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We’ll start by discussing the classical Converse Theorem, which is discussed in [3, §4.3]. We’ll
only discuss the cusp form case, but [3] does the general modular form case. Eventually, we’ll want
to switch the perspective from modular forms to automorphic representations, which is far more
robust.

First, we need some notation. For N ≥ 1, χ : (Z/NZ)× → C×, k ≥ 1, and f ∈ Sk(N,χ) a
weight k cusp form on Γ1(N) with character χ. We think of χ as being a map χ : (Z/NZ)× =
Γ0(N)/Γ1(N) → C×, i.e. f is invariant for Γ1(N) and invariant up to χ on Γ0(N). The isomor-
phism between Γ0(N)/Γ1(N) and (Z/NZ)× is given by mapping

(
a b
c d

)
to a/d. We can write the

Fourier expansion of f as
∑

n≥1 anq
n with q = e2πiz and an = O(nk/2).

To talk about invariance properties of functions on the upper half-plane we will use the following
notation. Let g =

(
a b
c d

)
∈ GL2(R)+ and f a function on the upper half-plane. We define:

Definition 1.
(f |kg)(z) = (det g)k/2 (cz + d)−k f(g · z)

Here, g acts on H by fractional linear transformations.

Let WN =
(

0 −1
N 0

)
; then f |kWN =

(√
Nz
)−k

f
(−1
Nz

)
.

Define ΛN(s, f) =
(

2π√
N

)−s
Γ(s)L(s, f), with L(s, f) =

∑
n≥1

an
ns for Re(s) > k

2
+ 1 the

L-function of f . We can also write this as a variant on a Mellin transformation:

ΛN(s, f) =

ˆ ∞
0

f

(
it√
N

)
ts
dt

t

Then we have the fundamental theorem:

Theorem 2 (Hecke). (1) ΛN(s, f) is entire and bounded in vertical strips (we’ll abbreviate this
as “BVS”).

(2) ΛN(s, f) = ikΛN(k − s, f |kWN)

The proof of part (i) uses the Phragmén-Lindelöf theorem, and is reminiscent of Riemann’s
proof of analytic continuation of the zeta function via the functional equation.

Note that if N = 1, χ = 1, so f |kWN = f , and thus the second part of the theorem says that
Λ1(s, f) = ikΛ1(k − s, f). In this case, Hecke gives a converse: if f is a function given by a
Fourier series f =

∑
n anq

n with an = O(nα), then there is a criterion on L(s, f) which implies
that f ∈ Sk(1).

How do we generalize this converse beyond level 1? The first issue is that we have two possibly
different Dirichlet series coming from f and f |kWN , so there isn’t a clear L-function criterion to
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guess. However, we can remedy this by looking at more general L-functions by twisting by various
Dirichlet characters. Weil’s theorem will give a criterion for a Dirichlet series to be the L-series of a
modular form in terms of the analytic properties of the L-series as well as properties of a big family
of twists.

Weil was inspired by a stronger version of Hecke’s theorem, allowing these “twists”. Let
ψ : (Z/mZ)× → C× be a primitive Dirichlet character, meaning that it is not just the composition
of a character for a divisor d of m with the projection from (Z/mZ)× to (Z/dZ)× (non-primitive
characters may have L-series with extra zeros where n is coprime to d but not to m).

With f ∈ Sk(N,χ) still, we define:

fψ =
∑
n≥1

ψ(n)anq
n ∈ Sk(Nm2, χψ2)

Here, as usual, we extend ψ to a function on Z by setting it to 0 if gcd(n,m) 6= 1. The fact that
this is a cusp form with level Nm2 is not obvious and requires proof, which is covered in §4.3 of
Miyake’s book. In addition, we define:

ΛN(s, f, ψ) = ΛN(s, fψ) =

(
2π√
N

)−s
Γ(s)L(s, fψ)

with the L-function L(s, fψ) =
∑

n≥1
ψ(n)an
ns . Now, we have the stronger version of Hecke’s

theorem:

Theorem 3. If (m,N) = 1 then:

(1’) ΛN(s, f, ψ) is entire and BVS.

(2’) ΛN(s, f, ψ) = ikCψΛN(k − s, f |kWN , ψ)

Here, we define the constant Cψ by:

Cψ =
χ(m)ψ(N)

m
W (ψ)2, where W (ψ) =

∑
a∈(Z/mZ)×

ψ(a)e2πi
a
m

= χ(m)ψ(−N)
W (ψ)

W (ψ)

TheW ’s are just Gaußsums, and the identity above comes from the classical fact thatW (ψ)W (ψ) =
ψ(−1)m.

