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Let F' be a local field. We fix ¢ € ﬁ, Y # 1, such that 9|« = 1 for d » 0 with p the maximal
ideal (w) of F. Let ¢ = N(w) = |F/p|, and let v be the valuation. We fix dz, d* x Haar measures
on F, [’ respectively with the latter normalized so that | o d*zr = 1.

We recall the GL; theory. Let & € C'P°(F') be a smooth compactly supported function. Then we
may define the Fourier transform

B(z) = / B(y)i(ay) dy.

This satisfies the Fourier inversion formula <f>(a:) = ®(—x). For some character xy on F'* = GL; (F),
we define the zeta function

(@) = [ @@n(a)lel s

and we define the set:
Z(x,s) = {C(P,x,s) | Pe CX(F)}.

We have the following theorem:
Theorem 1.

(A) (y-factor) There exists a unique gamma factor v(x, s) € C(¢~*) such that
(P71 = 8) = 7(x, 8)C(D, X, 5)

and y(x, s)y(x "', 1 = s) = x(-1).
(B) (L-function) The set Z(y, s) is equal to L(x, s)C[¢*, ¢°]. Here, we have:

Lix. s) 1 x ramified
) S = — .
X (1 — X(w)q*s) ! X unramified

(C) (e-factors) The function
L(x,s)

e(x;s) = 7(X73)m

satisfies €(x, s)e(x 1,1 —s) = x(—1) and €(x, s) = e(X)q(dJrf)(%*s) with |e(x)| = 1. If x is
unramified then e(x) = (@)% If x is ramified then €() is a certain Gauss sum depending
on  and 1. Here f is defined so that the norm of the conductor of y is ¢/.



Remark 2. The ¢ factor acts as the “fudge factor” to make the functional equation hold exactly
for the L-function. For more precise formulas of the e-factors and the relevant Gauss sums, see
[Go, Equations (233) and (240)] or [BH, p.143]. If  is unramified then the L-function L(s, x)
uniquely determines x. Otherwise, L(s, x) gives no information when Y is ramified; in this case,
e(x,s) = v(x, s) so the e-factor encodes all of the data of .

Remark 3. We suppress the dependence on the choice of ) everywhere. However, while the € and
~ factors do depend on the choice of 1), the L-function is the same for all appropriate .

Now, we will pass to the GL case. Given an irreducible admissible representation 7 of GLy(F'),
we have the Whittaker and Kirillov models defined by:

W(r) = {W: G- ClW((*1)-g) = b(@)W(9)},

k) = {01 7 = C1n((51))oto) = vibojo(en) .

We have a bijection from W(r) to K() defined by sending W to ¢y : z — W ((§9)). The “dual”

Whittaker functional W € W (r) is defined to be the function g — W (gw) for w = (%4). the
generator of the Weyl group. Recall C*(F*) < KC(n) always.
Now, define a zeta integral similar to before:

ZWoxs) = [ owla)x(@) af ! e

The function ¢y can be thought of as a test function varying over W € W(x).

Remark 4. This is defined in vague analogy to the definition given above in the GL; case, but the
analogy isn’t perfect. For example, in the GL; case, ((®, x, s) is defined for & € C*(F'), but here
we consider ¢y defined on F™* rather than on F'. A closer parallel to the G L, theory can be drawn
using functions ® on My, (F'); see [BH, Section 24] for details.

Before we discuss the (GL, local functional equation, we prove the existence of a Whittaker
functional such that it and its dual have Kirillov elements both supported away from zero, while
also having a non-trivial zeta integral.

Lemma 5. There exists W € W(n) such that ¢y € CP(F*), ¢y € C(F*) and Z(W, x, s) # 0.

Proof. From [Go, Lemma 7, page 1.13], there exists non-zero W € W(r) with ¢y € C°(F), ¢y €
CP(F>) satistying ¢w (zu) = ¢w(x)x(u) for all u € 0. By direction computation, we verify
that the zeta integral does not vanish:

ZWx.s) = [ owl@pnta) s

o
_ Z ¢W(wnu)x(wnu)fl‘wn‘2571d><u

X
n=—c0’r

_ Z dw (wn>x(wn)—lq(25—1)n.

n=—0u



Note the sum is actually finite since ¢y is compactly supported away from zero. Thus, Z (W, x, s)
is a non-zero element of C[¢~*, ¢°] if and only if ¢y, % 0. The latter is true as IV is non-zero. This
finishes Step 2. O

Now, analogous to Theorem in the GL; case, we have the following theorem:
Theorem 6.
(i) Z(W,x, s) converges for Re(s) » 0.

(ii) Z(W, x, s) admits an analytic continuation to a meromorphic function with at most 2 poles.

