Lecture 14: Local Functional EQUATION
 Lecture by Asif Zaman
 Stanford Number Theory Learning Seminar
 Jandary 31, 2018

Notes by Dan Dore and Asif Zaman

Let F be a local field. We fix $\psi \in \widehat{F}, \psi \neq 1$, such that $\left.\psi\right|_{\mathfrak{p}^{d}} \cong 1$ for $d \gg 0$ with \mathfrak{p} the maximal ideal (ϖ) of F. Let $q=N(\varpi)=|F / \mathfrak{p}|$, and let v be the valuation. We fix $d x, d^{\times} x$ Haar measures on F, F^{\times}respectively with the latter normalized so that $\int_{\mathscr{O}_{F}^{\times}} d^{\times} x=1$.

We recall the GL_{1} theory. Let $\Phi \in C_{c}^{\infty}(F)$ be a smooth compactly supported function. Then we may define the Fourier transform

$$
\widehat{\Phi}(x)=\int_{F} \Phi(y) \overline{\psi(x y)} d y
$$

This satisfies the Fourier inversion formula $\widehat{\hat{\Phi}}(x)=\Phi(-x)$. For some character χ on $F^{\times}=\mathrm{GL}_{1}(F)$, we define the zeta function

$$
\zeta(\Phi, \chi, s)=\int_{F^{\times}} \Phi(x) \chi(x)|x|^{s} d^{\times} x
$$

and we define the set:

$$
\mathcal{Z}(\chi, s)=\left\{\zeta(\Phi, \chi, s) \mid \Phi \in C_{c}^{\infty}(F)\right\} .
$$

We have the following theorem:

Theorem 1.

(A) (γ-factor) There exists a unique gamma factor $\gamma(\chi, s) \in \mathbf{C}\left(q^{-s}\right)$ such that

$$
\zeta\left(\hat{\Phi}, \chi^{-1}, 1-s\right)=\gamma(\chi, s) \zeta(\Phi, \chi, s)
$$

and $\gamma(\chi, s) \gamma\left(\chi^{-1}, 1-s\right)=\chi(-1)$.
(B) (L-function) The set $\mathcal{Z}(\chi, s)$ is equal to $L(\chi, s) \mathbf{C}\left[q^{-s}, q^{s}\right]$. Here, we have:

$$
L(\chi, s)= \begin{cases}1 & \chi \text { ramified } \\ \left(1-\chi(\varpi) q^{-s}\right)^{-1} & \chi \text { unramified }\end{cases}
$$

(C) (ϵ-factors) The function

$$
\epsilon(\chi, s)=\gamma(\chi, s) \frac{L(\chi, s)}{L\left(\chi^{-1}, 1-s\right)}
$$

satisfies $\epsilon(\chi, s) \epsilon\left(\chi^{-1}, 1-s\right)=\chi(-1)$ and $\epsilon(\chi, s)=\epsilon(\chi) q^{(d+f)\left(\frac{1}{2}-s\right)}$ with $|\epsilon(\chi)|=1$. If χ is unramified then $\epsilon(\chi)=\chi(\varpi)^{d}$. If χ is ramified then $\epsilon(\chi)$ is a certain Gauss sum depending on χ and ψ. Here f is defined so that the norm of the conductor of χ is q^{f}.

Remark 2. The ϵ factor acts as the "fudge factor" to make the functional equation hold exactly for the L-function. For more precise formulas of the ϵ-factors and the relevant Gauss sums, see [Go, Equations (233) and (240)] or [BH, p.143]. If χ is unramified then the L-function $L(s, \chi)$ uniquely determines χ. Otherwise, $L(s, \chi)$ gives no information when χ is ramified; in this case, $\epsilon(\chi, s)=\gamma(\chi, s)$ so the ϵ-factor encodes all of the data of χ.
Remark 3. We suppress the dependence on the choice of ψ everywhere. However, while the ϵ and γ factors do depend on the choice of ψ, the L-function is the same for all appropriate ψ.

