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Let k be a global field with adele ring A, G a connected reductive k-group, Z a maximal central
k-torus, and DG the derived group of G (equal to the commutator [G(k), G(k)] on the level of
k-points, but not necessarily for k-points). Multiplication defines a central k-isogeny:

Z ×DG→ G

Since this is an isogeny, this is surjective with finite kernel on k-points, but over the ring A this is
very far from true. Indeed, we’ll see that the image is very “thin” in the topological space G(A),
and that the kernel on A-points is compact but usually infinite. For example, µn(A) is certainly
infinite!

For example, let G = GLn. Then we have Z = Gm, i.e. the group of invertible diagonal
matrices. Furthermore G = Gmn (DG) and we therefore have G/DG ∼−→ Gm via the determinant
map. But the map Z(A)→ G(A)/(DG)(A) is the map A× → A× sending t to tn; so the kernel
is µn(A) and the image is the set of n-th powers, which is certainly “thin”.

Remark 1. For a parabolic k-subgroup P ⊆ G, it is however always true that G(A)/P (A) →
(G/P )(A) is a homeomorphism, and the target is compact. Note that here we’re using the fact that
we have an adelic topology on X(A) for non-affine schemes X . Roughly, this works because the
same is true on field-valued points, which is part of the structure theory of reductive groups.

Note that in general, if H ⊆ G is a subgroup, we have an injection of groups G(R)/H(R) ↪−→
(G/H)(R) for all k-algebras R, but this is often far from surjective, due to a cohomological
obstruction. Sometimes, we can show this obstruction vanishes at least when R is a field via
Hilbert’s Theorem 90. For example, this occurs if H is a split torus (which easily follows from the
classical Hilbert 90, which is for H = Gm).

In automorphic calculations, one often uses the adelic double coset space:

G(k)\
(
G(A)/Z(A)

)
Does this have a nice topology or measure? A basic question, discussed below, is this: does G(k)
have discrete image in G(A)/Z(A)?

Lemma 2. A connected reductive group G is “algebraically unimodular”, which means that the
left-invariant global top-degree differential forms are also right invariant. Equivalently, the algebraic
modulus character χG : G→ Gm is trivial1. This implies (with additional work, such as the analytic
inverse function theorem and formulation of the relationship between measures and differential
forms over local fields), that for global fields k the topological group G(A) is unimodular in the
topological group sense (i.e. the left and right Haar measures agree), and that the same is true for
G(kv) for any place v of k.

1See [1, §4.2] for the definition and properties of the invariant differential forms and the modulus character for
algebraic groups.
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Proof. This follows from the fact that G = Z ·DG with Z central and DG killed by any character,
so χG|Z and χG|DG both vanish and thus χG vanishes.

Remark 3. There is a canonical measure on G(Ak), called the Tamagawa measure. How does this
work? Via an invariant top-degree differential form G, we get a measure on G(kv) for each local
field v; via the implicit function theorem for kv-analytic manifolds this measure is induced from the
measure on kv determined by the normalized valuation. But in order to build a measure on G(Ak),
we need to pick normalizing factors to make the infinite product converge. We can try to do this via
an integral structure of G over Ok,S , normalizing to make the measure of G(Okv) equal to 1, but
this is not sufficiently canonical (for example, G does not have a preferred smooth model over some
Ok,S) to expect it to have good properties. The actual construction is more complicated. In any case,
for our purposes, it suffices to work with any given Haar measure.2

Up to scaling, there is a unique right-invariant measure satisfying reasonable regularity properties
on any locally compact Hausdorff topological group, a construction of which for G(A) was
described above. See [5]. This induces a measure on G(k)\G(A)/Z(A) in accordance with (a
version of) Fubini’s Theorem3. What can we say about this? Does it have finite volume? Is it
compact?

Lemma 4. The image of the natural map G(k)→ G(A)/Z(A) is discrete.

Proof. Consider the diagram

G(k)/Z(k) //
� _

��

G(A)/Z(A)

α

��

(G/Z)(k) // (G/Z)(A)

It will be enough to show that α is a closed embedding, since (G/Z)(k) is discrete in (G/Z)(A)
(this just follows from discreteness of k in A via the definition of the topology on the adelic points
of G/Z).

By some general considerations about topological group actions, as developed in Bourbaki, it
suffices to show that the image of α is closed. To do this, we can first spread out the situation to
Z ↪−→ G with Z ,G each Ok,S-group schemes with connected fibers.

