Lecture 16: Unitary Representations
 Lecture by Sheela Devadas
 Stanford Number Theory Learning Seminar
 February 14, 2018

Notes by Dan Dore
Let F be a local field with valuation ring \mathscr{O}_{F}, and G_{F} the group $\mathrm{GL}_{2}(F)$. If (π, V) is an admissible representation of G_{F}, we define:

Definition 1. (π, V) is pre-unitary if it admits a positive definite G_{F}-invariant Hermitian form.
We say pre-unitary rather than unitary, since V may not be complete. However, given a preunitary representation (π, V), we may complete V to a Hilbert space \widehat{V} and extend the action of π to $\widehat{\pi}$. This preserves the notion of irreducibility in an appropriate sense:

Lemma 2. If (π, V) is a pre-unitary admissible representation, then (π, V) is algebraically irreducible if and only if $(\hat{\pi}, \widehat{V})$ is topologically irreducible: i.e. it has no non-trivial invariant closed subspaces.

Proof. If we let ρ be a (finite dimensional) irreducible representation of $\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)$, then we write $V(\rho)$ for the set of all vectors $v \in V$ which transform under $\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)$ according to ρ, i.e. the span of all of the copies of ρ inside $\operatorname{Res}_{\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)}^{G_{F}} V$. We may define $\widehat{V}(\rho)$ similarly. We will show that $V(\rho)=\widehat{V}(\rho)$. By admissibility of $V, V=\bigoplus_{\rho} V(\rho)$, and $V(\rho)$ are mutually orthogonal and finite-dimensional. This implies that:

$$
\widehat{V}=\widehat{\bigoplus}_{\rho} V(\rho),
$$

the Hilbert direct sum of the $V(\rho)$. Thus, $\hat{V}(\rho)=V(\rho)$.
Hence V is the set of all $\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)$-finite vectors in \hat{V}. Because $\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)$ is compact, $\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)$ finite vectors are dense in every closed invariant subspace of \widehat{V}.

Therefore $V \cap W^{\prime}$ is dense in any G_{F}-invariant closed subspace W^{\prime} of \hat{V}. Thus, any closed invariant subspace $W^{\prime} \subseteq \widehat{V}$ is the closure of $V \cap W^{\prime}$. If V is algebraically irreducible, this means that $V \cap W^{\prime}=0$ or $V \cap W^{\prime}=V$, so $W^{\prime}=0$ or $W^{\prime}=\widehat{V}$. Therefore if (π, V) is algebraically irreducible, then $(\widehat{\pi}, \widehat{V})$ is topologically irreducible.

On the other hand, we need to show that if $V_{0} \subseteq V$ is a nontrivial proper invariant subspace, then $\overline{V_{0}} \subsetneq \widehat{V}$. For V_{0} an invariant subspace of V, we see that if we let $V_{0}(\rho)=V(\rho) \cap V_{0}$, then $V_{0}=\oplus_{\rho} V_{0}(\rho)$. Since we also have $\widehat{V}=\widehat{\oplus}_{\rho} \widehat{V}(\rho)$ (recall $\widehat{V}(\rho)=V(\rho)$), we see that the closure $\overline{V_{0}}$ of V_{0} in \widehat{V} must be $\overline{V_{0}}=\widehat{\bigoplus}_{\rho} V_{0}(\rho)$. Thus $\overline{V_{0}}$ is invariant and is nontrivial exactly when V_{0} is, so we see that if \hat{V} is topologically irreducible, $\overline{V_{0}}=0$ or $\overline{V_{0}}=\hat{V}$, so $V_{0}=0$ or $V_{0}=V$. Therefore (π, V) is algebraically irreducible if $(\widehat{\pi}, \widehat{V})$ is topologically irreducible.

Remark 3. It is not a priori obvious that any topologically irreducible Hilbert space representation \widehat{V} of G_{F} arises in this way from an irreducible admissible representation of G_{F}. In other words, why should the space of smooth vectors (i.e. the vectors which are fixed by an open subgroup of G_{F}) of \hat{V} be non-zero?

Theorem 4. Let (π, V) be an infinite-dimensional ${ }^{1}$ irreducible admissible representation of G_{F}. It is pre-unitary exactly in these cases:
(1) π is super-cuspidal and the central character ω_{π} satisfies $\left|\omega_{\pi}(t)\right|=1$ for all t.
(2) $\pi=\pi_{\mu_{1}, \mu_{2}}$ is a non-special principal series with μ_{1}, μ_{2} unitary characters.
(3) $\pi=\pi_{\mu_{1}, \mu_{2}}$ is a non-special principal series with $\mu_{2}={\overline{\mu_{1}}}^{-1}$ and $\mu:=\mu_{1} \mu_{2}^{-1}=|x|^{\sigma}$ for $0<\sigma<1$.
(4) $\pi=\pi_{\mu_{1}, \mu_{2}}$ is a special principal series such that $\mu_{1}(x)=|x|^{1 / 2} \chi(x), \mu_{2}(x)=|x|^{-1 / 2} \chi(x)$ for χ a unitary character.