Now, we will pass to the GL_{2} case. Given an irreducible admissible representation π of $\mathrm{GL}_{2}(F)$, we have the Whittaker and Kirillov models defined by:

$$
\begin{gathered}
\mathcal{W}(\pi)=\left\{W: G \rightarrow \mathbf{C} \left\lvert\, W\left(\left(\begin{array}{ll}
x & 1
\end{array}\right) \cdot g\right)=\psi(x) W(g)\right.\right\}, \\
\mathcal{K}(\pi)=\left\{\phi: F^{\times} \rightarrow \mathbf{C} \left\lvert\, \pi\left(\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right)\right) \phi(x)=\psi(b x) \phi(a x)\right.\right\} .
\end{gathered}
$$

We have a bijection from $\mathcal{W}(\pi)$ to $\mathcal{K}(\pi)$ defined by sending W to $\phi_{W}: x \mapsto W\left(\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)\right)$. The "dual" Whittaker functional $\widetilde{W} \in \mathcal{W}(\pi)$ is defined to be the function $g \mapsto W(g w)$ for $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, the generator of the Weyl group. Recall $C_{c}^{\infty}\left(F^{\times}\right) \subseteq \mathcal{K}(\pi)$ always.

Now, define a zeta integral similar to before:

$$
Z(W, \chi, s)=\int_{F^{\times}} \phi_{W}(x) \chi(x)^{-1}|x|^{2 s-1} d^{\times} x
$$

The function ϕ_{W} can be thought of as a test function varying over $W \in \mathcal{W}(\pi)$.
Remark 4. This is defined in vague analogy to the definition given above in the GL_{1} case, but the analogy isn't perfect. For example, in the GL_{1} case, $\zeta(\Phi, \chi, s)$ is defined for $\Phi \in C_{c}^{\infty}(F)$, but here we consider ϕ_{W} defined on F^{\times}rather than on F. A closer parallel to the $G L_{1}$ theory can be drawn using functions Φ on $M_{2 \times 2}(F)$; see [$\overline{\mathrm{BH}}$, Section 24] for details.

Before we discuss the $G L_{2}$ local functional equation, we prove the existence of a Whittaker functional such that it and its dual have Kirillov elements both supported away from zero, while also having a non-trivial zeta integral.

Lemma 5. There exists $W \in \mathcal{W}(\pi)$ such that $\phi_{W} \in C_{c}^{\infty}\left(F^{\times}\right), \phi_{\widetilde{W}} \in C_{c}^{\infty}\left(F^{\times}\right)$and $Z(W, \chi, s) \neq 0$.

Proof. From [Go, Lemma 7, page 1.13], there exists non-zero $W \in \mathcal{W}(\pi)$ with $\phi_{W} \in C_{c}^{\infty}\left(F^{\times}\right), \phi_{\breve{W}} \in$ $C_{c}^{\infty}\left(F^{\times}\right)$satisfying $\phi_{W}(x u)=\phi_{W}(x) \chi(u)$ for all $u \in \mathscr{O}_{F}^{\times}$. By direction computation, we verify that the zeta integral does not vanish:

$$
\begin{aligned}
Z(W, \chi, s) & =\int_{F^{\times}} \phi_{W}(x) \chi(x)^{-1}|x|^{2 s-1} d^{\times} x \\
& =\sum_{n=-\infty}^{\infty} \int_{\mathscr{O}_{F}^{\times}} \phi_{W}\left(\varpi^{n} u\right) \chi\left(\varpi^{n} u\right)^{-1}\left|\varpi^{n}\right|^{2 s-1} d^{\times} u \\
& =\sum_{n=-\infty}^{\infty} \phi_{W}\left(\varpi^{n}\right) \chi\left(\varpi^{n}\right)^{-1} q^{(2 s-1) n} .
\end{aligned}
$$

Note the sum is actually finite since ϕ_{W} is compactly supported away from zero. Thus, $Z(W, \chi, s)$ is a non-zero element of $\mathbf{C}\left[q^{-s}, q^{s}\right]$ if and only if $\phi_{W} \not \equiv 0$. The latter is true as W is non-zero. This finishes Step 2.

Now, analogous to Theorem $[1](\mathrm{A})]$ in the GL_{1} case, we have the following theorem:

Theorem 6.

