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We will consider a connected reductive group G over a global field L, with adele ring A = AL,
archimedean part A∞ =

∏
v|∞ Lv, and non-archimedean part A∞ =

∏′
v-∞ Lv. Let Z = Z(G) be

the center and fix some character χ : Z(L)\Z(A)→ C×.
Fix a choice of a maximal compact subgroup K∞ ⊆ G(A), and let Z(g∞) be the center of the

universal enveloping algebra c. Recall an automorphic form is a function f : G(A)→ C such that:

(i) f(γx) = f(x) for all γ ∈ G(L).

(ii) f(zx) = χ(z)f(x) for all z ∈ Z(A).

(iii) There exists an open compact subgroup K∞ ⊆ G(A∞) such that f(xg) = f(x) for all
g ∈ K∞.

(iv-1) For all x ∈ G(A∞), y ∈ G(A∞), the function f(xy) is smooth in x, and f is right Z(g∞)-
finite (i.e. dimC f · Z(g∞) is finite, where we have f · v(x) = d

dt
f(xetv) for v ∈ g∞ and etv

the exponential map g∞ → G(A∞)).

(iv-2) f is right K∞-finite (i.e. dimC f ·K∞ is finite).

(v) f is “slowly decreasing”.

Now, condition (iv-2) implies that f ·K∞ is a finite-dimensional complex representation of the
compact Lie group K∞ (one should check that this action is continuous in this finite-dimensional
case). We may decompose this representation as f · K∞ = ⊕ρ∈Irr(K∞)ρ

e(ρ) where this sum has
finitely many nonzero terms, and Irr(K∞) is the set of isomorphism classes of irreducible complex
representations of K∞. One may restrict to those f that only one isomorphism class of ρ appears
in the sum; such a projection is given by f 7→ (x 7→ 1

|K∞|

´
K∞

f(xk)π̄ρ(k)dk), where π̄ρ(k) is
the complex conjugate of the character of ρ. Likewise, f · Z(g∞) ' Z(g∞)/J for some ideal
J / Z(g∞) ' C[t1, . . . , tn] has finite codimension.

We write A (G,K∞, ρ, J) for the space of such f which are right invariant by K∞, live in the
ρ-isotypic component, and are (right)-annihilated by J . Likewise, we write A0(G,K

∞, ρ, J) for
the cuspidal ones.

Now, we have the following big theorems:

Theorem 1 (Harish-Chandra). When L is a number field, dimC A (G,K∞, ρ, J) <∞.

Theorem 2 (Harder). When L is a global function field, dimC A0(G,K
∞) <∞.

Example 3. Let L = Q, G = GL2, χ = 1, K∞ = O2(R), K∞ = K0(N) := {
(
a b
c d

)
∈ GL2(Ẑ) |

c ≡ 0 mod N}. Fix a weight k ≥ 1, and let ρ(r(θ)) = e−ikθ, ρ
((

1 0
0 −1

))
= id, where r(θ)

parametrizes SO2(R) ' S1. Finally, let J = (∆− (−k
2
(k
2
− 1))), where ∆ is the Casimir operator

in Z(g∞) ' C[∆, ( 1 0
0 1 )].

Then A (G,K∞, ρ, J) ' Mk(Γ0(N)) and A0(G,K
∞, ρ, J) ' Sk(Γ0(N)), as we saw in the

lectures on the relationship of the classical theory to the adelic theory.
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We may write A (G) (resp. A0(G)) to be the union of A (G,K∞, ρ, J) (resp. A0(G,K
∞, ρ, J))

over all possible choices of K∞, ρ, J : these are respectively the spaces of automorphic forms and
cusp forms.

Recall the following definition:

Definition 4. A (g∞, K∞)-module is a C-vector space with an action of U(g∞) and K∞ with
compatibilities:

(i) The K∞-action is smooth and can be differentiated to the U(Lie K∞)-action, when we regard
this as a subspace of U(g∞).

(ii) Exchanging the K∞ and g∞ action amounts to the adjoint action of K∞ on g∞.

