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Let F' be a local field with valuation ring O, and G the group GLy(F). If (7,V) is an
admissible representation of G, we define:

Definition 1. (7, V) is pre-unitary if it admits a positive definite G p-invariant Hermitian form.

We say pre-unitary rather than unitary, since V' may not be complete. However, given a pre-
unitary representation (7, V'), we may complete V' to a Hilbert space V' and extend the action of 7
to 7. This preserves the notion of irreducibility in an appropriate sense:

Lemma 2. If (7, V) is a pre-unitary admissible representation, then (7, V) is algebraically irre-
ducible if and only if (7, V") is topologically irreducible: i.e. it has no non-trivial invariant closed
subspaces.

Proof. 1f we let p be a (finite dimensional) irreducible representation of GLy (O ), then we write
V(p) for the set of all vectors v € V' which transform under GL,(OF) according to p, i.e. the
span of all of the copies of p inside Resgf2 ( ﬁF)V' We may define V'(p) similarly. We will show

A~

that V/(p) = V(p). By admissibility of V, V' = @,V (p), and V(p) are mutually orthogonal and
finite-dimensional. This implies that:

V= @J(ﬂ%

the Hilbert direct sum of the V(p). Thus, V(p) = V(p).

Hence V is the set of all GLy( &y )-finite vectors in V. Because GLy(&) is compact, GLy(Or)-
finite vectors are dense in every closed invariant subspace of V. R

Therefore V- n W' is dense in any G'p-invariant closed subspace W’ of V. Thus, any closed
invariant subspace W' < V is the closure of V' n W’. If V' is algebraically irreducible, this means
that V. AW’ = 0orV AW = V,so W = 0or W = V. Therefore if (,V) is algebraically
irreducible, then (7, XA/) is topologically irreducible.

On the other hand, we need to show that if V; = V' is a nontrivial proper invariant subspace,
then V, < V. For V; an invariant subspace of V, we see that if we let V(p) = V(p) n Vi, then

Vo = @, Vo(p). Since we also have V= é—\)pf/(,o) (recall \A/(p) = V(p)), we see that the closure
V, of V, in V must be V = (/—|§ ,Vo(p). Thus V}, is invariant and is nontrivial exactly when Vj is, so
we see that if V is topologically irreduciAble, Vo=0orV, = XA/, so Vo = 0 or Vy = V. Therefore

(m, V') is algebraically irreducible if (7, V') is topologically irreducible.
[

Remark 3. It is not a priori obvious that any topologically irreducible Hilbert space representation
V' of G arises in this way from an irreducible admissible representation of GG . In other words,
why should the space of smooth vectors (i.e. the vectors which are fixed by an open subgroup of
G r) of V be non-zero?



Theorem 4. Let (7, V') be an inﬁnite—dimensiona]ﬂ irreducible admissible representation of G p. It
is pre-unitary exactly in these cases:

(1) 7 is super-cuspidal and the central character w, satisfies |w,(¢)| = 1 for all .
(2) m = m,, ., 18 a non-special principal series with zi1, y» unitary characters.

(3) ™ = 7., ., is a non-special principal series with py = i ! and p 1= pypuy' = || for
0<o<l

(4) 7 = 7, ., is a special principal series such that yi, (z) = |z|Y%x(z), pa(z) = |2|7Y2x () for
X a unitary character.

Furthermore, on the Kirillov model C(7) of (7, V'), the invariant scalar product takes the form

€ = [ €@

The rest of these notes concern the proof of this theorem.

1 Super-cuspidal case

First, we will consider case (1), where 7 is super-cuspidal. The condition that |w,(¢)] = 1 is
necessary because for any £, 7 € V, we have by G p-invariance of the Hermitian pairing (-, ) on V:

(€m) = (T((§2)&m((59)n) = walt) wx() (€,1)

Thus, by non-degeneracy, |w,(t)| = 1 for all .
Now, assume that this condition holds. Fix {, € V' a non-zero vector. For any £, € V, we
consider the following function on G g:

fent g = (m(g)€, Coxm(g)n, Coy-

Here, (-,-) is the canonical pairing on V x V. Then f, is a function from G to C which is
compactly supported modulo the center Zr of G - this follows from the definition of super-
cuspidality, because f; , is a product of matrix coefficients. (See Theorem 3 in [1]].)

