
IRREDUCIBLE COMPONENTS OVER ARCHIMEDIAN FIELDS

AARON LANDESMAN

In this set of notes, after recalling past notation in § 1, we state and prove the classification
of irreducible admissible GL2(R) representations in § 2. We then state and sketch the
similar classification over of irreducible admissible GL2(C) representations in § 3.

1. REVIEW OF PAST TALKS AND NOTATION

Recall the following notation. Let F be either R or C. Let GF = GL2(F) and K be a
maximal compact, so K = O(2, R) in the case F = R and U(2) in the case F = C. Let g
denote the lie algebra of GF, viewed as a Lie algebra over the reals and let gC := g⊗R C
denote its complexification.

Let µ1, µ2 : F× → C× denote two quasi-characters of F, which are by definition to be
continuous maps, F× → C×. We next want to recall the definition of the sets of functions
B(µ1, µ2). First, we recall what it means to be K-finite.

Definition 1.1. Let V be a K representation and v ∈ V. Then v is K-finite if there is a
finite dimensional K-subrepresentation W with v ∈ W ⊂ V so that the restriction of the
representation to W, corresponding to the map K → GL(W) is continuous.

We recall the definition of B(µ1, µ2).

Definition 1.2. Define B(µ1, µ2) as the set of those smooth functions f : GF → C so that f
is K-finite via the right action of K on f and for all g ∈ GF, a1 ∈ F×, a2 ∈ F×, x ∈ F,

f
((

a1 x
0 a2

)
g
)
= µ1(a1)µ2(a2)

∣∣∣∣ a1

a2

∣∣∣∣1/2

f (g)(1.1)

We next recall the definition of a certain type of representation of (g, K), also known as a
Harish-Chandra module.

Definition 1.3. A (g, K) representation is a vector space V with an g action πg : g→ gl(V)
and an action πK : K → GL(V) such that

(1) V = ⊕iVi with Vi stable under the K action and each Vi finite dimensional
(2) For X ∈ g, g ∈ K,

πg ((Ad g)X) = πK(g)πg(X)πK(g−1)

(3) For any X in the Lie algebra of K,

lim
t→0

πK (exp(tX))− πK(id)
t

= πg(X).

Note that this limit makes sense by the first property because every v ∈ V lies in
some finite dimensional stable subspace, in which the limit is well defined.

Remark 1.4. In what follows, by abuse of notation, if πg and πK form a (g, K), representa-
tion, we shall often denote both πg and πK by the same symbol π.
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Definition 1.5. Let V be an (g, K) representation and, considering V as a K representation,
write V ' ⊕σV(σ) for V(σ) the K-isotypic components (i.e., σ’s parameterize irreducible
finite dimensional representations of V. By [KV95, Proposition 1.18] any finite dimensional
V(σ) representation is a direct sum of irreducible representations, due to compactness of
K). We say V is admissible if each V(σ) is finite dimensional.

Remark 1.6. One can define the Hecke algebra associated to GF, and there is a bijection
between admissible representations of the Hecke algebra and admissible (g, K) represen-
tations. In what follows we will classify (g, K) representations, and hence this will also
classify representations of the Hecke algebra associated to GF. We do not discuss Hecke
algebras further in these notes.

Definition 1.7. Define the (g, K) representation ρ(µ1, µ2) on B(µ1, µ2) by sending a smooth
function f : GF → C and a distribution µ supported on K to the smooth function ρ(µ) f
defined by

(ρ(µ) f )(g) =
∫

GF

f (gh)dµ(h),

Similarly, define the left action λ(µ) f by

(λ(µ) f )(g) =
∫

GF

f (h−1g)dµ(h),

Alternatively phrased, defining fg as the function given by fg(h) = f (gh), we have
(ρ(µ) f )(g) = 〈µ, fg〉, where the pairing means evaluating the distribution µ on the func-
tion fg.

Remark 1.8. For X ∈ g, f a smooth function on GF, and g ∈ G verify that the (g, K)
representation is given explicitly by (ρ(X) f )(g) = d

dt f
(

getX) |t=0.

Exercise 1.9. Verify (ρ(X) f )(g) = d
dt f
(

getX) |t=0 by checking the right hand side is G-
invariant and agrees with the derivation X at the identity.

Using the above characterization and definitions, we computed the explicit formulas for
how the representation ρ(µ1, µ2) acts. To state these formulas, we introduce the following
notation.

Definition 1.10. Take F = R and for i = 1, 2, let µi : R× → C× be two given quasi-
characters. By continuity, the values of the quasi-characters on R>0 are determined by
their value on any positive real other than 1, and therefore µi|R>0 must be of the form
µi(t) = tsi for some si ∈ C. Depending on whether µi(−1) = 1 or −1, we can then write

µi(t) = (sgn t)mi |t|si

for mi ∈ {0, 1} , si ∈ C.
Define s := s1 − s2, m := |m1 −m2| so that µ1(t)µ−1

2 (t) = (sgn t)m |t|s.
Let n ≡ m mod 2 and define φn ∈ B(µ1, µ2) by

φn

((
a1 x
0 a2

)(
cos θ sin θ
− sin θ cos θ

))
:= µ1(a1)µ2(a2)

∣∣∣∣ a1

a2

∣∣∣∣1/2

einθ.
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Define

ε :=
(
−1 0
0 1

)
κθ :=

(
cos θ sin θ
− sin θ cos θ

)
U :=

(
0 1
−1 0

)
J :=

(
1 0
0 1

)
V+ :=

(
1 i
i −1

)
V− :=

(
1 −i
−i −1

)
X+ :=

(
0 1
0 0

)
X− :=

(
0 0
1 0

)
Z :=

(
1 0
0 −1

)
D := X+X− + X−X+ +

1
2

Z2.

We saw last time the the collection {φn}n≡m mod 2 forms a basis for B (µ1, µ2). We saw
that the elements defined above in Definition 1.10 act via ρ in the following manner.

Lemma 1.11. Let F = R. With U, ε, V+, V−, D, J as defined in Definition 1.10, their actions
under ρ on φn are given by

ρ(U)φn = inφn

ρ(ε)φn = (−1)m1φ−n

ρ(V+)φn = (s + 1 + n)φn+2

ρ(V−)φn = (s + 1− n)φn−2

ρ(D)φn =
1
2

(
s2 − 1

)
φn

ρ(J)φn = (s1 + s2)φn.

The main theorem we saw last time was the following.

Theorem 1.12. For F = R or C, every irreducible admissible (g, K) representation π, there is
some pair of quasi-characters µ1 and µ2 so that π is realized as a subrepresentation of ρ(µ1, µ2).

Remark 1.13. At least we saw a proof of this in the case F = R. The case F = C was
omitted, and I am not sure whether there is a relatively elementary proof along similar lines
to the case F = R, or if the only known proof relies of a deep theorem of Harish-Chandra.
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By Theorem 1.12, to understand all possible irreducible admissible (g, K) represen-
tations, it suffices to understand how to decompose ρ(µ1, µ2) as a sum of irreducible
admissible representations, and then understand when two such irreducible admissible
subrepresentations are equivalent. We take this for F = R in § 2 and for F = C in § 3.

