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Let F be a local field with valuation ring OF , and GF the group GL2pF q. If pπ, V q is an
admissible representation of GF , we define:

Definition 1. pπ, V q is pre-unitary if it admits a positive definite GF -invariant Hermitian form.

We say pre-unitary rather than unitary, since V may not be complete. However, given a pre-
unitary representation pπ, V q, we may complete V to a Hilbert space pV and extend the action of π
to pπ. This preserves the notion of irreducibility in an appropriate sense:

Lemma 2. If pπ, V q is a pre-unitary admissible representation, then pπ, V q is algebraically irre-
ducible if and only if ppπ, pV q is topologically irreducible: i.e. it has no non-trivial invariant closed
subspaces.

Proof. If we let ρ be a (finite dimensional) irreducible representation of GL2pOF q, then we write
V pρq for the set of all vectors v P V which transform under GL2pOF q according to ρ, i.e. the
span of all of the copies of ρ inside ResGF

GL2pOF q
V . We may define pV pρq similarly. We will show

that V pρq “ pV pρq. By admissibility of V , V “
À

ρ V pρq, and V pρq are mutually orthogonal and
finite-dimensional. This implies that:

pV “ x

à

ρ
V pρq,

the Hilbert direct sum of the V pρq. Thus, pV pρq “ V pρq.
Hence V is the set of all GL2pOF q-finite vectors in pV . Because GL2pOF q is compact, GL2pOF q-

finite vectors are dense in every closed invariant subspace of pV .
Therefore V XW 1 is dense in any GF -invariant closed subspace W 1 of pV . Thus, any closed

invariant subspace W 1 Ď pV is the closure of V XW 1. If V is algebraically irreducible, this means
that V XW 1 “ 0 or V XW 1 “ V , so W 1 “ 0 or W 1 “ pV . Therefore if pπ, V q is algebraically
irreducible, then ppπ, pV q is topologically irreducible.

On the other hand, we need to show that if V0 Ď V is a nontrivial proper invariant subspace,
then V0 Ĺ pV . For V0 an invariant subspace of V , we see that if we let V0pρq “ V pρq X V0, then
V0 “

À

ρ V0pρq. Since we also have pV “ x

À

ρ
pV pρq (recall pV pρq “ V pρq), we see that the closure

V0 of V0 in pV must be V0 “
x

À

ρV0pρq. Thus V0 is invariant and is nontrivial exactly when V0 is, so
we see that if pV is topologically irreducible, V0 “ 0 or V0 “ pV , so V0 “ 0 or V0 “ V . Therefore
pπ, V q is algebraically irreducible if ppπ, pV q is topologically irreducible.

Remark 3. It is not a priori obvious that any topologically irreducible Hilbert space representation
pV of GF arises in this way from an irreducible admissible representation of GF . In other words,
why should the space of smooth vectors (i.e. the vectors which are fixed by an open subgroup of
GF ) of pV be non-zero?
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Theorem 4. Let pπ, V q be an infinite-dimensional1 irreducible admissible representation of GF . It
is pre-unitary exactly in these cases:

(1) π is super-cuspidal and the central character ωπ satisfies |ωπptq| “ 1 for all t.

(2) π “ πµ1,µ2 is a non-special principal series with µ1, µ2 unitary characters.

(3) π “ πµ1,µ2 is a non-special principal series with µ2 “ µ1
´1 and µ :“ µ1µ

´1
2 “ |x|σ for

0 ă σ ă 1.

(4) π “ πµ1,µ2 is a special principal series such that µ1pxq “ |x|
1{2χpxq, µ2pxq “ |x|

´1{2χpxq for
χ a unitary character.

Furthermore, on the Kirillov model Kpπq of pπ, V q, the invariant scalar product takes the form

pξ, ηq “

ˆ
ξpxqηpxqdˆx.

The rest of these notes concern the proof of this theorem.

1 Super-cuspidal case
First, we will consider case (1), where π is super-cuspidal. The condition that |ωπptq| “ 1 is
necessary because for any ξ, η P V , we have by GF -invariance of the Hermitian pairing p¨, ¨q on V :

pξ, ηq “
´

π
`

p t 0
0 t q

˘

ξ, π
`

p t 0
0 t q

˘

η
¯

“ ωπptq ωπptq pξ, ηq .

