Lecture 14: Local functional equation Lecture by Asif Zaman Stanford Number Theory Learning Seminar January 31, 2018 Notes by Dan Dore and Asif Zaman

Let F be a local field. We fix $\psi \in \hat{F}$, $\psi \neq 1$, such that $\psi|_{\mathfrak{p}^d} \cong 1$ for $d \gg 0$ with \mathfrak{p} the maximal ideal (ϖ) of F. Let $q = N(\varpi) = |F/\mathfrak{p}|$, and let v be the valuation. We fix $dx, d^{\times}x$ Haar measures on F, F^{\times} respectively with the latter normalized so that $\int_{\mathscr{O}_F^{\times}} d^{\times}x = 1$.

We recall the GL_1 theory. Let $\Phi \in C_c^{\infty}(F)$ be a smooth compactly supported function. Then we may define the Fourier transform

$$\widehat{\Phi}(x) = \int_F \Phi(y) \overline{\psi(xy)} \, dy.$$

This satisfies the Fourier inversion formula $\widehat{\widehat{\Phi}}(x) = \Phi(-x)$. For some character χ on $F^{\times} = \operatorname{GL}_1(F)$, we define the zeta function

$$\zeta(\Phi, \chi, s) = \int_{F^{\times}} \Phi(x)\chi(x)|x|^s d^{\times}x$$

and we define the set:

$$\mathcal{Z}(\chi, s) = \left\{ \zeta(\Phi, \chi, s) \mid \Phi \in C_c^{\infty}(F) \right\}.$$

We have the following theorem:

Theorem 1.

(A) (γ -factor) There exists a unique gamma factor $\gamma(\chi, s) \in \mathbf{C}(q^{-s})$ such that

$$\zeta(\widehat{\Phi}, \chi^{-1}, 1-s) = \gamma(\chi, s)\zeta(\Phi, \chi, s)$$

and $\gamma(\chi, s)\gamma(\chi^{-1}, 1-s) = \chi(-1)$.

(B) (*L*-function) The set $\mathcal{Z}(\chi, s)$ is equal to $L(\chi, s)\mathbf{C}[q^{-s}, q^s]$. Here, we have:

$$L(\chi, s) = \begin{cases} 1 & \chi \text{ ramified} \\ \left(1 - \chi(\varpi)q^{-s}\right)^{-1} & \chi \text{ unramified} \end{cases}$$

(C) (ϵ -factors) The function

$$\epsilon(\chi, s) = \gamma(\chi, s) \frac{L(\chi, s)}{L(\chi^{-1}, 1 - s)}$$

satisfies $\epsilon(\chi, s)\epsilon(\chi^{-1}, 1-s) = \chi(-1)$ and $\epsilon(\chi, s) = \epsilon(\chi)q^{(d+f)(\frac{1}{2}-s)}$ with $|\epsilon(\chi)| = 1$. If χ is unramified then $\epsilon(\chi) = \chi(\varpi)^d$. If χ is ramified then $\epsilon(\chi)$ is a certain Gauss sum depending on χ and ψ . Here f is defined so that the norm of the conductor of χ is q^f .

Remark 2. The ϵ factor acts as the "fudge factor" to make the functional equation hold exactly for the *L*-function. For more precise formulas of the ϵ -factors and the relevant Gauss sums, see [Go, Equations (233) and (240)] or [BH, p.143]. If χ is unramified then the *L*-function $L(s, \chi)$ uniquely determines χ . Otherwise, $L(s, \chi)$ gives no information when χ is ramified; in this case, $\epsilon(\chi, s) = \gamma(\chi, s)$ so the ϵ -factor encodes all of the data of χ .

Remark 3. We suppress the dependence on the choice of ψ everywhere. However, while the ϵ and γ factors do depend on the choice of ψ , the *L*-function is the same for all appropriate ψ .

