Lecture 16: Unitary Representations Lecture by Sheela Devadas Stanford Number Theory Learning Seminar February 14, 2018 Notes by Dan Dore

Let F be a local field with valuation ring \mathscr{O}_F , and G_F the group $\operatorname{GL}_2(F)$. If (π, V) is an admissible representation of G_F , we define:

Definition 1. (π, V) is *pre-unitary* if it admits a positive definite G_F -invariant Hermitian form.

We say pre-unitary rather than unitary, since V may not be complete. However, given a preunitary representation (π, V) , we may complete V to a Hilbert space \hat{V} and extend the action of π to $\hat{\pi}$. This preserves the notion of irreducibility in an appropriate sense:

Lemma 2. If (π, V) is a pre-unitary admissible representation, then (π, V) is algebraically irreducible if and only if $(\hat{\pi}, \hat{V})$ is topologically irreducible: i.e. it has no non-trivial invariant *closed* subspaces.

Proof. If we let ρ be a (finite dimensional) irreducible representation of $\operatorname{GL}_2(\mathscr{O}_F)$, then we write $V(\rho)$ for the set of all vectors $v \in V$ which transform under $\operatorname{GL}_2(\mathscr{O}_F)$ according to ρ , i.e. the span of all of the copies of ρ inside $\operatorname{Res}_{\operatorname{GL}_2(\mathscr{O}_F)}^{G_F}V$. We may define $\hat{V}(\rho)$ similarly. We will show that $V(\rho) = \hat{V}(\rho)$. By admissibility of $V, V = \bigoplus_{\rho} V(\rho)$, and $V(\rho)$ are mutually orthogonal and finite-dimensional. This implies that:

$$\widehat{V} = \widehat{\bigoplus}_{\rho} V(\rho),$$

the Hilbert direct sum of the $V(\rho)$. Thus, $\hat{V}(\rho) = V(\rho)$.

Hence V is the set of all $\operatorname{GL}_2(\mathscr{O}_F)$ -finite vectors in \widehat{V} . Because $\operatorname{GL}_2(\mathscr{O}_F)$ is compact, $\operatorname{GL}_2(\mathscr{O}_F)$ -finite vectors are dense in every closed invariant subspace of \widehat{V} .

Therefore $V \cap W'$ is dense in any G_F -invariant closed subspace W' of \hat{V} . Thus, any closed invariant subspace $W' \subseteq \hat{V}$ is the closure of $V \cap W'$. If V is algebraically irreducible, this means that $V \cap W' = 0$ or $V \cap W' = V$, so W' = 0 or $W' = \hat{V}$. Therefore if (π, V) is algebraically irreducible, then $(\hat{\pi}, \hat{V})$ is topologically irreducible.

On the other hand, we need to show that if $V_0 \subseteq V$ is a nontrivial proper invariant subspace, then $\overline{V_0} \subseteq \hat{V}$. For V_0 an invariant subspace of V, we see that if we let $V_0(\rho) = V(\rho) \cap V_0$, then $V_0 = \bigoplus_{\rho} V_0(\rho)$. Since we also have $\hat{V} = \bigoplus_{\rho} \hat{V}(\rho)$ (recall $\hat{V}(\rho) = V(\rho)$), we see that the closure $\overline{V_0}$ of V_0 in \hat{V} must be $\overline{V_0} = \bigoplus_{\rho} V_0(\rho)$. Thus $\overline{V_0}$ is invariant and is nontrivial exactly when V_0 is, so we see that if \hat{V} is topologically irreducible, $\overline{V_0} = 0$ or $\overline{V_0} = \hat{V}$, so $V_0 = 0$ or $V_0 = V$. Therefore (π, V) is algebraically irreducible if $(\hat{\pi}, \hat{V})$ is topologically irreducible.

Remark 3. It is not *a priori* obvious that any topologically irreducible Hilbert space representation \hat{V} of G_F arises in this way from an irreducible admissible representation of G_F . In other words, why should the space of smooth vectors (i.e. the vectors which are fixed by an open subgroup of G_F) of \hat{V} be non-zero?

Theorem 4. Let (π, V) be an infinite-dimensional¹ irreducible admissible representation of G_F . It is pre-unitary *exactly* in these cases:

- (1) π is super-cuspidal and the central character ω_{π} satisfies $|\omega_{\pi}(t)| = 1$ for all t.
- (2) $\pi = \pi_{\mu_1,\mu_2}$ is a non-special principal series with μ_1, μ_2 unitary characters.
- (3) $\pi = \pi_{\mu_1,\mu_2}$ is a non-special principal series with $\mu_2 = \overline{\mu_1}^{-1}$ and $\mu := \mu_1 \mu_2^{-1} = |x|^{\sigma}$ for $0 < \sigma < 1$.
- (4) $\pi = \pi_{\mu_1,\mu_2}$ is a special principal series such that $\mu_1(x) = |x|^{1/2}\chi(x), \mu_2(x) = |x|^{-1/2}\chi(x)$ for χ a unitary character.