Thus, by non-degeneracy, |ωπptq| “ 1 for all t.
Now, assume that this condition holds. Fix ζ0 P V̌ a non-zero vector. For any ξ, η P V , we

consider the following function on GF :

fξ,η : g ÞÑ xπpgqξ, ζ0yxπpgqη, ζ0y.

Here, x¨, ¨y is the canonical pairing on V ˆ V̌ . Then fξ,η is a function from GF to C which is
compactly supported modulo the center ZF of GF - this follows from the definition of super-
cuspidality, because fξ,η is a product of matrix coefficients. (See Theorem 3 in [1].)

Now, it makes sense to integrate over GF to obtain a Hermitian pairing:

pξ, ηq :“

ˆ
GF {ZF

xπpgqξ, ζ0yxπpgqη, ζ0y dg.

Note that the integrand is a ZF -invariant function because the central character is unitary by
assumption. It is not hard to see that this is GF -invariant by unimodularity of GF .

Now, we must check that this is positive-definite. Assume that pξ, ξq “ 0. This means that for
all g, πpgqξ is orthogonal to ζ0, or equivalently (by GF -invariance of x¨, ¨y) that ξ is orthogonal to
π̌pgqζ0. Since π̌ is irreducible, this implies that π̌pGq ¨ ζ0 generates V̌ and therefore that ξ “ 0.

1so it does not factor through the determinant

2



Next, we will describe this pairing on the Kirillov model. We claim that it is given by:

pξ, ηq “

ˆ
ξpxqηpxq dˆx.

It suffices to show that this gives an invariant inner product on Kpπq, since these are unique up to a
scalar: an invariant inner product on pπ, V q is determined by the associated isomorphism π

„
ÝÑ π̌,

so two distinct invariant inner products differ by an automorphism of the irreducible GF -module V̌ .
This must be a scalar by Schur’s lemma.

The pairing defined above is clearly a positive-definite Hermitian inner product, so it suffices to
show that the pairing is GF -invariant. It actually suffices to check this invariance under the family
of operators Fa,b : rx ÞÑ ξpxqs ÞÑ rx ÞÑ ψF pbxqξpaxqs:

ˆ
ψF pbxqξpaxqψF pbxqηpaxqd

ˆx “

ˆ
ψF pbxqξpxqψF pbxqηpxqd

ˆx

“

ˆ
ξpxqηpxqdˆx.

since we assume ψF unitary.
This gives invariance under the mirabolic subgroupH “ t

`

a b
0 1

˘

u by the definition of the Kirillov
model. Since we are in the supercuspidal case, Kpπq “ S pFˆq. In fact the mirabolic subgroup
acts irreducibly on S pFˆq. Since we know that a GF -invariant (hence H-invariant) bilinear form
exists by the previous discussion, we see that up to a nonzero constant, this GF -invariant bilinear
form must equal pξ, ηq “

´
ξpxqηpxq dˆx as we desired to show.

This completes the case of super-cuspidal representations, so it suffices to consider the case of
principal series.

2 Principal series case
Let’s assume that pπ, V q is a pre-unitary irreducible admissible representation. We have a complex
semi-linear map J from V to V̌ defined by :

xξ, Jηy “ pξ, ηq.

This gives an isomorphism from π to π̌.
Now, assume that π “ πµ1,µ2 is a non-special principal series representation. This is defined on

the space Bµ1,µ2 of locally constant function ϕ on GF such that:

ϕ
`

p a ˚0 b q ¨ g
˘

“ µ1paqµ2pbq|a{b|
1{2ϕpgq.

Now, we have an isomorphism Bµ1,µ2
„
ÝÑ Bµ1,µ2 » π sending ϕ to ϕ. We know from a previous

lecture that π̌ » Bµ´1
2 ,µ´1

1
.

Now, there are two cases, corresponding to cases (2) and (3) in the statement of the theorem.
The first of these is the case that µ´1

1 “ µ1, µ´1
2 “ µ2, and this means that µ1, µ2 are unitary. The

second is the case that µ´1
1 “ µ2, µ´1

2 “ µ1.
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Since Bµ1,µ2 » Bλ1,λ2 iff tµ1, µ2u “ tλ1, λ2u as unordered pairs, these possibilities are necessary
and sufficient for π and π̌ to be GF -isomorphic. As we saw above, this is necessary for π to be
pre-unitary, but it is not clearly sufficient: an isomorphism from π to π̌ induces a non-degenerate
Hermitian invariant bilinear pairing on V , but it is not a priori clear that it should be positive
definite.