Furthermore, on the Kirillov model $\mathcal{K}(\pi)$ of (π, V), the invariant scalar product takes the form

$$
(\xi, \eta)=\int \xi(x) \overline{\eta(x)} d^{\times} x
$$

The rest of these notes concern the proof of this theorem.

1 Super-cuspidal case

First, we will consider case (1), where π is super-cuspidal. The condition that $\left|\omega_{\pi}(t)\right|=1$ is necessary because for any $\xi, \eta \in V$, we have by G_{F}-invariance of the Hermitian pairing (\cdot, \cdot) on V :

$$
(\xi, \eta)=\left(\pi\left(\left(\begin{array}{cc}
t & 0 \\
0 & t
\end{array}\right)\right) \xi, \pi\left(\left(\begin{array}{cc}
t & 0 \\
0 & t
\end{array}\right)\right) \eta\right)=\omega_{\pi}(t) \overline{\omega_{\pi}(t)}(\xi, \eta) .
$$

Thus, by non-degeneracy, $\left|\omega_{\pi}(t)\right|=1$ for all t.
Now, assume that this condition holds. Fix $\zeta_{0} \in \check{V}$ a non-zero vector. For any $\xi, \eta \in V$, we consider the following function on G_{F} :

$$
f_{\xi, \eta}: g \mapsto\left\langle\pi(g) \xi, \zeta_{0}\right\rangle \overline{\left\langle\pi(g) \eta, \zeta_{0}\right\rangle} .
$$

Here, $\langle\cdot, \cdot\rangle$ is the canonical pairing on $V \times \check{V}$. Then $f_{\xi, \eta}$ is a function from G_{F} to \mathbf{C} which is compactly supported modulo the center Z_{F} of G_{F} - this follows from the definition of supercuspidality, because $f_{\xi, \eta}$ is a product of matrix coefficients. (See Theorem 3 in [1].)

Now, it makes sense to integrate over G_{F} to obtain a Hermitian pairing:

$$
(\xi, \eta):=\int_{G_{F} / Z_{F}}\left\langle\pi(g) \xi, \zeta_{0}\right\rangle \overline{\left\langle\pi(g) \eta, \zeta_{0}\right\rangle} d g
$$

Note that the integrand is a Z_{F}-invariant function because the central character is unitary by assumption. It is not hard to see that this is G_{F}-invariant by unimodularity of G_{F}.

Now, we must check that this is positive-definite. Assume that $(\xi, \xi)=0$. This means that for all $g, \pi(g) \xi$ is orthogonal to ζ_{0}, or equivalently (by G_{F}-invariance of $\langle\cdot, \cdot\rangle$) that ξ is orthogonal to $\check{\pi}(g) \zeta_{0}$. Since $\check{\pi}$ is irreducible, this implies that $\check{\pi}(G) \cdot \zeta_{0}$ generates \check{V} and therefore that $\xi=0$.

[^0]Next, we will describe this pairing on the Kirillov model. We claim that it is given by:

$$
(\xi, \eta)=\int \xi(x) \overline{\eta(x)} d^{\times} x
$$

It suffices to show that this gives an invariant inner product on $\mathcal{K}(\pi)$, since these are unique up to a scalar: an invariant inner product on (π, V) is determined by the associated isomorphism $\bar{\pi} \xrightarrow{\sim} \check{\pi}$, so two distinct invariant inner products differ by an automorphism of the irreducible G_{F}-module \check{V}. This must be a scalar by Schur's lemma.

The pairing defined above is clearly a positive-definite Hermitian inner product, so it suffices to show that the pairing is G_{F}-invariant. It actually suffices to check this invariance under the family of operators $F_{a, b}:[x \mapsto \xi(x)] \mapsto\left[x \mapsto \psi_{F}(b x) \xi(a x)\right]$:

$$
\begin{aligned}
\int \psi_{F}(b x) \xi(a x) \overline{\psi_{F}(b x) \eta(a x)} d^{\times} x & =\int \psi_{F}(b x) \xi(x) \overline{\psi_{F}(b x) \eta(x)} d^{\times} x \\
& =\int \xi(x) \overline{\eta(x)} d^{\times} x
\end{aligned}
$$

since we assume ψ_{F} unitary.
This gives invariance under the mirabolic subgroup $H=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)\right\}$ by the definition of the Kirillov model. Since we are in the supercuspidal case, $\mathcal{K}(\pi)=\mathscr{S}\left(F^{\times}\right)$. In fact the mirabolic subgroup acts irreducibly on $\mathscr{S}\left(F^{\times}\right)$. Since we know that a G_{F}-invariant (hence H-invariant) bilinear form exists by the previous discussion, we see that up to a nonzero constant, this G_{F}-invariant bilinear form must equal $(\xi, \eta)=\int \xi(x) \overline{\eta(x)} d^{\times} x$ as we desired to show.

