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Let F be a local field. We fix ψ P pF , ψ ‰ 1, such that ψ|pd – 1 for d " 0 with p the maximal
ideal p$q of F . Let q “ Np$q “ |F {p|, and let v be the valuation. We fix dx, dˆx Haar measures
on F, Fˆ respectively with the latter normalized so that

´
Oˆ
F
dˆx “ 1.

We recall the GL1 theory. Let Φ P C8c pF q be a smooth compactly supported function. Then we
may define the Fourier transform

pΦpxq “

ˆ
F

Φpyqψpxyq dy.

This satisfies the Fourier inversion formula ppΦpxq “ Φp´xq. For some character χ on Fˆ “ GL1pF q,
we define the zeta function

ζpΦ, χ, sq “

ˆ
Fˆ

Φpxqχpxq|x|s dˆx

and we define the set:
Zpχ, sq “

 

ζpΦ, χ, sq | Φ P C8c pF q
(

.

We have the following theorem:

Theorem 1.

(A) (γ-factor) There exists a unique gamma factor γpχ, sq P Cpq´sq such that

ζppΦ, χ´1, 1´ sq “ γpχ, sqζpΦ, χ, sq

and γpχ, sqγpχ´1, 1´ sq “ χp´1q.

(B) (L-function) The set Zpχ, sq is equal to Lpχ, sqCrq´s, qss. Here, we have:

Lpχ, sq “

#

1 χ ramified
`

1´ χp$qq´s
˘´1

χ unramified

(C) (ε-factors) The function

εpχ, sq “ γpχ, sq
Lpχ, sq

Lpχ´1, 1´ sq

satisfies εpχ, sqεpχ´1, 1´ sq “ χp´1q and εpχ, sq “ εpχqqpd`fqp
1
2
´sq with |εpχq| “ 1. If χ is

unramified then εpχq “ χp$qd. If χ is ramified then εpχq is a certain Gauss sum depending
on χ and ψ. Here f is defined so that the norm of the conductor of χ is qf .
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Remark 2. The ε factor acts as the “fudge factor” to make the functional equation hold exactly
for the L-function. For more precise formulas of the ε-factors and the relevant Gauss sums, see
[Go, Equations (233) and (240)] or [BH, p.143]. If χ is unramified then the L-function Lps, χq
uniquely determines χ. Otherwise, Lps, χq gives no information when χ is ramified; in this case,
εpχ, sq “ γpχ, sq so the ε-factor encodes all of the data of χ.

Remark 3. We suppress the dependence on the choice of ψ everywhere. However, while the ε and
γ factors do depend on the choice of ψ, the L-function is the same for all appropriate ψ.

Now, we will pass to the GL2 case. Given an irreducible admissible representation π of GL2pF q,
we have the Whittaker and Kirillov models defined by:

Wpπq “
!

W : GÑ C | W
`

p x 1 q ¨ g
˘

“ ψpxqW pgq
)

,

Kpπq “
"

φ : Fˆ Ñ C | π
´

`

a b
0 1

˘

¯

φpxq “ ψpbxqφpaxq

*

.

We have a bijection from Wpπq to Kpπq defined by sending W to φW : x ÞÑ W
`

p x 0
0 1 q

˘

. The “dual”
Whittaker functional |W P Wpπq is defined to be the function g ÞÑ W pgwq for w “

`

0 1
´1 0

˘

, the
generator of the Weyl group. Recall C8c pF

ˆq Ď Kpπq always.
Now, define a zeta integral similar to before:

ZpW,χ, sq “

ˆ
Fˆ

φW pxqχpxq
´1
|x|2s´1 dˆx

The function φW can be thought of as a test function varying over W PWpπq.

Remark 4. This is defined in vague analogy to the definition given above in the GL1 case, but the
analogy isn’t perfect. For example, in the GL1 case, ζpΦ, χ, sq is defined for Φ P C8c pF q, but here
we consider φW defined on Fˆ rather than on F . A closer parallel to the GL1 theory can be drawn
using functions Φ on M2ˆ2pF q; see [BH, Section 24] for details.