(i) $Z(W, \chi, s)$ converges for $\operatorname{Re}(s) \gg 0$.
(ii) $Z(W, \chi, s)$ admits an analytic continuation to a meromorphic function with at most 2 poles.
(iii) There exists some $\gamma_{\pi}(\chi, s) \in \mathbf{C}\left(q^{-s}\right)$ such that:

$$
\begin{equation*}
Z\left(\widetilde{W}, \omega_{\pi} \chi^{-1}, 1-s\right)=\gamma_{\pi}(\chi, s) Z(W, \chi, s) \tag{1}
\end{equation*}
$$

for all $W \in \mathcal{W}(\pi)$. Also,

$$
\begin{equation*}
\gamma_{\pi}(\chi, s) \gamma_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right)=\omega_{\pi}(-1) \tag{2}
\end{equation*}
$$

Proof. (i) When π is supercuspidal, this part is easy. We have that $\phi_{W} \in \mathcal{K}(\pi)=C_{c}^{\infty}\left(F^{\times}\right)$, so the integral converges due to the compact support away from zero. We may split the integral into a finite sum according to the valuation of $x \in F^{\times}$.
Suppose π is not supercuspidal. From an earlier description of the Kirillov model [Go, Section 10], it follows that $\phi_{W} \in \mathcal{K}(\pi)$ is a sum of terms like $|x|^{1 / 2} \lambda(x) f(x)$ and $|x|^{1 / 2} v(x) \lambda(x) f(x)$, where $\lambda: F^{\times} \rightarrow \mathbf{C}^{\times}$is some character and $f \in C_{c}^{\infty}(F)$, with v the valuation. We claim that this implies that the integral converges. Let us consider one such integral. Since f is locally constant near 0 , it follows that $f(x)=f(0)$ for $|x| \leqslant q^{-N}$ with $N \geqslant 1$ sufficiently large. Moreover, as f is compactly supported in F, it follows that $f(x)=0$ for $|x| \geqslant q^{M}$ with $M \geqslant 1$ sufficiently large. Thus,

$$
\int_{F^{\times}}|x|^{1 / 2} \lambda(x) f(x) \cdot|x|^{2 s-1} d^{\times} x=f(0) \int_{|x| \leqslant q^{-N}}|x|^{2 s-1 / 2} \lambda(x) d^{\times} x+\int_{q^{-N}<|x| \leqslant q^{M}}(\cdots)
$$

The second integral over $q^{-N}<|x| \leqslant q^{M}$ can be written as a finite sum over $m=v(x)$ with $-N \leqslant m \leqslant M$ and therefore it converges for all $s \in \mathbf{C}$. For the first integral, we also divide it according to the valuation $n=-v(x)$ and observe that

$$
\int_{|x| \leqslant q^{-N}}|x|^{2 s-1 / 2} \lambda(x) d^{\times} x=\sum_{n \geqslant N} q^{n / 2-2 n s} \int_{|x|=q^{-n}} \lambda(x) d^{\times} x
$$

For $|x|=q^{-n}$, we may write $x=\varpi^{n} y$ with $y \in \mathscr{O}_{F}^{\times}$. Since λ is a character of F^{\times}, it follows that $|\lambda(y)| \leqslant 1$ and thus $|\lambda(x)|=|\lambda(\varpi)|^{n}$ for $|x|=q^{-n}$. Moreover, $\int_{|x|=q^{-n}} d^{\times} x=$ $\int_{\mathscr{O}_{F}^{\times}} d^{\times} x=1$ by our normalization of the Haar measure. Hence, the above expression is bounded in absolute value by

$$
\sum_{n \geqslant N} q^{n / 2-2 n \operatorname{Re}(s)} \int_{|x|=q^{-n}}|\lambda(x)| d^{\times} x \leqslant \sum_{n \geqslant N} q^{n / 2-2 n \operatorname{Re}(s)}|\lambda(\varpi)|^{n} .
$$

As $|\lambda(\varpi)|$ is some fixed power of q, the above infinite sum converges once $\operatorname{Re}(s) \gg 0$.
(ii) Proof postponed ${ }^{11}$. We will not utilize this result until after Theorem 8 .
(iii) This follows from three steps.