2. IRREDUCIBLE COMPONENTS OF ρ(µ1, µ2) OVER R

In this section, we take up the gauntlet of classifying all irreducible admissible (g, KR)
representations. For the remainder of this section, we work over F = R.

The outline of this section is as follows: In § 2.1 we classify gC stable subspaces of
B(µ1, µ2). In § 2.2, we prove three results determining when an g subrepresentation of a
(g, KR) representation is actually a (g, KR) subrepresentation. Then, in § 2.3 we state the
classification statement which is subsequently proven in § 2.4, § 2.5, and § 2.6.

2.1. gC stable subrepresentations. By Theorem 1.12, in order to understand all irreducible
admissible (g, KR) representations, it suffices to understand the irreducible sub and quo-
tient representations of ρ(µ1, µ2).

In this subsection, in particular in Proposition 2.3, we define the sub and quotient
representations of ρ(µ1, µ2), which are gC stable. Later we explain how these connect to
(g, KR) stable subspaces.

We need the elementary preparatory lemma:

Lemma 2.1. Any subspace V ⊂ B(µ1, µ2) stable under gC is spanned by
{

φj : φj ∈ V
}

.

Proof. To see this, suppose v = ∑b
j=a αjφj ∈ V with αb 6= 0. It suffices to show φb ∈ V.

Suppose there are t nonzero elements in the set {αa, . . . , αb}.

Exercise 2.2. Verify that the elements v, ρ(U)v, . . . , ρ(U)t−1v are independent. Hint: One
can do this explicitly by writing φi as linear combinations of ρ(U)kv, or in a tricky way
(which is really the same way) using that the Vandermonde determinant does not vanish.

Therefore, by the above exercise, the elements v, ρ(U)v, . . . , ρ(U)t−1v are independent,
but also land in the t dimensional space spanned by those φj for which the corresponding
αj is nonzero. Therefore, φb lies in the span of v, ρ(U)v, . . . , ρ(U)t−1v, as desired. �

Using Lemma 2.1 and Lemma 1.11, we can verify the following characterization of gC
invariant subspace of B(µ1, µ2).

Proposition 2.3. Let µ1, µ2 be two quasi-characters, and define s and m as in Definition 1.10. If
s−m is even, then B(µ1, µ2) is irreducible as a gC representation. If s−m is odd and s > 0, then
the nonzero proper irreducible gC stable subspaces are

B1(µ1, µ2) := ⊕ n≥s+1
n≡s+1 mod 2

C · φn

B2(µ1, µ2) := ⊕ n≤−s−1
n≡s+1 mod 2

C · φn

Bs(µ1, µ2) := B1(µ1, µ2) +B2(µ1, µ2)
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If s−m is odd and s = 0, then the nonzero proper irreducible gC stable subspaces are

B1(µ1, µ2) := ⊕ n≤−s−1
n≡s+1 mod 2

C · φn

B2(µ1, µ2) := ⊕ n≥s+1
n≡s+1 mod 2

C · φn

If s−m is odd and s < 0, then the nonzero proper irreducible gC stable subspaces are

B1(µ1, µ2) := ⊕ n≥s+1
n≡s+1 mod 2

C · φn

B2(µ1, µ2) := ⊕ n≤−s−1
n≡s+1 mod 2

C · φn

B f (µ1, µ2) := B1(µ1, µ2) ∩B2(µ1, µ2).

Proof. By Lemma 2.1, any gC invariant subspace of B(µ1, µ2) is spanned by those φi is
contains.

Suppose first s−m is even. Then by Lemma 1.11, we know ρ(V±)φn = (s + 1± n)φn±2.
Because s− m is even and n− m is even as n varies over all φn ∈ B(µ1, µ2) (as the set
of φn for which n ≡ m mod 2 form a basis for B(µ1, µ2)) it follows that s + 1± n is odd,
hence never 0. This implies ρ(µ1, µ2) is irreducible.

To conclude, we only need deal with the case s − m is odd. As in the even case, if
we have some gC invariant subspace V ⊂ B(µ1, µ2), V is determined by those φn ∈ V,
and by applying ρ(V±) to φn, we have φn±2 ∈ V so long as s + 1± n 6= 0. Therefore,
using ρ(V+)φn = (s + 1 + n)φn+2, if φn ∈ V then φn+2 ∈ V, unless possibly s + 1 = −n.
Similarly, using ρ(V−)φn = (s + 1− n)φn−2, if φn ∈ V, then φn−2 ∈ V, unless possibly
s + 1 = n.

There are three cases depending on the sign of s. We only address s > 0 since the
cases s = 0 and s < 0 are analogous. If there is some φn ∈ V with s + 1 ≥ −n, then by
Lemma 2.1 and the preceding paragraph, V contains B2. Similarly, if there is some φn ∈ V
with n ≥ s + 1, then B1 ⊂ V. Finally, if there is some φn ∈ V with −s− 1 < n < s + 1,
then necessarily V = B(µ1, µ2). Therefore, we obtain B1, B2, Bs as the only possible
nonzero proper invariant subspaces. �

2.2. Relating g representations to (g, KR) representations. Having understood the pos-
sible gC invariant subspaces, we next turn to describing the possible (g, KR) subrepre-
sentations. For this, we need to understand the possible forms of the restriction of an
irreducible (g, KR) representation to an g representation. The two results we will need
from this section in future sections are Corollary 2.10 and Lemma 2.11. We suggest that the
reader read these to statements and proceed to the next section.

Definition 2.4. Recall ε as defined in Definition 1.10. For (π, V) an g representation, let
((Ad ε)π, V) denote the representation sending X ∈ V to π ((Ad ε) X). In the case that π
is the restriction of a (g, KR) representation, we have π ((Ad ε) X) = π(ε)π(X)π(ε−1).

The following lemma determines the restriction of an irreducible (g, KR) representation
to g.

Proposition 2.5. Suppose (π, V) is an irreducible (g, KR) representation. Then, either
(1) (π|g, V) is irreducible and is equivalent to ((Ad ε)π, V)
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(2) There is an isomorphism V ' V1 ⊕V2 with Vi stable under g so that the g representations
πi := π|Vi on Vi are irreducible. Further, (π1, V1) is not equivalent to (π2, V2) but
((Ad ε)π1, V1) is equivalent to (π2, V2).

Proof. First, suppose (π|g, V) is irreducible. Then, it is equivalent to ((Ad ε)π, V) with
equivalence given by the operator X 7→ π(ε)X. Indeed, using that ε2 = id, for X ∈ g, v ∈
V,

π(X)π(ε)v = π(ε)π(ε)π(X)π(ε)v
= π(ε)π ((Ad ε)π(X)) v.

So, suppose instead that (π|g, V) is not irreducible. Let V1 ⊂ V be a proper g-irreducible
subspace and define V2 := π(ε)V1. To start, we will show V1 ⊕ V2 = V (implicit here is
that V1 ∩V2 = 0).