Furthermore, on the Kirillov model $\mathcal{K}(\pi)$ of (π, V) , the invariant scalar product takes the form

$$(\xi,\eta) = \int \xi(x)\overline{\eta(x)}d^{\times}x$$

The rest of these notes concern the proof of this theorem.

1 Super-cuspidal case

First, we will consider case (1), where π is super-cuspidal. The condition that $|\omega_{\pi}(t)| = 1$ is necessary because for any $\xi, \eta \in V$, we have by G_F -invariance of the Hermitian pairing (\cdot, \cdot) on V:

$$(\xi,\eta) = \left(\pi\left(\begin{pmatrix}t & 0\\ 0 & t\end{pmatrix}\right)\xi, \pi\left(\begin{pmatrix}t & 0\\ 0 & t\end{pmatrix}\right)\eta\right) = \omega_{\pi}(t) \ \overline{\omega_{\pi}(t)} \ (\xi,\eta) \ .$$

Thus, by non-degeneracy, $|\omega_{\pi}(t)| = 1$ for all t.

Now, assume that this condition holds. Fix $\zeta_0 \in \check{V}$ a non-zero vector. For any $\xi, \eta \in V$, we consider the following function on G_F :

$$f_{\xi,\eta} \colon g \mapsto \langle \pi(g)\xi, \zeta_0 \rangle \langle \pi(g)\eta, \zeta_0 \rangle.$$

Here, $\langle \cdot, \cdot \rangle$ is the canonical pairing on $V \times \check{V}$. Then $f_{\xi,\eta}$ is a function from G_F to \mathbb{C} which is compactly supported modulo the center Z_F of G_F - this follows from the definition of supercuspidality, because $f_{\xi,\eta}$ is a product of matrix coefficients. (See Theorem 3 in [1].)

Now, it makes sense to integrate over G_F to obtain a Hermitian pairing:

$$(\xi,\eta) := \int_{G_F/Z_F} \langle \pi(g)\xi, \zeta_0 \rangle \overline{\langle \pi(g)\eta, \zeta_0 \rangle} \, dg.$$

Note that the integrand is a Z_F -invariant function because the central character is unitary by assumption. It is not hard to see that this is G_F -invariant by unimodularity of G_F .

Now, we must check that this is positive-definite. Assume that $(\xi, \xi) = 0$. This means that for all $g, \pi(g)\xi$ is orthogonal to ζ_0 , or equivalently (by G_F -invariance of $\langle \cdot, \cdot \rangle$) that ξ is orthogonal to $\check{\pi}(g)\zeta_0$. Since $\check{\pi}$ is irreducible, this implies that $\check{\pi}(G) \cdot \zeta_0$ generates \check{V} and therefore that $\xi = 0$.

¹so it does not factor through the determinant

Next, we will describe this pairing on the Kirillov model. We claim that it is given by:

$$(\xi,\eta) = \int \xi(x)\overline{\eta(x)} d^{\times}x.$$

It suffices to show that this gives an invariant inner product on $\mathcal{K}(\pi)$, since these are unique up to a scalar: an invariant inner product on (π, V) is determined by the associated isomorphism $\overline{\pi} \xrightarrow{\sim} \check{\pi}$, so two distinct invariant inner products differ by an automorphism of the irreducible G_F -module \check{V} . This must be a scalar by Schur's lemma.

The pairing defined above is clearly a positive-definite Hermitian inner product, so it suffices to show that the pairing is G_F -invariant. It actually suffices to check this invariance under the family of operators $F_{a,b}$: $[x \mapsto \xi(x)] \mapsto [x \mapsto \psi_F(bx)\xi(ax)]$:

$$\int \psi_F(bx)\xi(ax)\overline{\psi_F(bx)\eta(ax)}d^{\times}x = \int \psi_F(bx)\xi(x)\overline{\psi_F(bx)\eta(x)}d^{\times}x$$
$$= \int \xi(x)\overline{\eta(x)}d^{\times}x.$$

since we assume ψ_F unitary.