Step 1: Show (1) holds for any $W \in \mathcal{W}(\pi)$ with $\phi_{W} \in C_{c}^{\infty}\left(F^{\times}\right)$.
(We will prove this step last.)
Step 2: Show (2) holds. Choose W from Lemma 5. From Steps 1 and 2, we may apply Equation 1 twice to see that:

$$
\begin{aligned}
\omega_{\pi}(-1) Z(W, \chi, s)=Z(\widetilde{\bar{W}}, \chi, s) & =\gamma_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right) Z\left(\widetilde{W}, \chi^{-1} \omega_{\pi}, 1-s\right) \\
& =\gamma_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right) \gamma_{\pi}(\chi, s) Z(W, \chi, s)
\end{aligned}
$$

Since $Z(W, \chi, s) \not \equiv 0$, we may divide both sides by $Z(W, \chi, s)$ to deduce (2) holds.
Step 3: Show (1) holds for any $W \in \mathcal{W}(\pi)$.
For every $W \in \mathcal{W}(\pi)$, there exists $W_{1}, W_{2} \in \mathcal{W}(\pi)$ such that

$$
\phi_{W}=\phi_{W_{1}}+\phi_{\widetilde{W}_{2}} \quad \text { and } \quad \phi_{W_{1}}, \phi_{\widetilde{W}_{2}} \in C_{c}^{\infty}\left(F^{\times}\right)
$$

This follows from the arguments leading to [Go, Section 10, Equation (144)]. Thus, we may apply the functional equation (1) to each of $Z\left(W_{1}, \chi, s\right)$ and $Z\left(W_{2}, \chi, s\right)$ and use linearity to deduce (1) for $Z(W, \chi, s)$.

The remainder of the proof is to establish Step 1. First, we make a reduction.
Claim 7. Any $f \in C_{c}^{\infty}\left(F^{\times}\right)$is a linear combination of functions of the form:

$$
\lambda(x) \mathbf{1}_{\mathfrak{O}_{F}^{\times}}(x)
$$

with $\lambda: F^{\times} \rightarrow \mathbf{C}^{\times}$some character and $\mathbf{1}_{\mathscr{O}_{F}^{\times}}$the indicator function on \mathscr{O}_{F}^{\times}.
Proof of Claim 7 . Recall $F^{\times} \cong \mathbf{Z} \times \mathscr{O}_{F}^{\times}$. Since f is compactly supported and locally constant, there exists positive integers $N, M \geqslant 1$ (dependingly only on f) such that for every $x \in F^{\times}$, $f(x)=f\left(\varpi^{n} u\right)$ for some unique integer $n \in[-N, N]$ and unique u chosen from a fixed set of coset representatives Ω of $\mathscr{O}_{F}^{\times} /\left(1+\varpi^{M} \mathscr{O}_{F}^{\times}\right)$. Therefore,

$$
f(x)=\sum_{-N \leqslant n \leqslant N} \sum_{u \in \Omega} f\left(\varpi^{n} u\right) \mathbf{1}_{u+\varpi^{M}} \mathscr{O}_{F}^{\times}\left(x \varpi^{-n}\right) .
$$

By orthogonality of characters on the finite quotient group $\mathscr{O}_{F}^{\times} /\left(1+\varpi^{M} \mathscr{O}_{F}^{\times}\right)$, the indicator function $\mathbf{1}_{u+\varpi^{M} \mathscr{O}_{F}^{\times}}(y)$ can be written as a finite linear combination of $\lambda(y) \mathbf{1}_{\mathscr{O}_{F}^{\times}}(y)$ where λ is a character of F^{\times}with conductor at most q^{M}. This proves the claim.

[^0]Continuing the proof of Step 1, recall we assume $\phi_{W} \in C_{c}^{\infty}\left(F^{\times}\right)$. By Claim 7 and the linearity of $Z(W, \chi, s)$ in W, it suffices to show the functional equation for ϕ_{W} of the form:

$$
\phi_{W}(x)=\lambda(x) \mathbf{1}_{\mathscr{O}_{F}^{\times}}(x)
$$

with $\lambda: F^{\times} \rightarrow \mathbf{C}^{\times}$some arbitrary character. During the course of our computations, it is crucial that the calculated γ factor depends only on π, χ, F and s. In particular, γ should be independent of the arbitrary character λ. Now, as λ and χ are characters on F^{\times}, the maps $\left.\lambda\right|_{\mathscr{O}_{F}^{\times}}$and $\left.\chi\right|_{\mathscr{O}_{F}^{\times}}$are (necessarily unitary) characters on the compact group \mathscr{O}_{F}^{\times}. Hence, by orthogonality of characters (for the compact group \mathscr{O}_{F}^{\times}),

$$
Z(W, \chi, s)=\int_{\mathscr{O}_{F}^{\times}} \lambda(x) \chi(x)^{-1} d^{\times} x= \begin{cases}1 & \left.\lambda\right|_{\mathscr{O}_{F}^{\times}}=\left.\chi\right|_{\mathscr{O}_{F}^{\times}} \tag{3}\\ 0 & \text { else }\end{cases}
$$