By the definition of (g, KR) representation, the g representation determines the represen-
tation of the Lie algebra of K, and then because we can exponentiate Lie algebra elements
over R, the Lie algebra representation determines the representation of K0

R (the connected
component of the identity in KR). Any (g, KR) representation is determined by its restric-
tion to g together with the action of the element ε ∈ KR. It follows that V1 + V2 is (g, KR)
stable. Similarly, V1 ∩V2 is (g, KR) stable. However, since V1 is not all of V, V1 ∩V2 must
be a proper subspace of V. Therefore, V1 ∩V2 = 0, being a proper subrepresentation of an
irreducible g representation. Hence, V1 + V2 = V1 ⊕V2. Further, V = V1 ⊕V2 because the
latter is nonzero and (g, KR) stable, hence equal to all of V, as V was (g, KR) irreducible.

To conclude, we only need show (π1, V1) is not equivalent to (π2, V2) but ((Ad ε)π1, V1)
is equivalent to (π2, V2).

To show ((Ad ε)π1, V1) is equivalent to (π2, V2), note that π(ε) is an intertwining opera-
tor. Indeed, for X ∈ g, v ∈ V1,

π2(X)π(ε)v1 = π(ε)π ((Ad ε)π1) (X)v1,

analogously to the case that (π|g, V) was irreducible above.
To finish the proof, we verify (π1, V1) is not equivalent to (π2, V2). Suppose they are

equivalent, so there is some linear A : V1 → V2 with Aπ1(X) = π2(X)A for all X ∈ g.
We next claim that the map

φ : V → V

v1 + v2 7→ A−1v2 + Av1

commutes with the action of (g, KR). If this is the case, then we will reach a contradiction,
since this commutation, by a version of Schur’s lemma, implies the map φ must be a scalar,
but it is also not a scalar, as it permutes the subspaces V1 and V2.

We check φ commutes with the action of (g, KR). To see this, it suffices to check it
commutes with the action of g and ε, because commuting with g implies the action
commutes with K0

R via exponentiation, and commuting with ε then implies it commutes
with all of KR. To see it commutes with the action of g, note that for X ∈ g, and v1 ∈ V1
and v2 ∈ V2

π1(X)A−1v2 + π2(X)Av1 = A−1π2(X)v2 + Aπ1(X)v1,

so the actions commute.
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Finally, it remains to check that φ commutes with the action of ε. For this, we must
first verify, after possibly rescaling A that (A−1π(ε))2 = 1. The key to showing this is the
following lemma.

Lemma 2.6. With notation as above,
(

A−1π(ε)
)2 commutes with g.

Proof. Observe A−1π2(X) = Aπ1(X), and recall that we showed above π(ε)π1(X) =
π2((Ad ε)X)π(ε). Combining these, we find, for X ∈ g, v ∈ V1,

A−1π(ε)π1(X)v = A−1π2 ((Ad ε) X)π(ε)v

= π1 ((Ad ε) X) A−1π(ε)v.

Therefore, (
A−1π(ε)

)2
π1(X)v = π1

(
(Ad ε)2 X

)
(A−1π(ε))2v

= π1(X)
(

A−1π(ε)
)2

v

and so
(

A−1π(ε)
)2 commutes with g. �

By a version of Schur’s lemma, Lemma 2.6 means
(

A−1π(ε)
)2 is a scalar. By absorbing

a square root of that scalar into A, we can assume the scalar is 1, so
(

A−1π(ε)
)2

= 1.
Hence, after rescaling, we find A−1π(ε) = π(ε)A and π(ε)A−1 = Aπ(ε), implying

π(ε)Av1 + π(ε)A−1v2 = A−1π(ε)v1 + Aπ(ε)v2,

and so φ commutes with the action of ε. �

We define the twist of a (g, KR) representation by the sign character. One can more
generally define the twist by an arbitrary character, as in [Sno06, 6.1.6], but since we will
only need to twist by sign, we do not concern ourselves with that definition here.

Definition 2.7. For π a (g, KR) representation, define sgn⊗π to be the (g, KR) represen-
tation so that sgn⊗π(X) = π(X) for X ∈ g and sgn⊗π(M) = sgn(det M) · π(M) for
M ∈ KR.

Exercise 2.8. For π a (g, KR) representation, verify sgn⊗π is indeed a (g, KR) representa-
tion.

To state the next corollary, we also need to define the notion of an admissible g represen-
tation.

Definition 2.9. Let π be an g representation. Let κn denote the representation of Lie(KR)
obtained by differentiating the SO2(R) 1-dimensional representation

Kn : SO2(R)→ C×(
cos θ sin θ
− sin θ cos θ

)
7→ einθ.

We say π is admissible if the restriction of π|Lie(KR) ' ⊕n∈ZVn where each Vn is a direct
sum of finitely many copies of κn.
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Corollary 2.10. Suppose (π1, V1) is an irreducible admissible g representation which is not
equivalent to (Ad ε)π1 and let (π2, V2) := ((Ad ε)π1, V1). Let V = V1 ⊕V2. Then,

(1) There is an irreducible admissible (g, KR) representation π on V restricting to π1 ⊕ π2.
(2) If ν is an irreducible admissible (g, KR) representation so that π1 ⊂ ν|g as g representations

then ν is equivalent to π as (g, KR) representations. In particular, sgn⊗π is equivalent to
π.

Proof. (1) To construct such a representation, we take π(X) = π1(X) ⊕ π2(X) and
admissibility yields a representation of SO(2, R) on V, so it suffices to define π(ε).
Indeed, define

π(ε) (v1, v2) := (v2, v1).

Then, this uniquely defines a (g, KR) representation extending the g representa-
tion. Since πi are both irreducible g representations, π is an irreducible (g, KR)
representation. Further, π is admissible because its restriction to g is admissible.

(2) Since the restriction of π to g is not irreducible, by Proposition 2.5, the representation
π must be given by π1 ⊕ π2 with π2 equivalent to (Ad ε)π1. Hence, it is uniquely
determined to be the representation constructed in the proof of the first part. In
particular, sgn⊗π restricts to π1 on g, and is therefore equivalent to π.

�

Lemma 2.11. Suppose (π0, V) is an irreducible admissible g representation which is equivalent to
((Ad ε)π0, V). Then

(1) There is an irreducible admissible (g, KR) representation π restricting to π0
(2) The (g, KR) representations π and sgn⊗π are not equivalent
(3) Any (g, KR) representation restricting to π0 is either equivalent to π or sgn⊗π.

Proof. (1) First, take π(X) := π0(X) for X ∈ g, and the definition of admissibility
uniquely determines an SO(2, R) representation. To define an (g, KR) represen-
tation, it suffices to define the action of ε. For this, recall our assumption that
π0 is equivalent to (Ad ε)π0, and so there is some A : V → V with Aπ0(X) =

π0 ((Ad ε) X) A for X ∈ g. This implies A2π0(X) = π0

(
(Ad ε)2 X

)
A2 = π0(X)A2,

and so A2 commutes with π0(X). By Schur’s lemma, A2 is a scalar. By absorbing
the square root of that scalar into A, we may assume A2 = 1. Then, we may define
π(ε) := A, and this defines an (g, KR) representation.