Now, it makes sense to integrate over Gy to obtain a Hermitian pairing:

(mW=LM<(MQWUm®@

Note that the integrand is a Zp-invariant function because the central character is unitary by
assumption. It is not hard to see that this is G p-invariant by unimodularity of G'.

Now, we must check that this is positive-definite. Assume that (£, £) = 0. This means that for
all g, m(g)¢& is orthogonal to ¢, or equivalently (by G p-invariance of ¢, -)) that £ is orthogonal to
7#(g)Co. Since 7 is irreducible, this implies that 7(G) - (, generates V" and therefore that £ = 0.

Iso it does not factor through the determinant



Next, we will describe this pairing on the Kirillov model. We claim that it is given by:

(&) = / (o)) d

It suffices to show that this gives an invariant inner product on /C(7), since these are unique up to a
scalar: an invariant inner product on (7, V) is determined by the associated isomorphism 7 — 7,
so two distinct invariant inner products differ by an automorphism of the irreducible G p-module V.
This must be a scalar by Schur’s lemma.

The pairing defined above is clearly a positive-definite Hermitian inner product, so it suffices to
show that the pairing is G g-invariant. It actually suffices to check this invariance under the family
of operators F,,: [z — &(2)] — [x — Yp(bx)é(ax)]:

/ b (b)) Brbayn(an)d z = / b (b)E (@) or G n(@)d
= / §(x)mdx T.

since we assume v unitary.

This gives invariance under the mirabolic subgroup H = {( &%)} by the definition of the Kirillov
model. Since we are in the supercuspidal case, (7) = . (F*). In fact the mirabolic subgroup
acts irreducibly on .”(F'*). Since we know that a G'p-invariant (hence H -invariant) bilinear form
exists by the previous discussion, we see that up to a nonzero constant, this G'r-invariant bilinear
form must equal (§,n) = [ &(z)n(x) d*x as we desired to show.

This completes the case of super-cuspidal representations, so it suffices to consider the case of

principal series.

2 Principal series case

Let’s assume that (7, V) is a pre-unitary irreducible admissible representation. We have a complex
semi-linear map ./ from V' to V' defined by :

& JIny = (&m).

This gives an isomorphism from 7 to 7.
Now, assume that m = 7, ,, is a non-special principal series representation. This is defined on
the space B,,, ,,, of locally constant function ¢ on G ¢ such that:

e((83) - 9) = mla)pz(b)|a/b]*o(g).

Now, we have an isomorphism B,,, ., — B

lecture that 7 ~ B et
Now, there are two cases, corresponding to cases (2) and (3) in the statement of the theorem.
The first of these is the case that j; ' = Jir, 1y - = Jiz, and this means that ju;, pi5 are unitary. The

second is the case that j; ' = Jig, jiy - = Ji1.

~ 7 sending ¢ to . We know from a previous



Since B,,, i, ~ By, iff {11, 12} = {A1, A2} as unordered pairs, these possibilities are necessary
and sufficient for 7 and 7 to be G'p-isomorphic. As we saw above, this is necessary for 7 to be
pre-unitary, but it is not clearly sufficient: an isomorphism from 7 to 7 induces a non-degenerate
Hermitian invariant bilinear pairing on V, but it is not a priori clear that it should be positive
definite.

2.1 Case (2)

In the first case, we define the bilinear pairing by:

(¢1,02) 3=/B \G ©1(9)p2(g) dg = /GL y )gol(m)g@(m) dm.

The second equality follows from the Cartan decomposition Br - GLy(OF) = G.

