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1 The case of finite fields
For motivation, we will consider the analogous situation for the case of finite fields - many features
of the representation theory of groups over local fields is similar to this easier case. We want to
answer:

Problem 1. Describe all complex irreducible representations of G = GL2(k) where k = Fq is a
finite field.

Note that this finite groupG has q2−1 conjugacy classes (as one may verify by studying rational
canonical form, etc.), so there will be q2 − 1 different irreducible representations.

We write B = ( ∗ ∗0 ∗ ), N = ( 1 ∗
0 1 ), and T = ( ∗ 0

0 ∗ ) for the k-points of the upper triangular Borel
subgroup, its unipotent radical, and the diagonal split maximal torus of GL2, respectively.

We may define principal series for G analogously to the local field case. This rests on the
following:

Proposition 1.1. For π a complex irreducible representation of G, the following are equivalent:

(i) π|N contains the trivial representation of N .

(ii) There is a G-embedding π ↪−→ IndGB χ for some character χ : B/N = T → C×.

Definition 1.2. If π satisfies the above equivalent conditions, we say that it is a principal series
representation.

Remark 1.3. The condition (ii) is the better definition, since it agrees with the definition in the
local field case. Moreover, since all Borel subgroups of GL2 are conjugate, this manifestly does not
depend on the choice of B.

Proof. We have HomG(π, IndGB χ) = HomB(π, χ) by Frobenius reciprocity. Thus, it is clear that
(ii) implies (i).

Conversely, suppose that (i) holds. We need to construct a nonzero B-map π → χ for some
character χ of B/N . Let (σ, V ) ⊆ ResGBπ be an irreducible representation of B containing the
trivial representation of N . 1 Thus, V N 6= 0. Since N is normal in B, this is B-stable, so V N = V ,
and (σ, V ) is thus an irreducible representation of B/N = T . Thus, (σ, V ) is a character χ of T ,
and we get a map from π to χ.

Since T = F× × F×, a character χ of T is of the form χ = χ1 ⊗ χ2. We may define
χw : t 7→ χ(wtw−1) for w = ( 0 1

1 0 ), and this is equal to χ2 ⊗ χ1.
We have:

1Really, it’s better to let (σ, V ) be a quotient of ResGBπ rather than a sub-representation, but in the finite field case
this doesn’t matter because complex representations of finite groups are always semisimple.
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Proposition 1.4. (i) HomG(IndGB χ, IndGB ψ) = 0 unless χ = ψ or χ = ψw.

(ii) HomG(IndGB χ, IndGB χ) is one-dimensional unless χ = χw, in which case it is two-dimensional.
In other words, when χ 6= χw, IndGB χ is irreducible, and when χ = χw, it is the direct sum
of two irreducible representations.

Proof. By Frobenius reciprocity, we have:

HomG(IndGB χ, IndGB ψ) = HomB(ResGB IndGB χ, ψ)

and by Mackey theory,

ResGB IndGB χ =
⊕

y∈B\G/B

IndBB∩y−1By

(
Resy

−1By
B∩y−1By(χ

y)
)

Here, G = B
∐
BwB, so we may take y = 1, w, and the result follows.

Corollary 1.5. There are 1
2
(q2 + q)− 1 irreducible principal series representations.

As an important example, we have the Steinberg representation, defined by IndGB 1B = 1G⊕StG.
We define:

Definition 1.6. The irreducible representations of G which are not of one of the above form are
called cuspidal. Equivalently, these are exactly the irreducible representations which do not contain
the trivial representation of N .

Remark 1.7. Where does the term cuspidal come from? In the context of modular forms, this
corresponds to saying that the automorphic representation coming from f vanishes at the cusp;
equivalently, the 0th Fourier coefficient vanishes, which corresponds to saying that the integral of f
along a length-one horizontal strip is 0. In general, the right condition should be that π contains a
copy of the trivial representation of the unipotent radical of every parabolic.

By the above count, there are 1
2
(q2−q) cuspidal representations. We will now give a construction

of some cupsidal representations which will turn out to account for all of them.
Let `/k be a quadratic extension, and let θ : `× → C× be a character such that θq 6= θ: such

characters are called regular characters, and this is a “genericity” condition saying that θ is not the
norm of a character of `×.

By choosing a k-basis for `, we obtain an embedding `× ↪−→ GL2(k) given by sending x to the
k-linear map given by multiplying by x. Note that this map is well-defined up to changing our basis
for `/k, which corresponds to conjugation by an element of GL2(k). Call the image of `× under
this map E.