This allows us to define:

Definition 5. An admissible representation π of G(A) is a representation of G(A∞) which is
simultaneously a (g∞, K∞)-module such that the finite-dimensionality holds: i.e. the subspace
πK

∞,(ρ,J) consisting of the right K∞-invariant (ρ, J)-isotypic vectors is finite-dimensional for all
K∞, ρ, J as above, and π = ∪πK∞,(ρ,J).

Remark 6. Note that this isn’t actually a representation of G(A).

We’ve seen via Theorems 1 and 2 that the spaces A (G) over a number field and A0(G) over
any global field are admissible representations. We remark that when L is a number field, A (G) is
not a representation of G(A) unless G(A∞) is compact, for the K∞-finite condition cannot hope to
be preserved under a reasonable G(A∞)-action.

Now we have the following big theorem which allows us to reduce certain questions about
adelic representations to their local versions.

Theorem 7 (Flath). An irreducible admissible representation of G(A) can be written as π ' ⊗′vπv
for unique (up to isomorphism) irreducible admissible representations πv of G(Lv).

We still need to say what the right hand side of this theorem means. To do this, first fix a
non-archimedean local field F . We define:

Definition 8. Let π be a representation of G(F ). For any compact open subgroup K, write πK for
the K-fixed vectors in π. We say:

(1) π is smooth if π = ∪KπK where K ranges over the set of compact open subgroups of G(F ).

(2) π is admissible if it is smooth and if dimC π
K is finite for all such K.

Remark 9. Note that if π is any representation of G(F ), we may form a sub-representation
πsmooth = ∪KπK , and this is a smooth representation of G(F ).

Theorem 10. 1 An irreducible smooth (finite-length) representation is admissible.

1This theorem is likely due to Bernstein, but Cheng-Chiang is not sure.
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We won’t prove this theorem (and hopefully we won’t need to use it) in this seminar, but
references can be found in [1] and (at least in the GL2 case) [3, §10]. The proof is difficult and
involves an analysis of the ‘supercuspidal’ representations, which we will discuss later.

Now, let us fix a Haar measure µ on G(F ). For any K ⊆ G(F ) an open compact subgroup, we
define:

H(G(F ), K) = {f ∈ Cc(G(F )) | f(g1xg2) = f(x) ∀g1, g2 ∈ K}

Here, Cc(G(F )) is the space of compactly supported functions on G(F ). Convolution makes this
into an algebra with unit eK = µ(K)−11K (where 1 denotes the characteristic function).

Now, for all f ∈ H(G(F ), K), we may write f =
∑

i∈I ci1giK for a finite set I , ci ∈ C,
gi ∈ G(F ). If v ∈ π, by smoothness there is some K1 such that v ∈ πK1 , so by shrinking K if
necessary (noting thatH(G(F ), K) ↪−→ H(G(F ), K ′) for any K ′ ⊆ K), we may define:

f · v =
1

µ(K)

∑
i∈I

ciπ(gi) · v =

ˆ
g∈G(F )

f(g)π(g) · v dµ(g)

Now, if K1 ⊆ K2, the natural inclusionH(G(F ), K2) ↪−→ H(G(F ), K1) is not a map of alge-
bras, because it does not send the unit eK2 to eK1 . However, eK2 is an idempotent inH(G(F ), K1).

This allows us to define:

Definition 11. The full Hecke algebra of G(F ) is the algebra of compactly supported smooth
functions, which we may write as: H(G(F )) = C∞c (G(F )) = ∪KH(G(F ), K).

Note that this is not actually a (unital) algebra, because the inclusions in the above union do
not preserve the units. Regardless, if π is a smooth representation, π = ∪πK , so π is naturally a
H(G(F ))-module. Furthermore, if eK is the idempotent corresponding to K (i.e. the image of the
unit eK ∈ H(G(F ), K) under the inclusion intoH(G(F ))), we have eK · π = πK .

Definition 12. A H(G(F ))-module V is smooth if V = ∪K eK · V where K ranges over the
compact open subgroups of G(F ).