Now, we will pass to the GL_2 case. Given an irreducible admissible representation π of $GL_2(F)$, we have the Whittaker and Kirillov models defined by:

$$\mathcal{W}(\pi) = \left\{ W \colon G \to \mathbf{C} \mid W(\begin{pmatrix} x \\ 1 \end{pmatrix}) \cdot g \right\} = \psi(x)W(g) \right\},$$
$$\mathcal{K}(\pi) = \left\{ \phi \colon F^{\times} \to \mathbf{C} \mid \pi\left(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}\right) \phi(x) = \psi(bx)\phi(ax) \right\}.$$

We have a bijection from $\mathcal{W}(\pi)$ to $\mathcal{K}(\pi)$ defined by sending W to $\phi_W \colon x \mapsto W\left(\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}\right)$. The "dual" Whittaker functional $\widetilde{W} \in \mathcal{W}(\pi)$ is defined to be the function $g \mapsto W(gw)$ for $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, the generator of the Weyl group. Recall $C_c^{\infty}(F^{\times}) \subseteq \mathcal{K}(\pi)$ always.

Now, define a zeta integral similar to before:

$$Z(W,\chi,s) = \int_{F^{\times}} \phi_W(x)\chi(x)^{-1}|x|^{2s-1} d^{\times}x$$

The function ϕ_W can be thought of as a test function varying over $W \in \mathcal{W}(\pi)$.

Remark 4. This is defined in vague analogy to the definition given above in the GL₁ case, but the analogy isn't perfect. For example, in the GL₁ case, $\zeta(\Phi, \chi, s)$ is defined for $\Phi \in C_c^{\infty}(F)$, but here we consider ϕ_W defined on F^{\times} rather than on F. A closer parallel to the GL_1 theory can be drawn using functions Φ on $M_{2\times 2}(F)$; see [BH, Section 24] for details.

Before we discuss the GL_2 local functional equation, we prove the existence of a Whittaker functional such that it and its dual have Kirillov elements both supported *away from zero*, while also having a non-trivial zeta integral.

Lemma 5. There exists $W \in \mathcal{W}(\pi)$ such that $\phi_W \in C_c^{\infty}(F^{\times}), \phi_{\widetilde{W}} \in C_c^{\infty}(F^{\times})$ and $Z(W, \chi, s) \neq 0$.

Proof. From [Go, Lemma 7, page 1.13], there exists non-zero $W \in \mathcal{W}(\pi)$ with $\phi_W \in C_c^{\infty}(F^{\times}), \phi_{\widetilde{W}} \in C_c^{\infty}(F^{\times})$ satisfying $\phi_W(xu) = \phi_W(x)\chi(u)$ for all $u \in \mathscr{O}_F^{\times}$. By direction computation, we verify that the zeta integral does not vanish:

$$Z(W,\chi,s) = \int_{F^{\times}} \phi_W(x)\chi(x)^{-1}|x|^{2s-1}d^{\times}x$$
$$= \sum_{n=-\infty}^{\infty} \int_{\mathscr{O}_F^{\times}} \phi_W(\varpi^n u)\chi(\varpi^n u)^{-1}|\varpi^n|^{2s-1}d^{\times}u$$
$$= \sum_{n=-\infty}^{\infty} \phi_W(\varpi^n)\chi(\varpi^n)^{-1}q^{(2s-1)n}.$$

Note the sum is actually finite since ϕ_W is compactly supported away from zero. Thus, $Z(W, \chi, s)$ is a non-zero element of $\mathbb{C}[q^{-s}, q^s]$ if and only if $\phi_W \neq 0$. The latter is true as W is non-zero. This finishes Step 2.

Now, analogous to Theorem 1(A) in the GL_1 case, we have the following theorem:

Theorem 6.

- (i) $Z(W, \chi, s)$ converges for $\operatorname{Re}(s) \gg 0$.
- (ii) $Z(W, \chi, s)$ admits an analytic continuation to a meromorphic function with at most 2 poles.
- (iii) There exists some $\gamma_{\pi}(\chi, s) \in \mathbf{C}(q^{-s})$ such that:

$$Z(\widetilde{W}, \omega_{\pi}\chi^{-1}, 1-s) = \gamma_{\pi}(\chi, s)Z(W, \chi, s)$$
(1)

for all $W \in \mathcal{W}(\pi)$. Also,

$$\gamma_{\pi}(\chi, s)\gamma_{\pi}(\chi^{-1}\omega_{\pi}, 1-s) = \omega_{\pi}(-1).$$
 (2)

Proof. (i) When π is supercuspidal, this part is easy. We have that $\phi_W \in \mathcal{K}(\pi) = C_c^{\infty}(F^{\times})$, so the integral converges due to the compact support *away from zero*. We may split the integral into a *finite* sum according to the valuation of $x \in F^{\times}$.