(2) The representation sgn⊗π is given by the same representation on g as described
in the proof of the first part, but with sgn⊗π(ε) = −A while π(ε) = A. If π
and sgn⊗π were equivalent, their restriction to g would be equivalent. But the
only possible such equivalences, by Schur’s lemma, are scalars. Therefore, the
intertwining operator would necessarily be a nonzero scalar, but this would not
intertwine π(ε) and (sgn⊗π) (ε) because for any nonzero scalar c, c 6= −c.

(3) We saw in the proof of the first part that any representation π restricting to π0 is de-
termined uniquely by π(ε) and further that we may assume π(ε)2 = 1. By Schur’s
lemma, any such isomorphism must be given by c · A for a scalar c. Further, c2 = 1,
so c = ±1 meaning π(ε) = ±A in which case the corresponding representation is
either π or sgn⊗π.

�
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2.3. The classification statement over the reals. In order to state the classification of
admissible irreducible GR representations, we first define the following sub and quotient
representations of B(µ1, µ2).

Definition 2.12. Let µ1, µ2 : R× → C× be two quasi-characters.
(1) If s−m is even, let π(µ1, µ2) denote ρ(µ1, µ2).
(2) If s−m is odd and s > 0, let σ(µ1, µ2) := ρ(µ1, µ2)|Bs(µ1,µ2).
(3) If s−m is odd and s > 0, let π(µ1, µ2) := ρ(µ1, µ2)|B(µ1,µ2)/Bs(µ1,µ2).
(4) If s−m is odd and s < 0, let π(µ1, µ2) := ρ(µ1, µ2)|B f (µ1,µ2).
(5) If s−m is odd and s < 0, let σ(µ1, µ2) := ρ(µ1, µ2)|B(µ1,µ2)/B f (µ1,µ2).

We call the representations π(µ1, µ2) are principal series representations. We call the repre-
sentations σ(µ1, µ2) are special representations.

Theorem 2.13. Let µ1 and µ2 be two quasi-characters of R×.

(1) If µ1µ−1
2 is not of the form t 7→ tp sgn t for p 6= 0, then π(µ1, µ2) is irreducible as a

(g, KR) representation.
(2) If µ1µ−1

2 is of the form t 7→ tp sgn t for p > 0, then σ(µ1, µ2) is the only irreducible
(g, KR) subrepresentation, and it is infinite dimensional with finite codimension.

(3) If µ1µ−1
2 is of the form t 7→ tp sgn t for p < 0, then π(µ1, µ2) is the only irreducible

(g, KR) subrepresentation, and it is finite dimensional with infinite codimension.
(4) π(µ1, µ2) is equivalent as a (g, KR) representation to π(µ′1, µ′2) if {µ1, µ2} = {µ′1, µ′2}.

Furthermore, σ(µ1, µ2) is equivalent to σ(µ′1, µ′2) if {µ1, µ2} is equal to either {µ′1, µ′2} or
{sgn µ′1, sgn µ′2}.

(5) The equivalences listed in (4) are the only equivalences among the above representations
listed in (1), (2), and (3).

The proof of the theorem is given below in § 2.4, § 2.5, and § 2.6.

2.4. Classifying subrepresentations. Before proving parts (1), (2), and (3), we record the
following lemma, crucially testing how much we have retained from high school level
algebra:

Lemma 2.14. Define m and s as in Definition 1.10 so that µ1µ−1
2 is of the form (sgn t)m |t|s.

Then, s−m is odd if and only if µ1µ−1
2 (t) = ts sgn t.

Proof. Indeed, µ1µ−1
2 (t) = ts sgn t. always holds for positive t, and is possibly off by a

uniform sign for negative t, i.e., if it is off by a sign, then it is off by that same sign for all
negative t. So to verify this claim, we only need to check it in the case t = −1. One can
then easily verify this by examining the four cases depending on whether m is even or
odd and s is even or odd. For example, if m is even and s is odd, then (sgn−1)m| − 1|s =
1 · 1 = −1 · −1 = (−1)s(sgn−1). The other three cases are similar. �

Proof of (1), (2), and (3) of Theorem 2.13. Define m and s as in Definition 1.10. To start, we
deal with the case s−m is odd. Using Lemma 2.14, we see this is the case if and only if
µ1µ−1

2 (t) = ts sgn t. Then, by Proposition 2.3, we see that in this case, π(µ1, µ2) is even an
irreducible gC representation, and hence an irreducible (g, KR) representation.
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To conclude, we deal with the case s−m is even. We now split into two cases, depending
on whether p = s is 0, positive or negative. First, suppose p ≥ 0. With notation as in Propo-
sition 2.3, observe that B1(µ1, µ2) ' (Ad ε)B2(µ1, µ2) essentially because conjugating by
ε interchanges the actions of V+ and V−, using the formulas in Lemma 1.11. Furthermore,
B1(µ1, µ2) is not equivalent to the irreducible g representation B2(µ1, µ2) because in one
of the representations, every nonzero vector is killed by a finite power of ρ(V+) but not by
any power of ρ(V−), while in the other every nonzero vector is killed by a finite power of
ρ(V−) but not by any power of ρ(V+).

Therefore, by Corollary 2.10, Bs(µ1, µ2) = B1(µ1, µ2) +B2(µ1, µ2) determines an irre-
ducible representation of (g, KR). By Proposition 2.3, this is the only nonzero irreducible
representation, other than possibly ρ(µ1, µ2) itself. In the case p = 0, these are the same
representation, but when p > 0, these are distinct. By definition, Bs(µ1, µ2) has infinite
dimension and finite codimension in B(µ1, µ2).

The situation for p = s < 0 is similar. In this case, the representation on B f (µ1, µ2) =
B1(µ1, µ2) ∩B2(µ1, µ2) is equivalent to (Ad ε)B f (µ1, µ2) with intertwining operator π(ε)
and hence by Lemma 2.11 is the restriction of an irreducible (g, KR) representation with the
same underlying vector space. However, Bi(µ1, µ2) is not equivalent to (Ad ε)Bi(µ1, µ2)
for i ∈ {1, 2} and is in fact equivalent to (Ad ε)B3−i(µ1, µ2). Therefore, using Proposi-
tion 2.3, Corollary 2.10, and Lemma 2.11, we find that B f (µ1, µ2) is the only nonzero
proper subrepresentation of ρ(µ1, µ2). �

2.5. Demonstrating equivalences. We have enumerated all irreducible admissible sub-
representations. Namely, as we vary quasi-characters µ1 and µ2, these representations
are the π(µ1, µ2) and σ(µ1, µ2) (when defined). It remains to identify when two such
representations are equivalent.

We start by showing that the claimed equivalences of Theorem 2.13(4) hold.
It remains to identify which of the principal series representations π(µ1, µ2) is equivalent

to which other π(µ′1, µ′2) and similarly for the special representations σ(µ1, µ2).

