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We will consider a connected reductive group G over a global field L, with adele ring A = A,
archimedean part Ao = [[,,, Lv, and non-archimedean part A> = H;J(OO L, LetZ =Z(G) be
the center and fix some character y: Z(L)\Z(A) — C*.

Fix a choice of a maximal compact subgroup K., C G(A), and let Z(g.,) be the center of the
universal enveloping algebra c. Recall an automorphic form is a function f: G(A) — C such that:

(i) f(yz) = f(z) forall y € G(L).
(i) f(zx) = x(2)f(x)forall z € Z(A).
(iii) There exists an open compact subgroup K> C G(A) such that f(xg) = f(x) for all

g€ K.
(iv-1) Forallz € G(A),y € G(A>), the function f(zy) is smooth in =, and f is right Z(g.)-
finite (i.e. dime f - Z(go) is finite, where we have f - v(z) = 4 f(xe™) for v € g, and €™

the exponential map g, — G(A)).
(iv-2) fisright K -finite (i.e. dim¢ f - K is finite).
(v) fis “slowly decreasing”.

Now, condition (iv-2) implies that f - K, is a finite-dimensional complex representation of the
compact Lie group K, (one should check that this action is continuous in this finite-dimensional
case). We may decompose this representation as f - Koo = @perrr(K.0) pe(p) where this sum has
finitely many nonzero terms, and Irr(K ) is the set of isomorphism classes of irreducible complex
representations of K. One may restrict to those f that only one isomorphism class of p appears
in the sum; such a projection is given by f — (z +— @ [ [(@k)T,(k)dk), where 7,(k) is
the complex conjugate of the character of p. Likewise, [+ Z(go) =~ Z(goo)/J for some ideal
J<1Z(goo) >~ Clt1,. .., t,] has finite codimension.

We write o7 (G, K>, p, J) for the space of such f which are right invariant by K°°, live in the
p-isotypic component, and are (right)-annihilated by J. Likewise, we write <% (G, K, p, J) for
the cuspidal ones.

Now, we have the following big theorems:

Theorem 1 (Harish-Chandra). When L is a number field, dim¢ &7 (G, K*, p, J) < oc.
Theorem 2 (Harder). When L is a global function field, dim¢ 2% (G, K*°) < oc.

Example 3. Let L = Q, G = GLy, x = 1, Koo = 02(R), K> = Ko(N) :={(24) € GLy(Z) |
¢ = 0 mod N}. Fix a weight k& > 1, and let p(r(f)) = e_ik(’,p<(é ,01)> = id, where r(0)

parametrizes SO2(R) ~ S*. Finally, let J = (A — (—%(% — 1))), where A is the Casimir operator
in Z(g.0) = C[A, (19)].

Then o/ (G, K>, p, J) ~ M(I'¢(N)) and o4 (G, K>, p, J) ~ Si(I'o(N)), as we saw in the
lectures on the relationship of the classical theory to the adelic theory.
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We may write &7 (G) (resp. 2% (G)) to be the union of .o/ (G, K>, p, J) (resp. (G, K>, p, J))
over all possible choices of K>, p, J: these are respectively the spaces of automorphic forms and
cusp forms.

Recall the following definition:

Definition 4. A (g, K )-module is a C-vector space with an action of U(g.,) and K, with
compatibilities:

(i) The K-action is smooth and can be differentiated to the U (Lie K, )-action, when we regard
this as a subspace of U(g)-

(i1) Exchanging the K, and g, action amounts to the adjoint action of K, on g..
This allows us to define:

Definition 5. An admissible representation 7 of G(A) is a representation of G(A) which is
simultaneously a (g.., K« )-module such that the finite-dimensionality holds: i.e. the subspace
7l%:(07) consisting of the right K>-invariant (p, .J)-isotypic vectors is finite-dimensional for all
K, p,J as above, and 7 = UrX™ (),

Remark 6. Note that this isn’t actually a representation of G(A).

We’ve seen via Theorems 1) and [2| that the spaces .7 (G) over a number field and .27 (G) over
any global field are admissible representations. We remark that when L is a number field, <7 (G) is
not a representation of G(A) unless G(A,) is compact, for the K .-finite condition cannot hope to
be preserved under a reasonable G(A ,)-action.

Now we have the following big theorem which allows us to reduce certain questions about
adelic representations to their local versions.

Theorem 7 (Flath). An irreducible admissible representation of G(A) can be written as 7 ~ ®/ 7,
for unique (up to isomorphism) irreducible admissible representations 7, of G(L,).