Lemma 13. There is a natural equivalence of categories between smooth representations of G(F )
and smoothH(G(F ))-modules.

We described one side of this equivalence, i.e. the action ofH(G(F )) on any G(F )-module π.
Conversely, if one begin with a smooth H(G(F ))-module, one may define π(g)v := 1

µ(K)
1gK · v

for some small enough compact open subgroup K.

Lemma 14. Let V be an irreducible smooth H(G(F ))-module, and suppose that for some K,
V K := eK · V 6= 0. Then V K is an irreducibleH(G(F ), K)-module.

Proof. We haveH(G(F ), K) = eK ∗ H(G(F )) ∗ eK , i.e. any function may be made left and right
K-invariant by convolution on both sides by eK , so we see easily that V K is aH(G(F ), K)-module.

If W ⊆ V K is a non-trivial proper H(G(F ), K)-submodule, then H(G(F )) · W is a non-
trivial properH(G(F ))-submodule of V : as W ⊆ V K , we haveH(G(F )) ·W = H(G(F ))eKW .
Now eKeKw = eKw = w ∈ H(G(F )) · W for any nonzero w, so this is nonzero. If we had
V = H(G(F )) ·W = H(G(F )) · eK ·W , we would have V K = eKV = eKH(G(F ))ek ·W =
H(G(F ), K)W = W , contrary to hypothesis.
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Lemma 15. The isomorphism type of V K as aH(G(F ), K)-module determines the isomorphism
type of V as aH(G(F ))-module.

Proof. Assume that V1, V2 are irreducible smooth H(G)-modules with V K
1 , V K

2 non-trivial such
that we have an isomorphism φ : V K

1 → V K
2 ofH(G(F ), K)-modules. Fix any non-zero w ∈ V K

1 .
As V1 is irreducible, V1 = H(G) · w. Thus, we may try to extend φ by setting φ(f · w) = f · φ(w).
In order to show that this is an isomorphism, it suffices to show that it is well-defined (since both
Vi are irreducible and φ(w) 6= 0). It suffices to show that if f · w = 0, then f · φ(w) = 0 for
any f ∈ H(G). Suppose that f · w = 0. Then since w ∈ V K , for any f ′ ∈ H(G), we have
(eK ∗ f ′ ∗ f) ·w = (eK ∗ f ′ ∗ f ∗ eK) ·w = 0. But eK ∗ f ′ ∗ f ∗ eK ∈ H(G,K), so by assumption
we have:

0 = φ
(
(eK ∗ f ′ ∗ f ∗ eK) · w

)
= (eK ∗ f ′ ∗ f ∗ eK) · φ(w) = (eK ∗ f ′) · (f · φ(w))

Thus, letting v = f · φ(w) ∈ V2, we see that v is annihilated by (eK ∗ f ′) for any f ′ ∈ H(G).
However, since V2 is irreducible, if v 6= 0, V2 = H(G) · v, so letting w′ be a non-trivial vector in
V K
2 , there is some f ′ ∈ H(G) such that f ′ · v = w′. But then we have

0 = (eK ∗ f ′) · v = eK · (f ′ · v) = eK · w′ = w′ 6= 0

This is the desired contradiction.

Lemma 16 (Schur’s Lemma). Suppose V is an irreducible smoothH(G(F ))-module and φ : V →
V is aH(G(F ))-morphism. Then φ is a scalar.

Proof. By irreducibility of V , EndH(G(F ))(V ) is a division algebra (any nonzero endomorphism
has a kernel which is a proper invariant subspace and therefore zero, and image which is a nonzero
invariant subspace and therefore all of V ). Since C is algebraically closed, any division algebra
strictly containing C contains the field C(x), and therefore has countable dimension. Now, suppose
φ is not a scalar. Then the sub-division algebra C(φ) generated by φ in EndH(G(F ))(V ) is larger than
C and therefore we must have C(φ) ' C(x) by the above argument. Now, note that dimCH(G) is
countable because the topology of G(F ) is separable, i.e. there is a countable base of open sets, and
we’ve seen thatH(G(F ), K) is finite-dimensional for any compact open subgroup K. Thus (since
V = H(G) · v for any non-zero v ∈ V ), dimC V is countable. Therefore, dimC EndH(G(F ))(V ) is
countable as well, so it cannot contain C(x).