This gives invariance under the mirabolic subgroup $H = \{\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}\}$ by the definition of the Kirillov model. Since we are in the supercuspidal case, $\mathcal{K}(\pi) = \mathscr{S}(F^{\times})$. In fact the mirabolic subgroup acts irreducibly on $\mathscr{S}(F^{\times})$. Since we know that a G_F -invariant (hence *H*-invariant) bilinear form exists by the previous discussion, we see that up to a nonzero constant, this G_F -invariant bilinear form must equal $(\xi, \eta) = \int \xi(x)\overline{\eta(x)} d^{\times}x$ as we desired to show.

This completes the case of super-cuspidal representations, so it suffices to consider the case of principal series.

2 Principal series case

Let's assume that (π, V) is a pre-unitary irreducible admissible representation. We have a complex semi-linear map J from V to \check{V} defined by :

$$\langle \xi, J\eta \rangle = (\xi, \eta).$$

This gives an isomorphism from $\overline{\pi}$ to $\check{\pi}$.

Now, assume that $\pi = \pi_{\mu_1,\mu_2}$ is a non-special principal series representation. This is defined on the space $\mathcal{B}_{\mu_1,\mu_2}$ of locally constant function φ on G_F such that:

$$\varphi\left(\left(\begin{smallmatrix}a&*\\0&b\end{smallmatrix}\right)\cdot g\right) = \mu_1(a)\mu_2(b)|a/b|^{1/2}\varphi(g).$$

Now, we have an isomorphism $\mathcal{B}_{\mu_1,\mu_2} \xrightarrow{\sim} \mathcal{B}_{\overline{\mu_1},\overline{\mu_2}} \simeq \overline{\pi}$ sending φ to $\overline{\varphi}$. We know from a previous lecture that $\check{\pi} \simeq \mathcal{B}_{\mu_2^{-1},\mu_1^{-1}}$.

Now, there are two cases, corresponding to cases (2) and (3) in the statement of the theorem. The first of these is the case that $\mu_1^{-1} = \overline{\mu_1}$, $\mu_2^{-1} = \overline{\mu_2}$, and this means that μ_1, μ_2 are unitary. The second is the case that $\mu_1^{-1} = \overline{\mu_2}, \mu_2^{-1} = \overline{\mu_1}$.

Since $\mathcal{B}_{\mu_1,\mu_2} \simeq \mathcal{B}_{\lambda_1,\lambda_2}$ iff $\{\mu_1,\mu_2\} = \{\lambda_1,\lambda_2\}$ as unordered pairs, these possibilities are necessary and sufficient for $\overline{\pi}$ and $\check{\pi}$ to be G_F -isomorphic. As we saw above, this is necessary for π to be pre-unitary, but it is not clearly sufficient: an isomorphism from $\overline{\pi}$ to $\check{\pi}$ induces a non-degenerate Hermitian invariant bilinear pairing on V, but it is not a priori clear that it should be positive definite.

2.1 Case (2)

In the first case, we define the bilinear pairing by:

$$(\varphi_1,\varphi_2) := \int_{B_F \setminus G_F} \varphi_1(g) \overline{\varphi_2(g)} \, dg = \int_{\operatorname{GL}_2(\mathscr{O}_F)} \varphi_1(m) \overline{\varphi_2(m)} \, dm.$$

The second equality follows from the Cartan decomposition $B_F \cdot \operatorname{GL}_2(\mathscr{O}_F) = G_F$.

The notes from Lecture 12 of this seminar ([5]) show that this integral defines a non-degenerate G_F -invariant bilinear pairing (this was how we identified the contragredient of π_{μ_1,μ_2} with $\pi_{\mu_1^{-1},\mu_2^{-1}}$). To show that this is Hermitian and positive-definite, we will compute in the Kirillov model $\mathcal{K}(\pi)$. To $\varphi \in \mathcal{B}_{\mu_1,\mu_2}$, we associate $\xi_{\varphi} \in \mathcal{K}(\pi)$, defined by:

$$\xi_{\varphi}(x) := \mu_2(x) |x|^{1/2} \int \varphi\left(w^{-1} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}\right) \overline{\psi_F(xy)} \, dy$$

Here, w is the Weyl group generator $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Now, we use the following identity, which comes from explicitly realizing Bruhat decomposition for GL_2 :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c^{-1} \det g * \\ 0 & c \end{pmatrix} w^{-1} \begin{pmatrix} 1 & d/c \\ 0 & 1 \end{pmatrix},$$

which is valid whenever $c \neq 0$. This implies that:

$$\int_{B_F \setminus G_F} \varphi_1(g) \overline{\varphi_2(g)} \, dg = \int \varphi_1\left(w^{-1} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\right) \overline{\varphi_2\left(w^{-1} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\right)} \, dx.$$

