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Let L is a global field, G a reductive group over L, and π an irreducible cuspidal automorphic
representation of G(AL). Recall that this implies that π is an admissible representation and
that Flath’s theorem says we may decompose π as π = ⊗′πv with πv an irreducible admissible
representation of G(Lv) (at least for non-archimedean v), and v running through the places of L.
Some properties of π may be read off from the corresponding properties of πv: for example, the
“levels” correspond, and the Hecke eigenvalue ap of π corresponds to the Hecke eigenvalue of πp
(e.g. when L = Q and G = GL2).

Today, we will restrict our attention to the case of a non-archimedean local field F , and the
group G = GL2(F ). Recall that an admissible representation π of G is a complex vector space π
with a G-action such that:

•
π =

⋃
K⊆G

K open compact

πK

where πK = {v ∈ π | π(k) · v = v ∀k ∈ K}. A representation satisfying this condition is
called smooth.

• dimC π
K <∞ for any open compact subgroup K ⊆ G.

Inside the group G = GL2(F ), recall that there is a particular subgroup, called the mirabolic
subgroup:

M =
{(

a b
0 1

)
| a ∈ F×, b ∈ F

}
This has a unipotent subgroup

U =
{(

1 b
0 1

)
| b ∈ F

}
We fix the identification Ga(F )

∼−→ U sending b to
(

1 b
0 1

)
, and think of U as Ga(F ).

Fix a non-trivial additive character ψ : F → C×. Via the above identification, we think of this
as a character on U . If π is an irreducible admissible representation of G, we define:

Definition 1. A Whittaker model for π is a G-embedding ι : π ↪−→ IndGUψ.

Recall that C(G)∞ is the complex vector space of C-valued functions on G that are invariant by
right translation by some open compact subgroup K ⊆ G. G acts on this space by right translation.
We may think of IndGUψ as:

IndGUψ = {f ∈ C(G)∞ | f(ug) = ψ(u)f(g) ∀u ∈ U, g ∈ G}

Likewise, we have:

IndMU ψ = {f ∈ C(M)∞ | f(um) = ψ(u)f(m) ∀u ∈ U,m ∈M}

We define:
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Definition 2. A Kirillov model for π is an M -embedding π ↪−→ IndMU ψ.

Remark 3. Since π might not be irreducible as anM -module, it is no longer obvious that a non-zero
M -homomorphism from π to IndMU ψ is an embedding. Nevertheless, this is true, as we will show
later.

For f ∈ IndMU ψ¡ we may identify f as a function on F× via:

f(x) := f
(
( x 0

0 1 )
)

We may compute the M -action on such f by:((
a b
0 1

)
· f
)

(x) = f
(

( x 0
0 1 ) ·

(
a b
0 1

))
= f

((
ax bx
0 1

))
= f

((
1 bx
0 1

)
· ( ax 0

0 1 )
)

= ψ(bx)f(ax)

Let K(F×) be the space of functions on F× that are left translation-invariant by some 1 + pn ⊆
F× and are supported on a compact subset of F . Here, p is the maximal ideal of OF .

Now, we have:

Lemma 4. The map given by restricting f ∈ IndMU ⊆ C(M)∞ to
(
F× 0
0 1

)
defines an isomorphism

IndMU ψ
∼−→ K(F×).

Proof. First, we see that this map lands inside K(F×):

(i) We have
(
( a 0

0 1 ) · f
)

(x) = f(ax). Since f is right translation-invariant by an open compact
subgroup of M , if we take a sufficiently close to 1, this shows f(x) = f(ax).

(i) Similarly, f(x) =
((

1 b
0 1

)
· f
)

(x) = ψ(bx)f(x) = f(x) for b ∈ pn for some large enough n,
i.e. ψ(bx) = 1 for all x ∈ supp(f), b ∈ pn. Suppose ψ is non-trivial on some p−m. Then we
have supp(f) ⊂ p−m−n+1 is compact.

Next, if f ∈ K(F×), we may extend f to an element of IndMU (ψ) by defining f
((

a b
0 1

))
=

ψ(b)f(a). The arguments above run in reverse show that f ∈ C(M)∞ (because any element of M
can be written as a product

(
1 b
0 1

)
· ( a 0

0 1 )) is stable by right translation by an open compact subgroup
of M . The same calculations let us easily check that these operations are inverse to each other.