This completes the case of super-cuspidal representations, so it suffices to consider the case of principal series.

2 Principal series case

Let's assume that (π, V) is a pre-unitary irreducible admissible representation. We have a complex semi-linear map J from V to \check{V} defined by :

$$
\langle\xi, J \eta\rangle=(\xi, \eta) .
$$

This gives an isomorphism from $\bar{\pi}$ to $\check{\pi}$.
Now, assume that $\pi=\pi_{\mu_{1}, \mu_{2}}$ is a non-special principal series representation. This is defined on the space $\mathcal{B}_{\mu_{1}, \mu_{2}}$ of locally constant function φ on G_{F} such that:

$$
\varphi\left(\left(\begin{array}{ll}
a & * \\
0 & b
\end{array}\right) \cdot g\right)=\mu_{1}(a) \mu_{2}(b)|a / b|^{1 / 2} \varphi(g) .
$$

Now, we have an isomorphism $\mathcal{B}_{\mu_{1}, \mu_{2}} \xrightarrow{\sim} \mathcal{B}_{\overline{\mu_{1}}, \overline{\mu_{2}}} \simeq \bar{\pi}$ sending φ to $\bar{\varphi}$. We know from a previous lecture that $\check{\pi} \simeq \mathcal{B}_{\mu_{2}^{-1}, \mu_{1}^{-1}}$.

Now, there are two cases, corresponding to cases (2) and (3) in the statement of the theorem. The first of these is the case that $\mu_{1}^{-1}=\overline{\mu_{1}}, \mu_{2}^{-1}=\overline{\mu_{2}}$, and this means that μ_{1}, μ_{2} are unitary. The second is the case that $\mu_{1}^{-1}=\overline{\mu_{2}}, \mu_{2}^{-1}=\overline{\mu_{1}}$.

Since $\mathcal{B}_{\mu_{1}, \mu_{2}} \simeq \mathcal{B}_{\lambda_{1}, \lambda_{2}}$ iff $\left\{\mu_{1}, \mu_{2}\right\}=\left\{\lambda_{1}, \lambda_{2}\right\}$ as unordered pairs, these possibilities are necessary and sufficient for $\bar{\pi}$ and $\check{\pi}$ to be G_{F}-isomorphic. As we saw above, this is necessary for π to be pre-unitary, but it is not clearly sufficient: an isomorphism from $\bar{\pi}$ to $\check{\pi}$ induces a non-degenerate Hermitian invariant bilinear pairing on V, but it is not a priori clear that it should be positive definite.

2.1 Case (2)

In the first case, we define the bilinear pairing by:

$$
\left(\varphi_{1}, \varphi_{2}\right):=\int_{B_{F} \backslash G_{F}} \varphi_{1}(g) \overline{\varphi_{2}(g)} d g=\int_{\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)} \varphi_{1}(m) \overline{\varphi_{2}(m)} d m
$$

The second equality follows from the Cartan decomposition $B_{F} \cdot \mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)=G_{F}$.
The notes from Lecture 12 of this seminar ([5]) show that this integral defines a non-degenerate G_{F}-invariant bilinear pairing (this was how we identified the contragredient of $\pi_{\mu_{1}, \mu_{2}}$ with $\pi_{\mu_{1}^{-1}, \mu_{2}^{-1}}$). To show that this is Hermitian and positive-definite, we will compute in the Kirillov model $\mathcal{K}(\pi)$. To $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$, we associate $\xi_{\varphi} \in \mathcal{K}(\pi)$, defined by:

$$
\xi_{\varphi}(x):=\mu_{2}(x)|x|^{1 / 2} \int \varphi\left(w^{-1}\left(\begin{array}{cc}
1 & y \\
0 & 1
\end{array}\right)\right) \overline{\psi_{F}(x y)} d y
$$

Here, w is the Weyl group generator $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
Now, we use the following identity, which comes from explicitly realizing Bruhat decomposition for GL_{2} :

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
c^{-1} & \operatorname{det} g \\
0 & * \\
0 & c
\end{array}\right) w^{-1}\left(\begin{array}{cc}
1 & d / c \\
0 & 1
\end{array}\right),
$$

which is valid whenever $c \neq 0$. This implies that:

$$
\int_{B_{F} \backslash G_{F}} \varphi_{1}(g) \overline{\varphi_{2}(g)} d g=\int \varphi_{1}\left(w^{-1}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) \overline{\varphi_{2}\left(w^{-1}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\right)} d x .
$$