Suppose π is not supercuspidal. From an earlier description of the Kirillov model [Go, Section 10], it follows that $\phi_W \in \mathcal{K}(\pi)$ is a sum of terms like $|x|^{1/2}\lambda(x)f(x)$ and $|x|^{1/2}v(x)\lambda(x)f(x)$, where $\lambda \colon F^{\times} \to \mathbb{C}^{\times}$ is some character and $f \in C_c^{\infty}(F)$, with v the valuation. We claim that this implies that the integral converges. Let us consider one such integral. Since f is locally constant near 0, it follows that f(x) = f(0) for $|x| \leq q^{-N}$ with $N \geq 1$ sufficiently large. Moreover, as f is compactly supported in F, it follows that f(x) = 0 for $|x| \geq q^M$ with $M \geq 1$ sufficiently large. Thus,

$$\int_{F^{\times}} |x|^{1/2} \lambda(x) f(x) \cdot |x|^{2s-1} d^{\times} x = f(0) \int_{|x| \le q^{-N}} |x|^{2s-1/2} \lambda(x) d^{\times} x + \int_{q^{-N} < |x| \le q^{M}} (\cdots)$$

The second integral over $q^{-N} < |x| \le q^M$ can be written as a *finite* sum over m = v(x) with $-N \le m \le M$ and therefore it converges for all $s \in \mathbb{C}$. For the first integral, we also divide it according to the valuation n = -v(x) and observe that

$$\int_{|x| \le q^{-N}} |x|^{2s - 1/2} \lambda(x) \, d^{\times} x = \sum_{n \ge N} q^{n/2 - 2ns} \int_{|x| = q^{-n}} \lambda(x) d^{\times} x$$

For $|x| = q^{-n}$, we may write $x = \varpi^n y$ with $y \in \mathscr{O}_F^{\times}$. Since λ is a character of F^{\times} , it follows that $|\lambda(y)| \leq 1$ and thus $|\lambda(x)| = |\lambda(\varpi)|^n$ for $|x| = q^{-n}$. Moreover, $\int_{|x|=q^{-n}} d^{\times}x = \int_{\mathscr{O}_F^{\times}} d^{\times}x = 1$ by our normalization of the Haar measure. Hence, the above expression is bounded in absolute value by

$$\sum_{n \ge N} q^{n/2 - 2n\operatorname{Re}(s)} \int_{|x| = q^{-n}} |\lambda(x)| d^{\times} x \le \sum_{n \ge N} q^{n/2 - 2n\operatorname{Re}(s)} |\lambda(\varpi)|^n$$

As $|\lambda(\varpi)|$ is some fixed power of q, the above infinite sum converges once $\operatorname{Re}(s) \gg 0$.

- (ii) Proof postponed¹. We will not utilize this result until after Theorem 8.
- (iii) This follows from three steps.

Step 1: Show (1) holds for any $W \in \mathcal{W}(\pi)$ with $\phi_W \in C_c^{\infty}(F^{\times})$.

(We will prove this step last.)

Step 2: Show (2) *holds.* Choose *W* from Lemma 5. From Steps 1 and 2, we may apply Equation 1 twice to see that:

$$\omega_{\pi}(-1)Z(W,\chi,s) = Z(\widetilde{W},\chi,s) = \gamma_{\pi}(\chi^{-1}\omega_{\pi},1-s)Z(\widetilde{W},\chi^{-1}\omega_{\pi},1-s)$$
$$= \gamma_{\pi}(\chi^{-1}\omega_{\pi},1-s)\gamma_{\pi}(\chi,s)Z(W,\chi,s)$$

Since $Z(W, \chi, s) \neq 0$, we may divide both sides by $Z(W, \chi, s)$ to deduce (2) holds. Step 3: Show (1) holds for any $W \in W(\pi)$.