Thus, we have a character θ : E → C×. Fix a nontrivial character ψ of N ' F . We define a
character ZN ' Z × N → C× defined by zn 7→ θ(z)ψ(n). Now we may consider the virtual
representation πθ = IndGZN θψ − IndGE θ. Note that this is independent of our choice of ψ because
B-conjugation on N acts transitively on the set of nontrivial characters.

One may ask where all of this comes from. The idea is that one would like to induce from a
nontrivial character of N to get a cuspidal representation (and not a principal series). On the other
hand, we want to induct from as large a group as possible in order to have the best hope of getting
an irreducible representation. We know that Z will have to act via a character by Schur’s Lemma,
so we throw in the center as well, acting by some character (here, θ). Then we hope that the result
is irreducible. In fact, it is not, but it becomes so if we subtract off IndGE θ.
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Proposition 1.8. (i) πθ is an irreducible cuspidal representation.

(ii) πθ1 ' πθ2 iff θ1 = θ2 or θ1 = θq2.

This immediately yields, by an easy count, the following:

Corollary 1.9. The πθ yield all of the irreducible cupsidal representations.

Now, we need to prove the proposition:

Proof. We compute the character χθ of πθ. We get

χθ(z) = (q − 1)θ(z), z ∈ Z

χθ(zn) = −θ(z), z ∈ Z, n ∈ N

χθ(y) = −(θ(y) + θq(y)), y ∈ E\Z

and χθ(g) = 0 if g is not conjugate to an element of ZN ∪ E. One then checks that 〈χθ, χθ〉 = 1,
so since χθ is positive-dimensional, it is irreducible. This character table also shows that πθ1 ' πθ2
iff θ1 = θ2 or θq2. Finally, we have

1

|N |
∑
n∈N

χθ(n) = 0

which shows that the projection onto the N -invariant subspace of πθ is 0; i.e., πθ doesn’t contain a
copy of the trivial character of N , so it is cuspidal.

2 The case of local fields
Now, we return to the local field case: let F be a non-archimedean local field and let G = GL2(F ).
We also let B,N, T be the F -points of the upper triangular Borel subgroup, its unipotent radical,
and the diagonal maximal torus, respectively. We want to discuss cuspidal representations of G.
Note: all representations considered in the sequel will be assumed to be smooth.

Given a (smooth)G-representation V , we may consider VN , the maximal quotient of V on which
N acts trivially. Letting V (N) be the span of nv− v for all v ∈ V, n ∈ N , we have VN = V/V (N).
Now:

Definition 2.1. VN is called the Jacquet module of V .

We have:

Proposition 2.2. The functor V ; VN is an exact functor from the category of smooth N -
representations to the category of complex vector spaces.

Lemma 2.3. For v ∈ V , we have v ∈ V (N) iff there exists a compact open subgroup N0 ⊆ N
such that

´
N0
π(n) · v dn = 0.

Proof. See [BH, Ch. 3, §8.1, Lemma, (2)].

Now, we may define cuspidal representations:
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Definition 2.4. Let π be an irreducible smooth G-representation. We say that π is cuspidal if
VN = 0.

Proposition 2.5. V is cuspidal iff there is no G-embedding V ↪−→ IndGB χ.

Proof. This is very similar to the proof in the finite field case. The only additional step is to show
that if VN 6= 0, then it contains an irreducible (nontrivial) T = B/N -quotient. For this, we first note
that VN is a finitely-generated C[T ]-module. Indeed, G = BK, where K = GL2(OF ). Since V is
irreducible over G, any 0 6= v ∈ V generates V as a C[G]-module. But v ∈ V K′ for some compact
open K ′ ⊂ K, so if k1, . . . , kr form a set of coset representatives for K/K ′, then the kiv generate
V , hence also VN , over B.

Now let {v1, . . . , vr} be a minimal set of C[T ] generators for VN . By Zorn’s Lemma, there is a
maximal T -subspace W of VN containing v1, . . . , vr−1 but not vr. Then VN/W is an irreducible
nontrivial T -quotient of VN .

Definition 2.6. Let (π, V ) be a G-representation, v̌ ∈ V̌ , v ∈ V . Then we define the matrix
coefficient γv̌⊗v : G → C by g 7→ 〈v̌, g · v〉. Then we define the space C(π) to be the C-linear
span of these coefficients. We say that π is γ-cuspidal if f is compactly supported mod Z for all
f ∈ C(π). 2

Remark 2.7. If V is irreducible, then Z acts via a central character, hence the support of any
matrix coefficient is invariant under Z-translation, so the best one can hope for is that the support is
compact mod Z (rather than just being compact).