2.1 Case (2)
In the first case, we define the bilinear pairing by:

pϕ1, ϕ2q :“

ˆ
BF zGF

ϕ1pgqϕ2pgq dg “

ˆ
GL2pOF q

ϕ1pmqϕ2pmq dm.

The second equality follows from the Cartan decomposition BF ¨GL2pOF q “ GF .
The notes from Lecture 12 of this seminar ([5]) show that this integral defines a non-degenerate

GF -invariant bilinear pairing (this was how we identified the contragredient of πµ1,µ2 with πµ´1
1 ,µ´1

2
).

To show that this is Hermitian and positive-definite, we will compute in the Kirillov model Kpπq.
To ϕ P Bµ1,µ2 , we associate ξϕ P Kpπq, defined by:

ξϕpxq :“ µ2pxq|x|
1{2

ˆ
ϕ
´

w´1
`

1 y
0 1

˘

¯

ψF pxyq dy.

Here, w is the Weyl group generator w “
`

0 1
´1 0

˘

.
Now, we use the following identity, which comes from explicitly realizing Bruhat decomposition

for GL2:
`

a b
c d

˘

“

´

c´1 det g ˚
0 c

¯

w´1
´

1 d{c
0 1

¯

,

which is valid whenever c ‰ 0. This implies that:
ˆ
BF zGF

ϕ1pgqϕ2pgq dg “

ˆ
ϕ1

`

w´1
p 1 x

0 1 q
˘

ϕ2

`

w´1 p 1 x
0 1 q

˘

dx.

Defining Φipxq :“ ϕi
`

w´1 p 1 x
0 1 q

˘

, the above identity may be rephrased as:

pϕ1, ϕ2q “

ˆ
Φ1pxqΦ2pxq dx.

We may use Fourier inversion to see:

pϕ1, ϕ2q “

ˆ
Φ1pxq

ˆ
{Φ2pyqψF pxyq dy dx “

ˆ
xΦ1pyqxΦ2pyq dy.

We are able to do this because, as discussed in Section 1.9 of [1], Φ corresponding to ϕ P Bµ1,µ2
must be proportional to µpxq´1|x|´1 for |x| large. Since µpxq :“ µ1pxqµ

´1
2 pxq satisfies |µpxq| “ 1,

we see that Φ is square integrable on F , so pΦ is its Fourier transform in the L2 sense. Furthermore,
we can determine the image of the map Φ Ñ pΦ, from which we are able to deduce that the pΦ are
integrable and

´
pΦpyqψF pxyq dy “ Φpxq.
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Therefore

pϕ1, ϕ2q “

ˆ
xΦ1pyqxΦ2pyq dy

“

ˆ
µ2pyq

´1
|y|´1{2ξϕ1pyqµ2pyq

´1
|y|´1{2ξϕ2pyqy

“

ˆ
ξϕ1pxqξϕ2pxqd

ˆx,

using the relation dˆx “ |x|´1dx and the fact that µ2 is unitary.
In this form, it is easy to check that the pairing is positive definite and Hermitian. This settles

case (2), where µ1, µ2 are unitary.

2.2 Case (3)
Now, we must settle case (3): π “ πµ1,µ2 with µ1 “ µ´1

2 and µi ‰ µ´1
i (i.e. µi not unitary). Since

we know what characters of Fˆ must look like, this means that µ “ µ1µ
´1
2 “ |x|σ for σ ‰ 0 (if

σ “ 0, the µi would be unitary). Without loss of generality, we may assume that σ ą 0 since we
may switch µ1 and µ2 if desired.

We will define an operator A : Bµ1,µ2 Ñ Bµ1´1,µ2´1 “ Bµ2,µ1 by:

pAϕqpgq :“

ˆ
ϕ
`

w p 1 x
0 1 q ¨ g

˘

dx.

For fixed g, the integrand ϕ
`

w p 1 x
0 1 q ¨g

˘

grows as µ´1pxq|x|´1 “ |x|´σ´1 for large |x|, so this
integral converges (see p.1.28, [1]).

We will show that A ‰ 0 and that A is GF -equivariant.
To see that A is nonzero, we use the function

fpgq “ fp
`

a b
c d

˘

q :“ | det g|1{2|c|´1µ´1
pcqµ1pdet gq

for c ‰ 0 and fpgq “ 0 otherwise. It can be checked that f P Bµ1,µ2 , and furthermore, pAfqp1q “ 1.
Hence A ‰ 0.