The notes from Lecture 12 of this seminar ([S]]) show that this integral defines a non-degenerate
G p-invariant bilinear pairing (this was how we identified the contragredient of 7, ,,, with T, u;l)'
To show that this is Hermitian and positive-definite, we will compute in the Kirillov model ().
To ¢ € B, ,.,,» we associate {, € IC(), defined by:

ole) = ma(@)al [ 0w (39))PrGen) do.

Here, w is the Weyl group generator w = ( 5 é)
Now, we use the following identity, which comes from explicitly realizing Bruhat decomposition

for GLs:
(20 = (“ger) o™ (34).

which is valid whenever ¢ # 0. This implies that:
/ p1(9)¢2(g) dg = /wl(w‘l(éﬂf))m(w‘l(é%)) dz.
Br\GFr

Defining ®;(z) := ¢; (w_l (% )) , the above identity may be rephrased as:

(p1,02) = /CI>1(1:)<I>2(x) dz.

We may use Fourier inversion to see:

—

(o1, 02) = / &\ (x) / 29 r(vy) dy dr = / 1) Baly) dy.

We are able to do this because, as discussed in Section 1.9 of [1], ® corresponding to ¢ € B, ..,
must be proportional to p(x)~!z| ™! for |z large. Since () = py(x)py ' (o) satisfies [u(z)| = 1,
we see that ® is square integrable on F', so D i is its Fourier transform in the L? sense. Furthermore,
we can determine the image of the map ¢ — ®, from which we are able to deduce that the ® are
integrable and [ ®(y)¢r(zy) dy = ®(z).



Therefore

= /m(y)l\y1/25@1(y)u2(y)1ly|1/2&02(3/)1/
- [t

using the relation d*z = |z|~'dx and the fact that y is unitary.
In this form, it is easy to check that the pairing is positive definite and Hermitian. This settles
case (2), where i1, 1o are unitary.

2.2 Case (3)

Now, we must settle case (3): m = 7, ., With Jif = p15 ' and [i; # p; ' (i.e. p1; not unitary). Since
we know what characters of F* must look like, this means that y = ;' = |#|° for o # 0 (if
o = 0, the u; would be unitary). Without loss of generality, we may assume that o > 0 since we
may switch p; and p, if desired.

We will define an operator A: B, ,,, — Bgr-1 55-1 = By, 4, by:

(A0 = [ o(w(Pt)-g) do

For fixed g, the integrand ¢ (w ({%)-g) grows as ' (z)|z|~' = |27~ for large |z|, so this

integral converges (see p.1.28, [1]).
We will show that A # 0 and that A is G p-equivariant.
To see that A is nonzero, we use the function

Flg) = f((24)) := |det g|"2|c| " " (c)pa(det g)

for ¢ # 0 and f(g) = 0 otherwise. It can be checked that f € B, ,,,, and furthermore, (A f)(1) = 1.
Hence A # 0.
To see that A is Gp-equivariant, we note that for h, g € Gp

(T2 (9) A) (h) = (Ap)(hg)

so A is Gp-equivariant as we desired to show.



It follows that an invariant scalar product on B,,, ,,, must look like:

(01,92) = (A1, P2)

for some constant ¢, since any invariant Hermitian product on B,,, ,, will give an isomorphism
between 7, ., = g7 and its dual B, ,,,, and those isomorphisms are unique up to a scalar by
irreducibility of B, ,,.

We will show that when o < 1, this actually defines a positive-definite Hermitian pairing.

