LECTURE 11: ADMISSIBLE REPRESENTATIONS AND SUPERCUSPIDALS I LECTURE BY CHENG-CHIANG TSAI STANFORD NUMBER THEORY LEARNING SEMINAR JANUARY 10, 2017 NOTES BY DAN DORE AND CHENG-CHIANG TSAI

Let L is a global field, G a reductive group over L, and π an irreducible cuspidal automorphic representation of $G(\mathbf{A}_L)$. Recall that this implies that π is an admissible representation and that Flath's theorem says we may decompose π as $\pi = \otimes' \pi_v$ with π_v an irreducible admissible representation of $G(L_v)$ (at least for non-archimedean v), and v running through the places of L. Some properties of π may be read off from the corresponding properties of π_v : for example, the "levels" correspond, and the Hecke eigenvalue a_p of π corresponds to the Hecke eigenvalue of π_p (e.g. when $L = \mathbf{Q}$ and $G = \mathrm{GL}_2$).

Today, we will restrict our attention to the case of a non-archimedean local field F, and the group $G = GL_2(F)$. Recall that an admissible representation π of G is a complex vector space π with a G-action such that:

•

$$\pi = \bigcup_{\substack{K \subseteq G \\ K \text{ open compact}}} \pi^K$$

where $\pi^{K} = \{v \in \pi \mid \pi(k) \cdot v = v \; \forall k \in K\}$. A representation satisfying this condition is called *smooth*.

• $\dim_{\mathbf{C}} \pi^K < \infty$ for any open compact subgroup $K \subseteq G$.

Inside the group $G = GL_2(F)$, recall that there is a particular subgroup, called the *mirabolic* subgroup:

$$M = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}\right) \mid a \in F^{\times}, b \in F \right\}$$

This has a unipotent subgroup

$$U = \left\{ \left(\begin{smallmatrix} 1 & b \\ 0 & 1 \end{smallmatrix}\right) \mid b \in F \right\}$$

We fix the identification $\mathbf{G}_a(F) \xrightarrow{\sim} U$ sending b to $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, and think of U as $\mathbf{G}_a(F)$.

Fix a non-trivial additive character $\psi \colon F \to \mathbf{C}^{\times}$. Via the above identification, we think of this as a character on U. If π is an irreducible admissible representation of G, we define:

Definition 1. A Whittaker model for π is a *G*-embedding $\iota \colon \pi \hookrightarrow \operatorname{Ind}_{U}^{G} \psi$.

Recall that $C(G)^{\infty}$ is the complex vector space of C-valued functions on G that are invariant by right translation by some open compact subgroup $K \subseteq G$. G acts on this space by right translation. We may think of $\operatorname{Ind}_{U}^{G}\psi$ as:

$$\operatorname{Ind}_U^G \psi = \{ f \in C(G)^\infty \mid f(ug) = \psi(u)f(g) \; \forall u \in U, g \in G \}$$

Likewise, we have:

$$\operatorname{Ind}_{U}^{M}\psi = \{ f \in C(M)^{\infty} \mid f(um) = \psi(u)f(m) \; \forall u \in U, m \in M \}$$

We define:

Definition 2. A *Kirillov model* for π is an *M*-embedding $\pi \longrightarrow \operatorname{Ind}_{U}^{M} \psi$.

Remark 3. Since π might not be irreducible as an *M*-module, it is no longer obvious that a non-zero *M*-homomorphism from π to $\operatorname{Ind}_U^M \psi$ is an embedding. Nevertheless, this is true, as we will show later.