because $\int_{\mathscr{O}_{F}^{\times}} d^{\times} x=1$ via our choice of normalization.
If $\left.\lambda\right|_{\mathscr{O}_{F}^{\times}} \neq\left.\chi\right|_{\mathscr{O}_{F}^{\times}}$then one may again verify by a similar computation that

$$
Z\left(\widetilde{W}, \omega_{\pi} \chi^{-1}, 1-s\right)=0
$$

Thus, in this case, any choice of $\gamma_{\pi}(\chi, s)$ would satisfy a functional equation.
Otherwise, we have reduced to the case when

$$
\phi_{W}(x)=\chi(x) \mathbf{1}_{\mathscr{O}_{F}^{\times}}(x) .
$$

In particular, ϕ_{W} now depends only on χ. Therefore, for this ϕ_{W}, we define

$$
\gamma_{\pi}(\chi, s):=\frac{Z\left(\widetilde{W}, \omega_{\pi} \chi^{-1}, 1-s\right)}{Z(W, \chi, s)}=\int_{F^{\times}} \phi_{\widetilde{W}}(x) \omega_{\pi}^{-1} \chi(x)|x|^{1-2 s} d^{\times} x
$$

with the latter equality following from (3) and the definition of the zeta integral. Evidently, γ_{π} satisfies the functional equation for this choice of ϕ_{W} and, since ϕ_{W} depends only on χ, we see that γ_{π} depends only on χ and s. Therefore, we've shown that for all $W \in \mathcal{W}(\pi)$ with $\phi_{W} \in C_{c}^{\infty}\left(F^{\times}\right)$that (1) holds. This completes the proof of Step 1 and hence Theorem 6

Note that the operation $W \mapsto \widetilde{W}$ is not actually anything to do with a Fourier transform: the duality in the functional equation appearing in Theorem 6 comes from the action of the Weyl group (which of course is trivial in the GL_{1} case). In the next theorem, the Fourier transform plays a role .

Theorem 8. Define:

$$
L_{\pi}(\chi, s)= \begin{cases}1 & \pi \text { cuspidal } \\ L\left(\chi^{-1} \mu_{1}, 2 s-\frac{1}{2}\right) \cdot L\left(\chi^{-1} \mu_{2}, 2 s-\frac{1}{2}\right) & \pi=\pi_{\mu_{1}, \mu_{2}}, \mu_{1} / \mu_{2} \neq|\cdot|,|\cdot|^{-1} \\ L\left(\chi^{-1} \mu_{1}, 2 s-\frac{1}{2}\right) & \pi=\pi_{\mu_{1}, \mu_{2}}, \mu_{1} / \mu_{2}=|\cdot| \\ L\left(\chi^{-1} \mu_{2}, 2 s-\frac{1}{2}\right) & \pi=\pi_{\mu_{1}, \mu_{2}}, \mu_{1} / \mu_{2}=|\cdot|^{-1}\end{cases}
$$

With this definition, we have:

$$
\{Z(W, \chi, s) \mid W \in \mathcal{W}(\pi)\}=L_{\pi}(\chi, s) \cdot \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]
$$

Thus, if π is induced from $\mu_{1} \otimes \mu_{2}$ on $T=B / N \simeq \mathbf{G}_{m} \times \mathbf{G}_{m}$, then the L-function is the product of the $\mathrm{GL}_{1} L$-functions for μ_{1}, μ_{2}. If π is cuspidal, then just like in the ramified case for GL_{1}, the L-factor carries no information.

Proof. If π is cuspidal, there is not much to show. We have:

$$
Z(W, \chi, s)=\int_{F^{\times}} \phi_{W}(x) \chi^{-1}(x)|x|^{2 s-1} d^{\times} x
$$

Since $\phi_{W} \in \mathcal{K}(\pi)=C_{c}^{\infty}\left(F^{\times}\right)$, the integral breaks into a sum of finitely many terms based on the valuation of x, so $Z(W, \chi, s) \in \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]$.