Now we can state Weil’s converse theorem:

Theorem 4 (Weil’s Converse Theorem). Consider f =
∑

n≥1 anq
n, g =

∑
n≥1 bnq

n where an, bn =

O(nα). Fix N ≥ 1, k ≥ 1, χ : (Z/NZ)× → C× such that χ(−1) = (−1)k (this last condition is
necessary for Sk(N,χ) to be non-zero). Then f ∈ Sk(N,χ) with g = f |kWN if:

(i) ΛN(s, f),ΛN(s, g) are entire, BVS, and ΛN(s, f) = ikΛN(k − s, g).
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(ii) For all primes p - N and primitive Dirichlet characters ψ : (Z/pZ)× → C×, conditions (1’)
and (2’) from the stronger version of Hecke’s theorem hold.

Miyake states a slightly more optimal version of this theorem where we can replace condition
(ii) by the analogous condition with a set of primes of positive density.

Weil’s proof is a lot of gritty group theory with SL2(Z), which is the sort of thing you read once
and never again. Good for Weil. We’ll study this theorem via representation theory.

Remark 5. If f =
∑

n anq
n ∈ Sk(N,χ) is nonzero then f is an eigenform for all Hecke operators

T (n) with n ≥ 1 if and only if a1 6= 0 and L(s, f) =
∑

n
an
ns is given by an Euler product:

L(s, f) = a1
∏
p

(
1− λpp−s + χ(p)pk−1−2s

)−1
Then, f |Tp = λpf for all primes p, and ap = λpa1.

Our major goal in this seminar will be to generalize the special case of Weil’s theorem where f
is a “new” eigenform to the setting of automorphic representations of GL2(Ak) for any global field
k (with Ak the adele ring of k). What does this mean? We’ll discuss a way to assign L-functions
to representation-theoretic data, and then we’ll show that if the L function satisfies a natural list
of necessary conditions, then in fact the original representation-theoretic data “comes from” an
automorphic representation.

Remark 6. Even in the case k = Q, we’ll prove a statement that is stronger than Weil’s theorem
because we’ll incorporate Maass forms.

How do we relate cusp forms to GL2(AQ)? First, there are various ways of stuffing Sk(N,χ)
into function spaces related to coset spaces for SL2b. In particular, we can define an injection
Sk(N,χ) ↪−→ L2

(
Γ1(N)\SL2(R)

)
cusp

by sending f to (φf : g 7→ (f |kg)(i)). The subscript
“cusp” is referring to a condition we’ll apply to elements of the Hilbert space to capture the idea
of vanishing at the cusps. Here, L2 is with respect to a Haar measure (and in this case, the left
and right Haar measures agree; if this is true for a group G, we say the group is unimodular). To
translate the Hecke operators to the L2-side, it is more convenient to use GL2 rather than SL2 and to
“adelize”. An advantage of evaluating at i is that the stabilizer in SL2(R) of i is SO(2), and the L2

inner product in the double coset space Γ1(N)\SL2(R)/SO(2) corresponds to the Petersson inner
product for cusp forms (given by an explicit integral on the upper half-plane).

Why should we expect “adelizing” to be useful? First off, we’ll see that the above coset
space Γ1(N)\SL2(R) is isomorphic to K1(N)\SL2(AQ)/SL2(Q), with K1(N) the compact open
subgroup K1(N) = {γ ∈ SL2(Ẑ) | γ ∼= ( 1 ∗

0 ∗ ) mod N}.
In order to relate these coset spaces, we need the strong approximation theorem:

Theorem 7 (Strong approximation theorem for SL2
1). If k is a global field, then for any finite

non-empty set of places S, SL2(k) ⊆ SL2(A
S
k ) is dense.

1Or, more generally, for any split simply connected semisimple group
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This is a corollary of the classical strong approximation theorem for Ga, which states that
k ⊆ AS

k is dense, using the fact that the upper and lower unipotent subgroups U± ' Ga generate
SL2. Then, using structure theory for semisimple groups, we can deduce the general case from the
SL2 case. In addition, we can remove the hypothesis that the group is split with more effort. See [1].

A special case of this is that SL2(Q) is dense inside SL2(Af ) (Af = A∞Q is the ring of finite
adeles). SL2(Ẑ) is a compact open subgroup of SL2(Af ), and it is a classical fact that SL2(Z) is
dense inside this.

Now, we can use this to show that we have a homeomorphism

Γ1(N)\SL2(R)
∼−→ K1(N)\

(
SL2(R)× SL2(Ẑ)

)
/SL2(Z)

with the SL2(Z) factor embedded diagonally. Note that Γ1(N) = SL2(Z) ∩K1(N). Additionally,
strong approximation over Q shows us that this is also equal to:

K1(N)\SL2

(
AQ = R×Af

)
/SL2(Q)

Later, we’ll see that Sk(N,χ) embeds into L2
(
GL2(Q)\GL2(AQ), χ̃

)
cusp

in a way such that
the Hecke theory on the left side will go over to the right regular representation of GL2(Af ) on the
L2 space. If Z is the maximal central torus of GL2, we’ll see that the L2 functions we’ll consider
are defined on GL2(Q)\GL2(AQ)/Z(A) up to multiplication by χ̃; this double coset space has
finite volume, so the analysis is well-behaved.