For $f \in \operatorname{Ind}_U^M \psi_i$ we may identify f as a function on F^{\times} via:

$$f(x) := f\left(\left(\begin{smallmatrix} x & 0\\ 0 & 1 \end{smallmatrix}\right)\right)$$

We may compute the M-action on such f by:

$$\left(\begin{pmatrix}a & b \\ 0 & 1\end{pmatrix} \cdot f\right)(x) = f\left(\begin{pmatrix}x & 0 \\ 0 & 1\end{pmatrix} \cdot \begin{pmatrix}a & b \\ 0 & 1\end{pmatrix}\right) = f\left(\begin{pmatrix}ax & bx \\ 0 & 1\end{pmatrix}\right) = f\left(\begin{pmatrix}1 & bx \\ 0 & 1\end{pmatrix} \cdot \begin{pmatrix}ax & 0 \\ 0 & 1\end{pmatrix}\right) = \psi(bx)f(ax)$$

Let $K(F^{\times})$ be the space of functions on F^{\times} that are left translation-invariant by some $1 + \mathfrak{p}^n \subseteq F^{\times}$ and are supported on a compact subset of F. Here, \mathfrak{p} is the maximal ideal of \mathscr{O}_F .

Now, we have:

Lemma 4. The map given by restricting $f \in \operatorname{Ind}_U^M \subseteq C(M)^\infty$ to $\begin{pmatrix} F^{\times} & 0 \\ 0 & 1 \end{pmatrix}$ defines an isomorphism $\operatorname{Ind}_U^M \psi \xrightarrow{\sim} K(F^{\times})$.

Proof. First, we see that this map lands inside $K(F^{\times})$:

- (i) We have $\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \cdot f\right)(x) = f(ax)$. Since f is right translation-invariant by an open compact subgroup of M, if we take a sufficiently close to 1, this shows f(x) = f(ax).
- (i) Similarly, f(x) = ((1b)/(01) ⋅ f) (x) = ψ(bx)f(x) = f(x) for b ∈ pⁿ for some large enough n, i.e. ψ(bx) = 1 for all x ∈ supp(f), b ∈ pⁿ. Suppose ψ is non-trivial on some p^{-m}. Then we have supp(f) ⊂ p^{-m-n+1} is compact.

Next, if $f \in K(F^{\times})$, we may extend f to an element of $\operatorname{Ind}_{U}^{M}(\psi)$ by defining $f\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}\right) = \psi(b)f(a)$. The arguments above run in reverse show that $f \in C(M)^{\infty}$ (because any element of M can be written as a product $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$) is stable by right translation by an open compact subgroup of M. The same calculations let us easily check that these operations are inverse to each other. \Box

Now, Frobenius reciprocity gives:

$$\operatorname{Hom}_{G}(\pi, \operatorname{Ind}_{U}^{G}\psi) = \operatorname{Hom}_{G}(\pi, \operatorname{Ind}_{M}^{G}\operatorname{Ind}_{U}^{M}\psi) = \operatorname{Hom}_{M}(\operatorname{Res}_{M}^{G}\pi, \operatorname{Ind}_{U}^{M}\psi)$$

Thus, if π has a Kirillov model, then π has a Whittaker model (since maps from the irreducible *G*-representation π to $\operatorname{Ind}_U^G \psi$ must be embeddings).

We have:

Theorem 5. Let π be an irreducible admissible representation of GL_2 that is not one-dimensional. Then π has a Kirrilov model (for any fixed choice of ψ).

Proof. See [3, §1.2-1.6], [1, §4.4], or [2, §3.6].

In addition, the Kirrilov model for π is essentially unique:

Lemma 6.

$$\dim \operatorname{Hom}_M(\operatorname{Res}_M^G \pi, \operatorname{Ind}_U^M \psi) = 1$$

Proof. Suppose we have a Kirrilov model $j: \pi \hookrightarrow \operatorname{Ind}_U^M \psi \simeq K(F^{\times})$. Consider the linear functional on π given by $L_j: f \mapsto (j(f))(1)$. Since for $a \in F^{\times}$ we have $j(f)(a) = \left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \cdot j(f) \right)(1) = j\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \cdot f \right)(1)$, the functional $L_j: \pi \to \mathbb{C}$ determines $j: \pi \hookrightarrow K(F^{\times})$.