To see that A is GF -equivariant, we note that for h, g P GF

pπµ2,µ1pgqAϕqphq “ pAϕqphgq

“

ˆ
ϕ
`

w p 1 x
0 1 q ¨ hg

˘

dx

“

ˆ
pπµ1,µ2ϕq

`

w p 1 x
0 1 q ¨ h

˘

dx

“ pAπµ1,µ2ϕqphq,

so A is GF -equivariant as we desired to show.
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It follows that an invariant scalar product on Bµ1,µ2 must look like:

pϕ1, ϕ2q “ cxAϕ1, ϕ2y

for some constant c, since any invariant Hermitian product on Bµ1,µ2 will give an isomorphism
between πµ1,µ2 “ πµ1,µ2 and its dual Bµ2,µ1 , and those isomorphisms are unique up to a scalar by
irreducibility of Bµ2,µ1 .

We will show that when σ ă 1, this actually defines a positive-definite Hermitian pairing.
We have Aϕ1 P Bµ2,µ1 , and ϕ2 P Bµ1,µ2 “ Bµ´1

2 ,µ´1
1

. For ϕ P Bµ1,µ2 , we define:

Φpxq “ ϕ
`

w´1
p 1 x

0 1 q
˘

, Φ1pxq “ pAϕq
`

w´1
p 1 x

0 1 q
˘

.

Now, again using the Bruhat decomposition identity
`

a b
c d

˘

“

´

c´1 det g ˚
0 c

¯

w´1
´

1 d{c
0 1

¯

,

we may see that for g “
`

a b
c d

˘

with c ‰ 0:

ϕpgq “ µ1pdet gq| det g|1{2µ´1
pcq|c|´1Φpd{cq,

since ϕ P Bµ1,µ2 transforms under upper triangular matrices in a specified way.
Furthermore:

Φ1pxq “

ˆ
ϕpw

`

1 ´y
0 1

˘

w´1
p 1 x

0 1 qqdy

“

ˆ
ϕp
`

1 x
y 1`xy

˘

qdy

“

ˆ
µ´1

pyq|y|´1Φp
1` xy

y
qdy (by the Bruhat decomposition identity)

“

ˆ
µ´1

pyqΦpx` y´1
qdˆy

“

ˆ
µpyqΦpx` yqdˆy,

where in the last equality we make a change of variables y ÞÑ y´1.
Now, if we define:

pϕ1, ϕ2q “ cxAϕ1, ϕ2y,

we may use the above identities to see that:

pϕ1, ϕ2q “ c

ˆ
BF zGF

pAϕ1qpgqϕ2pgq dg

“ c

ˆ
pAϕ1q

`

w´1
p 1 x

0 1 q
˘

ϕ2

`

w´1 p 1 x
0 1 q

˘

dx

“ c

ˆ
Φ11pxqΦ2pxq dx

“ c

ˆ ˆ
Φ1px` yqΦ2pxq|y|

σ dˆy dx.
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For this to be positive-definite, we need to find some cpσq ą 0 such that:

cpσq

ˆ ˆ
Φpx` yqΦpxq|y|σ dx dˆy ě 0

for any Φ defined as:
Φpxq “ ϕ

`

w´1
p 1 x

0 1 q
˘

for ϕ P Bµ1,µ2 .
The space of such Φ is the space F pµq of locally constant functions on F which are proportional

to µpxq´1|x|´1 for |x| " 0 (see Section 1.9 in [1]). Since the space of Schwarz functions S pFq are
0 for |x| " 0, we have S pF q Ď F pµq.

Note that cpσq|y|σdˆy “ cpσqyσ´1dy.
We note that gpyq “ cpσqyσ´1 must be a positive-definite function on F , meaning that for any

n-tuple of elements tyiuni“1 in F , the matrix pgpyi ´ yjqq must be positive Hermitian.
This is because, as stated in Proposition 4.1, Chapter 1, [3], a function f0 on a locally compact

abelian groupH is positive definite, if for any f P CcpHq, we have
´
f0pyq

´
fpy´xqfp´xqdxdy ě

0, where dy is the Haar measure on that group.
We see that this condition is exactly equivalent to our previous condition

cpσq

ˆ ˆ
Φpx` yqΦpxq|y|σ dx dˆy ě 0.