Our goal is to understand the irreducible Hilbert space representations π of GL2(AQ) that occur
inside this “cuspidal” part of the L2 space. This will be the representation-theoretic incarnation of
the “new” cuspidal eigenforms. All of this makes sense for more general reductive groups G over
global fields k.

The idea will be that we can decompose π into a “restricted tensor product” π = ⊗̂vπv. The
πv will be irreducible “admissible” Hilbert space representations of G(kv), and the “restricted”
condition will be that all but finitely many πv are “spherical”. In the GL1 case, this is like looking
at products of characters of k×v such that all but finitely many are unramified. In order to get an
idèle class character, we need this product to vanish on k×, and we’ll come up with an analogous
condition in general.

We’ll classify the πv (this is essentially functional analysis!), define L-functions and “ε-
factors” L(s, πv), ε(πv, s) for the local components, and define L(s, π) =

∏
v L(s, πv), ε(π, s) =∏

v ε(πv, s).
If π is “cuspidal automorphic”, meaning it can be embedded in the space L2

cusp discussed earlier,
then L(s, π) is entire, BVS, and L(s, π) = ε(s, π)L(1− s, π̌), where π̌ is the dual representation
(i.e. the “contragredient” representation on the dual vector space). We’ll also have a similar story
for L(s, ω ⊗ π) for ω : A×/k× → S1 an idèle class character. We can define these L-functions
for representations π which do not come from L2

cusp, so it makes sense to ask if the good analytic
properties of the L(s, ω ⊗ π) imply that π ⊆ L2

cusp. The answer, proved by Jacquet and Langlands,
is yes, and this is what we’ll show this year (for GL2).

One point to stress here is that even though we’re ultimately concerned with functions with very
nice properties, in order to prove anything serious, we need to make heavy use of functional-analytic
methods via the Hilbert space structure of L2

cusp. This isn’t algebra!
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Our “Step 0” will be to develop basic information about G(k)\G(A) for connected reductive
groups G over a global field k.

Aside: why do we care about converse theorems? A historically important example is the fact
that they convinced Weil and some of his contemporaries that the Shimura-Taniyama conjecture
had a good reason to be true. Everybody expected that L-functions of elliptic curves should have
analytic continuations and functional equations, and at least quadratic twists give other elliptic
curves, so this theorem is “evidence” that the L-functions of elliptic curves should be modular.
Knowing a converse theorem for general groups could be helpful in proving instances of Langlands
functoriality: in some cases, we could understand how the L-functions transform under functorial
constructions such as taking symmetric squares, and perhaps we could transfer the good analytic
properties through these transformations. Then, a converse theorem would show that an associated
construction on the automorphic side (done via the local Langlands correspondence) would still be
automorphic.

Remark 8. Even though we ultimately only care about GL2 over global fields, dealing with other
reductive groups will be helpful: often, we can only establish the properties we want for groups
over certain small-degree number fields, so we’ll need to take Weil restrictions of GL2 over a bigger
field.

For X an affine scheme of finite type over a global field k, we can topologize X(Ak) with the
locally compact subspace topology given from a closed immersion X ↪−→ Spec k[x1, . . . , xn].2

Fortunately, this does not depend on the choice of closed embedding into affine space, and is
functorial in X , so in particular it is a topological group when X is a k-group. In addition,
X(k) ⊆ X(Ak) is discrete (since we can reduce this statement to the case of affine space).

In particular, to get the usual topology on A×k , we use the closed embedding Gm ↪−→
Spec k[x, y] as t 7→ (t, t−1). This is NOT the subspace topology induced from Ak. Like-
wise, GLn(Ak) does not have the subspace topology induced from Matn(Ak). However, since
SLn ↪−→ Matn is a closed immersion, so SLn(Ak) does have the subspace topology from
Matn(Ak). This allows a “cheat” to give a stupid definition of the topology on GLn(Ak) by
the closed immersion GLn ↪−→ SL2n given by g 7→

(
g 0
0 g−1

)
.

Remark 9. We can also make good sense of X(Ak) for a separated finite type k-scheme X: see [2]

Exercise 10. Show that for a Borel k-subgroup B ⊂ PGL2, the injective continuous map

B(Ak)/B(k)→ PGL2(Ak)/PGL2(k)

is not a topological embedding.

Next time, we’ll discuss the solution to this exercise and how to fix the problem to get functorial
coset spaces.

2the typical notation An
k here is problematic...

5



References
[1] Brian Conrad, Strong Approximation in Algebraic Groups, http://math.stanford.edu/˜conrad/

248BPage/handouts/strongapprox.pdf. Handout from Math 248B: Modular Curves, taught Winter
2011 by Brian Conrad.

[2] , Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012), no. 1-2, 61–97.

[3] Toshitsune Miyake, Modular forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin. Translated
from the 1976 Japanese original by Yoshitaka Maeda.

6

http://math.stanford.edu/~conrad/248BPage/handouts/strongapprox.pdf
http://math.stanford.edu/~conrad/248BPage/handouts/strongapprox.pdf