Before we discuss the GL2 local functional equation, we prove the existence of a Whittaker
functional such that it and its dual have Kirillov elements both supported away from zero, while
also having a non-trivial zeta integral.

Lemma 5. There exists W PWpπq such that φW P C8c pF
ˆq, φ

|W P C8c pF
ˆq and ZpW,χ, sq ‰ 0.

Proof. From [Go, Lemma 7, page 1.13], there exists non-zeroW PWpπqwith φW P C8c pF
ˆq, φ

|W P

C8c pF
ˆq satisfying φW pxuq “ φW pxqχpuq for all u P Oˆ

F . By direction computation, we verify
that the zeta integral does not vanish:

ZpW,χ, sq “

ˆ
Fˆ

φW pxqχpxq
´1
|x|2s´1dˆx

“

8
ÿ

n“´8

ˆ
Oˆ
F

φW p$
nuqχp$nuq´1

|$n
|
2s´1dˆu

“

8
ÿ

n“´8

φW p$
n
qχp$n

q
´1qp2s´1qn.
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Note the sum is actually finite since φW is compactly supported away from zero. Thus, ZpW,χ, sq
is a non-zero element of Crq´s, qss if and only if φW ı 0. The latter is true as W is non-zero. This
finishes Step 2.

Now, analogous to Theorem 1(A) in the GL1 case, we have the following theorem:

Theorem 6.

(i) ZpW,χ, sq converges for Repsq " 0.

(ii) ZpW,χ, sq admits an analytic continuation to a meromorphic function with at most 2 poles.

(iii) There exists some γπpχ, sq P Cpq´sq such that:

Zp|W,ωπχ
´1, 1´ sq “ γπpχ, sqZpW,χ, sq (1)

for all W PWpπq. Also,

γπpχ, sqγπpχ
´1ωπ, 1´ sq “ ωπp´1q. (2)

Proof. (i) When π is supercuspidal, this part is easy. We have that φW P Kpπq “ C8c pF
ˆq, so

the integral converges due to the compact support away from zero. We may split the integral
into a finite sum according to the valuation of x P Fˆ.

Suppose π is not supercuspidal. From an earlier description of the Kirillov model [Go, Section
10], it follows that φW P Kpπq is a sum of terms like |x|1{2λpxqfpxq and |x|1{2vpxqλpxqfpxq,
where λ : Fˆ Ñ Cˆ is some character and f P C8c pF q, with v the valuation. We claim that
this implies that the integral converges. Let us consider one such integral. Since f is locally
constant near 0, it follows that fpxq “ fp0q for |x| ď q´N with N ě 1 sufficiently large.
Moreover, as f is compactly supported in F , it follows that fpxq “ 0 for |x| ě qM with
M ě 1 sufficiently large. Thus,ˆ

Fˆ

|x|1{2λpxqfpxq ¨ |x|2s´1 dˆx “ fp0q

ˆ
|x|ďq´N

|x|2s´1{2λpxq dˆx`

ˆ
q´Nă|x|ďqM

p¨ ¨ ¨ q

The second integral over q´N ă |x| ď qM can be written as a finite sum over m “ vpxq with
´N ď m ďM and therefore it converges for all s P C. For the first integral, we also divide
it according to the valuation n “ ´vpxq and observe thatˆ

|x|ďq´N

|x|2s´1{2λpxq dˆx “
ÿ

něN

qn{2´2ns

ˆ
|x|“q´n

λpxqdˆx

For |x| “ q´n, we may write x “ $ny with y P Oˆ
F . Since λ is a character of Fˆ, it

follows that |λpyq| ď 1 and thus |λpxq| “ |λp$q|n for |x| “ q´n. Moreover,
´
|x|“q´n d

ˆx “´
Oˆ
F
dˆx “ 1 by our normalization of the Haar measure. Hence, the above expression is

bounded in absolute value by
ÿ

něN

qn{2´2nRepsq

ˆ
|x|“q´n

|λpxq|dˆx ď
ÿ

něN

qn{2´2nRepsq
|λp$q|n.