Proof of Theorem 2.13(4). First, we can see σ(µ1, µ2) is equivalent to σ(sgn µ1, sgn µ2) by
the second part of Corollary 2.10 using that the g representation ν1 on B1(µ1, µ2) is not
equivalent to the corresponding representation ν2 on B2(µ1, µ2) but ν1 is equivalent to
(Ad ε) ν2.

To conclude, it suffices to show π(µ1, µ2) is equivalent to π(µ2, µ1) and similarly
σ(µ1, µ2) is equivalent to σ(µ2, µ1). To show both of these equivalences, it suffices to
construct an operator T : B(µ1, µ2)→ B(µ2, µ1), nonzero on the given subrepresentation
(either π(µ1, µ2) or σ(µ1, µ2)) commuting with the action of (g, KR). Indeed, in this case,
the operator T will then restrict to an intertwining operator on the given subrepresenta-
tions.

Let φn denote the basis of B(µ1, µ2) from Definition 1.10 and φ′n the basis of B(µ2, µ1).
Because φn spans the n-eigenspace of ρ(U) and φ′n spans the n-eigenspace of ρ′(U), T must
take φn 7→ anφ′n for some an ∈ C.

Because T commutes with the operator ρ(V+), we see (s + 1 + n) an+2 = (−s + 1 + n) an.
Because T commutes with the operator ρ(V−), we see (s + 1− n) an−2 = (−s + 1− n) an.
Because T commutes with the operator ρ(ε), we see (−1)m2 an = (−1)m1 a−n.

We leave the remainder of the proof as a straightforward exercise in high school algebra:
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Exercise 2.15. Verify that these three conditions together determine uniquely the collection
of values an. Hint: It may help to separate into cases based on whether s − m is even
or odd, and then based on the sign of s. Essentially, you will find that for the smallest
nonzero irreducible subrepresentation of ρ, the an will be supported on the basis for that
subrepresentation. The third condition that (−1)m2 an = (−1)m1 a−n is mostly redundant
except in the case that s−m is odd and s > 0.

�

Remark 2.16. It is possible to give explicit formulas for the an in terms of the Γ function.
For example, when s−m is even, we can take

an =
Γ
(

1
2 (−s + 1 + n)

)
Γ
(

1
2 (s + 1 + n)

) .

2.6. Showing we have found all possible equivalences. Finally, we prove the Theo-
rem 2.13(5), completing the proof of the theorem.

Lemma 2.17. For quasi-characters µ1, µ2, µ′1, µ′2, π(µ1, µ2) is not equivalent to σ(µ′1, µ′2).

Proof. First, note that σ(µ′1, µ′2) is always infinite dimensional, so it is only possibly equiva-
lent to an infinite dimensional π(µ1, µ2). However, infinite dimensional π(µ1, µ2) always
have in for all integers n in the spectrum of the corresponding operator ρ(U), while ρ(U)
acting on σ(µ′1, µ′2) is always missing some in, for some n ∈ Z, from its spectrum. �

Proof of Theorem 2.13(5). We have already shown in Lemma 2.17, there are no equivalences
between π(µ1, µ2) and σ(µ′1, µ′2).

Let ν and ν′ denote two equivalent irreducible admissible representations with quasi-
characters µ1, µ2 for ν and µ′1, µ′2 for ν′ (so that either ν = π(µ1, µ2) or ν = σ(µ1, µ2) and
similarly for ν′). Let T denote the corresponding equivalence so that Tν(X) = ν′(X)T for
all X ∈ KR and X ∈ g. Let µi(t) = (sgn t)mi |t|si , µ′i(t) = (sgn t)m′i |t|s′i , s = s1 − s2, m =
|m1 −m2|, s′ = s′1 − s′2, m′ = |m′1 −m′2|. Let φn denote a basis for ν and φ′n a basis for ν′.

As a first step, we show m = m′. As shown in the proof of Theorem 2.13(4), T must send
the φn to anφ′n because φn and φ′n span the 1-dimensional eigenspaces with eigenvalue n.
By Lemma 1.11, and the fact that Tν(ε) = ν(ε)T, we see

an(−1)m′1 = a−n(−1)m1 .

Using the equivalence between π(µ1, µ2) and π(µ2, µ1) as well as the equivalence between
σ(µ1, µ2) and σ(µ2, µ1) we similarly find

an(−1)m′2 = a−n(−1)m2 .

Combining these two identities yields (−1)m1−m2 = (−1)m′1−m′2 so m = m′.
Next, using that Tν(D) = ν′(D)T, we find s2 − 1 = (s′)2 − 1 so s = ±s. Also using

Tν(J) = ν′(J)T, we find s1 + s2 = s′1 + s′2. These conditions imply {s1, s2} = {s′1, s′2} and
either {m1, m2} = {m′1, m′2} or {m1, m2} = {1−m′1, 1−m′2}. Phrased another way, we
have either {µ1, µ2} = {µ′1, µ′2} or {µ1, µ2} = {sgn µ′1, sgn µ′2}.

The only remaining equivalence to rule out is to show that π(µ1, µ2) is not equiva-
lent to π(sgn µ1, sgn µ2) = sgn⊗π(µ1, µ2). However, because π(µ1, µ2) is equivalent to
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(Ad ε)π(µ1, µ2), it follows π(µ1, µ2) is not equivalent to sgn⊗π(µ1, µ2) by Lemma 2.11,
as desired. �

3. IRREDUCIBLE COMPONENTS OF ρ(µ1, µ2) OVER C

We next describe the case that F = C. For the remainder of this section we work
over F = C. Retain the notation discussed at the beginning of § 1. That is, we let GC
denote GL2(C), KC := U(2), g := Lie(GC) viewed as a real Lie algebra, gC := g⊗R C,
and U denote the universal enveloping algebra of gC. Also, let ρn denote the unique
irreducible n + 1-dimensional representation of SU(2). Explicitly, this is given as follows.
We can identify the n + 1 dimensional complex vector space with degree n homogeneous
polynomials in two variables. Let these variables be denoted by the vector z, so z = (z1, z2).
Then, for p(z) ∈ ρn, M ∈ SU(2) acts by

(M · p)(z) := p(Mz).

The classification of irreducible admissible representations is, in many respects similar
to the case that F = R. However, some parts become slightly more complicated and
confusing for several reasons. The main reason is that we no longer have an explicit
basis of B(µ1, µ2) given by the functions φn (as although they are KR finite the φn are not
generally KC finite). Another reason for added confusion is that we view g as a real Lie
algebra, so when we complexify, we will have two different “actions of i”, one from the
complexification and one from the action of the multiplication by i matrix (which we call
J ) on gC. Admittedly this second issue does not require significant new ideas to deal
with, unlike the first issue which requires real ingenuity.

In what follows, we first state some notation in § 3.1. Then we state the main classification
theorem over F = C, Theorem 3.5 in § 3.3. Following this, we sketch a proof in § 3.3. Finally
provide a proof of [JL70, Lemma 6.1] in § 3.4, which is fairly elementary, but central to the
proof of Theorem 3.5.