Defining $\Phi_{i}(x):=\varphi_{i}\left(w^{-1}\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right)\right)$, the above identity may be rephrased as:

$$
\left(\varphi_{1}, \varphi_{2}\right)=\int \Phi_{1}(x) \overline{\Phi_{2}(x)} d x
$$

We may use Fourier inversion to see:

$$
\left(\varphi_{1}, \varphi_{2}\right)=\int \Phi_{1}(x) \overline{\int \widehat{\Phi_{2}(y)} \psi_{F}(x y) d y} d x=\int \widehat{\Phi_{1}}(y) \overline{\widehat{\Phi_{2}}(y)} d y
$$

We are able to do this because, as discussed in Section 1.9 of [1], Φ corresponding to $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$ must be proportional to $\mu(x)^{-1}|x|^{-1}$ for $|x|$ large. Since $\mu(x):=\mu_{1}(x) \mu_{2}^{-1}(x)$ satisfies $|\mu(x)|=1$, we see that Φ is square integrable on F, so $\widehat{\Phi}$ is its Fourier transform in the L^{2} sense. Furthermore, we can determine the image of the map $\Phi \rightarrow \widehat{\Phi}$, from which we are able to deduce that the $\widehat{\Phi}$ are integrable and $\int \widehat{\Phi}(y) \psi_{F}(x y) d y=\Phi(x)$.

Therefore

$$
\begin{aligned}
\left(\varphi_{1}, \varphi_{2}\right) & =\int \widehat{\Phi_{1}}(y) \overline{\widehat{\Phi_{2}}(y)} d y \\
& =\int \mu_{2}(y)^{-1}|y|^{-1 / 2} \xi_{\varphi_{1}}(y) \mu_{2}(y)^{-1}|y|^{-1 / 2} \xi_{\varphi_{2}}(y) y \\
& =\int \xi_{\varphi_{1}}(x) \xi_{\varphi_{2}}(x) d^{\times} x
\end{aligned}
$$

using the relation $d^{\times} x=|x|^{-1} d x$ and the fact that μ_{2} is unitary.
In this form, it is easy to check that the pairing is positive definite and Hermitian. This settles case (2), where μ_{1}, μ_{2} are unitary.

2.2 Case (3)

Now, we must settle case (3): $\pi=\pi_{\mu_{1}, \mu_{2}}$ with $\overline{\mu_{1}}=\mu_{2}^{-1}$ and $\overline{\mu_{i}} \neq \mu_{i}^{-1}$ (i.e. μ_{i} not unitary). Since we know what characters of F^{\times}must look like, this means that $\mu=\mu_{1} \mu_{2}^{-1}=|x|^{\sigma}$ for $\sigma \neq 0$ (if $\sigma=0$, the μ_{i} would be unitary). Without loss of generality, we may assume that $\sigma>0$ since we may switch μ_{1} and μ_{2} if desired.

We will define an operator $\mathbf{A}: \mathcal{B}_{\mu_{1}, \mu_{2}} \rightarrow \mathcal{B}_{\overline{\mu_{1}}-1, \overline{\mu_{2}}}{ }^{-1}=\mathcal{B}_{\mu_{2}, \mu_{1}}$ by:

$$
(\mathbf{A} \varphi)(g):=\int \varphi\left(w\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \cdot g\right) d x
$$

For fixed g, the integrand $\varphi\left(w\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right) \cdot g\right)$ grows as $\mu^{-1}(x)|x|^{-1}=|x|^{-\sigma-1}$ for large $|x|$, so this integral converges (see p.1.28, [1]).

We will show that $\mathbf{A} \neq 0$ and that \mathbf{A} is G_{F}-equivariant.
To see that \mathbf{A} is nonzero, we use the function

$$
f(g)=f\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right):=|\operatorname{det} g|^{1 / 2}|c|^{-1} \mu^{-1}(c) \mu_{1}(\operatorname{det} g)
$$

for $c \neq 0$ and $f(g)=0$ otherwise. It can be checked that $f \in \mathcal{B}_{\mu_{1}, \mu_{2}}$, and furthermore, $(\mathbf{A} f)(1)=1$. Hence $\mathbf{A} \neq 0$.

To see that \mathbf{A} is G_{F}-equivariant, we note that for $h, g \in G_{F}$

$$
\begin{aligned}
\left(\pi_{\mu_{2}, \mu_{1}}(g) \mathbf{A} \varphi\right)(h) & =(\mathbf{A} \varphi)(h g) \\
& =\int \varphi\left(w\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \cdot h g\right) d x \\
& =\int\left(\pi_{\mu_{1}, \mu_{2}} \varphi\right)\left(w\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \cdot h\right) d x \\
& =\left(\mathbf{A} \pi_{\mu_{1}, \mu_{2}} \varphi\right)(h),
\end{aligned}
$$

so \mathbf{A} is G_{F}-equivariant as we desired to show.