We have Ay, € By, ., and P35 € By s = BM;’HIL For ¢ € B, we define:

O(@) = p(w(§1), () = (Ap)(w " (§1)).
Now, again using the Bruhat decomposition identity
(20) = (o) o (3)
we may see that for g = (%) with ¢ # 0

©(g9) = pi(det g)| det g|"? 7" () || @(d/c),

since ¢ € B,,, ,, transforms under upper triangular matrices in a specified way.
Furthermore:

(o) = [ow () w Gy
= /§0<(11/ 1fmy))dy

1
= / ) |y e( - xy)dy (by the Bruhat decomposition identity)
Y

1,M2°

= /u‘l(y)q>(9€ +y Hd*y
= /u(y)@(fv +y)d*y,

where in the last equality we make a change of variables y — 3!
Now, if we define:

(901, @2) = C<Ag017@>7
we may use the above identities to see that:

(o1,0) = ¢ / o (AR 0)00) dy

—c [(ae)(w ! (3D)ea(w (5D) do

—c [ #(0)8@) dr
—c// (x + y) Do )\y\"dxydx



For this to be positive-definite, we need to find some ¢(o) > 0 such that:

// x+y)P(2)|yl” ded*y =0

O(z) = p(w ' (§1))

for any ® defined as:

for p € By, 4,-

The space of such ® is the space .7 (1) of locally constant functions on F' which are proportional
to p(z) x|~ for |z| » 0 (see Section 1.9 in [1]). Since the space of Schwarz functions . (F) are
0 for |z| » 0, we have .7 (F) < F ().

Note that ¢(o)|y|°d*y = c(o)y° dy.

We note that g(y) = c(o)y? ! must be a positive-definite function on F', meaning that for any
n-tuple of elements {y;}” ; in F', the matrix (g(y; — y,)) must be positive Hermitian.

This is because, as stated in Proposition 4.1, Chapter 1, [3]], a function f; on a locally compact
abelian group H is positive definite, if forany f € C.(H), we have [ fo(y) [ f(y—=)f(—x)dzdy >
0, where dy is the Haar measure on that group.

We see that this condition is exactly equivalent to our previous condition

// (z 4+ y)®(z)|y|” dz d*y = 0.

We will see that it is possible to choose such a ¢(o) iff 0 < 1.

Then since c(o)y°~! is a positive definite function, the distributional Fourier transform of
c(o)|y|° d*y = c(o)y’ ' dy must be a positive measure on F', by Bochner’s theorem. (For proof of
this theorem see p.19, [2]].) This Fourier transform is proportional to |z~ d*z. Since |z|'~7 is
only a locally L' function near 0 when o < 1, this condition is necessary for this to be a measure
on F'.

Now, for 0 < o < 1, the definition of the ~y-factor implies that there is a constant (o) for any

¢ € .7(F) such that:
~ 1
d 7 d* =—/<I>x x| d* .
[ ol - — [o@l

This is because if we define Lo (x, ) = || o @(2)
ing only on x and s such that Lg(—Y, 1 —s) =
in previous lectures.)

Thus, if we choose ¢(0) = (o) and define (¢4, p2) = ¢(0){Ap1, P2), then we have:

x)|z|*d* x, there is a factor (), s) depend-
X, s) 3(X, ). (See p.1.41 in [1], or discussion

(61, 2) = 1(0) / / &y(z + 1) To(@) |yl dz d*y.

It remains to show that the inner product takes the desired form on the Kirillov model. Since the
Fourier transform of y — @4 (z + y) is z — ®1(2)¢p(z2), we see that

10) [ i+l = [ Bieorle)a i

We are able to perform the Fourier transform since we can describe the behavior of the ®; for |z|
large - ®;(z) must be proportional to u(x) tz|™t = 277! (see p.1.31, [1]), and o > 0.

7



Then recalling the definition of &, the corresponding element to  in the Kirillov model, we see
that

(1, p2) //Cbl x +y)Po( )’3/’0 dx d™y

// o (22) o (2|27 da d* 2

- [ [uentenbata)lo e as
- [ [ eatigalml el el a
- [ [ga@a

as we desired to show. We are able to perform the Fourier transforms since we can describe the
behavior of the ®; for |z| large (see p.1.31, [1]).