Now, we have, as in Weil’s approach to defining the adelic topology on adelic points of schemes:

(G/Z)(A) =
⋃
S′⊇S

∏
v∈S′

(G/Z)(kv)×
∏
v∈S′

(G /Z )(Ov)


We can apply a theorem of Lang about the existence of kv rational points, plus the fact that Ov is
henselian to see that ∏

v∈S′

(G /Z )(Ov) =
∏
v 6∈S′

G (Ov)/Z (Ov)

2For discussion and proofs of some of these statements, look at [8, Lecture 3], which in turn draws from [6].
3See [4]. However, Lang’s version of “coset Fubini” is for continuous compactly supported functions; typically, one

is interested in more general L1 functions, so you need to take a limit to extend the result to this case.
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If ξ = (ξv)v ∈ (G/Z)(Ak) ⊆
∏

v(G/Z)(kv) has ξv ∈ im(G(kv)) for all v, then ξ is in the image
of G(Ak). Thus, it suffices to show that G(kv)→ (G/Z)(kv) has closed image for each v. Now,
since Z is smooth, G→ G/Z is smooth, so by the Zariski-local structure theorem for smooth maps
and the analytic inverse function theorem, G(kv) → (G/Z)(kv) is a kv-analytic submersion. In
particular, the image is an open subgroup and therefore closed.

Let S ⊆ Z be a maximal k-split sub-torus, which is equivalently described by the maximal split
central k-torus in G. Then we can define G := G/S, and its maximal central torus is ⊇ Z/S =: Z,
which is anisotropic. Since this might not be trivial, G is not semisimple yet, but at least it has
no characters: as we saw before, characters of a connected reductive group are the same thing as
characters of its central torus, and anisotropic tori have no characters. In other words, Xk(G) = {1}.

By applying Hilbert’s Theorem 90 plus some additional care, we can see that:

G(k)\G(A)/Z(A) ' G(k)\G(A)/Z(A)

and this isomorphism respects the topology and the measures. In order to see why this should be
true, note that Z(A) ⊇ S(A) ⊇ S(k).

Here is a useful feature of the anisotropic situation with G replaced by G:

Proposition 5. Z(k)\Z(A) is compact.

This follows from the fact that Z is k-anisotropic. To show this for any k-anisotropic torus, one
shows that the compactness is unaffected by passing to a k-isogenous torus, and then use arguments
with Galois lattices reduce to the case where the anisotropic torus is the kernel of the norm map
Nk′/k : Rk′/k (Gm)→ Gm for a finite separable extension k′/k.

Since Z(k)\Z(A) is compact, the volume-finiteness of G(k)\G(A)/Z(A) is equivalent to the
volume-finiteness of G(k)\G(A).

Example 6. LetG = SLn and k = Q. Since SLn is semisimple,G = G here. Does SLn(Q)\SLn(A)

have finite volume? Since SLn(Ẑ) is compact and open in the finite adelic part SLn(Af ), the volume-
finiteness of this space amounts to showing the volume-finiteness of SLn(Q)\SLn(A)/SLn(Ẑ),
which is isomorphic to SLn(Z)\SLn(R). We discussed this last bijection last time via strong
approximation for SLn; it is easily seen to be a homeomorphism, and respects the measures of
interest up to a scaling factor.

In [7, Theorem 10.4] one finds the classical volume computation of the “Z-structure measure”
of SLn(Z)\SLn(R) as V = ζ(2)ζ(3) · · · ζ(n).

The volume-finiteness for the double-coset spaces will be useful in many places later on: for
example, on a space with finite measure, any L2 function is L1. In order to avoid the problems
arising from the presence of non-trivial characters, we’ll introduce the following variant of G(A):

Definition 7.
G(A)1 =

{
g ∈ G(A) |

∣∣χ(g)∣∣ = 1 ∀χ ∈ Xk(G)
}

Note that G(k) ⊆ G(A)1 by the product formula. In addition, the formation of G(A)1 is
functorial in G: if G1 → G2 is a homomorphism, then any character of G2 pulls back to a character
of G1.
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Example 8. • If Xk(G) = 1, then G(A)1 = G(A), so in particular G(A)1 = G(A).

• On the other extreme, if G = Gm, note that G(k)\G(A) is certainly non-compact due to the
fact that the norm map has image R+. However, it’s a classical theorem of algebraic number
theory that G(k)\G(A)1 = k×\(A×)1, i.e. the group of norm-one idéles, is compact.

Proposition 9. If Xk(G) 6= 1, then G(k)\G(A) has infinite volume.4

Proof. The existence of characters implies that we have a non-trivial maximal central split k-torus
S ⊆ G. Let G = G/S, so

G(k)\G(A) −� G(k)\G(A)

is a fibration with fibers isomorphic to S(k)\S(A)5, and S(k)\S(A) =
(
k×\A×

)n for some n,
which has infinite volume. This fibration is compatible with the algebraic invariant differentials,
since detTe(G) = detTe(G) ⊗ detTe(S). Thus, we can run a Fubini argument to show that the
total space has infinite volume. In other words, if 1 ∈ L1

(
G(k)\G(A)

)
then we can deduce that

1 ∈ L1
(
S(k)\S(A)

)
, which is a contradiction.