We will see that it is possible to choose such a cpσq iff σ ă 1.
Then since cpσqyσ´1 is a positive definite function, the distributional Fourier transform of

cpσq|y|σ dˆy “ cpσqyσ´1dy must be a positive measure on F , by Bochner’s theorem. (For proof of
this theorem see p.19, [2].) This Fourier transform is proportional to |x|1´σ dˆx. Since |x|1´σ is
only a locally L1 function near 0 when σ ă 1, this condition is necessary for this to be a measure
on F .

Now, for 0 ă σ ă 1, the definition of the γ-factor implies that there is a constant γpσq for any
Φ P S pF q such that: ˆ

pΦpyq|y|σ dˆy “
1

γpσq

ˆ
Φpxq|x|1´σ dˆx.

This is because if we define LΦpχ, sq “
´
Fˆ Φpxqχpxq|x|sdˆx, there is a factor γpχ, sq depend-

ing only on χ and s such that LΦp´χ, 1´ sq “ γpχ, sqL
pΦpχ, sq. (See p.1.41 in [1], or discussion

in previous lectures.)
Thus, if we choose cpσq “ γpσq and define pϕ1, ϕ2q “ cpσqxAϕ1, ϕ2y, then we have:

pϕ1, ϕ2q “ γpσq

ˆ ˆ
Φ1px` yqΦ2pxq|y|

σ dx dˆy.

It remains to show that the inner product takes the desired form on the Kirillov model. Since the
Fourier transform of y ÞÑ Φ1px` yq is z ÞÑ xΦ1pzqψF pxzq, we see that

γpσq

ˆ
Φ1px` yq|y|

σdˆy “

ˆ
xΦ1pzqψF pxzq|z|

1´σdˆz.

We are able to perform the Fourier transform since we can describe the behavior of the Φi for |x|
large - Φipxq must be proportional to µpxq´1|x|´1 “ x´σ´1 (see p.1.31, [1]), and σ ą 0.
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Then recalling the definition of ξϕ the corresponding element to ϕ in the Kirillov model, we see
that

pϕ1, ϕ2q “ γpσq

ˆ ˆ
Φ1px` yqΦ2pxq|y|

σ dx dˆy

“

ˆ ˆ
pΦ1pzqψF pxzqΦ2pxq|z|

1´σ dx dˆz

“

ˆ ˆ
pΦ1pzqψF pxzqpΦ2pzq|z|

1´σ dˆz

“

ˆ ˆ
ξϕ1pzqξϕ2pzq|µ2pzq|

´2
|z|´1

|z|1´σdˆz

“

ˆ ˆ
ξϕ1pzqξϕ2pzqd

ˆz,

as we desired to show. We are able to perform the Fourier transforms since we can describe the
behavior of the Φi for |x| large (see p.1.31, [1]).

3 Special case
Finally, we must settle the final case (4), where π “ πµ1,µ2 is special. Without loss of generality,
we may assume that µ “ µ1µ

´1
2 “ |x|. If π is pre-unitary, π » π̌. As above, this implies that

µ1µ2 “ 1 (we cannot have µ1, µ2 both unitary, since this is incompatible with the assumption that
µ “ |x|). One may show that in this case we have µ1pxq “ |x|

1{2χpxq and µ2pxq “ |x|
´1{2χpxq, for

χ a unitary character.
The space of π is B0

µ1,µ2
Ď Bµ1,µ2 defined by the condition that:

ˆ
ϕ
`

w´1
p 1 x

0 1 q
˘

dx “ 0.

By invariance of B0
µ1,µ2

as a subspace, if ϕ P B0
µ1,µ2

, then for any g P GF , we have:
ˆ
ϕ
`

w´1
p 1 x

0 1 q ¨ g
˘

dx “ 0.

Thus, we cannot use the formula for A that we used in the previous cases. Instead, we use a limit:

pϕ1, ϕ2q :“ lim
σÑ1´

γpσq

ˆ ˆ
Φ1px` yqΦ2pxq|y|

σ dx dˆy “ lim
σÑ1´

ˆ
xΦ1pzqxΦ2pzq|z|

1´σ dˆz.

We must verify that the properties of Φ1,Φ2 make the Fourier inversion make sense, and make sure
that the limit exists and has the desired properties. We can do this Fourier inversion because σ “ 1
implies that for |x| large, Φ1,Φ2 are proportional to µpxq´1|x|´1 “ |x|´2, so they are in L1 X L2

and we can apply Parseval’s formula.
If ϕ P B0

µ1,µ2
, then pΦp0q “ 0. Because pΦ is in fact locally constant, and vanish outside some

compact subset of F , that gives the desired convergence of the limit (see p.1.29, [1]).
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Since the limit exists, we can check that:

pϕ1, ϕ2q “

ˆ
xΦ1pxqxΦ2pxq d

ˆx “

ˆ
ξϕ1pxqξϕ2pxq d

ˆx.