For every $W \in \mathcal{W}(\pi)$, there exists $W_1, W_2 \in \mathcal{W}(\pi)$ such that

$$\phi_W = \phi_{W_1} + \phi_{\widetilde{W}_2}$$
 and $\phi_{W_1}, \phi_{\widetilde{W}_2} \in C_c^{\infty}(F^{\times}).$

This follows from the arguments leading to [Go, Section 10, Equation (144)]. Thus, we may apply the functional equation (1) to each of $Z(W_1, \chi, s)$ and $Z(W_2, \chi, s)$ and use linearity to deduce (1) for $Z(W, \chi, s)$.

The remainder of the proof is to establish Step 1. First, we make a reduction.

Claim 7. Any $f \in C_c^{\infty}(F^{\times})$ is a linear combination of functions of the form:

$$\lambda(x)\mathbf{1}_{\mathscr{O}_{r}^{\times}}(x)$$

with $\lambda \colon F^{\times} \to \mathbf{C}^{\times}$ some character and $\mathbf{1}_{\mathscr{O}_{E}^{\times}}$ the indicator function on \mathscr{O}_{F}^{\times} .

Proof of Claim 7: Recall $F^{\times} \cong \mathbb{Z} \times \mathscr{O}_F^{\times}$. Since f is compactly supported and locally constant, there exists positive integers $N, M \ge 1$ (dependingly only on f) such that for every $x \in F^{\times}$, $f(x) = f(\varpi^n u)$ for some unique integer $n \in [-N, N]$ and unique u chosen from a fixed set of coset representatives Ω of $\mathscr{O}_F^{\times}/(1 + \varpi^M \mathscr{O}_F^{\times})$. Therefore,

$$f(x) = \sum_{-N \leqslant n \leqslant N} \sum_{u \in \Omega} f(\varpi^n u) \mathbf{1}_{u + \varpi^M \mathscr{O}_F^{\times}}(x \varpi^{-n}).$$

By orthogonality of characters on the finite quotient group $\mathscr{O}_F^{\times}/(1 + \varpi^M \mathscr{O}_F^{\times})$, the indicator function $\mathbf{1}_{u+\varpi^M \mathscr{O}_F^{\times}}(y)$ can be written as a finite linear combination of $\lambda(y)\mathbf{1}_{\mathscr{O}_F^{\times}}(y)$ where λ is a character of F^{\times} with conductor at most q^M . This proves the claim.

¹It is not apparent to me that a complete proof is provided in [Go, Section 12]. From the functional equation, $Z(W, \chi, s)$ is meromorphic in $\operatorname{Re}(s) \ge A$ and $\operatorname{Re}(s) \le 1 - A$ for some large positive A but, without additional work, it is not obvious why it extends to the strip $1 - A \le \operatorname{Re}(s) \le A$. Instead, this extra input will follow implicitly from Theorems 8 and 1(B).

Continuing the proof of Step 1, recall we assume $\phi_W \in C_c^{\infty}(F^{\times})$. By Claim 7 and the linearity of $Z(W, \chi, s)$ in W, it suffices to show the functional equation for ϕ_W of the form:

$$\phi_W(x) = \lambda(x) \mathbf{1}_{\mathscr{O}_{\mathfrak{D}}^{\times}}(x)$$

with $\lambda: F^{\times} \to \mathbb{C}^{\times}$ some arbitrary character. During the course of our computations, it is crucial that the calculated γ factor depends only on π, χ, F and s. In particular, γ should be *independent* of the arbitrary character λ . Now, as λ and χ are characters on F^{\times} , the maps $\lambda|_{\mathscr{O}_{F}^{\times}}$ and $\chi|_{\mathscr{O}_{F}^{\times}}$ are (necessarily unitary) characters on the compact group \mathscr{O}_{F}^{\times} . Hence, by orthogonality of characters (for the compact group \mathscr{O}_{F}^{\times}),

$$Z(W,\chi,s) = \int_{\mathscr{O}_F^{\times}} \lambda(x)\chi(x)^{-1} d^{\times}x = \begin{cases} 1 & \lambda|_{\mathscr{O}_F^{\times}} = \chi|_{\mathscr{O}_F^{\times}} \\ 0 & \text{else} \end{cases}$$
(3)

because $\int_{\mathscr{O}_{n}^{\times}} d^{\times} x = 1$ via our choice of normalization.