Now, Frobenius reciprocity gives:

HomG(π, IndGU ψ) = HomG(π, IndGM IndMU ψ) = HomM(ResGMπ, IndMU ψ)

Thus, if π has a Kirillov model, then π has a Whittaker model (since maps from the irreducible
G-representation π to IndGU ψ must be embeddings).

We have:

Theorem 5. Let π be an irreducible admissible representation of GL2 that is not one-dimensional.
Then π has a Kirrilov model (for any fixed choice of ψ).

Proof. See [3, §1.2-1.6], [1, §4.4], or [2, §3.6].

In addition, the Kirrilov model for π is essentially unique:
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Lemma 6.
dim HomM(ResGMπ, IndMU ψ) = 1

Proof. Suppose we have a Kirrilov model j : π ↪−→ IndMU ψ ' K(F×). Consider the linear func-
tional on π given by Lj : f 7→ (j(f))(1). Since for a ∈ F× we have j(f)(a) =

(
( a 0

0 1 ) · j(f)
)

(1) =
j
(
( a 0

0 1 ) · f
)
(1), the functional Lj : π → C determines j : π ↪−→ K(F×).

Now, note that if f ∈ kerLj , then (j(f))(1) = 0, so (j(f))(a) = 0 for all a ∈ F× sufficiently
close to 1, i.e. when v(a− 1) ≥ n0 (where v is the valuation on F ) for some n0 sufficiently large.

Suppose ψ is non-trivial on p−m for some m, so that
´
p−m ψ(b)db = 0. Now, we have, for all

x ∈ F× and for all n ≥ m+ n0ˆ
p−n

ψ(b)−1j

(
π
((

1 b
0 1

))
· f
)

(x) db =

ˆ
p−n

ψ(b)−1ψ(bx)(j(f))(x) db

=

ˆ
p−n

ψ(b(x− 1))(j(f))(x) db = 0

Now, since j is an embedding of π into a space of functions on F×, this says that:

In(f) :=

ˆ
p−n

ψ(b)−1π
((

1 b
0 1

))
· f db = 0

whenever n ≥ n0.
Thus, the kernel of Lj is contained in the space of f such that In(f) = 0 for all sufficiently large

n. We’ll see that this is an equality: if j(f)(1) 6= 0, then we have:

j(In(f))(1) =

ˆ
p−n

ψ(b)−1j

(
π
((

1 b
0 1

))
f

)
(1) db

=

ˆ
p−n

ψ(0)(j(f))(1) db

= j(f)(1) · vol(p−n)

6= 0

Thus, the kernel of In is contained in the kernel of Lj , so they are equal. This shows that the
kernel of Lj does not depend on j, so different choices of j can only change Lj by a constant
multiple. This shows an embedding j : ResGMπ ↪−→ IndMU ψ is unique up to a constant. But it is
not a priori clear that a non-trivial homomorphism j′ from ResGMπ to IndMU ψ is injective. Choose
some such j′, and let j be an embedding of ResGMπ into IndMU ψ. Since j′ is non-trivial, we see
that Lj′ 6= 0. Now, if f ∈ kerLj = {f | In(f) = 0 ∀n � 0}, the argument above shows that
Lj′(f) = 0, so kerLj ⊆ kerLj′ . Since these are both codimension-one subspaces of π, we must
have kerLj = kerLj′ and thus Lj′ = cLj for some c 6= 0. As before, this implies that j′ = cj for
some c 6= 0 and we see that j′ is an embedding after all.

Let us now fix an irreducible admissible representation π of dimension greater than 1, and fix a
Kirillov model j : π ↪−→ IndMU ψ. We will drop j from the notation and regard π as a subspace of
IndMU ψ. Define S(F×) ⊆ K(F×) to be the subspace of functions that are compactly supported in
F×, i.e. the elements of K(F×) that vanish in a neighborhood of 0. We call these Schwarz functions
on F×.
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Lemma 7. S(F×) ⊆ π.