If $\pi=\pi_{\mu_{1}, \mu_{2}}$ with $\mu_{1} / \mu_{2} \neq 1,|\cdot|,|\cdot|^{-1}$ then we have:

$$
\phi_{W}(x)=|x|^{1 / 2}\left(\mu_{1}(x) \Phi_{1}(x)+\mu_{2}(x) \Phi_{2}(x)\right)
$$

with $\Phi_{j} \in C_{c}^{\infty}(F)$ and $\mu_{1}, \mu_{2}: F^{\times} \rightarrow \mathbf{C}^{\times}$characters. Then we have:

$$
Z(W, \chi, s)=\zeta\left(\Phi_{1}, \chi^{-1} \mu_{1}, 2 s-\frac{1}{2}\right)+\zeta\left(\Phi_{2}, \chi^{-1} \mu_{2}, 2 s-\frac{1}{2}\right)
$$

We will write $z=2 s-\frac{1}{2}$ here and in the future. By Theorem $1(\mathrm{~B})$, this is contained in:

$$
L\left(\chi^{-1} \mu_{1}, z\right) \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]+L\left(\chi^{-1} \mu_{2}, z\right) \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]=L\left(\chi^{-1} \mu_{1}, z\right) L\left(\chi^{-1} \mu_{2}, z\right) \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]
$$

The claimed equality holds since $\mu_{1} \neq \mu_{2}$ implies the two $G L_{1} L$-functions have different poles (as one can see by looking at the defining formula). For the cases when $\mu_{1} / \mu_{2}=1,|\cdot|,|\cdot|^{-1}$, similar arguments hold but with minor variations due to the precise characterization of the Kirillov models $\mathcal{K}(\pi)$. See [Go, pp.145-147] for details.

Now, we give a computation of the γ factors in the case of principal series. Paralleling the $G L_{1}$ theory for ramified characters, the case of cuspidal representations is more subtle and involves an analogue of the Gauss sum. See [BH, Section 25] for details.

Theorem 9. If $\pi=\pi_{\mu_{1}, \mu_{2}}$, then:

$$
\gamma_{\pi}(\chi, s)=\gamma\left(\chi^{-1} \mu_{1}, 2 s-\frac{1}{2}\right) \cdot \gamma\left(\chi^{-1} \mu_{2}, 2 s-\frac{1}{2}\right)
$$

Proof. Choose W from Lemma 5 and let $\phi=\phi_{W}$. We have the following claims:
Claim 10. There exists some $\Phi \in C_{c}^{\infty}(F)$ which extends to $\Phi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$ such that

$$
\Phi\left(w^{-1}\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\right)=\Phi(y)
$$

and the Fourier transform $\widehat{\Phi} \in C_{c}^{\infty}\left(F^{\times}\right)$satisfies $Z(W, \chi, s)=\zeta\left(\Phi, \chi^{-1} \mu_{2}, z\right)$. Here $\mathcal{B}_{\mu_{1}, \mu_{2}}$ is the space of locally constant functions $\varphi: G_{F} \rightarrow \mathbf{C}$ satisfying

$$
\varphi\left(\left(\begin{array}{ll}
a & * \\
0 & b
\end{array}\right) \cdot g\right)=\mu_{1}(a) \mu_{2}(b)|a / b|^{1 / 2} \varphi(g)
$$

Proof of Claim 10. Set $\hat{\Phi}(x)=\mu_{2}^{-1}(x)|x|^{-1 / 2} \phi_{W}(x) \in C_{c}^{\infty}\left(F^{\times}\right)$. By Fourier inversion,

$$
\Phi(-y)=\int \hat{\Phi}(x) \psi(x y) d x \in C_{c}^{\infty}(F)
$$

By the Fourier transform [Go, Equation (148)], it follows that $\Phi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$ and $\Phi\left(w^{-1}\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right)\right)=\Phi(y)$. This proves the claim.

Claim 11. Choose Φ as in the proof of Claim 10. Define Φ_{w} by $g \mapsto \Phi(g w)$ so its restriction $\Phi_{w} \in C_{c}^{\infty}(F)$ satisfies $x \mapsto \Phi\left(w^{-1}\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right) w\right)$. Then, with $z=2 s-\frac{1}{2}$,

$$
Z\left(\widetilde{W}, \chi^{-1} \omega_{\pi}, 1-s\right)=\zeta\left(\widehat{\Phi}_{w}, \chi \mu_{1}^{-1}, 1-z\right)
$$