Defining $\Phi_i(x) := \varphi_i\left(w^{-1}\left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix}\right)\right)$, the above identity may be rephrased as:

$$(\varphi_1, \varphi_2) = \int \Phi_1(x) \overline{\Phi_2(x)} \, dx.$$

We may use Fourier inversion to see:

$$(\varphi_1, \varphi_2) = \int \Phi_1(x) \overline{\int \widehat{\Phi_2(y)} \psi_F(xy) \, dy} \, dx = \int \widehat{\Phi_1(y)} \overline{\widehat{\Phi_2(y)}} \, dy.$$

We are able to do this because, as discussed in Section 1.9 of [1], Φ corresponding to $\varphi \in \mathcal{B}_{\mu_1,\mu_2}$ must be proportional to $\mu(x)^{-1}|x|^{-1}$ for |x| large. Since $\mu(x) := \mu_1(x)\mu_2^{-1}(x)$ satisfies $|\mu(x)| = 1$, we see that Φ is square integrable on F, so $\hat{\Phi}$ is its Fourier transform in the L^2 sense. Furthermore, we can determine the image of the map $\Phi \to \hat{\Phi}$, from which we are able to deduce that the $\hat{\Phi}$ are integrable and $\int \hat{\Phi}(y)\psi_F(xy) dy = \Phi(x)$. Therefore

$$\begin{aligned} (\varphi_1, \varphi_2) &= \int \widehat{\Phi_1}(y) \overline{\Phi_2}(y) \, dy \\ &= \int \mu_2(y)^{-1} |y|^{-1/2} \xi_{\varphi_1}(y) \mu_2(y)^{-1} |y|^{-1/2} \xi_{\varphi_2}(y) y \\ &= \int \xi_{\varphi_1}(x) \xi_{\varphi_2}(x) d^{\times} x, \end{aligned}$$

using the relation $d^{\times}x = |x|^{-1}dx$ and the fact that μ_2 is unitary.

In this form, it is easy to check that the pairing is positive definite and Hermitian. This settles case (2), where μ_1, μ_2 are unitary.

2.2 Case (3)

Now, we must settle case (3): $\pi = \pi_{\mu_1,\mu_2}$ with $\overline{\mu_1} = \mu_2^{-1}$ and $\overline{\mu_i} \neq \mu_i^{-1}$ (i.e. μ_i not unitary). Since we know what characters of F^{\times} must look like, this means that $\mu = \mu_1 \mu_2^{-1} = |x|^{\sigma}$ for $\sigma \neq 0$ (if $\sigma = 0$, the μ_i would be unitary). Without loss of generality, we may assume that $\sigma > 0$ since we may switch μ_1 and μ_2 if desired.

We will define an operator $\mathbf{A} \colon \mathcal{B}_{\mu_1,\mu_2} \to \mathcal{B}_{\overline{\mu_1}^{-1},\overline{\mu_2}^{-1}} = \mathcal{B}_{\mu_2,\mu_1}$ by:

$$(\mathbf{A}\varphi)(g) := \int \varphi \left(w \left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix} \right) \cdot g \right) \, dx.$$

For fixed g, the integrand $\varphi(w(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix}) \cdot g)$ grows as $\mu^{-1}(x)|x|^{-1} = |x|^{-\sigma-1}$ for large |x|, so this integral converges (see p.1.28, [1]).

We will show that $\mathbf{A} \neq 0$ and that \mathbf{A} is G_F -equivariant.

To see that \mathbf{A} is nonzero, we use the function

$$f(g) = f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) := |\det g|^{1/2} |c|^{-1} \mu^{-1}(c) \mu_1(\det g)$$

for $c \neq 0$ and f(g) = 0 otherwise. It can be checked that $f \in \mathcal{B}_{\mu_1,\mu_2}$, and furthermore, $(\mathbf{A}f)(1) = 1$. Hence $\mathbf{A} \neq 0$.

To see that A is G_F -equivariant, we note that for $h, g \in G_F$

$$(\pi_{\mu_2,\mu_1}(g)\mathbf{A}\varphi)(h) = (\mathbf{A}\varphi)(hg)$$

= $\int \varphi \left(w \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot hg \right) dx$
= $\int (\pi_{\mu_1,\mu_2}\varphi) \left(w \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot h \right) dx$
= $(\mathbf{A}\pi_{\mu_1,\mu_2}\varphi)(h),$

so A is G_F -equivariant as we desired to show.