It follows that an invariant scalar product on $\mathcal{B}_{\mu_{1}, \mu_{2}}$ must look like:

$$
\left(\varphi_{1}, \varphi_{2}\right)=c\left\langle\mathbf{A} \varphi_{1}, \overline{\varphi_{2}}\right\rangle
$$

for some constant c, since any invariant Hermitian product on $\mathcal{B}_{\mu_{1}, \mu_{2}}$ will give an isomorphism between $\overline{\pi_{\mu_{1}, \mu_{2}}}=\pi_{\overline{\mu_{1}}, \mu_{2}}$ and its dual $\mathcal{B}_{\mu_{2}, \mu_{1}}$, and those isomorphisms are unique up to a scalar by irreducibility of $\mathcal{B}_{\mu_{2}, \mu_{1}}$.

We will show that when $\sigma<1$, this actually defines a positive-definite Hermitian pairing.
We have $\mathbf{A} \varphi_{1} \in \mathcal{B}_{\mu_{2}, \mu_{1}}$, and $\overline{\varphi_{2}} \in \mathcal{B}_{\overline{\mu_{1}}, \overline{\mu_{2}}}=\mathcal{B}_{\mu_{2}^{-1}, \mu_{1}^{-1}}$. For $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$, we define:

$$
\Phi(x)=\varphi\left(w^{-1}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\right), \quad \Phi^{\prime}(x)=(\mathbf{A} \varphi)\left(w^{-1}\left(\begin{array}{c}
1 \\
0
\end{array} x\right)\right) .
$$

Now, again using the Bruhat decomposition identity

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
c^{-1} & \operatorname{det} g \\
0 & * \\
0 & c
\end{array}\right) w^{-1}\left(\begin{array}{cc}
1 & d / c \\
0 & 1
\end{array}\right),
$$

we may see that for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c \neq 0$:

$$
\varphi(g)=\mu_{1}(\operatorname{det} g)|\operatorname{det} g|^{1 / 2} \mu^{-1}(c)|c|^{-1} \Phi(d / c)
$$

since $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$ transforms under upper triangular matrices in a specified way.
Furthermore:

$$
\begin{aligned}
\Phi^{\prime}(x) & =\int \varphi\left(w\left(\begin{array}{cc}
1 & -y \\
0 & 1
\end{array}\right) w^{-1}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\right) d y \\
& =\int \varphi\left(\left(\begin{array}{cc}
1 & x \\
y & 1+x y
\end{array}\right)\right) d y \\
& =\int \mu^{-1}(y)|y|^{-1} \Phi\left(\frac{1+x y}{y}\right) d y \text { (by the Bruhat decomposition identity) } \\
& =\int \mu^{-1}(y) \Phi\left(x+y^{-1}\right) d^{\times} y \\
& =\int \mu(y) \Phi(x+y) d^{\times} y
\end{aligned}
$$

where in the last equality we make a change of variables $y \mapsto y^{-1}$.
Now, if we define:

$$
\left(\varphi_{1}, \varphi_{2}\right)=c\left\langle\mathbf{A} \varphi_{1}, \overline{\varphi_{2}}\right\rangle,
$$

we may use the above identities to see that:

$$
\begin{aligned}
\left(\varphi_{1}, \varphi_{2}\right) & =c \int_{B_{F} \backslash G_{F}}\left(\mathbf{A} \varphi_{1}\right)(g) \overline{\varphi_{2}(g)} d g \\
& =c \int\left(\mathbf{A} \varphi_{1}\right)\left(w^{-1}\left(\begin{array}{l}
1 \\
x \\
0 \\
1
\end{array}\right)\right) \overline{\varphi_{2}\left(w^{-1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)} d x \\
& =c \int \Phi_{1}^{\prime}(x) \overline{\Phi_{2}(x)} d x \\
& =c \iint \Phi_{1}(x+y) \overline{\Phi_{2}(x)}|y|^{\sigma} d^{\times} y d x .
\end{aligned}
$$

For this to be positive-definite, we need to find some $c(\sigma)>0$ such that:

$$
c(\sigma) \iint \Phi(x+y) \overline{\Phi(x)}|y|^{\sigma} d x d^{\times} y \geqslant 0
$$

for any Φ defined as:

$$
\Phi(x)=\varphi\left(w^{-1}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right)
$$

for $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}$.
The space of such Φ is the space $\mathscr{F}(\mu)$ of locally constant functions on F which are proportional to $\mu(x)^{-1}|x|^{-1}$ for $|x| \gg 0$ (see Section 1.9 in [1]). Since the space of Schwarz functions $\mathscr{S}(\mathrm{F})$ are 0 for $|x| \gg 0$, we have $\mathscr{S}(F) \subseteq \mathscr{F}(\mu)$.