We still need to say what the right hand side of this theorem means. To do this, first fix a
non-archimedean local field F'. We define:

Definition 8. Let 7 be a representation of G(F). For any compact open subgroup K, write 7€ for
the K'-fixed vectors in . We say:

(1) 7 is smooth if m = Ugn™ where K ranges over the set of compact open subgroups of G(F).
(2) 7 is admissible if it is smooth and if dimc 7 is finite for all such K.

Remark 9. Note that if 7 is any representation of G(F'), we may form a sub-representation
Temooth = Ux X, and this is a smooth representation of G'(F).

Theorem 10. E]An irreducible smooth (finite-length) representation is admissible.

I'This theorem is likely due to Bernstein, but Cheng-Chiang is not sure.



We won’t prove this theorem (and hopefully we won’t need to use it) in this seminar, but
references can be found in [1]] and (at least in the GL; case) [3, §10]. The proof is difficult and
involves an analysis of the ‘supercuspidal’ representations, which we will discuss later.

Now, let us fix a Haar measure p on G(F'). For any K C G(F') an open compact subgroup, we
define:

H(G(F), K) = {f € Co(G(F)) | f(g192) = f(x) Vg1, 92 € K}

Here, C.(G(F)) is the space of compactly supported functions on G(F'). Convolution makes this
into an algebra with unit exr = (K )11 (where 1 denotes the characteristic function).

Now, for all f € H(G(F), K), we may write f = > ., c;1,,x for a finite set I, ¢; € C,
g; € G(F). If v € 7, by smoothness there is some K such that v € 751, so by shrinking K if
necessary (noting that H(G(F), K) — H(G(F), K') for any K’ C K), we may define:

1
fro= g (o) v = / R OLURTI0
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Now, if K7 C Kj, the natural inclusion H(G(F'), K3) — H(G(F'), K) is not a map of alge-
bras, because it does not send the unit e, to ex,. However, ey, is an idempotent in H(G(F), K7).
This allows us to define:

Definition 11. The full Hecke algebra of G(F') is the algebra of compactly supported smooth
functions, which we may write as: H(G(F)) = C°(G(F)) = Uk H(G(F), K).

Note that this is not actually a (unital) algebra, because the inclusions in the above union do
not preserve the units. Regardless, if 7 is a smooth representation, 7 = U, so 7 is naturally a
H(G(F'))-module. Furthermore, if e is the idempotent corresponding to K (i.e. the image of the
unit e € H(G(F), K) under the inclusion into H(G(F))), we have ey - m = 7&.

Definition 12. A 7 (G(F'))-module V is smooth if V' = Uk ex - V where K ranges over the
compact open subgroups of G(F').

Lemma 13. There is a natural equivalence of categories between smooth representations of G (F')
and smooth #H(G(F'))-modules.

We described one side of this equivalence, i.e. the action of H(G(F)) on any G(F')-module 7.
Conversely, if one begin with a smooth # (G (F))-module, one may define 7(g)v := =15 - v

(K)
for some small enough compact open subgroup K. :

Lemma 14. Let V' be an irreducible smooth (G (F"))-module, and suppose that for some K,
VE =€y -V #0. Then V¥ is an irreducible #(G(F), K)-module.

Proof. We have H(G(F), K) = ex * H(G(F)) * ek, i.e. any function may be made left and right
K-invariant by convolution on both sides by e, so we see easily that V% is a H(G(F), K )-module.

If W C V¥ is a non-trivial proper H(G(F), K)-submodule, then H(G(F)) - W is a non-
trivial proper H(G(F))-submodule of V: as W C V&, we have H(G(F)) - W = H(G(F))exW.
Now exexw = exw = w € H(G(F)) - W for any nonzero w, so this is nonzero. If we had
V =H(G(F)) - W = H(G(F)) - e - W, we would have VE = eV = exH(G(F))ey, - W =
H(G(F), K)W = W, contrary to hypothesis. O



Lemma 15. The isomorphism type of V¥ as a #(G(F), K')-module determines the isomorphism
type of V' as a H(G(F))-module.