It follows that an invariant scalar product on $\mathcal{B}_{\mu_1,\mu_2}$ must look like:

$$(\varphi_1, \varphi_2) = c \langle \mathbf{A} \varphi_1, \overline{\varphi_2} \rangle$$

for some constant c, since any invariant Hermitian product on $\mathcal{B}_{\mu_1,\mu_2}$ will give an isomorphism between $\overline{\pi_{\mu_1,\mu_2}} = \pi_{\overline{\mu_1},\overline{\mu_2}}$ and its dual $\mathcal{B}_{\mu_2,\mu_1}$, and those isomorphisms are unique up to a scalar by irreducibility of $\mathcal{B}_{\mu_2,\mu_1}$.

We will show that when $\sigma < 1$, this actually defines a positive-definite Hermitian pairing. We have $\mathbf{A}\varphi_1 \in \mathcal{B}_{\mu_2,\mu_1}$, and $\overline{\varphi_2} \in \mathcal{B}_{\overline{\mu_1},\overline{\mu_2}} = \mathcal{B}_{\mu_2^{-1},\mu_1^{-1}}$. For $\varphi \in \mathcal{B}_{\mu_1,\mu_2}$, we define:

$$\Phi(x) = \varphi\left(w^{-1}\left(\begin{smallmatrix}1 & x\\ 0 & 1\end{smallmatrix}\right)\right), \qquad \Phi'(x) = (\mathbf{A}\varphi)\left(w^{-1}\left(\begin{smallmatrix}1 & x\\ 0 & 1\end{smallmatrix}\right)\right).$$

Now, again using the Bruhat decomposition identity

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c^{-1} \det g * \\ 0 & c \end{pmatrix} w^{-1} \begin{pmatrix} 1 & d/c \\ 0 & 1 \end{pmatrix},$$

we may see that for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $c \neq 0$:

$$\varphi(g) = \mu_1(\det g) |\det g|^{1/2} \mu^{-1}(c) |c|^{-1} \Phi(d/c),$$

since $\varphi \in \mathcal{B}_{\mu_1,\mu_2}$ transforms under upper triangular matrices in a specified way.

Furthermore:

$$\begin{split} \Phi'(x) &= \int \varphi(w\left(\begin{smallmatrix} 1 & -y \\ 0 & 1 \end{smallmatrix}\right) w^{-1}\left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix}\right)) dy \\ &= \int \varphi(\left(\begin{smallmatrix} 1 & x \\ y & 1 + xy \end{smallmatrix}\right)) dy \quad \text{(by the Bruhat decomposition identity)} \\ &= \int \mu^{-1}(y) |y|^{-1} \Phi(\frac{1 + xy}{y}) dy \quad \text{(by the Bruhat decomposition identity)} \\ &= \int \mu^{-1}(y) \Phi(x + y^{-1}) d^{\times} y \\ &= \int \mu(y) \Phi(x + y) d^{\times} y, \end{split}$$

where in the last equality we make a change of variables $y \mapsto y^{-1}$.

Now, if we define:

$$(\varphi_1,\varphi_2)=c\langle \mathbf{A}\varphi_1,\overline{\varphi_2}\rangle,$$

we may use the above identities to see that:

$$\begin{aligned} (\varphi_1, \varphi_2) &= c \int_{B_F \setminus G_F} (\mathbf{A}\varphi_1)(g) \overline{\varphi_2(g)} \, dg \\ &= c \int (\mathbf{A}\varphi_1) \left(w^{-1} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right) \overline{\varphi_2(w^{-1} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix})} \, dx \\ &= c \int \Phi_1'(x) \overline{\Phi_2(x)} \, dx \\ &= c \int \int \Phi_1(x+y) \overline{\Phi_2(x)} |y|^{\sigma} \, d^{\times}y \, dx. \end{aligned}$$

For this to be positive-definite, we need to find some $c(\sigma) > 0$ such that:

$$c(\sigma) \int \int \Phi(x+y)\overline{\Phi(x)}|y|^{\sigma} dx d^{\times}y \ge 0$$

for any Φ defined as:

$$\Phi(x) = \varphi\left(w^{-1}\left(\begin{smallmatrix}1 & x\\ 0 & 1\end{smallmatrix}\right)\right)$$

for $\varphi \in \mathcal{B}_{\mu_1,\mu_2}$.

The space of such Φ is the space $\mathscr{F}(\mu)$ of locally constant functions on F which are proportional to $\mu(x)^{-1}|x|^{-1}$ for $|x| \gg 0$ (see Section 1.9 in [1]). Since the space of Schwarz functions $\mathscr{S}(F)$ are 0 for $|x| \gg 0$, we have $\mathscr{S}(F) \subseteq \mathscr{F}(\mu)$.