Note that $c(\sigma)|y|^{\sigma} d^{\times} y=c(\sigma) y^{\sigma-1} d y$.
We note that $g(y)=c(\sigma) y^{\sigma-1}$ must be a positive-definite function on F, meaning that for any n-tuple of elements $\left\{y_{i}\right\}_{i=1}^{n}$ in F, the matrix $\left(g\left(y_{i}-y_{j}\right)\right)$ must be positive Hermitian.

This is because, as stated in Proposition 4.1, Chapter 1, [3], a function f_{0} on a locally compact abelian group H is positive definite, if for any $f \in C_{c}(H)$, we have $\int f_{0}(y) \int f(y-x) \overline{f(-x)} d x d y \geqslant$ 0 , where $d y$ is the Haar measure on that group.

We see that this condition is exactly equivalent to our previous condition

$$
c(\sigma) \iint \Phi(x+y) \overline{\Phi(x)}|y|^{\sigma} d x d^{\times} y \geqslant 0 .
$$

We will see that it is possible to choose such a $c(\sigma)$ iff $\sigma<1$.
Then since $c(\sigma) y^{\sigma-1}$ is a positive definite function, the distributional Fourier transform of $c(\sigma)|y|^{\sigma} d^{\times} y=c(\sigma) y^{\sigma-1} d y$ must be a positive measure on F, by Bochner's theorem. (For proof of this theorem see p.19, [2].) This Fourier transform is proportional to $|x|^{1-\sigma} d^{\times} x$. Since $|x|^{1-\sigma}$ is only a locally L^{1} function near 0 when $\sigma<1$, this condition is necessary for this to be a measure on F.

Now, for $0<\sigma<1$, the definition of the γ-factor implies that there is a constant $\gamma(\sigma)$ for any $\Phi \in \mathscr{S}(F)$ such that:

$$
\int \hat{\Phi}(y)|y|^{\sigma} d^{\times} y=\frac{1}{\gamma(\sigma)} \int \Phi(x)|x|^{1-\sigma} d^{\times} x
$$

This is because if we define $L_{\Phi}(\chi, s)=\int_{F^{\times}} \Phi(x) \chi(x)|x|^{s} d^{\times} x$, there is a factor $\gamma(\chi, s)$ depending only on χ and s such that $L_{\Phi}(-\chi, 1-s)=\gamma(\chi, s) L_{\widehat{\Phi}}(\chi, s)$. (See p.1.41 in [1], or discussion in previous lectures.)

Thus, if we choose $c(\sigma)=\gamma(\sigma)$ and define $\left(\varphi_{1}, \varphi_{2}\right)=c(\sigma)\left\langle\mathbf{A} \varphi_{1}, \overline{\varphi_{2}}\right\rangle$, then we have:

$$
\left(\varphi_{1}, \varphi_{2}\right)=\gamma(\sigma) \iint \Phi_{1}(x+y) \overline{\Phi_{2}(x)}|y|^{\sigma} d x d^{\times} y
$$

It remains to show that the inner product takes the desired form on the Kirillov model. Since the Fourier transform of $y \mapsto \Phi_{1}(x+y)$ is $z \mapsto \widehat{\Phi_{1}}(z) \psi_{F}(x z)$, we see that

$$
\gamma(\sigma) \int \Phi_{1}(x+y)|y|^{\sigma} d^{\times} y=\int \widehat{\Phi_{1}}(z) \psi_{F}(x z)|z|^{1-\sigma} d^{\times} z .
$$

We are able to perform the Fourier transform since we can describe the behavior of the Φ_{i} for $|x|$ large $-\Phi_{i}(x)$ must be proportional to $\mu(x)^{-1}|x|^{-1}=x^{-\sigma-1}$ (see p.1.31, [1]), and $\sigma>0$.

Then recalling the definition of ξ_{φ} the corresponding element to φ in the Kirillov model, we see that

$$
\begin{aligned}
\left(\varphi_{1}, \varphi_{2}\right) & =\gamma(\sigma) \iint \Phi_{1}(x+y) \overline{\Phi_{2}(x)}|y|^{\sigma} d x d^{\times} y \\
& =\iint \widehat{\Phi}_{1}(z) \psi_{F}(x z) \overline{\Phi_{2}(x)}|z|^{1-\sigma} d x d^{\times} z \\
& =\iint \hat{\Phi}_{1}(z) \psi_{F}(x z) \overline{\hat{\Phi}_{2}}(z)|z|^{1-\sigma} d^{\times} z \\
& =\iint \xi_{\varphi_{1}}(z) \overline{\xi_{\varphi_{2}}}(z)\left|\mu_{2}(z)\right|^{-2}|z|^{-1}|z|^{1-\sigma} d^{\times} z \\
& =\iint \xi_{\varphi_{1}}(z) \overline{\xi_{\varphi_{2}}}(z) d^{\times} z,
\end{aligned}
$$

as we desired to show. We are able to perform the Fourier transforms since we can describe the behavior of the Φ_{i} for $|x|$ large (see p.1.31, [1]).