Proof. Assume that Vi, V; are irreducible smooth H(G)-modules with V%V, non-trivial such
that we have an isomorphism ¢: VX — VX of H(G(F'), K)-modules. Fix any non-zero w € Vi¥.
As V] is irreducible, V; = H(G) - w. Thus, we may try to extend ¢ by setting ¢(f - w) = f - p(w).
In order to show that this is an isomorphism, it suffices to show that it is well-defined (since both
V; are irreducible and ¢(w) # 0). It suffices to show that if f - w = 0, then f - ¢(w) = 0 for
any f € H(G). Suppose that f - w = 0. Then since w € VX, for any f’ € H(G), we have
(exx f'xf)-w=(ex* f'* fxerg) w=0.Buteg * f x f xex € H(G, K), so by assumption
we have:

0=0((ex * f'* [ xex) - w) = (ex * f'* fxex) - p(w) = (ex * [') - (f - p(w))

Thus, letting v = f - ¢(w) € Vs, we see that v is annihilated by (ex * f') for any ' € H(G).
However, since V5 is irreducible, if v # 0, Vo = H(G) - v, so letting w’ be a non-trivial vector in
VX, there is some f’ € H(G) such that f' - v = w’. But then we have

O=(ex*xf)v=ex-(f-v)=ex-w =w #0
This is the desired contradiction. O]

Lemma 16 (Schur’s Lemma). Suppose V' is an irreducible smooth H(G(F'))-module and ¢: V' —
V is a H(G(F'))-morphism. Then ¢ is a scalar.

Proof. By irreducibility of V', Endyr)) (V') is a division algebra (any nonzero endomorphism
has a kernel which is a proper invariant subspace and therefore zero, and image which is a nonzero
invariant subspace and therefore all of V'). Since C is algebraically closed, any division algebra
strictly containing C contains the field C(x), and therefore has countable dimension. Now, suppose
¢ is not a scalar. Then the sub-division algebra C(¢) generated by ¢ in Endy(r)) (V') is larger than
C and therefore we must have C(¢) ~ C(x) by the above argument. Now, note that dimc H(G) is
countable because the topology of G(F') is separable, i.e. there is a countable base of open sets, and
we’ve seen that H(G(F), K) is finite-dimensional for any compact open subgroup K. Thus (since
V = H(G) - v for any non-zero v € V), dimc V is countable. Therefore, dimc Endy g ry) (V) is
countable as well, so it cannot contain C(x). [l

Suppose ¢ is a connected reductive group scheme over O, and let K = ¢(0F). This is
a compact subgroup, which is in fact maximalP} We call H(G(F), K) = H(G(F),¥9(0F)) the
spherical Hecke algebra (with respect to the choice of integral structure €).

Lemma 17. The spherical Hecke algebra #(G(F'), K) with K = ¢ (0F) is commutative.

Proof. We’ll just give a proof in the case that G = GL,,. (See Remark 18| below for general groups.)
Fix a choice of uniformizer wr € F. Then we have a set of representatives of K\G(F')/K given

2This uses some Bruhat-Tits theory, and Cheng-Chiang is not aware of a good reference without introducing
Bruhat-Tits theory first.



8= , a1 >ay > >a, €Z

This fact is essentially just the existence of Smith normal form, i.e. via the structure theory of
modules over a PID.

Thus, we have a C-basis for H(G(F'), K) given by the functions {1x,x, g € 8}. Now, consider
1 GL,(F) — GL,(f) given by ¢(g) = *g. Then we have:

o 1(g192) = t(g2)t(qn), i-e. ¢ is an (anti)-involution. ]
o oK)=
e ((g) =gforany g € [5.
This shows that ¢ induces an anti-involution on H(G(F"), K') which acts trivially on the functions

1 kqx for g € 3, so therefore it acts trivially on H(G(F'), K'). Since this trivial map interchanges
the order of multiplication on H(G(F'), K), this algebra must be commutative. O

Remark 18. In general for G a reductive group scheme over O, the transpose should be replaced
by an automorphism of the group G that stabilizes the centralizer T" of a fixed maximal split torus
(T is then a maximal torus, as G is quasi-split.), and acts as ¢ — ¢~! on that torus. The required
automorphism of 7 stabilizes the set of roots, and one lifts to G in a way that stabilizes K := G(OFp).
When G has no factor of type A, D and Eg, this automorphism is given by the longest element of
the Weyl group.

For general group G, see [4, Theorem 4.1]

Now, we define:
Definition 19. We say that an irreducible admissible representation is unramified if ©(7r) = 0.
This gives a corollary to Lemma

Corollary 20. If 7 is an irreducible admissible representation which is moreover unramified, 7%(“r)
is a nonzero irreducible (G (F), ¥ (0r))-module with finite C-dimension and thus dim¢ Wg(ﬁF ) =
1.

Now, we return to the global setting. Let GG be a connected reductive group over the global field
L. Suppose we have, for each non-archimedean place v an irreducible admissible representation
m,. In addition, suppose that for each archimedean place v, we have an irreducible smooth
(Lie(G(Ly)), K,)-module 7,, where K, C G(L,) is some maximal compact subgroup. Now
choose any model ¢ over & L For almost all v, G is reductive over &, . Suppose further that for
almost all such v, 7, is unramified with respect to (07, ).

