deduce i > 2 from these two by considerations
involving cohomological dimension (cf. Serre’s Galois Cohomology, Ch. II, §3, Prop.
5). A nice geometric proof of Tsen’s theorem is given in §5.2 of Chapter 4 in Part I
(by Danilov) of the book Algebraic Geometry II (volume 35 of the Encyclopedia of
Math series), the key point being that in an affine space AM

k any collection of < M
hypersurfaces has intersection with positive dimension (and hence at least 2 rational
points, since k = k) if the intersection is non-empty.

We finish by briefly indicating how to apply Tsen’s theorem (vanishing for the
cohomology of the generic point) to the cohomology of the curve itself. The following
argument is adapted from Lemma 5.2 in Ch. I of Freitag–Kiehl. We shall use Tsen’s
theorem to show that Hi

ét(X,Gm) = 0 for i ≥ 2, where X is the smooth projective
curve with function field K and j : η = Spec K → X the inclusion of the generic
point. To see this, we embed O×Xét

:= Gm,X inside j∗(Gm,η). This pushforward
coincides with the sheaf R×X of units in the sheaf of rational functions: its value
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on any étale X-scheme U is the group k(Uη)
× of global units on the scheme Uη of

generic points of U . The crucial geometric observation is that the cokernel R×X/O
×
Xét

coincides with the sheaf DX of “Weil divisors” on Xét, defined to be
⊕

x∈X0 x∗(Z)
with X0 the set of closed points of X.

Now consider the associated long exact cohomology sequence. Our goal is to
show that the higher cohomology of O×Xét

vanishes. The first key point is that the
higher cohomology of R×X vanishes. This comes down to Tsen’s theorem as follows.
Consider the Leray spectral sequence

En,m2 = Hn
ét(X,R

m(j∗)(Gm,η))⇒ Hn+m
ét (η,Gm,η).

The abutment vanishes when n + m > 0 by Tsen’s theorem, and En,02 is the co-
homology of R×X , so it suffices to prove the vanishing of En,m2 for all m > 0 (al-
lowing n = 0!). More specifically, we claim that the higher direct image sheaves
Rm(j∗)(Gm,η)) vanish for m > 0. The vanishing of the η-stalk is elementary (why?),
and at a geometric point x over a closed point x ∈ X it coincides with Hm(Ksh

x ,Gm)
where Ksh

x is the fraction field of the strict henselization of OX,x with respect to x
(check!). This vanishes for m > 0 by Tsen’s theorem.

It remains to show that the higher cohomology of DX also vanishes. But DX is
an (infinite) direct sum of pushforwards of the constant sheaf Z from the geometric
closed points x of X, and étale cohomology on a noetherian scheme commutes with
direct limits of sheaves (such as arbitrary direct sums). So it’s enough to see that
the higher cohomology of each one of these pushforwards x∗Z vanishes. But the
geometric point x is Spec of an algebraically closed field, so the higher cohomology
of the constant sheaf vanishes, implying the same for x∗Z since this is pushforward
under a finite map (even a closed immersion).
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