Suppose G is a connected reductive group scheme over OF , and let K = G (OF ). This is
a compact subgroup, which is in fact maximal2. We call H(G(F ), K) = H(G(F ),G (OF )) the
spherical Hecke algebra (with respect to the choice of integral structure G ).

Lemma 17. The spherical Hecke algebraH(G(F ), K) with K = G (OF ) is commutative.

Proof. We’ll just give a proof in the case that G = GLn. (See Remark 18 below for general groups.)
Fix a choice of uniformizer $F ∈ F . Then we have a set of representatives of K\G(F )/K given

2This uses some Bruhat-Tits theory, and Cheng-Chiang is not aware of a good reference without introducing
Bruhat-Tits theory first.
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by:

β =




$a1
F

$a2
F

. . .

$an
F

 | a1 ≥ a2 ≥ · · · ≥ an ∈ Z


This fact is essentially just the existence of Smith normal form, i.e. via the structure theory of
modules over a PID.

Thus, we have a C-basis forH(G(F ), K) given by the functions {1KgK , g ∈ β}. Now, consider
ι : GLn(F )→ GLn(f) given by ι(g) = tg. Then we have:

• ι(g1g2) = ι(g2)ι(g1), i.e. ι is an (anti)-involution. 3

• ι(K) = K.

• ι(g) = g for any g ∈ β.

This shows that ι induces an anti-involution onH(G(F ), K) which acts trivially on the functions
1KgK for g ∈ β, so therefore it acts trivially onH(G(F ), K). Since this trivial map interchanges
the order of multiplication onH(G(F ), K), this algebra must be commutative.

Remark 18. In general for G a reductive group scheme over OF , the transpose should be replaced
by an automorphism of the group G that stabilizes the centralizer T of a fixed maximal split torus
(T is then a maximal torus, as G is quasi-split.), and acts as t 7→ t−1 on that torus. The required
automorphism of T stabilizes the set of roots, and one lifts toG in a way that stabilizesK := G(OF ).
When G has no factor of type A, D and E6, this automorphism is given by the longest element of
the Weyl group.

For general group G, see [4, Theorem 4.1]

Now, we define:

Definition 19. We say that an irreducible admissible representation is unramified if πG (OF ) 6= 0.

This gives a corollary to Lemma 17.

Corollary 20. If π is an irreducible admissible representation which is moreover unramified, πG (OF )

is a nonzero irreducibleH(G(F ),G (OF ))-module with finite C-dimension and thus dimC π
G (OF ) =

1.

Now, we return to the global setting. Let G be a connected reductive group over the global field
L. Suppose we have, for each non-archimedean place v an irreducible admissible representation
πv. In addition, suppose that for each archimedean place v, we have an irreducible smooth
(Lie(G(Lv)), Kv)-module πv, where Kv ⊆ G(Lv) is some maximal compact subgroup. Now
choose any model G over OL.4 For almost all v, G is reductive over OLv . Suppose further that for
almost all such v, πv is unramified with respect to G (OLv).

3An “involution” of an associative algebra is defined to be a linear map squaring to the identity which interchanges
the order of multiplication, so the prefix ’anti’ is unnecessary.

4we also have to fix a choice of OL when L is a function field
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Remark 21. The above condition on π is independent of the choices of G and OL (any two different
choices are isomorphic over almost all places).

Now, we may define:

Definition 22. Given a family πv of irreducible admissible representations which are unramified at
almost all places (in the sense described above), we “define” the restricted tensor product:

⊗
v

′πv =
⋃

|S|<∞,S0⊆S

⊗
v∈S

πv

⊗
⊗

v 6∈S

πG (OLv )
v


Here, S0 is the set of ’bad’ places: i.e. all archimedean places, all places v such that G is non-
reductive over OLv , and all places where πv is ramified with respect to G (OLv).