Proof of Claim 11. By a direct substitution of the definitions of Z, ζ and Φ,

$$
\begin{aligned}
Z\left(\widetilde{W}, \chi^{-1} \omega_{\pi}, 1-s\right) & =\int_{F^{\times}} \phi_{\widetilde{W}}(x) \chi \omega_{\pi}^{-1}(x)|x|^{1-2 s} d^{\times} x \\
& =\int_{F^{\times}} \widehat{\Phi}(x) \mu_{2}(x)|x|^{1 / 2} \cdot \chi(x) \mu_{1}^{-1}(x) \mu_{2}(x)^{-1 / 2} \cdot|x|^{1-z}|x|^{-1 / 2} d^{\times} x \\
& =\int_{F^{\times}} \widehat{\Phi}(x) \chi \mu_{1}^{-1}(x)|x|^{1-z} d^{\times} x \\
& =\zeta\left(\widehat{\Phi}_{w}, \chi \mu_{1}^{-1}, 1-z\right) .
\end{aligned}
$$

This proves the claim.
Claim 12. Choose Φ as in the proof of Claim 10 . Then

$$
\zeta\left(\Phi_{w}, \chi^{-1} \mu_{1}, z\right)=\left(\mu_{1} \chi^{-1}\right)(-1) \zeta\left(\Phi, \chi \mu_{2}^{-1}, 1-z\right)
$$

Proof of Claim 12. By Claim 11,

$$
\Phi_{w}(y)=\Phi\left(w^{-1}\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) w\right)=\Phi\left(\left(\begin{array}{cc}
1 & -1 / y \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / y & 0 \\
0 & y
\end{array}\right) w\left(\begin{array}{cc}
1 & -1 / y \\
0 & 1
\end{array}\right)\right) .
$$

As $\Phi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$ by Claim 10, the above expression is equal to

$$
\mu^{-1}(y)|y|^{-1} \Phi\left(w\left(\begin{array}{cc}
1 & -1 / y \\
0 & 1
\end{array}\right)\right)=\omega_{\pi}(-1) \mu^{-1}(y)|y|^{-1} \Phi(-1 / y) .
$$

Substituting this formula into the integral $\zeta\left(\Phi_{w}, \chi^{-1} \mu_{1}, z\right)$, it follows by the change of variables $-1 / y \mapsto y$ that

$$
\begin{aligned}
\zeta\left(\Phi_{w}, \chi^{-1} \mu_{1}, z\right) & =\int_{F^{\times}} \Phi_{w}(y) \chi^{-1} \mu_{1}(y)|y|^{z} d^{\times} y \\
& =\omega_{\pi}(-1) \int_{F^{\times}} \Phi(-1 / y) \chi^{-1} \mu_{2}(y)|y|^{z-1} d^{\times} y \\
& =\chi^{-1} \mu_{1}(-1) \int_{F^{\times}} \Phi(y) \chi \mu_{2}^{-1}(y)|y|^{1-z} d^{\times} y \\
& =\chi^{-1} \mu_{1}(-1) \zeta\left(\Phi, \chi \mu_{2}^{-1}, 1-z\right) .
\end{aligned}
$$

This proves the claim.
Now, we have, by repeatedly applying the claims as well as the GL_{1} theorems:

$$
\begin{aligned}
\left(\mu_{1} \chi^{-1}\right)(-1) \gamma\left(\mu_{2} \chi^{-1}, z\right) Z(W, \chi, s) & =\left(\mu_{1} \chi^{-1}\right)(-1) \gamma\left(\mu_{2} \chi^{-1}, z\right) \zeta\left(\widehat{\Phi}, \chi^{-1} \mu_{2}, z\right) \\
& =\left(\mu_{1} \chi^{-1}\right)(-1) \zeta\left(\Phi, \chi \mu_{2}^{-1}, 1-z\right) \\
& =\zeta\left(\Phi_{w}, \chi^{-1} \mu_{1}, z\right) \\
& =\gamma\left(x \mu_{1}^{-1}, 1-z\right) \zeta\left(\widehat{\Phi_{w}}, \chi \mu_{1}^{-1}, 1-z\right) \\
& =\gamma\left(\chi \mu_{1}^{-1}, 1-z\right) Z\left(\widetilde{W}, \chi^{-1} \omega_{\pi}, 1-s\right)
\end{aligned}
$$

By Theorem 6, the righthand side equals

$$
=\gamma\left(\chi \mu_{1}^{-1}, 1-z\right) \gamma_{\pi}(\chi, s) Z(W, \chi, s)
$$