As |λp$q| is some fixed power of q, the above infinite sum converges once Repsq " 0.
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(ii) Proof postponed1. We will not utilize this result until after Theorem 8.

(iii) This follows from three steps.

Step 1: Show (1) holds for any W PWpπq with φW P C8c pF
ˆq.

(We will prove this step last.)

Step 2: Show (2) holds. Choose W from Lemma 5. From Steps 1 and 2, we may apply
Equation 1 twice to see that:

ωπp´1qZpW,χ, sq “ Zp
|

|W,χ, sq “ γπpχ
´1ωπ, 1´ sqZp|W,χ´1ωπ, 1´ sq

“ γπpχ
´1ωπ, 1´ sqγπpχ, sqZpW,χ, sq

Since ZpW,χ, sq ı 0, we may divide both sides by ZpW,χ, sq to deduce (2) holds.

Step 3: Show (1) holds for any W PWpπq.
For every W PWpπq, there exists W1,W2 PWpπq such that

φW “ φW1 ` φ|W2
and φW1 , φ|W2

P C8c pF
ˆ
q.

This follows from the arguments leading to [Go, Section 10, Equation (144)]. Thus, we may
apply the functional equation (1) to each of ZpW1, χ, sq and Zp|W2, χ, sq and use linearity to
deduce (1) for ZpW,χ, sq.

The remainder of the proof is to establish Step 1. First, we make a reduction.

Claim 7. Any f P C8c pF
ˆq is a linear combination of functions of the form:

λpxq1Oˆ
F
pxq

with λ : Fˆ Ñ Cˆ some character and 1Oˆ
F

the indicator function on Oˆ
F .

Proof of Claim 7: Recall Fˆ – ZˆOˆ
F . Since f is compactly supported and locally constant,

there exists positive integers N,M ě 1 (dependingly only on f ) such that for every x P Fˆ,
fpxq “ fp$nuq for some unique integer n P r´N,N s and unique u chosen from a fixed set
of coset representatives Ω of Oˆ

F {p1`$
MOˆ

F q. Therefore,

fpxq “
ÿ

´NďnďN

ÿ

uPΩ

fp$nuq1u`$MOˆ
F
px$´nq.

By orthogonality of characters on the finite quotient group Oˆ
F {p1`$

MOˆ
F q, the indicator

function 1u`$MOˆ
F
pyq can be written as a finite linear combination of λpyq1Oˆ

F
pyq where λ is

a character of Fˆ with conductor at most qM . This proves the claim. �

1It is not apparent to me that a complete proof is provided in [Go, Section 12]. From the functional equation,
ZpW,χ, sq is meromorphic in Repsq ě A and Repsq ď 1´A for some large positive A but, without additional work,
it is not obvious why it extends to the strip 1´A ď Repsq ď A. Instead, this extra input will follow implicitly from
Theorems 8 and 1(B).
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Continuing the proof of Step 1, recall we assume φW P C8c pF
ˆq. By Claim 7 and the linearity

of ZpW,χ, sq in W , it suffices to show the functional equation for φW of the form:

φW pxq “ λpxq1Oˆ
F
pxq

with λ : Fˆ Ñ Cˆ some arbitrary character. During the course of our computations, it is
crucial that the calculated γ factor depends only on π, χ, F and s. In particular, γ should be
independent of the arbitrary character λ. Now, as λ and χ are characters on Fˆ, the maps
λ|Oˆ

F
and χ|Oˆ

F
are (necessarily unitary) characters on the compact group Oˆ

F . Hence, by
orthogonality of characters (for the compact group Oˆ

F ),

ZpW,χ, sq “

ˆ
Oˆ
F

λpxqχpxq´1 dˆx “

#

1 λ|Oˆ
F
“ χ|Oˆ

F

0 else
(3)

because
´

Oˆ
F
dˆx “ 1 via our choice of normalization.