Now, we want to focus on [G] := G(k)\G(A)1 and characterize when this has finite volume
or is compact. Note that formation of [G] is functorial in G since G(A)1 is. This helps with our
original problem, since [G] = G(k)\G(A)1. So if we show that [G] has finite volume or is compact,
the same is true for G(k)\G(A)/Z(A).

Theorem 10. For H1 ↪−→ H2 a closed immersion of linear algebraic k-groups, then [H1]→ [H2]
is a closed embedding.

Returning to our “puzzle” from the end of the last lecture, let’s show that we can’t drop the (·)1
aspect:

Proposition 11. Let B be a Borel k-subgroup of PGL2. The natural continuous injective map
B(k)\B(A)→ PGL2(k)\PGL2(A) is not a topological embedding.

It is a purely formal consequence of general facts concerning orbits of locally compact Hausdorff
groups on locally compact Hausdorff spaces (see [2, Theorem 4.2.1]) that failure to be a topological
embedding forces the image to be non-closed, but in Remark 12 we show more directly that the
image of this map is also not closed.

Proof. Using inversion on adelic points, it is the same to show that the natural continuous map

B(A)/B(k)→ PGL2(A)/PGL2(k)

is not a topological embedding. Define B(A) ×B(k) PGL2(k) to be the topological quotient of
B(A) × PGL2(k) (where PGL2(k) is given the discrete topology) by the equivalence relation

4This implies that it’s non-compact, but it’s better to give a direct proof of non-compactness.
5This is plausible but not obvious, since this coset space is not a group! See [2, Lemma A.2.1]
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(xb, y) ∼ (x, b−1y) for b ∈ B(k) and (x, y) ∈ B(A) × PGL2(k). It is easy to check via the
discreteness of the topology on PGL2(k) that the commutative diagram of continuous maps

B(A)×B(k) PGL2(k) //

pr1
��

PGL2(A)

��

B(A)/B(k) // PGL2(A)/PGL2(k)

(with the top map induced by multiplication) is cartesian; i.e., the upper left term is identified with
the topological fiber product along the bottom and right maps. Hence, if the bottom map were a
topological embedding then the top map would be too.

It therefore suffices (for an argument by contradiction) to show that the natural map

B(A)×B(k) PGL2(k)→ PGL2(A)

is not a topological embedding. Suppose this were a topological embedding. Then the same would
hold for the quotient throughout by the left B(A)-action, which is exactly the map

B(k)\PGL2(k)→ B(A)\PGL2(A)

where the left side is discrete. But the target is topologically P1(A) by [3, Theorem 4.5] (going
beyond the affine setting!), so we’re reduced to checking that the natural inclusion

P1(k)→ P1(A)

with countably infinite discrete source and compact Hausdorff target is not a topological embedding.
In general a compact Hausdorff space can have infinite non-closed subsets whose subspace topology
is the discrete topology, such as {1, 1/2, 1/3, 1/4, . . . } inside [0, 1], so to get a contradiction we
need more information about our specific situation. Fortunately, [3, Example 4.3] provides what
we need: it gives a proof that Pn(k) is dense in Pn(A) (using S-integral weak approximation for
adele rings), and that argument shows more specifically that any open around any point of Pn(A)
contains infinitely many points of Pn(k). Thus, the subspace topology on Pn(k) is not the discrete
topology.

Remark 12. The non-closedness of the image of the map in the preceding proposition can be
seen directly as follows. We want to show that PGL2(k) · B(A) → PGL2(A) has non-closed
image. Since P1(k) is not closed (it is even dense) in P1(A), we can pick a sequence {ξn} in P1(k)
converging to ξ ∈ P1(A)− P1(k). Pick g ∈ PGL2(A) over ξ and γn ∈ PGL2(k) over ξn. Note
that g 6∈ PGL2(k) · B(A) since ξ 6∈ P1(k). Since P1(A) = PGL2(A)/B(A) with the quotient
topology, we can find points bn ∈ B(A) such that gnbn → g as n → ∞. This exhibits explicitly
that PGL2(k) ·B(A) is not closed in PGL2(A).
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1990.

5



[2] Brian Conrad, Finiteness theorems for algebraic groups over function fields, Compositio Mathematica 148 (2012),
no. 2, pp. 555 - 639.

[3] , Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012), no. 1-2, 61–97.

[4] Serge Lang, Real and functional analysis, 3rd ed., Graduate Texts in Mathematics, vol. 142, Springer-Verlag, New
York, 1993.

[5] Leopoldo Nachbin, The Haar integral, Robert E. Krieger Publishing Co., Huntington, N.Y., 1976. Translated from
the Portuguese by Lulu Bechtolsheim; Reprint of the 1965 edition.
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