Now, note that if $f \in \ker L_j$, then (j(f))(1) = 0, so (j(f))(a) = 0 for all $a \in F^{\times}$ sufficiently close to 1, i.e. when $v(a-1) \ge n_0$ (where v is the valuation on F) for some n_0 sufficiently large.

Suppose ψ is non-trivial on \mathfrak{p}^{-m} for some m, so that $\int_{\mathfrak{p}^{-m}} \psi(b) db = 0$. Now, we have, for all $x \in F^{\times}$ and for all $n \ge m + n_0$

$$\int_{\mathfrak{p}^{-n}} \psi(b)^{-1} j\bigg(\pi\Big(\Big(\begin{smallmatrix} 1 & b \\ 0 & 1 \end{smallmatrix}\Big)\Big) \cdot f\bigg)(x) \, db = \int_{\mathfrak{p}^{-n}} \psi(b)^{-1} \psi(bx)(j(f))(x) \, db$$
$$= \int_{\mathfrak{p}^{-n}} \psi(b(x-1))(j(f))(x) \, db = 0$$

Now, since j is an embedding of π into a space of functions on F^{\times} , this says that:

$$I_n(f) := \int_{\mathfrak{p}^{-n}} \psi(b)^{-1} \pi\left(\left(\begin{smallmatrix} 1 & b \\ 0 & 1 \end{smallmatrix}\right)\right) \cdot f \, db = 0$$

whenever $n \geq n_0$.

Thus, the kernel of L_j is contained in the space of f such that $I_n(f) = 0$ for all sufficiently large n. We'll see that this is an equality: if $j(f)(1) \neq 0$, then we have:

$$j(I_n(f))(1) = \int_{\mathfrak{p}^{-n}} \psi(b)^{-1} j\left(\pi\left(\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}\right) f\right)(1) \ db$$
$$= \int_{\mathfrak{p}^{-n}} \psi(0)(j(f))(1) \ db$$
$$= j(f)(1) \cdot \operatorname{vol}(\mathfrak{p}^{-n})$$
$$\neq 0$$

Thus, the kernel of I_n is contained in the kernel of L_j , so they are equal. This shows that the kernel of L_j does not depend on j, so different choices of j can only change L_j by a constant multiple. This shows an *embedding* $j: \operatorname{Res}_M^G \pi \longrightarrow \operatorname{Ind}_U^M \psi$ is unique up to a constant. But it is not a priori clear that a non-trivial homomorphism j' from $\operatorname{Res}_M^G \pi$ to $\operatorname{Ind}_U^M \psi$ is injective. Choose some such j', and let j be an embedding of $\operatorname{Res}_M^G \pi$ into $\operatorname{Ind}_U^M \psi$. Since j' is non-trivial, we see that $L_{j'} \neq 0$. Now, if $f \in \ker L_j = \{f \mid I_n(f) = 0 \forall n \gg 0\}$, the argument above shows that $L_{j'}(f) = 0$, so $\ker L_j \subseteq \ker L_{j'}$. Since these are both codimension-one subspaces of π , we must have $\ker L_j = \ker L_{j'}$ and thus $L_{j'} = cL_j$ for some $c \neq 0$. As before, this implies that j' = cj for some $c \neq 0$ and we see that j' is an embedding after all.

Let us now fix an irreducible admissible representation π of dimension greater than 1, and fix a Kirillov model $j: \pi \hookrightarrow \operatorname{Ind}_U^M \psi$. We will drop j from the notation and regard π as a subspace of $\operatorname{Ind}_U^M \psi$. Define $S(F^{\times}) \subseteq K(F^{\times})$ to be the subspace of functions that are compactly supported in F^{\times} , i.e. the elements of $K(F^{\times})$ that vanish in a neighborhood of 0. We call these *Schwarz functions* on F^{\times} .