Proof. (sketch) First, we verify that S(F×) is an irreducible representation of M . This can be done
as follows: Suppose ψ is trivial on p−m+1 but not on p−m. Let f ∈ S(F×) be non-trivial, and
supp(f) ⊂ a+ pn for some a ∈ F . Then we have

1

|p−m−n|

ˆ
p−m−n

ψ(ba)−1ψ(bx)f(x)db =

{
f(x) if x ∈ a+ pn+1

0 else

In other words, f 7→
´
p−m−n ψ(ba)−1(

(
1 b
0 1

)
· f)db restricts f to a + pn+1 ⊂ supp(f). By using

this, one can construct from any non-zero function in S(F×) any characteristic on F× and thus any
function in S(F×).

Then, we have π ∩ S(F×) 6= 0, because π
((

1 b
0 1

))
· f − f ∈ S(F×) for any b ∈ F . We claim

that we may choose b, f such that this is non-zero. This is because:(
π
((

1 b
0 1

))
· f − f

)
(x) =

(
ψ(bx)− 1

)
f(x)

Since ψ is non-trivial, this is not always equal to 0. Since S(F×) is irreducible, this means that
S(F×) ⊆ π.

This allows us to state the next lemma:

Lemma 8. Let w =
(

0 1
−1 0

)
. Then we have:

π = S(F×) + π(w)S(F×)

Proof. Since π is an irreducible G-representation, π is spanned by π(g) · S(F×) for g ∈ G. Now,
we may use the Bruhat decomposition to write G = B t UwB for B = M · Z the upper triangular
Borel subgroup of G (Z is the center of G = GL2(F ), i.e. the scalar matrices). Thus, π is generated
by S(F×) and π(uw)S(F×) for u ∈ U .

But we have:
π(uw)f − π(w)f = (π(u)− 1)(π(w)f) ∈ S(F×)

(as we may see by writing u =
(

1 b
0 1

)
and using the explicit description of the action of M on

K(F×)).

We will need the following general definition:

Definition 9. Let π be a smooth representation of G. The contragredient representation π̌ is the
space of smooth functionals on π, i.e. we have:

π̌ = {` : π → C | ∃ compact open K such that `(π(k)f) = `(f) ∀f ∈ π}

In other words, π̌ is the subspace of smooth vectors in the linear dual of π.
If π is admissible, then for all K, π = πK ⊕ πK , where πK is the kernel of eK = 1

µ(K)
1K ∈

H(G,K), since eK acts on π as projection onto πK . This implies that the linear dual of π splits
as π∗ = (πK)∗ ⊕ (πK)∗, so (π∗)K = (πK)∗. Since (π∗)K = (π̌)K , this shows that (π̌)K is
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finite-dimensional, and thus π̌ is admissible. Moreover, the natural pairing (·, ·) : π × π̌ → C is
non-degenerate, as it restricts to a non-degenerate pairing on πK × (π̌)K . Additionally, this shows
that the natural map π → ˇ̌π is an isomorphism, since both sides are the sum of K-fixed subspaces,
yet the map restricts to an isomorphism πK ∼= ˇ̌πK for each K.

Let us also remark that if π, π′ are admissible representations, and there exists a non-degenerate
pairing (·, ·) : π × π′ → C such that (π(g)f, π′(g)f ′) = (f, f ′) for all f ∈ π, f ′ ∈ π′, g ∈ G, then
the natural map π′ → π̌ is an isomorphism. Non-degeneracy implies that the map is injective, and
we can check surjectivity by passing to (π′)K , (π̌)K , and comparing dimensions.

Now, fix an irreducible admissible representation π and a Kirillov model π ↪−→ K(F×). Recall
that π

(
( c 0

0 c )
)

acts by a constant by Schur’s lemma. Thus, we may write:

π
(
( c 0

0 c )
)

= wπ(c) idπ

We have:

Theorem 10. The contragredient representation π̌ of π can be realized in the same underlying
abstract vector space as π with the action π̌(g) = wπ(det g)−1π(g).

Proof. See [3, §1.6].