Note that $c(\sigma)|y|^{\sigma}d^{\times}y = c(\sigma)y^{\sigma-1}dy$.

We note that $g(y) = c(\sigma)y^{\sigma-1}$ must be a positive-definite function on F, meaning that for any n-tuple of elements $\{y_i\}_{i=1}^n$ in F, the matrix $(g(y_i - y_j))$ must be positive Hermitian.

This is because, as stated in Proposition 4.1, Chapter 1, [3], a function f_0 on a locally compact abelian group H is positive definite, if for any $f \in C_c(H)$, we have $\int f_0(y) \int f(y-x)\overline{f(-x)}dxdy \ge 0$, where dy is the Haar measure on that group.

We see that this condition is exactly equivalent to our previous condition

$$c(\sigma) \int \int \Phi(x+y)\overline{\Phi(x)}|y|^{\sigma} dx d^{\times}y \ge 0.$$

We will see that it is possible to choose such a $c(\sigma)$ iff $\sigma < 1$.

Then since $c(\sigma)y^{\sigma-1}$ is a positive definite function, the distributional Fourier transform of $c(\sigma)|y|^{\sigma} d^{\times}y = c(\sigma)y^{\sigma-1}dy$ must be a positive measure on F, by Bochner's theorem. (For proof of this theorem see p.19, [2].) This Fourier transform is proportional to $|x|^{1-\sigma} d^{\times}x$. Since $|x|^{1-\sigma}$ is only a locally L^1 function near 0 when $\sigma < 1$, this condition is necessary for this to be a measure on F.

Now, for $0 < \sigma < 1$, the definition of the γ -factor implies that there is a constant $\gamma(\sigma)$ for any $\Phi \in \mathscr{S}(F)$ such that:

$$\int \widehat{\Phi}(y) |y|^{\sigma} d^{\times} y = \frac{1}{\gamma(\sigma)} \int \Phi(x) |x|^{1-\sigma} d^{\times} x.$$

This is because if we define $L_{\Phi}(\chi, s) = \int_{F^{\times}} \Phi(x)\chi(x)|x|^s d^{\times}x$, there is a factor $\gamma(\chi, s)$ depending only on χ and s such that $L_{\Phi}(-\chi, 1-s) = \gamma(\chi, s)L_{\widehat{\Phi}}(\chi, s)$. (See p.1.41 in [1], or discussion in previous lectures.)

Thus, if we choose $c(\sigma) = \gamma(\sigma)$ and define $(\varphi_1, \varphi_2) = c(\sigma) \langle \mathbf{A} \varphi_1, \overline{\varphi_2} \rangle$, then we have:

$$(\varphi_1, \varphi_2) = \gamma(\sigma) \int \int \Phi_1(x+y) \overline{\Phi_2(x)} |y|^{\sigma} dx d^{\times} y.$$

It remains to show that the inner product takes the desired form on the Kirillov model. Since the Fourier transform of $y \mapsto \Phi_1(x+y)$ is $z \mapsto \widehat{\Phi_1}(z)\psi_F(xz)$, we see that

$$\gamma(\sigma)\int \Phi_1(x+y)|y|^{\sigma}d^{\times}y = \int \widehat{\Phi_1}(z)\psi_F(xz)|z|^{1-\sigma}d^{\times}z.$$

We are able to perform the Fourier transform since we can describe the behavior of the Φ_i for |x| large - $\Phi_i(x)$ must be proportional to $\mu(x)^{-1}|x|^{-1} = x^{-\sigma-1}$ (see p.1.31, [1]), and $\sigma > 0$.

Then recalling the definition of ξ_{φ} the corresponding element to φ in the Kirillov model, we see that

$$\begin{aligned} (\varphi_1,\varphi_2) &= \gamma(\sigma) \int \int \Phi_1(x+y)\overline{\Phi_2(x)}|y|^{\sigma} \, dx \, d^{\times}y \\ &= \int \int \widehat{\Phi}_1(z)\psi_F(xz)\overline{\Phi_2(x)}|z|^{1-\sigma} \, dx \, d^{\times}z \\ &= \int \int \widehat{\Phi}_1(z)\psi_F(xz)\overline{\widehat{\Phi}_2(z)}|z|^{1-\sigma} \, d^{\times}z \\ &= \int \int \xi_{\varphi_1}(z)\overline{\xi_{\varphi_2}}(z)|\mu_2(z)|^{-2}|z|^{-1}|z|^{1-\sigma}d^{\times}z \\ &= \int \int \xi_{\varphi_1}(z)\overline{\xi_{\varphi_2}}(z)d^{\times}z, \end{aligned}$$

as we desired to show. We are able to perform the Fourier transforms since we can describe the behavior of the Φ_i for |x| large (see p.1.31, [1]).