Lemma 7. $S(F^{\times}) \subseteq \pi$.

Proof. (sketch) First, we verify that $S(F^{\times})$ is an irreducible representation of M. This can be done as follows: Suppose ψ is trivial on \mathfrak{p}^{-m+1} but not on \mathfrak{p}^{-m} . Let $f \in S(F^{\times})$ be non-trivial, and $\operatorname{supp}(f) \subset a + \mathfrak{p}^n$ for some $a \in F$. Then we have

$$\frac{1}{|\mathfrak{p}^{-m-n}|} \int_{\mathfrak{p}^{-m-n}} \psi(ba)^{-1} \psi(bx) f(x) db = \begin{cases} f(x) & \text{if } x \in a + \mathfrak{p}^{n+1} \\ 0 & \text{else} \end{cases}$$

In other words, $f \mapsto \int_{\mathfrak{p}^{-m-n}} \psi(ba)^{-1}(\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \cdot f) db$ restricts f to $a + \mathfrak{p}^{n+1} \subset \operatorname{supp}(f)$. By using this, one can construct from any non-zero function in $S(F^{\times})$ any characteristic on F^{\times} and thus any function in $S(F^{\times})$.

Then, we have $\pi \cap S(F^{\times}) \neq 0$, because $\pi\left(\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}\right) \cdot f - f \in S(F^{\times})$ for any $b \in F$. We claim that we may choose b, f such that this is non-zero. This is because:

$$\left(\pi\left(\left(\begin{smallmatrix}1&b\\0&1\end{smallmatrix}\right)\right)\cdot f - f\right)(x) = \left(\psi(bx) - 1\right)f(x)$$

Since ψ is non-trivial, this is not always equal to 0. Since $S(F^{\times})$ is irreducible, this means that $S(F^{\times}) \subseteq \pi$.

This allows us to state the next lemma:

Lemma 8. Let $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then we have:

$$\pi = S(F^{\times}) + \pi(w)S(F^{\times})$$

Proof. Since π is an irreducible *G*-representation, π is spanned by $\pi(g) \cdot S(F^{\times})$ for $g \in G$. Now, we may use the Bruhat decomposition to write $G = B \sqcup UwB$ for $B = M \cdot Z$ the upper triangular Borel subgroup of G (*Z* is the center of $G = \operatorname{GL}_2(F)$, i.e. the scalar matrices). Thus, π is generated by $S(F^{\times})$ and $\pi(uw)S(F^{\times})$ for $u \in U$.

But we have:

$$\pi(uw)f - \pi(w)f = (\pi(u) - 1)(\pi(w)f) \in S(F^{\times})$$

(as we may see by writing $u = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ and using the explicit description of the action of M on $K(F^{\times})$).

We will need the following general definition:

Definition 9. Let π be a smooth representation of G. The *contragredient representation* $\check{\pi}$ is the space of *smooth* functionals on π , i.e. we have:

$$\check{\pi} = \{\ell \colon \pi \to \mathbf{C} \mid \exists \text{ compact open } K \text{ such that } \ell(\pi(k)f) = \ell(f) \; \forall f \in \pi \}$$

In other words, $\check{\pi}$ is the subspace of smooth vectors in the linear dual of π .

If π is admissible, then for all K, $\pi = \pi^K \oplus \pi_K$, where π_K is the kernel of $e_K = \frac{1}{\mu(K)} \mathbb{1}_K \in \mathcal{H}(G, K)$, since e_K acts on π as projection onto π^K . This implies that the linear dual of π splits as $\pi^* = (\pi^K)^* \oplus (\pi_K)^*$, so $(\pi^*)^K = (\pi^K)^*$. Since $(\pi^*)^K = (\check{\pi})^K$, this shows that $(\check{\pi})^K$ is

finite-dimensional, and thus $\check{\pi}$ is admissible. Moreover, the natural pairing (\cdot, \cdot) : $\pi \times \check{\pi} \to \mathbf{C}$ is non-degenerate, as it restricts to a non-degenerate pairing on $\pi^K \times (\check{\pi})^K$. Additionally, this shows that the natural map $\pi \to \check{\pi}$ is an isomorphism, since both sides are the sum of K-fixed subspaces, yet the map restricts to an isomorphism $\pi^K \cong \check{\pi}^K$ for each K.