If λ|Oˆ
F
‰ χ|Oˆ

F
then one may again verify by a similar computation that

Zp|W,ωπχ
´1, 1´ sq “ 0.

Thus, in this case, any choice of γπpχ, sq would satisfy a functional equation.

Otherwise, we have reduced to the case when

φW pxq “ χpxq1Oˆ
F
pxq.

In particular, φW now depends only on χ. Therefore, for this φW , we define

γπpχ, sq :“
Zp|W,ωπχ

´1, 1´ sq

ZpW,χ, sq
“

ˆ
Fˆ

φ
|W pxqω

´1
π χpxq|x|1´2s dˆx

with the latter equality following from (3) and the definition of the zeta integral. Evidently,
γπ satisfies the functional equation for this choice of φW and, since φW depends only on χ,
we see that γπ depends only on χ and s. Therefore, we’ve shown that for all W PWpπq with
φW P C8c pF

ˆq that (1) holds. This completes the proof of Step 1 and hence Theorem 6.

Note that the operation W ÞÑ |W is not actually anything to do with a Fourier transform: the
duality in the functional equation appearing in Theorem 6 comes from the action of the Weyl group
(which of course is trivial in the GL1 case). In the next theorem, the Fourier transform plays a role .

Theorem 8. Define:

Lπpχ, sq “

$

’

’

’

’

&

’

’

’

’

%

1 π cuspidal
L
`

χ´1µ1, 2s´
1
2

˘

¨ L
`

χ´1µ2, 2s´
1
2

˘

π “ πµ1,µ2 , µ1{µ2 ‰ | ¨ |, | ¨ |
´1

L
`

χ´1µ1, 2s´
1
2

˘

π “ πµ1,µ2 , µ1{µ2 “ | ¨ |

L
`

χ´1µ2, 2s´
1
2

˘

π “ πµ1,µ2 , µ1{µ2 “ | ¨ |
´1

With this definition, we have:
 

ZpW,χ, sq | W PWpπq
(

“ Lπpχ, sq ¨Crq
´2s, q2s

s
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Thus, if π is induced from µ1 b µ2 on T “ B{N » Gm ˆ Gm, then the L-function is the
product of the GL1 L-functions for µ1, µ2. If π is cuspidal, then just like in the ramified case for
GL1, the L-factor carries no information.

Proof. If π is cuspidal, there is not much to show. We have:

ZpW,χ, sq “

ˆ
Fˆ

φW pxqχ
´1
pxq|x|2s´1 dˆx

Since φW P Kpπq “ C8c pF
ˆq, the integral breaks into a sum of finitely many terms based on the

valuation of x, so ZpW,χ, sq P Crq´2s, q2ss.
If π “ πµ1,µ2 with µ1{µ2 ‰ 1, | ¨ |, | ¨ |´1 then we have:

φW pxq “ |x|
1{2

`

µ1pxqΦ1pxq ` µ2pxqΦ2pxq
˘

with Φj P C
8
c pF q and µ1, µ2 : Fˆ Ñ Cˆ characters. Then we have:

ZpW,χ, sq “ ζ

ˆ

Φ1, χ
´1µ1, 2s´

1

2

˙

` ζ

ˆ

Φ2, χ
´1µ2, 2s´

1

2

˙

We will write z “ 2s´ 1
2

here and in the future. By Theorem 1(B), this is contained in:

Lpχ´1µ1, zqCrq
´2s, q2s

s ` Lpχ´1µ2, zqCrq
´2s, q2s

s “ Lpχ´1µ1, zqLpχ
´1µ2, zqCrq

´2s, q2s
s

The claimed equality holds since µ1 ‰ µ2 implies the two GL1 L-functions have different poles (as
one can see by looking at the defining formula). For the cases when µ1{µ2 “ 1, | ¨ |, | ¨ |´1, similar
arguments hold but with minor variations due to the precise characterization of the Kirillov models
Kpπq. See [Go, pp.145–147] for details.