This shows p¨, ¨q is Hermitian and positive definite. Thus, we need to check invariance under
BF and under w. The former comes from the formula for p¨, ¨q on the Kirillov model. What remains
is to check invariance under w.

We have (see p.1.52, [1]) that

γpσq “
1´ q´σ

1´ qσ´1
.

For ϕ P B0
µ1,µ2

, we have, via a change of variables:

lim
σÑ1

γpσq

ˆ
Φpxq|x´ y|σ´1 dx “ lim

σÑ1

1´ q´σ

1´ qσ´1

ˆ
Φpx` yq|x|σ dˆx.

We note that
´

Φpx` yq|x|dˆx “
´

Φpx` yqdx “ 0 for all ϕ P B0
µ1,µ2

. Therefore

lim
σÑ1

1´ q´σ

1´ qσ´1

ˆ
Φpx` yq|x|σ dˆx “ lim

σÑ1

p1´ q´σq
´

Φpx` yqp|x|σ ´ |x|q dˆx

1´ qσ´1
.

Now if we observe that d
dσ
|x|σ “ ´vpxq|x|σ log q (where vpxq is the valuation) and noting that

the integral
´

Φpx` yqvpxqdx is absolutely convergent (to justify the derivation under the integral),
we are able to apply L’Hospital’s rule to see that

lim
σÑ1

´
Φpx` yqp|x|σ ´ |x|q dˆx

1´ qσ´1
“ lim

σÑ1

´
Φpx` yqp´vpxqq|x|σ log q dˆx

´qσ´1 log q
.

Therefore

lim
σÑ1

γpσq

ˆ
Φpxq|x´ y|σ´1 dx “ p1´ q´1

q

ˆ
Φpx` yqvpxqdx.

Now, this allows us to show that:

pϕ1, ϕ2q “ lim
σÑ1´

γpσq

ˆ ˆ
Φ1px` yqΦ2pxq|y|

σ dx dˆy

“ lim
σÑ1´

γpσq

ˆ
Φ2pxq

ˆ
Φ1px` yq|y|

σ dˆy dx

“ lim
σÑ1´

ˆ

1´
1

q

˙ ˆ
Φ2pxq

ˆ
Φ1px` yqvpyq dy dx

“

ˆ

1´
1

q

˙ˆ ˆ
Φ1pxqΦ2pyqvpx´ yq dx dy.
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Now, we may check invariance under the Weyl group element w:
ˆ

1´
1

q

˙´1

pπpwqϕ1, πpwqϕ2q “

ˆ ˆ
ϕ1

`

w´1
p 1 x

0 1 qw
˘

ϕ2

´

w´1
`

1 y
0 1

˘

¯

wvpx´ yq dx dy

“

ˆ ˆ
ϕ1

´

`

1 0
´x 1

˘

¯

ϕ2

´

`

1 0
´y 1

˘

¯

vpx´ yq dx dy

“

ˆ ˆ
Φ1p´x

´1
q|x|´2Φ2

`

´y´1
˘

|y|´2vpx´ yq dx dy

“

ˆ ˆ
Φ1pxqΦ2pyqvpx

´1
´ y´1

q dx dy

“

ˆ ˆ
Φ1pxqΦ2pyq

`

vpx´ yq ´ vpxyq
˘

dx dy

“

ˆ

1´
1

q

˙´1

pϕ1, ϕ2q ´

ˆ ˆ
Φ1pxqΦ2pyqvpxyq dx dy.

Now, we want the second term to vanish. We have:
ˆ ˆ

Φ1pxqΦ2pyqvpxyq dx dy “

ˆ
Φ2pyqvpyq

ˆ
Φ1pxq dx dy `

ˆ
Φ1pxqvpxq

ˆ
Φ2pyq dy dx.

Both terms vanish by the defining condition that ϕi P B0
µ1,µ2

: this says exactly that
ˆ

Φipxq dx “ 0.

Therefore we have invariance under the Weyl element w and hence under GF , which is what we
desired to show. This completes the proof of the theorem for the case of special representations
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