Let us also remark that if π, π' are admissible representations, and there exists a non-degenerate pairing (\cdot, \cdot) : $\pi \times \pi' \to \mathbf{C}$ such that $(\pi(g)f, \pi'(g)f') = (f, f')$ for all $f \in \pi, f' \in \pi', g \in G$, then the natural map $\pi' \to \check{\pi}$ is an isomorphism. Non-degeneracy implies that the map is injective, and we can check surjectivity by passing to $(\pi')^K$, $(\check{\pi})^K$, and comparing dimensions.

Now, fix an irreducible admissible representation π and a Kirillov model $\pi \longrightarrow K(F^{\times})$. Recall that $\pi(\begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix})$ acts by a constant by Schur's lemma. Thus, we may write:

$$\pi\left(\left(\begin{smallmatrix}c&0\\0&c\end{smallmatrix}\right)\right) = w_{\pi}(c) \operatorname{id}_{\pi}$$

We have:

Theorem 10. The contragredient representation $\check{\pi}$ of π can be realized in the same underlying abstract vector space as π with the action $\check{\pi}(g) = w_{\pi}(\det g)^{-1}\pi(g)$.

Proof. See [3, §1.6].

Then, a Kirillov model \check{j} for $\check{\pi}$ is given by $\check{j}(f)(x) = w_{\pi}(x)^{-1}j(f)(x)$. This gives us an embedding $j \times \check{j} \colon \pi \times \check{\pi} \hookrightarrow K(F^{\times}) \times K(F^{\times})$. This lets us define a pairing on $\pi \times \check{\pi}$ by:

$$(f,\check{f}) := \int_{F^{\times}} f_1(x)\check{f}(-x) \ d^*x + \int_{F^{\times}} f_2(x)(\check{\pi}\check{f})(-x) \ d^*x$$

Here, we choose $f_1, f_2 \in S(F^{\times})$ such that $f = f_1 + \pi(w)f_2$.

We may define a pairing, for $f, f' \in \pi$:

$$(f,f') = \int_{F^{\times}} f_1(x) w_{\pi}(-x)^{-1} f'(-x) d^*x + \int_{F^{\times}} f_2(x) w_{\pi}(-x)^{-1} (\pi(w)f')(-x) d^*x$$

Thus, the essential content of Theorem 10 says that this pairing is non-degenerate, well-defined (i.e. it does not depend on the choice of representation of f in terms of f_1, f_2), and that:

$$(\pi(g)f, \pi(g)f') = w_{\pi}(\det g)(f, f')$$

Now, we may define:

Definition 11. An irreducible admissible representation π of G is called *supercuspidal* if for all $f \in \pi, \check{f} \in \check{\pi}$, the "matrix coefficient" $g \mapsto (\pi(g)f, \widehat{f})$ is a compactly supported function on G mod the center Z of G.

Note that this definition makes sense for any reductive group G, since the definition of $\check{\pi}$ of the pairing between π and $\check{\pi}$ are both perfectly general.

We have the following theorem:

Theorem 12. π is supercuspidal iff $\pi = S(F^{\times})$ in the Kirillov model.

- 1	_	-	-	ı
				I

Remark 13. This theorem does not yet show that any supercuspidal representations exist! Note that in general $S(F^{\times})$ is only a *M*-subrepresentation of π .

Proof. First, suppose that $\pi = S(F^{\times})$. Note that by the previous discussion, this implies that $\check{\pi} = S(F^{\times})$ as well, since they have the same underlying space and essentially the same Kirillov model (up to a central character, which does not affect the condition of being compactly supported away from 0).