3 Special case

Finally, we must settle the final case (4), where $\pi=\pi_{\mu_{1}, \mu_{2}}$ is special. Without loss of generality, we may assume that $\mu=\mu_{1} \mu_{2}^{-1}=|x|$. If π is pre-unitary, $\bar{\pi} \simeq \check{\pi}$. As above, this implies that $\mu_{1} \overline{\mu_{2}}=1$ (we cannot have μ_{1}, μ_{2} both unitary, since this is incompatible with the assumption that $\mu=|x|)$. One may show that in this case we have $\mu_{1}(x)=|x|^{1 / 2} \chi(x)$ and $\mu_{2}(x)=|x|^{-1 / 2} \chi(x)$, for χ a unitary character.

The space of π is $\mathcal{B}_{\mu_{1}, \mu_{2}}^{0} \subseteq \mathcal{B}_{\mu_{1}, \mu_{2}}$ defined by the condition that:

$$
\int \varphi\left(w^{-1}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) d x=0 .
$$

By invariance of $\mathcal{B}_{\mu_{1}, \mu_{2}}^{0}$ as a subspace, if $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}^{0}$, then for any $g \in G_{F}$, we have:

$$
\int \varphi\left(w^{-1}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \cdot g\right) d x=0 .
$$

Thus, we cannot use the formula for A that we used in the previous cases. Instead, we use a limit:

$$
\left(\varphi_{1}, \varphi_{2}\right):=\lim _{\sigma \rightarrow 1^{-}} \gamma(\sigma) \iint \Phi_{1}(x+y) \overline{\Phi_{2}(x)}|y|^{\sigma} d x d^{\times} y=\lim _{\sigma \rightarrow 1^{-}} \int \widehat{\Phi_{1}}(z) \overline{\widehat{\Phi}_{2}(z)}|z|^{1-\sigma} d^{\times} z
$$

We must verify that the properties of Φ_{1}, Φ_{2} make the Fourier inversion make sense, and make sure that the limit exists and has the desired properties. We can do this Fourier inversion because $\sigma=1$ implies that for $|x|$ large, Φ_{1}, Φ_{2} are proportional to $\mu(x)^{-1}|x|^{-1}=|x|^{-2}$, so they are in $L^{1} \cap L^{2}$ and we can apply Parseval's formula.

If $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}^{0}$, then $\widehat{\Phi}(0)=0$. Because $\widehat{\Phi}$ is in fact locally constant, and vanish outside some compact subset of F, that gives the desired convergence of the limit (see p.1.29, [1]).

Since the limit exists, we can check that:

$$
\left(\varphi_{1}, \varphi_{2}\right)=\int \widehat{\Phi_{1}}(x) \overline{\widehat{\Phi_{2}}(x)} d^{\times} x=\int \xi_{\varphi_{1}}(x) \overline{\xi_{\varphi_{2}}(x)} d^{\times} x
$$

This shows (\cdot, \cdot) is Hermitian and positive definite. Thus, we need to check invariance under B_{F} and under w. The former comes from the formula for (\cdot, \cdot) on the Kirillov model. What remains is to check invariance under w.

We have (see p.1.52, [1]) that

$$
\gamma(\sigma)=\frac{1-q^{-\sigma}}{1-q^{\sigma-1}}
$$

For $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}^{0}$, we have, via a change of variables:

$$
\lim _{\sigma \rightarrow 1} \gamma(\sigma) \int \Phi(x)|x-y|^{\sigma-1} d x=\lim _{\sigma \rightarrow 1} \frac{1-q^{-\sigma}}{1-q^{\sigma-1}} \int \Phi(x+y)|x|^{\sigma} d^{\times} x
$$

We note that $\int \Phi(x+y)|x| d^{\times} x=\int \Phi(x+y) d x=0$ for all $\varphi \in \mathcal{B}_{\mu_{1}, \mu_{2}}^{0}$. Therefore

$$
\lim _{\sigma \rightarrow 1} \frac{1-q^{-\sigma}}{1-q^{\sigma-1}} \int \Phi(x+y)|x|^{\sigma} d^{\times} x=\lim _{\sigma \rightarrow 1} \frac{\left(1-q^{-\sigma}\right) \int \Phi(x+y)\left(|x|^{\sigma}-|x|\right) d^{\times} x}{1-q^{\sigma-1}} .
$$