If $\lambda|_{\mathscr{O}_F^{\times}} \neq \chi|_{\mathscr{O}_F^{\times}}$ then one may again verify by a similar computation that

$$Z(\widetilde{W}, \omega_{\pi}\chi^{-1}, 1-s) = 0.$$

Thus, in this case, any choice of $\gamma_{\pi}(\chi, s)$ would satisfy a functional equation.

Otherwise, we have reduced to the case when

$$\phi_W(x) = \chi(x) \mathbf{1}_{\mathscr{O}_{r}^{\times}}(x).$$

In particular, ϕ_W now depends *only* on χ . Therefore, for this ϕ_W , we define

$$\gamma_{\pi}(\chi, s) := \frac{Z(\widetilde{W}, \omega_{\pi}\chi^{-1}, 1-s)}{Z(W, \chi, s)} = \int_{F^{\times}} \phi_{\widetilde{W}}(x) \omega_{\pi}^{-1}\chi(x) |x|^{1-2s} d^{\times}x$$

with the latter equality following from (3) and the definition of the zeta integral. Evidently, γ_{π} satisfies the functional equation for this choice of ϕ_W and, since ϕ_W depends only on χ , we see that γ_{π} depends only on χ and s. Therefore, we've shown that for all $W \in \mathcal{W}(\pi)$ with $\phi_W \in C_c^{\infty}(F^{\times})$ that (1) holds. This completes the proof of Step 1 and hence Theorem 6.

Note that the operation $W \mapsto \widetilde{W}$ is not actually anything to do with a Fourier transform: the duality in the functional equation appearing in Theorem 6 comes from the action of the Weyl group (which of course is trivial in the GL_1 case). In the next theorem, the Fourier transform plays a role.

Theorem 8. Define:

$$L_{\pi}(\chi, s) = \begin{cases} 1 & \pi \text{ cuspidal} \\ L(\chi^{-1}\mu_1, 2s - \frac{1}{2}) \cdot L(\chi^{-1}\mu_2, 2s - \frac{1}{2}) & \pi = \pi_{\mu_1,\mu_2}, \mu_1/\mu_2 \neq |\cdot|, |\cdot|^{-1} \\ L(\chi^{-1}\mu_1, 2s - \frac{1}{2}) & \pi = \pi_{\mu_1,\mu_2}, \mu_1/\mu_2 = |\cdot| \\ L(\chi^{-1}\mu_2, 2s - \frac{1}{2}) & \pi = \pi_{\mu_1,\mu_2}, \mu_1/\mu_2 = |\cdot|^{-1} \end{cases}$$

With this definition, we have:

$$\left\{Z(W,\chi,s) \mid W \in \mathcal{W}(\pi)\right\} = L_{\pi}(\chi,s) \cdot \mathbf{C}[q^{-2s},q^{2s}]$$

Thus, if π is induced from $\mu_1 \otimes \mu_2$ on $T = B/N \simeq \mathbf{G}_m \times \mathbf{G}_m$, then the *L*-function is the product of the GL₁ *L*-functions for μ_1, μ_2 . If π is cuspidal, then just like in the ramified case for GL₁, the *L*-factor carries no information.

Proof. If π is cuspidal, there is not much to show. We have:

$$Z(W,\chi,s) = \int_{F^{\times}} \phi_W(x)\chi^{-1}(x)|x|^{2s-1} d^{\times}x$$

Since $\phi_W \in \mathcal{K}(\pi) = C_c^{\infty}(F^{\times})$, the integral breaks into a sum of finitely many terms based on the valuation of x, so $Z(W, \chi, s) \in \mathbb{C}[q^{-2s}, q^{2s}]$.