3.1. Further notations for F = C. We introduce some further notations for F = C, analo-
gous to the case F = R.

Definition 3.1. Let µ1 and µ2 : C× → C× denote two continuous quasi-characters. Note
that any quasi-character can be written in the form

µi = (zz)
zai zbi

(zz)
1
2 (ai+bi)

.

with si ∈ C, ai ∈ Z≥0, bi ∈ Z≥0 and either ai = 0 or bi = 0. Let µ = µ1µ−1
2 and write µ in

the form µ = (zz) zazb

(zz)
1
2 (a+b)

with s ∈ C, a ∈ Z≥0, b ∈ Z≥0, and either a = 0 or b = 0.

Exercise 3.2. Verify that every quasi-character of C× can indeed be written in the above
form. Hint: A quasi-character of C× is determined by its values on R≥0 and the unit circle.
The value on R≥0 is determined by its value on a single number other than 1, as in the
real case. On the unit circle, the quasi-character must be given by raising to some integer
power.
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Definition 3.3. Let B (µ1, µ2) denote the space of complex valued functions f : GC → C
which are KC finite and satisfy the transformation property

f
((

a1 x
0 a2

)
g
)
= µ1(a1)µ2(a2)

∣∣∣∣ a1

a2

∣∣∣∣1/2

f (g).

Then, U acts on B(µ1, µ2) by right action ρ, defined as in Definition 1.7, see also Remark 1.8
for an explicit description of how elements of the Lie algebra act.

We let B(µ1, µ2; ρn) ⊂ B(µ1, µ2) denote the subspace such that B(µ1, µ2)|SU(2) lies in
the ρn isotypic component when viewed as a SU(2) representation.

3.2. The statement in the case F = C. We are ready to state the main classification
theorem for irreducible admissible representations of GC. This is quite similar in spirit to
the analogous classification of Theorem 2.13 of GR.

Remark 3.4. The following theorem statement is essentially taken from [JL70, Theorem
6.2], but we replace parts (iv)− (vi) there with the slightly more precise statement (iv)
below, and then number the following statement (vii) to match the corresponding one in
[JL70, Theorem 6.2(vii)].

Theorem 3.5. Let µ1, µ2, µ be as in Definition 3.1.
(i) Suppose µ is not of the form z 7→ zpzq or z 7→ z−pz−q for p ≥ 1, q ≥ 1. Then ρ(µ1, µ2) is

irreducible. We let π(µ1, µ2) denote such a representation.
(ii) Suppose µ is of the form z 7→ zpzq with p ≥ 1, q ≥ 1. Then,

Bs := ⊕ n≥p+q
n≡p+q mod 2

B(µ1, µ2; ρn)

is the unique proper stable subspace of B(µ1, µ2). We let σ(µ1, µ2) denote any representa-
tion equivalent to the restriction of ρ(µ1, µ2) to Bs(µ1, µ2) and let π(µ1, µ2) denote any
representation equivalent to the representation

B f (µ1, µ2) := B(µ1, µ2)/Bs(µ1, µ2)

induced by ρ(µ1, µ2).
(iii) Suppose µ is of the form z 7→ z−pz−q with p ≥ 1, q ≥ 1. Then,

B f := ⊕|p−q|≤n≤p+q
n≡p+q mod 2

B(µ1, µ2; ρn)

is the unique proper stable subspace of B(µ1, µ2). We let π(µ1, µ2) denote any representa-
tion equivalent to the restriction of ρ(µ1, µ2) to B f (µ1, µ2) and let σ(µ1, µ2) denote any
representation equivalent to the representation

Bs(µ1, µ2) := B(µ1, µ2)/B f (µ1, µ2)

induced by ρ(µ1, µ2).
(iv) The equivalences between the representations π and σ for varying quasi-characters are

precisely the following (i.e., there are no others)
(a) The representation π(µ1, µ2) is equivalent to π(µ′1, µ′2) if {µ1, µ2} = {µ′1, µ′2}.
(b) The representation σ(µ1, µ2) is equivalent to σ(µ′1, µ′2) if {µ1, µ2} = {µ′1, µ′2}.
(c) For some pair of quasi-characters ν1, ν2 with ν1ν−1

2 (z) = zpzq with p ≥ 1, q ≥ 1, we
have σ(ν1, ν2) is equivalent to π(ν′1, ν′2) if ν1ν2 = ν′1ν′2 and ν′1(ν

′
2)
−1 is either given

by z 7→ zpz−q or z 7→ z−pzq.
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(d) For some pair of quasi characters ν1, ν2 with ν1ν−1
2 (z) = z−pz−q with p ≥ 1, q ≥ 1,

we have σ(ν1, ν2) is equivalent to π(ν′1, ν′2) with ν1ν2 = ν′1ν′2 and ν′1(ν
′
2)
−1 either of

the form z 7→ zpz−q or z 7→ z−pzq.
(vii) Every irreducible admissible representation is equivalent to some π(µ1, µ2).

Remark 3.6. In the statement of Theorem 3.5, similarly to the real case in Theorem 2.13,
when ρ(µ1, µ2) is not irreducible, we use π(µ1, µ2) to denote the irreducible subquotients of
finite dimension and σ(µ1, µ2) to denote the irreducible subquotients of finite codimension.

3.3. Sketch of the proof of Theorem 3.5. We now describe the idea of proof of Theo-
rem 3.5. For a complete proof, we refer the reader to the well-exposited [JL70, Theorem 6.2].
Following this description, we provide a proof of [JL70, Lemma 6.1], which was omitted
from the original [JL70].

3.3.1. Proving (i), (ii), and (iii). We sketch a proof of (i), (ii), and (iii). For details we refer
the reader to [JL70, p. 112-114].

One first shows:

Fact 3.7 ( [JL70, Lemma 6.2.1]). If B(µ1, µ2) has a finite dimensional nonzero proper
subrepresentation, then that subrepresentation is B f (µ1, µ2) and µ1µ−1

2 is given by z 7→
z−pz−q for p ≥ 1, q ≥ 1.

The key ingredient here to show this is Proposition 3.22, stated and proven below
(corresponding to [JL70, Lemma 6.1(ii)]).

One next shows via explicit computations on the real Lie algebra of GL2(C):

Fact 3.8 ( [JL70, Lemma 6.2.2]). If V ⊂ B(µ1, µ2) is a nonzero proper invariant subspace
then either V contains a finite dimensional invariant subspace or else

V = ∑
n≥n0

B(µ1, µ2; ρn),

where n0 is the smallest value of k so that the subspace B(µ1, µ2, ρk) ⊂ B(µ1, µ2) is
nonzero.