3 Special case

Finally, we must settle the final case (4), where $\pi = \pi_{\mu_1,\mu_2}$ is special. Without loss of generality, we may assume that $\mu = \mu_1 \mu_2^{-1} = |x|$. If π is pre-unitary, $\overline{\pi} \simeq \check{\pi}$. As above, this implies that $\mu_1 \overline{\mu_2} = 1$ (we cannot have μ_1, μ_2 both unitary, since this is incompatible with the assumption that $\mu = |x|$). One may show that in this case we have $\mu_1(x) = |x|^{1/2}\chi(x)$ and $\mu_2(x) = |x|^{-1/2}\chi(x)$, for χ a unitary character.

The space of π is $\mathcal{B}^0_{\mu_1,\mu_2} \subseteq \mathcal{B}_{\mu_1,\mu_2}$ defined by the condition that:

$$\int \varphi \left(w^{-1} \left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix} \right) \right) \, dx = 0$$

By invariance of $\mathcal{B}^0_{\mu_1,\mu_2}$ as a subspace, if $\varphi \in \mathcal{B}^0_{\mu_1,\mu_2}$, then for any $g \in G_F$, we have:

$$\int \varphi \left(w^{-1} \left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix} \right) \cdot g \right) \, dx = 0.$$

Thus, we cannot use the formula for A that we used in the previous cases. Instead, we use a limit:

$$(\varphi_1,\varphi_2) := \lim_{\sigma \to 1^-} \gamma(\sigma) \int \int \Phi_1(x+y) \overline{\Phi_2(x)} |y|^\sigma \, dx \, d^{\times}y = \lim_{\sigma \to 1^-} \int \widehat{\Phi_1(z)} \overline{\widehat{\Phi_2(z)}} |z|^{1-\sigma} \, d^{\times}z.$$

We must verify that the properties of Φ_1, Φ_2 make the Fourier inversion make sense, and make sure that the limit exists and has the desired properties. We can do this Fourier inversion because $\sigma = 1$ implies that for |x| large, Φ_1, Φ_2 are proportional to $\mu(x)^{-1}|x|^{-1} = |x|^{-2}$, so they are in $L^1 \cap L^2$ and we can apply Parseval's formula.

If $\varphi \in \mathcal{B}_{\mu_1,\mu_2}^{0}$, then $\widehat{\Phi}(0) = 0$. Because $\widehat{\Phi}$ is in fact locally constant, and vanish outside some compact subset of F, that gives the desired convergence of the limit (see p.1.29, [1]).

Since the limit exists, we can check that:

$$(\varphi_1,\varphi_2) = \int \widehat{\Phi_1}(x)\overline{\widehat{\Phi_2}(x)} \, d^{\times}x = \int \xi_{\varphi_1}(x)\overline{\xi_{\varphi_2}(x)} \, d^{\times}x.$$

This shows (\cdot, \cdot) is Hermitian and positive definite. Thus, we need to check invariance under B_F and under w. The former comes from the formula for (\cdot, \cdot) on the Kirillov model. What remains is to check invariance under w.

We have (see p.1.52, [1]) that

$$\gamma(\sigma) = \frac{1 - q^{-\sigma}}{1 - q^{\sigma-1}}.$$

For $\varphi \in \mathcal{B}^0_{\mu_1,\mu_2}$, we have, via a change of variables:

$$\lim_{\sigma \to 1} \gamma(\sigma) \int \Phi(x) |x - y|^{\sigma - 1} dx = \lim_{\sigma \to 1} \frac{1 - q^{-\sigma}}{1 - q^{\sigma - 1}} \int \Phi(x + y) |x|^{\sigma} d^{\times} x.$$

We note that $\int \Phi(x+y)|x|d^{\times}x = \int \Phi(x+y)dx = 0$ for all $\varphi \in \mathcal{B}^{0}_{\mu_{1},\mu_{2}}$. Therefore

$$\lim_{\sigma \to 1} \frac{1 - q^{-\sigma}}{1 - q^{\sigma-1}} \int \Phi(x+y) |x|^{\sigma} d^{\times} x = \lim_{\sigma \to 1} \frac{(1 - q^{-\sigma}) \int \Phi(x+y) (|x|^{\sigma} - |x|) d^{\times} x}{1 - q^{\sigma-1}}.$$