Now if we observe that $\frac{d}{d \sigma}|x|^{\sigma}=-v(x)|x|^{\sigma} \log q$ (where $v(x)$ is the valuation) and noting that the integral $\int \Phi(x+y) v(x) d x$ is absolutely convergent (to justify the derivation under the integral), we are able to apply L'Hospital's rule to see that

$$
\lim _{\sigma \rightarrow 1} \frac{\int \Phi(x+y)\left(|x|^{\sigma}-|x|\right) d^{\times} x}{1-q^{\sigma-1}}=\lim _{\sigma \rightarrow 1} \frac{\int \Phi(x+y)(-v(x))|x|^{\sigma} \log q d^{\times} x}{-q^{\sigma-1} \log q}
$$

Therefore

$$
\lim _{\sigma \rightarrow 1} \gamma(\sigma) \int \Phi(x)|x-y|^{\sigma-1} d x=\left(1-q^{-1}\right) \int \Phi(x+y) v(x) d x
$$

Now, this allows us to show that:

$$
\begin{aligned}
\left(\varphi_{1}, \varphi_{2}\right) & =\lim _{\sigma \rightarrow 1^{-}} \gamma(\sigma) \iint \Phi_{1}(x+y) \Phi_{2}(x)|y|^{\sigma} d x d^{\times} y \\
& =\lim _{\sigma \rightarrow 1^{-}} \gamma(\sigma) \int \Phi_{2}(x) \int \Phi_{1}(x+y)|y|^{\sigma} d^{\times} y d x \\
& =\lim _{\sigma \rightarrow 1^{-}}\left(1-\frac{1}{q}\right) \int \Phi_{2}(x) \int \Phi_{1}(x+y) v(y) d y d x \\
& =\left(1-\frac{1}{q}\right) \iint \Phi_{1}(x) \Phi_{2}(y) v(x-y) d x d y
\end{aligned}
$$

Now, we may check invariance under the Weyl group element w :

$$
\begin{aligned}
\left(1-\frac{1}{q}\right)^{-1}\left(\pi(w) \varphi_{1}, \pi(w) \varphi_{2}\right) & =\iint \varphi_{1}\left(w^{-1}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) w\right) \overline{\varphi_{2}\left(w^{-1}\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\right) w} v(x-y) d x d y \\
& =\iint \varphi_{1}\left(\left(\begin{array}{cc}
1 & 0 \\
-x & 1
\end{array}\right)\right) \overline{\varphi_{2}\left(\left(\begin{array}{cc}
1 & 0 \\
-y & 1
\end{array}\right)\right)} v(x-y) d x d y \\
& =\iint \Phi_{1}\left(-x^{-1}\right)|x|^{-2} \overline{\Phi_{2}}\left(-y^{-1}\right)|y|^{-2} v(x-y) d x d y \\
& =\iint \Phi_{1}(x) \overline{\Phi_{2}(y)} v\left(x^{-1}-y^{-1}\right) d x d y \\
& =\iint \Phi_{1}(x) \overline{\Phi_{2}(y)}(v(x-y)-v(x y)) d x d y \\
& =\left(1-\frac{1}{q}\right)^{-1}\left(\varphi_{1}, \varphi_{2}\right)-\iint \Phi_{1}(x) \overline{\Phi_{2}(y)} v(x y) d x d y
\end{aligned}
$$

Now, we want the second term to vanish. We have:

$$
\iint \Phi_{1}(x) \overline{\Phi_{2}(y)} v(x y) d x d y=\int \overline{\Phi_{2}(y)} v(y) \int \Phi_{1}(x) d x d y+\int \Phi_{1}(x) v(x) \int \overline{\Phi_{2}(y)} d y d x
$$

Both terms vanish by the defining condition that $\varphi_{i} \in \mathcal{B}_{\mu_{1}, \mu_{2}}^{0}$: this says exactly that

$$
\int \Phi_{i}(x) d x=0
$$

Therefore we have invariance under the Weyl element w and hence under G_{F}, which is what we desired to show. This completes the proof of the theorem for the case of special representations

References

[1] Godement, R. Notes on Jacquet-Langlands' Theory, The Institute for Advanced Study, 1970, available at http://math.stanford.edu/ conrad/conversesem/refs/godement-ias.pdf.
[2] Rudin, W. Fourier analysis on groups. New York : Interscience 1962.
[3] Van Den Berg, C., and Gunnar Forst. Potential theory on locally compact abelian groups. Vol. 87. Springer Science \& Business Media, 2012.
[4] http://math.stanford.edu/~conrad/conversesem/Notes/L11.pdf
[5] http://math.stanford.edu/~conrad/conversesem/Notes/L12.pdf

[^0]: ${ }^{1}$ so it does not factor through the determinant