If $\pi = \pi_{\mu_1,\mu_2}$ with $\mu_1/\mu_2 \neq 1, |\cdot|, |\cdot|^{-1}$ then we have:

$$\phi_W(x) = |x|^{1/2} \left(\mu_1(x) \Phi_1(x) + \mu_2(x) \Phi_2(x) \right)$$

with $\Phi_j \in C_c^{\infty}(F)$ and $\mu_1, \mu_2 \colon F^{\times} \to \mathbf{C}^{\times}$ characters. Then we have:

$$Z(W,\chi,s) = \zeta\left(\Phi_1,\chi^{-1}\mu_1,2s-\frac{1}{2}\right) + \zeta\left(\Phi_2,\chi^{-1}\mu_2,2s-\frac{1}{2}\right)$$

We will write $z = 2s - \frac{1}{2}$ here and in the future. By Theorem 1(B), this is contained in:

$$L(\chi^{-1}\mu_1, z)\mathbf{C}[q^{-2s}, q^{2s}] + L(\chi^{-1}\mu_2, z)\mathbf{C}[q^{-2s}, q^{2s}] = L(\chi^{-1}\mu_1, z)L(\chi^{-1}\mu_2, z)\mathbf{C}[q^{-2s}, q^{2s}]$$

The claimed equality holds since $\mu_1 \neq \mu_2$ implies the two GL_1 *L*-functions have different poles (as one can see by looking at the defining formula). For the cases when $\mu_1/\mu_2 = 1, |\cdot|, |\cdot|^{-1}$, similar arguments hold but with minor variations due to the precise characterization of the Kirillov models $\mathcal{K}(\pi)$. See [Go, pp.145–147] for details.

Now, we give a computation of the γ factors in the case of principal series. Paralleling the GL_1 theory for ramified characters, the case of cuspidal representations is more subtle and involves an analogue of the Gauss sum. See [BH, Section 25] for details.

Theorem 9. If $\pi = \pi_{\mu_1,\mu_2}$, then:

$$\gamma_{\pi}(\chi, s) = \gamma \left(\chi^{-1}\mu_1, 2s - \frac{1}{2}\right) \cdot \gamma \left(\chi^{-1}\mu_2, 2s - \frac{1}{2}\right)$$

Proof. Choose W from Lemma 5 and let $\phi = \phi_W$. We have the following claims:

Claim 10. There exists some $\Phi \in C_c^{\infty}(F)$ which extends to $\Phi \in \mathcal{B}_{\mu_1,\mu_2}$ such that

$$\Phi(w^{-1}\left(\begin{smallmatrix}1&y\\0&1\end{smallmatrix}\right)) = \Phi(y)$$

and the Fourier transform $\widehat{\Phi} \in C_c^{\infty}(F^{\times})$ satisfies $Z(W, \chi, s) = \zeta(\Phi, \chi^{-1}\mu_2, z)$. Here $\mathcal{B}_{\mu_1,\mu_2}$ is the space of locally constant functions $\varphi : G_F \to \mathbb{C}$ satisfying

$$\varphi\left(\left(\begin{smallmatrix}a & *\\ 0 & b\end{smallmatrix}\right) \cdot g\right) = \mu_1(a)\mu_2(b)|a/b|^{1/2}\varphi(g).$$

Proof of Claim 10: Set $\widehat{\Phi}(x) = \mu_2^{-1}(x)|x|^{-1/2}\phi_W(x) \in C_c^{\infty}(F^{\times})$. By Fourier inversion,

$$\Phi(-y) = \int \hat{\Phi}(x)\psi(xy)dx \in C_c^{\infty}(F).$$

By the Fourier transform [Go, Equation (148)], it follows that $\Phi \in \mathcal{B}_{\mu_1,\mu_2}$ and $\Phi(w^{-1}\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}) = \Phi(y)$. This proves the claim.