To make sense of this definition, note that the factors on the right-hand side are all one-
dimensional by Corollary 20, so their tensor product “does nothing”. More precisely, ⊗′vπv is really
an inverse limit:

⊗′vπv = lim−→
S

S0⊆S
|S|<∞

⊗v∈Sπv

The transition maps in this direct system are specified as follows: if S ′ = S t T , we regard
⊗v∈Sπv as (⊗v∈Sπv) ⊗

(
⊗v∈Tπ

G (OLv )
v

)
⊆ (⊗v∈Sπv) ⊗ (⊗v∈Tπv). We need to make choices of

identifications, for each v 6∈ S0, of πG (OLv )
v with C at the outset, but the representations obtained by

two different such choices differ by a unique isomorphism.

Now, we will prove Theorem 7, Flath’s Theorem:

Theorem 23. Let G be a connected reductive group over a global field L. Let π be any irreducible
admissible representation of G(A). Then we have:

π '
⊗
v

′πv

where πv are irreducible admissible representations of G(Lv) such that with respect to any choice
of model G over OL, all but finitely many πv are unramified.

Proof. (Step 1): First, we will pretend that there are only two places v1, v2, both of which are
non-archimedean. We want to show that an irreducible admissible representation π of
G(F1) × G(F2) (here, Fi := Fvi) is of the form π ' π1 ⊗ π2 where πi is an irreducible
admissible representation of G(Fi).

Now, by admissibility, we have π = ∪K1,K2π
K1×K2 , where each πK1×K2 is a finite C-

dimensional module overH := H(G(F1)×G(F2), K1 ×K2). This algebraH decomposes
asH ' H1 ⊗H2, withHi = H(G(Fi), Ki). We may apply a result from the theory of finite-
dimensional representations of unital algebras. This implies that any irreducibleH-module V
of finite dimension over C is always a tensor product V ' V1⊗ V2, where Vi is an irreducible
Hi-module which is unique up to isomorphism. This is proved in [2, 3.4.1].
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Therefore, by the equivalence of categories in Lemma 13, theHi-modules Vi correspond to
irreducible admissible representations π(Ki) of G(Fi) which are fixed by Ki, and we have
πK1×K2 ' π(K1) ⊗ π(K2)

2 as G(F1)×G(F2)-modules.

One may shrinkK1, K2 toK ′1 ⊆ K2, K
′
2 ⊆ K2 and apply the same argument to get inclusions

π(Ki) ↪−→ π
(K′

i)
i and an isomorphism πK

′
1×K′

2 ' π(K′
1) ⊗ π(K2)′ which is compatible with

these inclusions. Passing to the unions, we get π = ∪K1,K2π
K1×K2 ' (∪K1π

K1
1 )⊗ (∪K2π

K2
2 ),

which is the desired result.

(Step 2): Now, we can extend the first step to any finite number of finite places. To include also
the archimedean places, suppose v is an archimedean place. Write gv := LieG(Lv). An
admissible representation ofG(Lv) is a (gv, Kv)-module π such that the space of v ∈ π which
are (ρ, J)-isotypic has finite dimension over C for any choice of ρ ∈ Irr(Kv), J ⊆ Z(gv)
where J has finite C-codimension. Let AKv be the algebra of finite measures on K. The
Hecke algebra this time isH(gv, Kv) := U(gv)⊗AK . The (ρ, J)-isotypic subspace of π can
be realized as the image of an idempotent operator in, which then plays the role analogous to
that of eK before so that Step 1 continues to apply.

(Step 3): For the given π, for all w ∈ π, there exists a finite set of places S such that w is fixed
by G(OLv) for all v 6∈ S. The space πS consisting of such w is an irreducible admissible
representation of

∏
v∈S G(Lv). Here the irreducibility follows from that of π using the same

argument as in Lemma 14. We may apply the previous steps to show πS = ⊕v∈Sπv.

(Step 4): We have π = ∪SπS . Thus, it suffices to check that the construction of the πv is compatible
with change in S.
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