3 Special case

Finally, we must settle the final case (4), where 7 = 7, ,, is special. Without loss of generality,
we may assume that y = pyp; " = |z|. If 7 is pre-unitary, T ~ %. As above, this implies that
itz = 1 (we cannot have 1, po both unitary, since this is incompatible with the assumption that

= |z|). One may show that in this case we have u;(x) = |z|"?x(z) and po(z) = ||~y (), for
X a unitary character.

The space of 7 is B°

s S By o defined by the condition that:

[etw () dz =0

By invariance of BO , as a subspace, if ¢ € BB,

11100 then for any g € G, we have:

[t @) g a0

Thus, we cannot use the formula for A that we used in the previous cases. Instead, we use a limit:

(p1,p2) 1= hm (o // (x + y)Po )\y\" dr d*y = hm é\l(z)@(zﬂz\l_" d*z.

We must verify that the properties of ®,, ®, make the Fourier inversion make sense, and make sure
that the limit exists and has the desired properties. We can do this Fourier inversion because o = 1
implies that for |z| large, ®,, ®, are proportional to u(z)~!z|~! = |z|72, so they are in L' n L2
and we can apply Parseval’s formula.

If o € BY then CID(()) — 0. Because ® is in fact locally constant, and vanish outside some

p1,p2°
compact subset of F', that gives the desired convergence of the limit (see p.1.29, [1]]).

8



Since the limit exists, we can check that:

(9017902) = /(Ijl( “r= /&01 &02

This shows (-, ) is Hermitian and positive definite. Thus, we need to check invariance under
By and under w. The former comes from the formula for (-, -) on the Kirillov model. What remains
is to check invariance under w.

We have (see p.1.52, [1]) that

1—q7°
No) = T
For ¢ € 821 g WE have, via a change of variables:

—0

1—
lim (o )/CI)(:E)| —yl7dx = hm—q_l/@(x + y)|x|” d*x.
q°

o—1 o— 11

We note that [ ®(z + y)|z|d*z = [ ®(z + y)de = 0forall o € B . Therefore

pspe

1—qg° 1—q¢g %) | ® T _ d
lim—q/(l)(x+y)|x|” d*r = lim (1—q7°) [ 2z +y)(|z| |z|) d*x
o—11]1 — qU_l o1 1— qa—l

Now if we observe that --|z|” = —v(z)|z|” log ¢ (Where v(z) is the valuation) and noting that
the integral [ ®(z + y)v(z)dz is absolutely convergent (to justify the derivation under the integral),
we are able to apply L’Hospital’s rule to see that

o L2l —la) o [0 ) (vla)lellogg d*a

Nm 1—qo! o1 q°'logq

Therefore
lim1 (o) / d(z)|z —y|" tdr = (1—q") / O(z + y)v(z)de.

Now, this allows us to show that:

(p1,p2) = lim (o // (x 4+ y)Po(x)|y|” dx d*y

o—1—

-l 5(0) [ @ula) [ @1a )yl dy da

o—1—

Tim (1—3) /%( )/cp (z + y)oly) dy dz
:(1—-)// (- y) dz dy.



Now, we may check invariance under the Weyl group element w:

(1—3)1 (m(w)epr, T(w)p2) //901 w- )802< (H))w“(ﬂf—y) dz dy
- [ [l w((fya’))m—y)dxdy

//cpl )28 (—y )yl ol — y) de dy

- [ [ e @bt -y dedy

//@1 (v(z —y) —v(zy)) dody

(1—5>_ P1, p2) // Dy(y)o(wy) da dy.

Now, we want the second term to vanish. We have:

//cpl VB2 )0 () da dy — /Wv(y)/fbl(x) do dy+/c1>1(x)v(x)/c1>2(y) dy dz.

Both terms vanish by the defining condition that ¢; € 62 - this says exactly that

/@i(x) dz = 0.

Therefore we have invariance under the Weyl element w and hence under G, which is what we
desired to show. This completes the proof of the theorem for the case of special representations
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