Claim 11. Choose Φ as in the proof of Claim 10. Define Φ_w by $g \mapsto \Phi(gw)$ so its restriction $\Phi_w \in C_c^{\infty}(F)$ satisfies $x \mapsto \Phi\left(w^{-1}\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} w\right)$. Then, with $z = 2s - \frac{1}{2}$,

$$Z\left(\widetilde{W},\chi^{-1}\omega_{\pi},1-s\right) = \zeta\left(\widehat{\Phi}_{w},\chi\mu_{1}^{-1},1-z\right).$$

Proof of Claim 11: By a direct substitution of the definitions of Z, ζ and Φ ,

$$Z\left(\widetilde{W}, \chi^{-1}\omega_{\pi}, 1-s\right) = \int_{F^{\times}} \phi_{\widetilde{W}}(x)\chi\omega_{\pi}^{-1}(x)|x|^{1-2s} d^{\times}x$$

= $\int_{F^{\times}} \widehat{\Phi}(x)\mu_{2}(x)|x|^{1/2} \cdot \chi(x)\mu_{1}^{-1}(x)\mu_{2}(x)^{-1/2} \cdot |x|^{1-z}|x|^{-1/2} d^{\times}x$
= $\int_{F^{\times}} \widehat{\Phi}(x)\chi\mu_{1}^{-1}(x)|x|^{1-z} d^{\times}x$
= $\zeta\left(\widehat{\Phi}_{w}, \chi\mu_{1}^{-1}, 1-z\right).$

This proves the claim.

Claim 12. Choose Φ as in the proof of Claim 10. Then

$$\zeta(\Phi_w, \chi^{-1}\mu_1, z) = (\mu_1\chi^{-1})(-1)\zeta(\Phi, \chi\mu_2^{-1}, 1-z)$$

Proof of Claim 12: By Claim 11,

$$\Phi_w(y) = \Phi\left(w^{-1}\begin{pmatrix}1&y\\0&1\end{pmatrix}w\right) = \Phi\left(\begin{pmatrix}1&-1/y\\0&1\end{pmatrix}\begin{pmatrix}1/y&0\\0&y\end{pmatrix}w\begin{pmatrix}1&-1/y\\0&1\end{pmatrix}\right).$$

As $\Phi \in \mathcal{B}_{\mu_1,\mu_2}$ by Claim 10, the above expression is equal to

$$\mu^{-1}(y)|y|^{-1}\Phi\left(w\left(\begin{smallmatrix} 1 & -1/y \\ 0 & 1 \end{smallmatrix}\right)\right) = \omega_{\pi}(-1)\mu^{-1}(y)|y|^{-1}\Phi(-1/y).$$

Substituting this formula into the integral $\zeta(\Phi_w, \chi^{-1}\mu_1, z)$, it follows by the change of variables $-1/y \mapsto y$ that

$$\begin{split} \zeta \left(\Phi_w, \chi^{-1} \mu_1, z \right) &= \int_{F^{\times}} \Phi_w(y) \chi^{-1} \mu_1(y) |y|^z d^{\times} y \\ &= \omega_{\pi}(-1) \int_{F^{\times}} \Phi(-1/y) \chi^{-1} \mu_2(y) |y|^{z-1} d^{\times} y \\ &= \chi^{-1} \mu_1(-1) \int_{F^{\times}} \Phi(y) \chi \mu_2^{-1}(y) |y|^{1-z} d^{\times} y \\ &= \chi^{-1} \mu_1(-1) \zeta(\Phi, \chi \mu_2^{-1}, 1-z). \end{split}$$

This proves the claim.

Now, we have, by repeatedly applying the claims as well as the GL_1 theorems:

$$(\mu_1 \chi^{-1})(-1)\gamma(\mu_2 \chi^{-1}, z)Z(W, \chi, s) = (\mu_1 \chi^{-1})(-1)\gamma(\mu_2 \chi^{-1}, z)\zeta(\widehat{\Phi}, \chi^{-1}\mu_2, z)$$
$$= (\mu_1 \chi^{-1})(-1)\zeta(\Phi, \chi \mu_2^{-1}, 1 - z)$$
$$= \zeta(\Phi_w, \chi^{-1}\mu_1, z)$$
$$= \gamma(x\mu_1^{-1}, 1 - z)\zeta(\widehat{\Phi_w}, \chi \mu_1^{-1}, 1 - z)$$
$$= \gamma(\chi \mu_1^{-1}, 1 - z)Z(\widetilde{W}, \chi^{-1}\omega_\pi, 1 - s)$$

By Theorem 6, the righthand side equals

$$= \gamma(\chi \mu_1^{-1}, 1-z)\gamma_{\pi}(\chi, s)Z(W, \chi, s).$$

Our choice of W from Lemma 5 satisfies $Z(W, \chi, s) \neq 0$ so we may divide this term from both sides to deduce that

$$\gamma_{\pi}(\chi, s) = \mu_1 \chi_1^{-1}(-1) \frac{\gamma(\mu_2 \chi^{-1}, z)}{\gamma(\mu_1^{-1} \chi, 1 - z)}.$$

Applying Theorem 1(A) to the denominator proves the theorem.