3 An “involution” of an associative algebra is defined to be a linear map squaring to the identity which interchanges
the order of multiplication, so the prefix ’anti’ is unnecessary.
4we also have to fix a choice of &7, when L is a function field



Remark 21. The above condition on 7 is independent of the choices of ¢ and &, (any two different
choices are isomorphic over almost all places).

Now, we may define:

Definition 22. Given a family 7, of irreducible admissible representations which are unramified at
almost all places (in the sense described above), we “define” the restricted tensor product:

Q7= U (®n]e (@

|S|<0,50CS \ vES vgS

Here, ) is the set of bad’ places: i.e. all archimedean places, all places v such that ¢ is non-
reductive over 0, , and all places where 7, is ramified with respect to 4 (0,).

To make sense of this definition, note that the factors on the right-hand side are all one-
dimensional by Corollary 20 so their tensor product “does nothing”. More precisely, ®/ , is really
an inverse limit:

®;,7TU = héﬂ RuesTy
S

SpCS

|S|<oo
The transition maps in this direct system are specified as follows: if S" = S U T, we regard
RpesTy 88 (RpesTy) @ (®U€T7rf(m“)> C (RpesTy) ® (Rpermy). We need to make choices of

identifications, for each v & S, of wy (1) with C at the outset, but the representations obtained by
two different such choices differ by a unique isomorphism.

Now, we will prove Theorem Flath’s Theorem:

Theorem 23. Let G be a connected reductive group over a global field L. Let 7 be any irreducible
admissible representation of G(A). Then we have:

/
=@
v

where 7, are irreducible admissible representations of GG(L, ) such that with respect to any choice
of model ¢ over ¢, all but finitely many 7, are unramified.

Proof. (Step 1): First, we will pretend that there are only two places vy, v9, both of which are
non-archimedean. We want to show that an irreducible admissible representation 7 of
G(F)) x G(F) (here, F; := F,)) is of the form m ~ m; ® 7, where 7; is an irreducible
admissible representation of G'/(F;).

Now, by admissibility, we have 7 = Uy, x, 71 *X2 where each 7%1*52 ig a finite C-
dimensional module over H := H(G(F,) x G(F3), K1 x K3). This algebra 7 decomposes
as H ~ Hi ® Ho, with H; = H(G(F}), K;). We may apply a result from the theory of finite-
dimensional representations of unital algebras. This implies that any irreducible H-module V'
of finite dimension over C is always a tensor product V' ~ V; ® V5, where V; is an irreducible
‘H;-module which is unique up to isomorphism. This is proved in [2, 3.4.1].



Therefore, by the equivalence of categories in Lemma[[3] the 7{;-modules V; correspond to
irreducible admissible representations 7%} of G/(F;) which are fixed by K;, and we have
T Ke (K1) @ 72l82) 46 G(Fy) x G(Fy)-modules.

One may shrink K7, Ky to K] C Ko, K} C K5 and apply the same argument to get inclusions
) WZ(K;) and an isomorphism 751*%2 ~ 7(K1) @ 7(K2)" which is compatible with
these inclusions. Passing to the unions, we get 7 = U, o, 75152 ~ (Up, ) @ (U, ma?),
which is the desired result.

(Step 2): Now, we can extend the first step to any finite number of finite places. To include also
the archimedean places, suppose v is an archimedean place. Write g, := LieG(L,). An
admissible representation of G(L,) is a (g,, K, )-module 7 such that the space of v € 7w which
are (p, J)-isotypic has finite dimension over C for any choice of p € Irr(K,), J C Z(g,)
where J has finite C-codimension. Let Ay, be the algebra of finite measures on K. The
Hecke algebra this time is H(g,, K£,) := U(g,) ® Ak. The (p, J)-isotypic subspace of 7 can
be realized as the image of an idempotent operator in, which then plays the role analogous to
that of ey before so that Step 1 continues to apply.

(Step 3): For the given 7, for all w € m, there exists a finite set of places S such that w is fixed
by G(07y,) for all v ¢ S. The space 7 consisting of such w is an irreducible admissible
representation of [ _o G(L,). Here the irreducibility follows from that of 7 using the same
argument as in Lemma We may apply the previous steps to show 7% = D, gm,.

(Step 4): We have m = Ugm®. Thus, it suffices to check that the construction of the 7, is compatible
with change in S.
O
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