Using the above two facts (corresponding to [JL70, Lemmas 6.2.1 and 6.2.2]) one can
employ the duality between B(µ1, µ2) and B(µ−1

1 , µ−1
2 ) where the pairing is explicitly

given by sending ( f1, f2) 7→
∫

KC
f1(κ) f2(κ)dκ. Indeed, suppose V is some proper invariant

subspace of B(µ1, µ2). By the first fact above, both B(µ1, µ2) and B(µ−1
1 , µ−1

2 ) cannot
contain a finite dimensional invariant subspace, and hence by the second fact, one of the
subspaces has finite codimension and the other has finite dimension. This shows that the
only possible invariant subspaces are B f and Bs in the various cases.

To conclude the proof of (i), (ii) and (iii) it suffices to show B f (µ1, µ2) and Bs(µ1, µ2)
are the only possible invariant sub and quotient spaces. By the duality mentioned above,
it suffices to verify this in the case of B f (µ1, µ2) with µ1µ−1

2 (z) = z−pq−q. One can then
explicitly compute that B f (µ1, µ2) is invariant using that we understand the restriction to
SU(2) via Proposition 3.22 below.
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3.3.2. Proving that the equivalences in (iv) are the only possible ones. We explain how to show
that the equivalences stated in (iv) are the only possible ones. Indeed, the proof of this part
is quite analogous to the proof of Theorem 2.13(4). In the real case, one uses the identities
given in Lemma 1.11. For the complex case, one uses analogous identities for central
elements of the complexification of the Lie algebra for GL2(C), as stated and proven below
in Proposition 3.13 and Proposition 3.17 (corresponding to [JL70, Lemma 6.1(i)]). For the
details, we refer the reader to [JL70, p. 114-115].

3.3.3. Explicit intertwiners in (iv). To complete the sketch of (iv), we explain why the
claimed equivalences between π’s and σ’s actually exist. For this, it suffices to produce
explicit intertwiners. Indeed, these are given by the operator M(s) defined by

(M(s) f )(g) :=
∫

C
f
((

0 −1
1 0

)(
1 x
0 1

)
g
)

dx.

Note that the dependence on s is given through f where f ∈ B(µ1, µ2), with s as in
Definition 3.1. In the real case, these are described in [Bum97, Equation (6.7) p. 227, ff.],
but the analogous statements carry over to the complex case.

Remark 3.9. In [God74, p. 2-13, lines 8-9], Godement remarks that someone should
explicitly construct the isomorphisms between σ(µ1, µ2) and π(ν1, ν2). The isomorphism
is given explicitly by the above intertwining operator.

This completes the proof sketch of (i)− (iv).

3.3.4. Proving (vii). This follows from the previous parts once we know every irreducible
admissible representation is indeed a subrepresentation of some B(µ1, µ2), which was
shown last time, see Theorem 1.12.

3.4. Proving [JL70, Lemma 6.1]. In the remainder of this section, we provide a proof of
[JL70, Lemma 6.1]. This was stated with only a brief indication of the proof in [JL70], and
the proof is fairly straightforward. Nevertheless, we include the proof for completeness.

Definition 3.10. Let J be the multiplication by i operator on g, defined by

J

(
a b
c d

)
=

(
ia ib
ic id

)
.

Remark 3.11. Letting g denote the Lie algebra of GL2(C) considered over the real numbers,
and gC := g⊗R C ' g⊕ ig its complexification. we obtain an isomorphism

L : g⊕ ig→ g⊕ g

X + iY 7→ (X + JY, X− JY) .

with J as defined above, see [Kna86, Proposition 2.5].
Then, under this identification, letting U1 denote the Lie algebra of g considered over the

reals, the universal enveloping algebra U of gC is identified with U1 ⊗U1 via extending
the map gC → g⊕ g to the corresponding universal enveloping algebras.

Definition 3.12. Let D and J be as in Definition 1.10 and define the elements of U , thought
of as elements of U1 ⊗U1, for U1 the universal enveloping algebra of GL2(C) under the



16 AARON LANDESMAN

identification of Remark 3.11

J1 := J ⊗ 1
J2 := 1⊗ J

D1 := D⊗ 1
D2 := 1⊗ D.

We next embark on a hefty computation to determine the action by ρ of the above
elements in Proposition 3.13 and Proposition 3.17

Proposition 3.13. The action ρ(J1) and ρ(J2) on B(µ1, µ2) is given by multiplication by the
scalars

ρ(J1) = s1 + s2 +
1
2
(a1 − b1 + a2 − b2)

ρ(J2) = s1 + s2 +
1
2
(b1 − a1 + b2 − a2)

Proof. We will compute ρ(J1), as the computation for ρ(J2) is completely analogous, and
has large overlap with the computation for ρ(J1). Under the identification of Remark 3.11
we have that J1, thought of as an element in g⊕ g, corresponds to the element 1

2 J + i
2J J,

where J is the multiplication by i operator defined in Definition 3.10. In order to continue
the proof, we state and prove two computational sublemmas.

Lemma 3.14. With notations as above, we claim that (J f )(g) = 2(s1 + s2) f (g).

Proof. To see this, we compute

(J f )(g) =
∂

∂t
f (getJ)|t=0

=
∂

∂t
f
(

g
(

et 0
0 et

))
|t=0

=
∂

∂t
f
((

et 0
0 et

)
g
)
|t=0

=
∂

∂t
µ1(et)µ2(et) f (g).

So, to conclude (J f )(g) = (s1 + s2) f (g), it suffices to verify

∂

∂t
µ1(et)µ2(et) = (s1 + s2)µ1(et)µ2(et),

as we can then reverse the above computation. Indeed,

∂

∂t
µ1(et)µ2(et) = (s1 + s2)µ1(et)µ2(et)

is easily obtained by plugging et into the definition of µi of Definition 3.1 and differentiating.
�

Lemma 3.15. With notations as above, we claim that ((J J) f )(g) = a1 − b1 + a2 − b2.
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Proof. Indeed, this follows from an analogous computation to the preceding lemma, using
that

J J =
(

i 0
0 i

)
and so

etJ J =

(
eit 0
0 eit

)
.

�

Putting the above two lemmas together, we have that J1 acts by multiplication by

ρ(J1) =
1
2

ρ(J) +
i
2

ρ(J J)

=
1
2

2(s1 + s2)−
i
2
· i (a1 − b1 + a2 − b2)

= s1 + s2 +
1
2
(a1 − b2 + a2 − b2) .

This concludes our calculation of ρ(J1).

Exercise 3.16. Verify ρ(J2) = s1 + s2 +
1
2 (b1 − a1 + b2 − a2) similarly, reusing many of the

above computations.

�

We next compute the action of D1 and D2. These are similar but slightly trickier because
Di live in the second homogeneous piece of the universal enveloping algebra.