Our choice of W from Lemma 5 satisfies $Z(W, \chi, s) \not \equiv 0$ so we may divide this term from both sides to deduce that

$$
\gamma_{\pi}(\chi, s)=\mu_{1} \chi_{1}^{-1}(-1) \frac{\gamma\left(\mu_{2} \chi^{-1}, z\right)}{\gamma\left(\mu_{1}^{-1} \chi, 1-z\right)}
$$

Applying Theorem 1 (A) to the denominator proves the theorem.
Theorem 13. Define $\epsilon_{\pi}(\chi, s)=\gamma_{\pi}(\chi, s) \frac{L_{\pi}(\chi, s)}{L_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right)}$. Then we have the functional equation:

$$
\epsilon_{\pi}(\chi, s) \epsilon_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right)=\omega_{\pi}(-1)
$$

and $\epsilon_{\pi}(\chi, s)=a q^{b s}$ for some $a \in \mathbf{C}^{\times}$and $b \in \mathbf{Z}$.
Finally, in the principal series case, we can compute the ϵ factors. For the cuspidal case, the ϵ factor equals the γ factor (as the L-functions defining ϵ_{π} are trivial) so we again refer the reader to [BH, Section 25] for details.

Theorem 14. If $\pi=\pi_{\mu_{1}, \mu_{2}}$ with $\mu_{1} / \mu_{2} \neq|\cdot|,|\cdot|^{-1}$, then we have:

$$
\epsilon_{\pi}(\chi, s)=\epsilon\left(\chi^{-1} \mu_{1}, 2 s-\frac{1}{2}\right) \cdot \epsilon\left(\chi^{-1} \mu_{2}, 2 s-\frac{1}{2}\right)
$$

where the ϵ factors on the right are the ϵ factors from the GL_{1} theory.
Proof. This follows from Theorems 9 and 13 as well as the relationship between ϵ factors and γ factors in the GL_{1} case. For the cases when $\mu_{1} / \mu_{2}=\neq|\cdot|,|\cdot|^{-1}$, see [Go, pages 1.49-1.52].

Now, we will prove Theorem 13 .
Proof. The equation $\epsilon_{\pi}(\chi, s) \epsilon_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right)=\omega_{\pi}(-1)$ follows directly from the definition and the functional equation for γ given in Theorem6.

Now, again by Theorem6, we have:

$$
\frac{Z(W, \chi, s)}{L_{\pi}(\chi, s)} \epsilon_{\pi}(\chi, s)=\frac{Z\left(\widetilde{W}, \omega_{\pi} \chi^{-1}, 1-s\right)}{L_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right)}
$$

By Theorem 8 , the right-hand side is in $\mathrm{C}\left[q^{-2 s}, q^{2 s}\right]$, so it is entire in s. Now, choose W such that $Z(W, \chi, s)=L_{\pi}(\chi, s)$. This implies that $\epsilon_{\pi}(\chi, s) \in \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]$ as well. Similarly, we see that $\epsilon_{\pi}\left(\chi^{-1} \omega_{\pi}, 1-s\right) \in \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]$. Since their product is $\omega_{\pi}(-1)$, we have:

$$
\epsilon_{\pi}(\chi, s) \in \mathbf{C}\left[q^{-2 s}, q^{2 s}\right]^{\times}
$$

Thus, $\epsilon_{\pi}(\chi, s)=a q^{b s}$ for some $a \in \mathbf{C}^{\times}$and $b \in \mathbf{Z}$.

References

[BH] Colin Bushnell, Guy Henniart, The Local Langlands Conjecture For GL(2), Springer-Verlag, Berlin, 2006.
[Go] R. Godement, Notes on Jacquet-Langlands' Theory, The Institute for Advanced Study, 1970, available at http://math.stanford.edu/ conrad/conversesem/refs/godement-ias.pdf.

[^0]: ${ }^{1}$ It is not apparent to me that a complete proof is provided in [Go, Section 12]. From the functional equation, $Z(W, \chi, s)$ is meromorphic in $\operatorname{Re}(s) \geqslant A$ and $\operatorname{Re}(s) \leqslant 1-A$ for some large positive A but, without additional work, it is not obvious why it extends to the strip $1-A \leqslant \operatorname{Re}(s) \leqslant A$. Instead, this extra input will follow implicitly from Theorems 8 and 1 B).