(iii) There exists some 7, (x, s) € C(¢~*) such that:
Z(W,wex ™11 = 8) = 1, 5)Z(W, X, ) 1)

for all W € W(m). Also,

Y (0 8)Ya (X wr, 1 = 8) = wr(—1). 2)

Proof. (i) When 7 is supercuspidal, this part is easy. We have that ¢y € K(7) = CL(F*), so
the integral converges due to the compact support away from zero. We may split the integral
into a finite sum according to the valuation of = € F'*.

Suppose 7 is not supercuspidal. From an earlier description of the Kirillov model [Go, Section
10], it follows that ¢y € KC(7) is a sum of terms like |x|"/2\(z) f(x) and |z|*?v(2)\(z) f (z),
where \: [’* — C* is some character and f € C'(F'), with v the valuation. We claim that
this implies that the integral converges. Let us consider one such integral. Since f is locally
constant near 0, it follows that f(x) = f(0) for |x| < ¢~V with N > 1 sufficiently large.
Moreover, as f is compactly supported in F, it follows that f(z) = 0 for |x| > ¢™ with
M > 1 sufficiently large. Thus,

[ el @)@ o ae = ) [

le|<q=N

2|2 7V2\ () d*z + /

g N <Jz|<gM

The second integral over ¢~V < |z| < ¢™ can be written as a finite sum over m = v(z) with

—N < m < M and therefore it converges for all s € C. For the first integral, we also divide

it according to the valuation n = —v(x) and observe that
/ ’x|25—1/2/\($) A r = Z qn/2—2ns/ )\(SB)dXQZ
lz|<g=N n>N |z|=g="
For |z| = ¢7", we may write * = w"y with y € ). Since \ is a character of F'*, it

follows that |A(y)| < 1 and thus |A\(z)| = |A(@)|" for |z| = ¢~™. Moreover, f| d*x =

| o *x = 1 by our normalization of the Haar measure. Hence, the above expression is
F

bounded in absolute value by

2 qn/2—2nRe(s)/ |/\(l‘)|dxl‘ < Z qn/Q—QnRe(s)|/\(w>|n.

n=N |x‘:q—n n=N

z[=q~"

As |A\(w)]| is some fixed power of ¢, the above infinite sum converges once Re(s) > 0.
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(i1) Proof postponecﬂ We will not utilize this result until after Theorem

(iii) This follows from three steps.
Step 1: Show (1)) holds for any W € W(x) with ¢y € CP(F*).
(We will prove this step last.)

Step 2: Show (2) holds. Choose W from Lemma 5| From Steps 1 and 2, we may apply
Equation [I]twice to see that:

wr(=1)Z(W.x,8) = Z(W,x.8) = (X ", 1= $)Z(W. X Heor, 1~ 5)
= IYTF(X_Iwﬂ'? I- S)/yﬂ(Xv S)Z<W7 X S)
Since Z(W, x, s) # 0, we may divide both sides by Z (W, x, s) to deduce (2) holds.

Step 3: Show (1)) holds for any W € W(m).
For every W € W(m), there exists Wy, Wy € W(m) such that

ow = dw, + ¢, and  ow,, by, € CF(F7).

This follows from the arguments leading to [Go, Section 10, Equation (144)]. Thus, we may

apply the functional equation (I)) to each of Z (W7, x, s) and Z (WQ, X, s) and use linearity to
deduce (I) for Z(W, x, s).

The remainder of the proof is to establish Step 1. First, we make a reduction.

Claim 7. Any f € C(F*) is a linear combination of functions of the form:
A@)1 5 (2)

with A0 F — C* some character and 1, the indicator function on & iy

Proof of Claim @ Recall F* =~ Z x O};. Since f is compactly supported and locally constant,
there exists positive integers N, M > 1 (dependingly only on f) such that for every x € F'*,
f(z) = f(w™u) for some unique integer n € [— N, N| and unique u chosen from a fixed set
of coset representatives ) of 0 /(1 + @™ 0}). Therefore,

f@) = Y @ 0L, o e ).

—N<n<N ues

By orthogonality of characters on the finite quotient group &5 /(1 + @™ £'}), the indicator
function 1, v gx (y) can be written as a finite linear combination of A(y)1 o (y) where A is

a character of F'* with conductor at most ¢*. This proves the claim. [

'Tt is not apparent to me that a complete proof is provided in [Go, Section 12]. From the functional equation,
Z(W, x, s) is meromorphic in Re(s) > A and Re(s) < 1 — A for some large positive A but, without additional work,
it is not obvious why it extends to the strip 1 — A < Re(s) < A. Instead, this extra input will follow implicitly from

Theorems [§]and B).