Proposition 2.8. (i) If π is irreducible, smooth, and γ-cuspidal, then it is admissible.

(ii) If π is irreducible and admissible and there exists some f 6= 0 inC(π) such that f is compactly
supported mod Z, then this is true for all g ∈ C(π).

Proof. We will sketch the arguments. For more details, see [BH, Ch. 3, §10.1, Prop.].
(i) Let K be a compact open in G. We want to show that V K is finite-dimensional. Fix 0 6= v ∈ V K .
(If V K = 0, then there is nothing to show.) Consider the map (V̌ )K → C(π) defined by v̌ 7→ 〈v̌, v〉.
Irreducibility of V implies that this map is injective. The image is contained in the set of functions
whose support is a finite union of cosets ZKgK. This is a space of countable dimension. But
(V̌ )K = (V K)∗, so if V K is infinite-dimensional, then this space is of uncountable dimension;
therefore V K must be finite-dimensional.
(ii) V, V̌ are irreducible G-spaces, hence for K a sufficiently small compact open, V K , V̌ K are
irreducible finite-dimensional H(G,K)-spaces. The Jacobson density theorem then implies that
V̌ ⊗ V is an irreducible H(G,K) ⊗H(G,K) = H(G × G,K ×K)-space. Since this holds for
all small K, it follows that V̌ ⊗ V is an irreducible (G×G)-space. The surjective (G×G)-map
V̌ ⊗ V → C(π) is therefore an isomorphism, so every matrix coefficient is in the (G×G)-span of
any fixed nonzero one. Therefore, if any nonzero matrix coefficient is compactly supported mod Z,
then so is every other one.

Proposition 2.9. Let π be an irreducible smooth G-representation. Then π is cuspidal iff it is
γ-cuspidal.

2This is what was defined as supercuspidal in previous talks.
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Corollary 2.10. Every irreducible smooth representation of G is admissible.

We will prove Proposition 2.9:

Proof. Assume that (π, V ) is cuspidal, so VN = 0 or V = V (N). Let f = γv̌⊗v, and let K ′ be a
compact open normal subgroup of K = GL2(OF ) which fixes v and v̌. Let k1, . . . , kr be coset
representatives for K/K ′. The support of f is a union of cosets ZK ′gK ′.

Let t = ($ 0
0 1 ) for $ a uniformizer of F . Then {tn | n ≥ 0} forms a set of coset representatives

for ZK\G/K. Thus, we have:

supp(f) =
⋃

1≤i,j≤r

ZK ′
(
suppfij ∩ {tn | n ≥ 0}

)
K ′

With fij : g 7→ f
(
k−1
i gkj

)
. Now, the lemma below shows that suppfij ∩ {tn | n ≥ 0} is a finite set,

which completes the proof.

Lemma 2.11. If f ∈ C(π) for a cuspidal representation π, f(tm) = 0 for m� 0.

Proof. We compute 〈v̌, tm ·v〉. Since V = V (N), if v ∈ V , then
´
N0
n ·v dn = 0 for some compact

open subgroup N0 ⊆ N by Lemma 2.3. Let N1 ⊂ N be a compact open subgroup fixing v̌. Then
for some positive constants c, c′:

〈v̌, tmv〉 = c ·
ˆ
N1

〈x−1v̌, tmv〉 dx

= c ·
ˆ
N1

〈t−mv̌, t−mxtmv〉 dx

= c′〈t−mv̌,
ˆ
t−mN1tm

nvdn〉

Now, t−mN1t
m ⊇ N0 for m � 0, so the integral is 0, since the integral over the subgroup N0 is

0.

We still have to prove the converse; that is, γ-cuspidal =⇒ cuspidal. So suppose that (π, V ) is
irreducible γ-cuspidal. In particular, it is admissible by Prop. 2.8(i). Then (π̌, V̌ ) is also irreducible
admissible. Let Kn := 1 + pnM2(OF ), where p = $OF is the maximal ideal of OF . Fix v ∈ V ,
and choose n ≥ 1 such that Kn fixes v.