Theorem 13. Define $\epsilon_{\pi}(\chi, s) = \gamma_{\pi}(\chi, s) \frac{L_{\pi}(\chi, s)}{L_{\pi}(\chi^{-1}\omega_{\pi}, 1-s)}$. Then we have the functional equation:

$$\epsilon_{\pi}(\chi, s)\epsilon_{\pi}(\chi^{-1}\omega_{\pi}, 1-s) = \omega_{\pi}(-1)$$

and $\epsilon_{\pi}(\chi, s) = aq^{bs}$ for some $a \in \mathbf{C}^{\times}$ and $b \in \mathbf{Z}$.

Finally, in the principal series case, we can compute the ϵ factors. For the cuspidal case, the ϵ factor equals the γ factor (as the *L*-functions defining ϵ_{π} are trivial) so we again refer the reader to [BH, Section 25] for details.

Theorem 14. If $\pi = \pi_{\mu_1,\mu_2}$ with $\mu_1/\mu_2 \neq |\cdot|, |\cdot|^{-1}$, then we have:

$$\epsilon_{\pi}(\chi, s) = \epsilon(\chi^{-1}\mu_1, 2s - \frac{1}{2}) \cdot \epsilon(\chi^{-1}\mu_2, 2s - \frac{1}{2})$$

where the ϵ factors on the right are the ϵ factors from the GL₁ theory.

Proof. This follows from Theorems 9 and 13 as well as the relationship between ϵ factors and γ factors in the GL₁ case. For the cases when $\mu_1/\mu_2 = \neq |\cdot|, |\cdot|^{-1}$, see [Go, pages 1.49–1.52].

Now, we will prove Theorem 13:

Proof. The equation $\epsilon_{\pi}(\chi, s)\epsilon_{\pi}(\chi^{-1}\omega_{\pi}, 1-s) = \omega_{\pi}(-1)$ follows directly from the definition and the functional equation for γ given in Theorem 6.

Now, again by Theorem 6, we have:

$$\frac{Z(W,\chi,s)}{L_{\pi}(\chi,s)}\epsilon_{\pi}(\chi,s) = \frac{Z\left(\widetilde{W},\omega_{\pi}\chi^{-1},1-s\right)}{L_{\pi}(\chi^{-1}\omega_{\pi},1-s)}$$

By Theorem 8, the right-hand side is in $\mathbb{C}[q^{-2s}, q^{2s}]$, so it is entire in s. Now, choose W such that $Z(W, \chi, s) = L_{\pi}(\chi, s)$. This implies that $\epsilon_{\pi}(\chi, s) \in \mathbb{C}[q^{-2s}, q^{2s}]$ as well. Similarly, we see that $\epsilon_{\pi}(\chi^{-1}\omega_{\pi}, 1-s) \in \mathbb{C}[q^{-2s}, q^{2s}]$. Since their product is $\omega_{\pi}(-1)$, we have:

$$\epsilon_{\pi}(\chi, s) \in \mathbf{C}[q^{-2s}, q^{2s}]^{\times}$$

Thus, $\epsilon_{\pi}(\chi, s) = aq^{bs}$ for some $a \in \mathbf{C}^{\times}$ and $b \in \mathbf{Z}$.

References

- [BH] Colin Bushnell, Guy Henniart, The Local Langlands Conjecture For GL(2), Springer-Verlag, Berlin, 2006.
- [Go] R. Godement, *Notes on Jacquet-Langlands' Theory*, The Institute for Advanced Study, 1970, available at http://math.stanford.edu/ conrad/conversesem/refs/godement-ias.pdf.