Then, a Kirillov model ǰ for π̌ is given by ǰ(f)(x) = wπ(x)−1j(f)(x). This gives us an
embedding j × ǰ : π × π̌ ↪−→ K(F×)×K(F×). This lets us define a pairing on π × π̌ by:

(f, f̌) :=

ˆ
F×

f1(x)f̌(−x) d∗x+

ˆ
F×

f2(x)(π̌f̌)(−x) d∗x

Here, we choose f1, f2 ∈ S(F×) such that f = f1 + π(w)f2.
We may define a pairing, for f, f ′ ∈ π:

(f, f ′) =

ˆ
F×

f1(x)wπ(−x)−1f ′(−x) d∗x+

ˆ
F×

f2(x)wπ(−x)−1(π(w)f ′)(−x) d∗x

Thus, the essential content of Theorem 10 says that this pairing is non-degenerate, well-defined (i.e.
it does not depend on the choice of representation of f in terms of f1, f2), and that:

(π(g)f, π(g)f ′) = wπ(det g)(f, f ′)

Now, we may define:

Definition 11. An irreducible admissible representation π of G is called supercuspidal if for all
f ∈ π, f̌ ∈ π̌, the “matrix coefficient” g 7→ (π(g)f, f̂) is a compactly supported function on G mod
the center Z of G.

Note that this definition makes sense for any reductive group G, since the definition of π̌ of the
pairing between π and π̌ are both perfectly general.

We have the following theorem:

Theorem 12. π is supercuspidal iff π = S(F×) in the Kirillov model.
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Remark 13. This theorem does not yet show that any supercuspidal representations exist! Note
that in general S(F×) is only a M -subrepresentation of π.

Proof. First, suppose that π = S(F×). Note that by the previous discussion, this implies that
π̌ = S(F×) as well, since they have the same underlying space and essentially the same Kirillov
model (up to a central character, which does not affect the condition of being compactly supported
away from 0).

Then for all f ∈ π, f̌ ∈ π̌, we have:(
π
(
( a 0

0 1 )
)
f, f̌
)

=

ˆ
F×

f(ax) · f̌(−x) d∗x

Since f, f̌ ∈ S(F×), we have f̌(−x) = 0 for x outside a compact subset of F×. Thus (since
inversion and multiplication are continuous on F×), Supp(f̌)−1 Supp(f) is a compact subset of
F× and the integrand vanishes for a outside this set.

Recall that we have the Cartan decomposition: G = ∪a∈F×K · ( a 0
0 1 ) ·K ·Z for K = GL2(OF ).

Fix f ∈ π, f̌ ∈ π̌, and let K1 ⊆ K be such that K1 fixes both f and f̌ . Since [K : K1] < ∞, the
K-orbit of f is finite and similarly for f̌ . Let f1, . . . , fs, f̌1, . . . , f̌r be the elements of these orbits.
We see that there is a compact subset Ω ⊆ F× such that(

π
(
( a 0

0 1 )
)
· fi, f̌j

)
= 0

for all i, j and any a ∈ F× − Ω.
Then, for any g, we may write:

(π(g)f, f̌) =
(
π(k1 ( a 0

0 1 ) k2z)f, f̌
)

= wπ(z)
(
π ( a 0

0 1 ) π(k2)f, π(k−1
1 )f̌

)
= wπ(z)

(
π
(
( a 0

0 1 )
)
· fi, f̌j

)

Thus, this is 0 unless g ∈ ·K ·
(

Ω 0
0 1

)
· K · Z, and this set is compact mod Z. Therefore, π is

supercuspidal.
Conversely, suppose that π is supercuspidal. Take any f̌ ∈ π̌. For any f ∈ S(F×) ⊂ π and

a ∈ F× we again have: (
π
(
( a 0

0 1 )
)
· f, f̌

)
=

ˆ
F×

f(ax)f̌(−x)d∗x

and we know that as a function of a, this is compactly supported in F×. As f̌ is smooth, as a function
on F× it is locally constant under some 1 + pn. By taking f = 11+pn , the above compact support
property implies that f̌ ∈ S(F×). Thus, π̌ = S(F×) and therefore we know that π = S(F×) by
the relationship between the Kirillov models of π and π̌.
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