For any v̌ ∈ V̌ Kn , we have 〈v̌, tmv〉 = 0 form sufficiently large, by our γ-cuspidality assumption.
Since V̌ Kn is finite-dimensional, this implies that for suitable c (independent of v̌), 〈v̌, tmv〉 = 0 for
all m ≥ c. It follows that π(eKn)π(tm)v = 0 for all m ≥ c, where eKn ∈ H(G) is the idempotent
in the Hecke algebra projecting onto the Kn-fixed functions. Indeed, this is because for any v̌ ∈ V̌ ,
we have 〈v̌, π(eKn)π(tm)v〉 = 〈π(eKn)v̌, π(tm)v〉 = 0, since π(eKn)v̌ ∈ V̌ Kn .

Now let
Nj :=

(
1 pj

0 1

)
, N ′j :=

(
1 0
pj 1

)
, Tn := Kn ∩ T

Then Kn = NnTnN
′
n. Let K(m)

n := t−mKnt
m = Nn−mTnN

′
n+m. Then for m ≥ c,

0 = π(eKn)π(tm)v = π(tm)π(e
K

(m)
n

)v = π(tm)
∑

x∈Nn−m/Nn

π(x)π(e
K

(m)
n ∩Kn

)v
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where the last equality uses the isomorphism Nn−m/Nn
∼−→ K

(m)
n /K

(m)
n ∩Kn. But K(m)

n ∩Kn fixes
v, so we get ˆ

Nn−m

π(x)vdx = 0

It follows that v ∈ V (N) (Lemma 2.3). Since v ∈ V was arbitrary, we deduce that V (N) = V , i.e.,
V is cuspidal.

Now we finally give some examples of cuspidal representations of GL2(F ). Let λ be a cuspidal
representation of GL2(k), where k is the residue field of F . We inflate this to a representation of
K := GL2(OF ). Now we have:

Z ∩K =
{(

λ 0
0 λ

)
| λ ∈ O×F

}
and we extend the character of λ|Z∩K to a character θ of Z. This amounts to arbitrarily choosing a
value for θ($). Now ρ := θλ is an irreducible representation of ZK on some space W . Our first
guess for constructing a G-representation might be to consider IndGZK ρ. It is, however, more natural
to consider a certain subrepresentation (which may agree with the induction). For a closed subgroup
H ⊆ G, and a representation (V, π) of H , IndGH π may be identified with the set of functions
f : G → V such that f(hg) = π(h) · f(g) for all h ∈ H, g ∈ G, together with a smoothness
condition. We may define a subrepresentation by only considering those functions as above that are
also compactly supported mod H . We call this the compact induction of V , denoted c− IndGHV .

The compact induction satisfies a dual form of Frobenius reciprocity:

Proposition 2.12. Let K ′ ⊂ G be a closed subgroup of the locally profinite group G. If V is a
K ′-representation and T is a G-representation, then:

HomG(c− IndGK′V, T ) = HomK′(V, T )

We have:

Theorem 2.13. For ρ defined as above and K ′ := ZK, c− IndGK′ρ is an irreducible cuspidal
representation of G.

Let X := c− IndGK′ρ. We have a K ′-embedding j : W ↪−→ X . Via Frobenius reciprocity
(Proposition 2.12), this embedding in HomK′(W, c− IndGK′W ) corresponds to the identity function
in HomG(c− IndGK′W, c− IndGK′W ). Its image is the set of functions supported in K ′. Explicitly,

j(w)(g) :=

{
ρ(g)w g ∈ K ′

0 g /∈ K ′

We will first construct a non-zero matrix coefficient of G on X which is compactly supported
mod Z. Let j : W ↪−→ X be the embedding discussed above, and ǰ : W̌ ↪−→ X̌ := c− IndGK′W̌
be the analogous such embedding for W̌ .3 We can compute:

〈f̌ , f〉 =

ˆ
K′\G

〈
f̌(g), f(g)

〉
dg

3warning: ǰ is not the contragredient of j
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Let w ∈ W, w̌ ∈ W̌ be non-zero. Then 〈w̌, g ·w〉 = 〈j(w̌), g · ǰ(·w)〉 = 0 unless g ∈ K ′ because
j(w) and ǰ(w̌) are supported in K ′. Therefore, this is a nonzero matrix coefficient supported on K ′,
which is compact mod Z. It therefore suffices to prove that X is irreducible over G.

Now Z acts onX via wρ, the central character of ρ. In other words, z ·f(g) = f(gz) = f(zg) =
ρ(z) · f(g) = wρ(z) · f(g) for z ∈ Z ⊆ K ′. Since Z\K ′ is compact, X splits into a direct sum of
K ′-isotypic components. We want to show that:

Proposition 2.14. j(W ) = Xρ, the ρ-isotypic component.