Now, we give a computation of the γ factors in the case of principal series. Paralleling the GL1

theory for ramified characters, the case of cuspidal representations is more subtle and involves an
analogue of the Gauss sum. See [BH, Section 25] for details.

Theorem 9. If π “ πµ1,µ2 , then:

γπpχ, sq “ γ

ˆ

χ´1µ1, 2s´
1

2

˙

¨ γ

ˆ

χ´1µ2, 2s´
1

2

˙

Proof. Choose W from Lemma 5 and let φ “ φW . We have the following claims:

Claim 10. There exists some Φ P C8c pF q which extends to Φ P Bµ1,µ2 such that

Φpw´1
`

1 y
0 1

˘

q “ Φpyq

and the Fourier transform pΦ P C8c pF
ˆq satisfies ZpW,χ, sq “ ζpΦ, χ´1µ2, zq. Here Bµ1,µ2 is the

space of locally constant functions ϕ : GF Ñ C satisfying

ϕ
`

p a ˚0 b q ¨ g
˘

“ µ1paqµ2pbq|a{b|
1{2ϕpgq.
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Proof of Claim 10: Set pΦpxq “ µ´1
2 pxq|x|

´1{2φW pxq P C
8
c pF

ˆq. By Fourier inversion,

Φp´yq “

ˆ
Φ̂pxqψpxyqdx P C8c pF q.

By the Fourier transform [Go, Equation (148)], it follows that Φ P Bµ1,µ2 and Φpw´1
`

1 y
0 1

˘

q “ Φpyq.
This proves the claim. �

Claim 11. Choose Φ as in the proof of Claim 10. Define Φw by g ÞÑ Φpgwq so its restriction
Φw P C

8
c pF q satisfies x ÞÑ Φ

`

w´1 p 1 x
0 1 qw

˘

. Then, with z “ 2s´ 1
2
,

Z
´

|W,χ´1ωπ, 1´ s
¯

“ ζ
´

pΦw, χµ
´1
1 , 1´ z

¯

.

Proof of Claim 11: By a direct substitution of the definitions of Z, ζ and Φ,

Z
´

|W,χ´1ωπ, 1´ s
¯

“

ˆ
Fˆ

φ
|W pxqχω

´1
π pxq|x|

1´2s dˆx

“

ˆ
Fˆ

pΦpxqµ2pxq|x|
1{2
¨ χpxqµ´1

1 pxqµ2pxq
´1{2

¨ |x|1´z|x|´1{2 dˆx

“

ˆ
Fˆ

pΦpxqχµ´1
1 pxq|x|

1´z dˆx

“ ζ
´

pΦw, χµ
´1
1 , 1´ z

¯

.

This proves the claim. �

Claim 12. Choose Φ as in the proof of Claim 10. Then

ζ
`

Φw, χ
´1µ1, z

˘

“ pµ1χ
´1
qp´1qζ

`

Φ, χµ´1
2 , 1´ z

˘

Proof of Claim 12: By Claim 11,

Φwpyq “ Φ
´

w´1
`

1 y
0 1

˘

w
¯

“ Φ
´´

1 ´1{y
0 1

¯´

1{y 0
0 y

¯

w
´

1 ´1{y
0 1

¯¯

.

As Φ P Bµ1,µ2 by Claim 10, the above expression is equal to

µ´1
pyq|y|´1Φ

´

w
´

1 ´1{y
0 1

¯¯

“ ωπp´1qµ´1
pyq|y|´1Φp´1{yq.