Then for all $f \in \pi, \check{f} \in \check{\pi}$, we have:

$$\left(\pi\left(\begin{pmatrix}a&0\\0&1\end{pmatrix}\right)f,\check{f}\right) = \int_{F^{\times}} f(ax)\cdot\check{f}(-x) \ d^*x$$

Since $f, \check{f} \in S(F^{\times})$, we have $\check{f}(-x) = 0$ for x outside a compact subset of F^{\times} . Thus (since inversion and multiplication are continuous on F^{\times}), $\operatorname{Supp}(\check{f})^{-1}\operatorname{Supp}(f)$ is a compact subset of F^{\times} and the integrand vanishes for a outside this set.

Recall that we have the Cartan decomposition: $G = \bigcup_{a \in F^{\times}} K \cdot \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \cdot K \cdot Z$ for $K = \operatorname{GL}_2(\mathscr{O}_F)$. Fix $f \in \pi, \check{f} \in \check{\pi}$, and let $K_1 \subseteq K$ be such that K_1 fixes both f and \check{f} . Since $[K : K_1] < \infty$, the K-orbit of f is finite and similarly for \check{f} . Let $f_1, \ldots, f_s, \check{f}_1, \ldots, \check{f}_r$ be the elements of these orbits. We see that there is a compact subset $\Omega \subseteq F^{\times}$ such that

$$\left(\pi\left(\left(\begin{smallmatrix}a&0\\0&1\end{smallmatrix}\right)\right)\cdot f_i,\check{f}_j\right)=0$$

for all i, j and any $a \in F^{\times} - \Omega$.

Then, for any g, we may write:

$$(\pi(g)f,\check{f}) = \left(\pi(k_1\begin{pmatrix}a&0\\0&1\end{pmatrix}k_2z)f,\check{f}\right)$$
$$= w_{\pi}(z)\left(\pi\begin{pmatrix}a&0\\0&1\end{pmatrix}\pi(k_2)f,\pi(k_1^{-1})\check{f}\right)$$
$$= w_{\pi}(z)\left(\pi\begin{pmatrix}\begin{pmatrix}a&0\\0&1\end{pmatrix}\end{pmatrix}\cdot f_i,\check{f}_j\right)$$

Thus, this is 0 unless $g \in K \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot K \cdot Z$, and this set is compact mod Z. Therefore, π is supercuspidal.

Conversely, suppose that π is supercuspidal. Take any $\check{f} \in \check{\pi}$. For any $f \in S(F^{\times}) \subset \pi$ and $a \in F^{\times}$ we again have:

$$\left(\pi\left(\begin{pmatrix}a&0\\0&1\end{pmatrix}\right)\cdot f,\check{f}\right) = \int_{F^{\times}} f(ax)\check{f}(-x)d^*x$$

and we know that as a function of a, this is compactly supported in F^{\times} . As \check{f} is smooth, as a function on F^{\times} it is locally constant under some $1 + \mathfrak{p}^n$. By taking $f = \mathbb{1}_{1+\mathfrak{p}^n}$, the above compact support property implies that $\check{f} \in S(F^{\times})$. Thus, $\check{\pi} = S(F^{\times})$ and therefore we know that $\pi = S(F^{\times})$ by the relationship between the Kirillov models of π and $\check{\pi}$.

References

- [1] D. Bump, Automorphic forms and representations, Cambridge Univ. Press, Cambridge, 1998.
- [2] Colin J. Bushnell and Guy Henniart, *The local Langlands conjecture for* GL(2), Springer-Verlag, Berlin, 2006.
- [3] R. Godement, *Notes on Jacquet–Langlands' Theory*, IAS lecture notes, Princeton, 1970. Online at http://math.stanford.edu/~conrad/conversesem/refs/godement-ias.pdf.