This proposition follows from (and is in fact, equivalent to) the following lemma, which is the
key point of the entire argument:

Lemma 2.15. HomK′(W,X) is one-dimensional.

Now, to prove the irreducibility of X , we let 0 6= Y ⊆ X be a G-invariant subspace. Note that
Y is K ′-semisimple, for the same reason as X is. We have:

0 6= HomG(Y,X) ⊆ HomG(Y, IndGK′ρ) = HomK′(Y, ρ)

Thus, Y ρ 6= 0, so 0 6= Y ρ ⊆ Xρ = j(W ), which is irreducible, so Y ρ = j(W ). In particular,
j(W ) ⊂ Y . Since j(W ) generates X as a G-space, Y = X , so X is irreducible.

It only remains to prove Lemma 2.15.
For g ∈ G, let (K ′)g = g−1K ′g, and ρg be the representation of (K ′)g with space W defined by

h 7→ ρ(ghg−1).

Lemma 2.16. Hom(K′)g∩K′(ρ
g, ρ) = 0 unless g ∈ K ′.

Let us assume this lemma for the moment and see how to complete the proof of Lemma 2.15.
Let ϕ ∈ HomK′(W,X). For all k ∈ K ′, g ∈ G,w ∈ W , we have, thinking of X = c− IndGK′ρ

as a space of functions on G:

(i) ϕ(w)(k · g) = ρ(k) · (ϕ(w)(g))

(ii) ϕ(ρ(k) · w)(g) = (k · (ϕ(w)))(g) = ϕ(w)(gk)

Fix g ∈ G, and consider ψg : W → W defined by ψg(w) := ϕ(w)(g−1). We claim that
ψg ∈ Hom(K′)g∩K′(ρ

g, ρ). Indeed, this amounts to showing that for k ∈ K ′ ∩ (K ′)(g),

ψg(ρ(gkg−1)w) = ρ(k)(ψg(w))

i.e.,
φ(ρ(gkg−1)w)(g−1) = ρ(k)(φ(w)(g−1))

Well, the left hand side equals (thanks to (2))

φ(w)(g−1(gkg−1)) = φ(w)(kg−1) = ρ(k)(φ(w)(g−1))

where the last equality is by (1). This proves the claim.
Lemma 2.16 therefore implies that ψg = 0 unless g ∈ K ′, so ϕ(w) is supported on K ′. This

implies that ϕ : W → j(W ), so ϕ = λ · j for some λ ∈ C by Schur’s Lemma.
It remains to prove Lemma 2.16. This is where we will finally use cuspidality of the residual

representation.
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Proof. Note that the statement of this lemma depends only on the coset of g in K ′\G/K ′. Indeed,
if k ∈ K ′ and φ ∈ Hom(K′)g∩K′(ρ

g, ρ), then ψ : v 7→ φ(k−1v) lies in Hom(K′)kg∩K′(ρ
kg, ρ), while

ψ′ : v 7→ k−1 · φ(v) lies in Hom(K′)gk∩K′(ρ
gk, ρ).

Thus, we may assume that g = tn for some n > 0 with t = ($ 0
0 1 ) as before.

Now, (K ′)g ∩ K ′ contains N0 :=
(

1 OF
0 1

)
⊆ g−1

(
1 p
0 1

)
g with p = $OF the maximal ideal.

This shows that ρg is trivial on N0, since ρ is trivial on
(

1 p
0 1

)
, because it is inflated from a residual

representation, and residually,
(

1 p
0 1

)
= {( 1 0

0 1 )}. But the residual representation λ does not contain
the trivial representation on the unipotent radical by the assumption that λ is cuspidal, so there can be
no nontrivial N0-hom from ρg to ρ, because the latter contains no copy of the trivial representation
of N0.

Remark 2.17. By the version of Frobenius reciprocity for compact induction, HomK′(W,X) −
EndG(X,X). This is an algebra under composition. There is a convolution algebra of functions,
the so-called spherical Hecke algebra, denoted H (G, ρ), such that we have a natural isomorphism
EndG(X,X) ' H (G, ρ). Further, the space of functions in H (G, ρ) supported on K ′gK ′ is
canonically isomorphic to Hom(K′)g∩K′(ρ, ρ

g). Thus, G-endomorphisms of X are naturally related
to such homs, and if such a hom exists, then we say that g intertwines ρ with itself. For more on
this, cf. [BH, Ch. 3, §11.1-11.3].
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