Now if we observe that $\frac{d}{d\sigma}|x|^{\sigma} = -v(x)|x|^{\sigma}\log q$ (where v(x) is the valuation) and noting that the integral $\int \Phi(x+y)v(x)dx$ is absolutely convergent (to justify the derivation under the integral), we are able to apply L'Hospital's rule to see that

$$\lim_{\sigma \to 1} \frac{\int \Phi(x+y)(|x|^{\sigma} - |x|) \, d^{\times}x}{1 - q^{\sigma-1}} = \lim_{\sigma \to 1} \frac{\int \Phi(x+y)(-v(x))|x|^{\sigma} \log q \, d^{\times}x}{-q^{\sigma-1} \log q}$$

Therefore

$$\lim_{\sigma \to 1} \gamma(\sigma) \int \Phi(x) |x - y|^{\sigma - 1} dx = (1 - q^{-1}) \int \Phi(x + y) v(x) dx.$$

Now, this allows us to show that:

$$\begin{aligned} (\varphi_1,\varphi_2) &= \lim_{\sigma \to 1^-} \gamma(\sigma) \int \int \Phi_1(x+y) \Phi_2(x) |y|^\sigma \, dx \, d^{\times}y \\ &= \lim_{\sigma \to 1^-} \gamma(\sigma) \int \Phi_2(x) \int \Phi_1(x+y) |y|^\sigma \, d^{\times}y \, dx \\ &= \lim_{\sigma \to 1^-} \left(1 - \frac{1}{q}\right) \int \Phi_2(x) \int \Phi_1(x+y) v(y) \, dy \, dx \\ &= \left(1 - \frac{1}{q}\right) \int \int \Phi_1(x) \Phi_2(y) v(x-y) \, dx \, dy. \end{aligned}$$

Now, we may check invariance under the Weyl group element w:

$$\left(1 - \frac{1}{q}\right)^{-1} (\pi(w)\varphi_1, \pi(w)\varphi_2) = \int \int \varphi_1 \left(w^{-1} \left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix}\right) w \overline{\varphi_2} \left(w^{-1} \left(\begin{smallmatrix} 1 & y \\ 0 & 1 \end{smallmatrix}\right)\right) w v(x - y) \, dx \, dy$$

$$= \int \int \varphi_1 \left(\left(\begin{smallmatrix} 1 & 0 \\ -x & 1 \end{smallmatrix}\right)\right) \overline{\varphi_2} \left(\begin{smallmatrix} 1 & 0 \\ -y & 1 \end{smallmatrix}\right) w (x - y) \, dx \, dy$$

$$= \int \int \Phi_1(-x^{-1}) |x|^{-2} \overline{\Phi_2} \left(-y^{-1}\right) |y|^{-2} v(x - y) \, dx \, dy$$

$$= \int \int \Phi_1(x) \overline{\Phi_2(y)} v(x^{-1} - y^{-1}) \, dx \, dy$$

$$= \int \int \Phi_1(x) \overline{\Phi_2(y)} \left(v(x - y) - v(xy)\right) \, dx \, dy$$

$$= \left(1 - \frac{1}{q}\right)^{-1} (\varphi_1, \varphi_2) - \int \int \Phi_1(x) \overline{\Phi_2(y)} v(xy) \, dx \, dy.$$

Now, we want the second term to vanish. We have:

$$\int \int \Phi_1(x)\overline{\Phi_2(y)}v(xy) \, dx \, dy = \int \overline{\Phi_2(y)}v(y) \int \Phi_1(x) \, dx \, dy + \int \Phi_1(x)v(x) \int \overline{\Phi_2(y)} \, dy \, dx.$$

Both terms vanish by the defining condition that $\varphi_i \in \mathcal{B}^0_{\mu_1,\mu_2}$: this says exactly that

$$\int \Phi_i(x) \, dx = 0.$$

Therefore we have invariance under the Weyl element w and hence under G_F , which is what we desired to show. This completes the proof of the theorem for the case of special representations

References

- [1] Godement, R. *Notes on Jacquet-Langlands' Theory*, The Institute for Advanced Study, 1970, available at http://math.stanford.edu/ conrad/conversesem/refs/godement-ias.pdf.
- [2] Rudin, W. Fourier analysis on groups. New York : Interscience 1962.
- [3] Van Den Berg, C., and Gunnar Forst. *Potential theory on locally compact abelian groups*. Vol. 87. Springer Science & Business Media, 2012.
- [4] http://math.stanford.edu/~conrad/conversesem/Notes/L11.pdf
- [5] http://math.stanford.edu/~conrad/conversesem/Notes/L12.pdf