Substituting this formula into the integral ζpΦw, χ
´1µ1, zq, it follows by the change of variables

´1{y ÞÑ y that

ζ
`

Φw, χ
´1µ1, z

˘

“

ˆ
Fˆ

Φwpyqχ
´1µ1pyq|y|

zdˆy

“ ωπp´1q

ˆ
Fˆ

Φp´1{yqχ´1µ2pyq|y|
z´1dˆy

“ χ´1µ1p´1q

ˆ
Fˆ

Φpyqχµ´1
2 pyq|y|

1´zdˆy

“ χ´1µ1p´1qζpΦ, χµ´1
2 , 1´ zq.
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This proves the claim. �
Now, we have, by repeatedly applying the claims as well as the GL1 theorems:

pµ1χ
´1
qp´1qγpµ2χ

´1, zqZpW,χ, sq “ pµ1χ
´1
qp´1qγpµ2χ

´1, zqζ
´

pΦ, χ´1µ2, z
¯

“ pµ1χ
´1
qp´1qζ

`

Φ, χµ´1
2 , 1´ z

˘

“ ζ
`

Φw, χ
´1µ1, z

˘

“ γpxµ´1
1 , 1´ zqζpxΦw, χµ

´1
1 , 1´ zq

“ γpχµ´1
1 , 1´ zqZ

´

|W,χ´1ωπ, 1´ s
¯

By Theorem 6, the righthand side equals

“ γpχµ´1
1 , 1´ zqγπpχ, sqZpW,χ, sq.

Our choice of W from Lemma 5 satisfies ZpW,χ, sq ı 0 so we may divide this term from both
sides to deduce that

γπpχ, sq “ µ1χ
´1
1 p´1q

γpµ2χ
´1, zq

γpµ´1
1 χ, 1´ zq

.

Applying Theorem 1(A) to the denominator proves the theorem.

Theorem 13. Define επpχ, sq “ γπpχ, sq
Lπpχ,sq

Lπpχ´1ωπ ,1´sq
. Then we have the functional equation:

επpχ, sqεπpχ
´1ωπ, 1´ sq “ ωπp´1q

and επpχ, sq “ aqbs for some a P Cˆ and b P Z.

Finally, in the principal series case, we can compute the ε factors. For the cuspidal case, the ε
factor equals the γ factor (as the L-functions defining επ are trivial) so we again refer the reader to
[BH, Section 25] for details.

Theorem 14. If π “ πµ1,µ2 with µ1{µ2 ‰ | ¨ |, | ¨ |
´1, then we have:

επpχ, sq “ εpχ´1µ1, 2s´
1
2
q ¨ εpχ´1µ2, 2s´

1
2
q

where the ε factors on the right are the ε factors from the GL1 theory.

Proof. This follows from Theorems 9 and 13 as well as the relationship between ε factors and γ
factors in the GL1 case. For the cases when µ1{µ2 “‰ | ¨ |, | ¨ |

´1, see [Go, pages 1.49–1.52].

Now, we will prove Theorem 13:

Proof. The equation επpχ, sqεπpχ´1ωπ, 1´ sq “ ωπp´1q follows directly from the definition and
the functional equation for γ given in Theorem 6.

Now, again by Theorem 6, we have:

ZpW,χ, sq

Lπpχ, sq
επpχ, sq “

Z
´

|W,ωπχ
´1, 1´ s

¯

Lπpχ´1ωπ, 1´ sq
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By Theorem 8, the right-hand side is in Crq´2s, q2ss, so it is entire in s. Now, choose W such that
ZpW,χ, sq “ Lπpχ, sq. This implies that επpχ, sq P Crq´2s, q2ss as well. Similarly, we see that
επpχ

´1ωπ, 1´ sq P Crq
´2s, q2ss. Since their product is ωπp´1q, we have:

επpχ, sq P Crq
´2s, q2s

s
ˆ

Thus, επpχ, sq “ aqbs for some a P Cˆ and b P Z.
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