Continuing the proof of Step 1, recall we assume ¢ € C*(F*). By Claim[7|and the linearity
of Z(W, x, s) in W, it suffices to show the functional equation for ¢y of the form:

b (@) = Ma)1,x (@)

with \: F’* — C* some arbitrary character. During the course of our computations, it is
crucial that the calculated ~ factor depends only on 7, y, ' and s. In particular, v should be
independent of the arbitrary character \. Now, as A and y are characters on ', the maps
Al % and | oy are (necessarily unitary) characters on the compact group ;.. Hence, by

orthogonality of characters (for the compact group &),

2o - |

1 )\ X = X
Mz)x(z) td*z = { |ﬁF X’ﬁF 3)
o

0 else

because f ox d*x = 1 via our choice of normalization.
F

If Al ox * X| ¢ then one may again verify by a similar computation that

Z(W,wﬂx_l, 1—s)=0.
Thus, in this case, any choice of 7, (, s) would satisfy a functional equation.

Otherwise, we have reduced to the case when

dw () = x(@)1 ().
In particular, ¢y now depends only on . Therefore, for this ¢y, we define

(v[[’ (*‘TFX717 I- S) / -1 1-2
/ = by ()w; x ()| d*z
Z(”JC:S) Fx ( ) ( )| |

with the latter equality following from (3)) and the definition of the zeta integral. Evidently,
v satisfies the functional equation for this choice of ¢y, and, since ¢y, depends only on Y,
we see that v, depends only on y and s. Therefore, we’ve shown that for all W € W(r) with
dw € CX(F*) that (I)) holds. This completes the proof of Step 1 and hence Theorem 6]

[

7ﬂ(X7 3) =

Note that the operation W — IV is not actually anything to do with a Fourier transform: the
duality in the functional equation appearing in Theorem [6]comes from the action of the Weyl group
(which of course is trivial in the GL; case). In the next theorem, the Fourier transform plays a role .

Theorem 8. Define:

1 7 cuspidal
Le(x,s) = L(x'm,2s = 3) - L(X 02,25 = 3) T = My iin/pi2 # |- |- [
’ L(X_llula 25 — %) T = 7TM1,M27/JJ1/:M2 = ‘ ’ ’
L(x ‘g2, 25 — 1) T=7 Jpz = |
X M2, 2 w1,z M1/ H2

With this definition, we have:

{Z(W,x,s) | WeW(m)} = La(x,s) - Clg >, ¢*]
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Thus, if 7 is induced from 1y ® gz on T = B/N ~ G,, x G,,, then the L-function is the
product of the GL; L-functions for py, po. If 7 is cuspidal, then just like in the ramified case for
GL;, the L-factor carries no information.

Proof. If 7 is cuspidal, there is not much to show. We have:
ZW.x,s) = | ow(a)x (@) d*x
FX

Since ¢y € K(m) = CP(F*), the integral breaks into a sum of finitely many terms based on the
valuation of x, so Z(W, x, s) € C[q~%, ¢*].
If 7 = 7y, With pig/p2 # 1, ] -], | - |~ then we have:

ow(z) = |22 (pu (@) @1 () + p2(2)@s(2))

with ®; € C(F) and 11, pto: F* — C* characters. Then we have:

1 1
Z(W7X7 S) = C<(I)17X_1M1)28 - 5) + C(®2)X_1M27 25 — 5)

We will write z = 25 — £ here and in the future. By Theorem |I{B)|, this is contained in:
L(x" ', 2)Cla™, ¢* ] + L(x " 2, 2)Clg™, ¢*] = L(x" 1, 2) L(x ™ 12, 2)Cla™, ¢*]

The claimed equality holds since p; # po implies the two GG L, L-functions have different poles (as

one can see by looking at the defining formula). For the cases when 11/ps = 1, |, | - | 7%, similar
arguments hold but with minor variations due to the precise characterization of the Kirillov models
KC(m). See [Go, pp.145-147] for details. O

Now, we give a computation of the - factors in the case of principal series. Paralleling the G L
theory for ramified characters, the case of cuspidal representations is more subtle and involves an
analogue of the Gauss sum. See [BH, Section 25] for details.

Theorem 9. If 7 = 7, ,,,, then:

_ 1 ~ 1
Yr (X5 8) = V(X Y, 25 — 5) -7<>< g, 25 — 5)

Proof. Choose W from Lemma [5|and let ¢ = ¢y,. We have the following claims:
Claim 10. There exists some ® € C°(F") which extends to ¢ € B

d(w™ (54)) = ¢(y)

and the Fourier transform ® € C*(F*) satisfies Z(W, y, s) = ((®, x 'z, z). Here B,., ., is the
space of locally constant functions ¢ : G — C satisfying

p((83)9) = m(@mua(b)la/b]¢(g).