Proposition 3.17. The action ρ(D1) and ρ(D2) on B(µ1, µ2) is given by multiplication by the
scalars

ρ(D1) =
1
2

(
s +

1
2
(a− b)

)2

− 1
2

ρ(D2) =
1
2

(
s +

1
2
(b− a)

)2

− 1
2

Proof. We will compute ρ(D1), as the computation for ρ(D2) is completely analogous, and
has large overlap with the computation for ρ(D1). Recall that in the universal enveloping
algebra of g we have

D = X+X− + X−X+ +
1
2

Z2 = 2X−X+ + Z +
1
2

Z2,

using the relation

[X+, X−] = Z

in the universal enveloping algebra.
Therefore, we will instead compute ρ((2X−X+ + Z + 1

2 Z2)⊗ 1). However, using that
D1 is central in the universal enveloping algebra, left action agrees with right action, and
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so

ρ((2X−X+ + Z +
1
2

Z2)⊗ 1) = λ

(
(2X−X+ + Z +

1
2

Z2)⊗ 1
)

= λ (2X−X+ ⊗ 1) + λ(Z⊗ 1) + λ

(
1
2

Z2 ⊗ 1
)

.

where λ denotes left action as defined in Definition 1.7 (instead of right action from ρ).
Note that under the identification of Remark 3.11 the element 2X−X+ ⊗ 1 corresponds to
X−X+ − iJ X−X+.

Lemma 3.18. We claim

λ(X−X+ − iJ X−X+) = 0.

Proof. To verify this, it suffices to check λ(X+) = 0. Indeed, we see

(λ(X+) f )(g) =
∂

∂t
f (e−tX+g)|t=0

=
∂

∂t
f
((

1 −t
0 1

)
g
)
|t=0

=
∂

∂t
f (g)

= 0.

�

So, it suffices to compute λ(Z ⊗ 1) + λ
(

1
2 Z2 ⊗ 1

)
. We see that under the identifica-

tion of Remark 3.11 Z ⊗ 1 corresponds to 1
2 Z − i

2J Z. Therefore 1
2 Z2 corresponds to(

1
2 Z− i

2J Z
)2

.

Lemma 3.19. We have

λ(Z) = −2s− 2

λ(J Z) = i(b− a).

Proof. To compute λ(Z), note

λ(Z) =
∂

∂t
f (e−tZg)|t=0

=
∂

∂t
µ1(e−t)µ2(et)

∣∣∣e−2t
∣∣∣1/2

f (g)|t=0

=
∂

∂t
e(−2s−2)t f (g)|t=0

= (−2s− 2)e(−2s−2)t f (g)|t=0

Exercise 3.20. Verify the analogous computation for λ(J Z).

�
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Plugging in the result of Lemma 3.19, we find

λ(Z⊗ 1) = λ

(
1
2

Z− i
2
J Z

)
= −(s + 1) +

1
2
(b− a) .

It follows

λ(
1
2

Z2 ⊗ 1) =
1
2

(
−(s + 1) +

1
2
(b− a)

)2

.

Therefore,

ρ(D1) = λ(D1)

= λ(2X−X+ ⊗ 1) + λ(Z⊗ 1) + λ(
1
2

Z2)

= 0− (s + 1) +
1
2
(b− a) +

1
2

(
−(s + 1) +

1
2
(b− a)

)2

=

(
s +

1
2
(a− b)

)2

− 1
2

,

as claimed. To simplify the algebra calculation above, one can use the identity (x− 1) +
1
2 (x− 1)2 = 1

2 x2 − 1
2 , taking x = −s + 1

2(b− a). This completes the computation of ρ(D1)

Exercise 3.21. Verify ρ(D2) =
1
2

(
s + 1

2 (b− a)
)2
− 1

2 similarly, reusing many of the above
computations.

�

Having computed the explicit actions of central elements in the universal enveloping
algebra, we next verify admissibility of the representations ρ(µ1, µ2).

Proposition 3.22. The representation ρ(µ1, µ2) is admissible. Furthermore, ρ(µ1, µ2)|SU(2) con-
tains ρn as a subrepresentation if and only if n ≥ a + b and n ≡ a + b mod 2 (with a, b as in
Definition 3.1) and in this case ρn occurs with multiplicity 1.

Proof. We wish to show

dim HomSU(2)(ρn, ρ(µ1, µ2)|SU(2)) = 1(3.1)

if and only if n ≥ a + b.
In particular, this will also prove ρ(µ1, µ2) is admissible because KC = U(2) is a semidi-

rect product of SU(2) with U(1) ' S1, and since S1 representations are completely de-
composable into 1-dimensional representations, if the restriction ρ(µ1, µ2)|SU(2) has finite
dimensional isotypic components the same will be true of ρ(µ1, µ2)|KC .

We proceed to prove Equation 3.1 Recall that by definition, ρ(µ1, µ2) is a representation
induced from the Borel BC up to GC. That is,

ρ(µ1, µ2) = IndG
B ((µ1 � µ2)⊗ ∆−1/2

B )
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where ∆B is the modulus character given by

∆B

((
α ∗
0 β

))
:=
∣∣∣∣βα
∣∣∣∣ .

Define the subgroup U(1) ⊂ SU(2) as those matrices of the form

U(1) :=
{(

α 0
0 α−1

)
: |α| = 1

}
.

Restricting to SU(2), and noting that SU(2) ∩ B = U(1) we see that

ρ(µ1, µ2)|SU(2) = IndSU(2)
U(1)

(
(µ1 � µ2)⊗ ∆−1/2

B

)
|U(1).

Therefore, by Frobenius reciprocity, we have

HomSU(2)(ρn, ρ(µ1, µ2)|SU(2)) = HomSU(2)

(
ρn, IndSU(2)

U(1)

(
(µ1 � µ2)⊗ ∆−1/2

B

)
|U(1)

)
= HomU(1)

(
ρn|U(1),

(
(µ1 � µ2)⊗ ∆−1/2

B

)
|U(1)

)
.

We can now compute the dimension of this last vector space. Although (µ1 � µ2)⊗
∆B|−1/2

U(1) may at first seem quite scareful, it is actually the down to earth quasi-character
given by (

(µ1 � µ2)⊗ ∆−1/2
B

)
|U(1)

((
α 0
0 α−1

))
= µ1(α)µ2(α

−1)
∣∣∣ α

α−1

∣∣∣1/2

= µ1(α)µ2(α
−1)

= αa−b

since |α| = 1. Therefore, the dimension of HomSU(2)(ρn, ρ(µ1, µ2)|SU(2)) is at most 1, and
equal to 1 if and only if a− b appears as an eigenvalue in the action of U(1) on ρn.

To conclude, we compute precisely when a− b appears as an eigenvalue. using our
explicit description of ρn. Namely, we can write any element v in the underlying vector
space of ρn as a polynomial

v =
n

∑
i=0

cixiyn−i.

The action of U(1) is given by(
α 0
0 α−1

) n

∑
i=0

cixiyn−i = ∑ ci(αx)i
(

α−1y
)n−i

= ∑ ciα
2i−nxiyn−i.

Hence, by inspection, the weights are −n,−n + 2,−n + 4, . . . , n (i.e., the range between
−n and n, increasing 2 at a time) with eigenvectors given by the n + 1 functions xiyn−i for
0 ≤ i ≤ n. This shows that a− b is weight if and only if −n ≤ a− b ≤ n. However, either
a = 0 or b = 0, and both are nonnegative. Hence, −n ≤ a− b ≤ n if and only if a + b ≤ n,
as desired. �
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