0 SUCh that



Proof of Claim ' Set ®(z) = p53 " (z)|z|Y2¢w (x) € C*(F*). By Fourier inversion,
B(-y) = [ Bla)ulan)do e CE(P)

By the Fourier transform [Go| Equation (148)], it follows that ® € B,,, ,,, and ®(w ™ (3 ¥)) = ®(y).
This proves the claim. [

Claim 11. Choose @ as in the proof of Claim [I0} Define ®,, by g — ®(gw) so its restriction
®,, € CX(F) satisfies v — ®(w ' (§ ) w). Then, with z = 25 — 1,

Z(W,X_lw,r, 1— s) = C(&Dw,xufl, 1— z>
Proof of Claim[I 1} By a direct substitution of the definitions of Z, ¢ and ®,
Z(W, vl 1— s) -/ bip () xwi L (@) |22 d¥a
= [ Bl x(o) ) ol el
- [ Spr @l v
= C(&Dw, X,ufl, 1-— z).

This proves the claim. u

Claim 12. Choose @ as in the proof of Claim [I0] Then
C(Puy X 1, 2) = (ax D(=1)C(R, xpy ', 1 = 2)
Proof of Claim[I2} By Claim|[IT]
@uly) = 0w () w) =2 (3 1) (09w (i ).
As ® € B,,, ,,, by Claim[I0] the above expression is equal to
)y e (w (371) ) = wel= D ()l (- 1/y).

Substituting this formula into the integral ¢ (®,,, x 11, 2), it follows by the change of variables
—1/y — y that

C(Pu, x 1, 2) =/ o (y)x i (y)ylFd*y

= wel=D) [ 1/ )l
= X_lﬂl(_l)/x D (y)xps (W) |yl' *d*y
=X ' (=1)C(P, xpp 1= 2).
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This proves the claim. |
Now, we have, by repeatedly applying the claims as well as the GL; theorems:

(i x D=1y (pax ™Y 2)Z(W, x, 8) = (uax~ )(—1)7(M2X—1,z)g@x—luz,Z)
= (x~ )(—1)C(<I>,xu;1,1—z)
C( ws X Ml, )
= (w1 = 2)C( Py xpr 1 — 2)
= y(xp ' 1 - z)Z<W, X w1 — s)

By Theorem|6] the righthand side equals

=yt 1= 2)7(x, 8) Z(W, x, 8).

Our choice of W from Lemma [5|satisfies Z (W, x, s) # 0 so we may divide this term from both
sides to deduce that

— 7(M2X71’ Z )
Ye(x8) = mxy (1) — :
7(”1 X 1 - Z)
Applying Theorem[I[A) to the denominator proves the theorem. 0
Theorem 13. Define €, (x, s) = V- (x, )% Then we have the functional equation:

ex(Xs 8)ex(X ' wn, 1 — 8) = we(—1)
and e, (, s) = aq® for some a € C* and b € Z.

Finally, in the principal series case, we can compute the ¢ factors. For the cuspidal case, the €
factor equals the «y factor (as the L-functions defining €, are trivial) so we again refer the reader to
[BH, Section 25] for details.

Theorem 14. If 7 = 7, ,, with pu1/po # | - |, | - |71, then we have:

EW(Xa ) - E(X M1, 2s — _) (X M2, 25 — )
where the ¢ factors on the right are the ¢ factors from the GL; theory.

Proof. This follows from Theorems [9)and[13]as well as the relationship between ¢ factors and
factors in the GL; case. For the cases when p; /o =# | - |,| - |77, see [Go, pages 1.49-1.52]. [

Now, we will prove Theorem 13}

Proof. The equation e, (x, 8)ex(x 'wy, 1 — 5) = w,(—1) follows directly from the definition and
the functional equation for y given in Theorem [6]
Now, again by Theorem|[6] we have:

Z(W,wﬂx_l, 1-— 5)
L.(x"'wg, 1 —5)

Z(W,x, s)

m ex(X;8) =




By Theorem the right-hand side is in C[¢ 2%, ¢**], so it is entire in s. Now, choose W such that
Z(W,x,s) = Lr(x, s). This implies that ¢,(x, s) € C[¢g 2%, ¢**] as well. Similarly, we see that
ex(X'wr, 1 — 5) € Clg™%, ¢*]. Since their product is w,(—1), we have:

ex(x, s) € Clg™, ¢*|*

Thus, ¢, (x, s) = ag” for some a € C* and b € Z. O
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