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1. Cuspidal automorphic representations

Let k be a global field and G a connected reductive group over k. Recall that the cuspidal
L2-spectrum of G decomposes discretely:

Theorem 1.1 ([Howe1], [Howe2]). There is a decomposition

L2
cusp(G(k)\G(Ak), ω) ∼=

⊕̂
i

Vi.

with the Vi being topologically irreducible, closed subrepresentations, with each isomorphism
type appearing with finite multiplicity.

One of the main goals of this talk is to prove that for G = GL2, each isomorphism type
appears with multiplicity one.

Theorem 1.2 (Multiplicity One for L2). Every irreducible component of L2
cusp(GL2(k)\GL2(Ak), ω)

has multiplicity one, i.e. is not isomorphic to any other irreducible component.

We will approach this theorem by passing to the associated admissible automorphic rep-
resentation. Recall that A(G,ω) denotes the space of automorphic forms on G, meaning
smooth functions φ : G(A)→ C such that:

(1) φ has central character ω,
(2) φ is right K-finite,
(3) φ is Z(U(g))-finite,
(4) φ has moderate growth at the cusps.

We let Acusp(G,ω) := A(G,ω) ∩ L2
cusp(G(F )\G(A), ω).

Theorem 1.3 ([Ngo] Theorem 5.4.4). Let π be an irreducible G(A)-invariant subspace of
L2(G(F )\G(A), ω). Then π ∩ A(G,ω) is an irreducible admissible G(A)-representation.
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Remark 1.4. Recall that to say that π ∩ A(G,ω) is a “G(A)-representation” is really an
abuse of notation. Really it is a module over the global Hecke algebra, so it has an action of
G(kv) for every non-archimedean v and the structure of a (g,K)-module at the archimedean
places.

It is easy to deduce from this that π 7→ π∩A(G,ω) defines a bijection between irreducible
summands of the Hilbert space L2

cusp(GL2(k)\GL2(Ak), ω) and irreducible summands of
Acusp(G,ω), whose inverse is obtained by taking the closure. Theorem 1.2 then follows
from:

Theorem 1.5 (Multiplicity One). Let (π, V ) and (π′, V ′) be two irreducible admissible
subrepresentations of Acusp(GL2(k)\GL2(Ak), ω). If π ∼= π′, then V = V ′.

We will in fact prove a stronger version of Theorem 4.1, namely that it is enough to have
local isomorphisms at all but finitely many places. To formulate this, recall Flath’s Theorem
on decomposing irreducible admissible representations as a restricted tensor product:

Theorem 1.6 (Flath). Let (π, V ) be an irreducible admissible automorphic representation
of G(Ak). Then we have

(π, V ) ∼=
′⊗
v

(πv, Vv)

for irreducible admissible representations (πv, Vv) of G(kv).

Theorem 1.7 (Strong Multiplicity One). Let (π, V ) and (π′, V ′) be two irreducible admissi-
ble subrepresentations of A0(GL2(k)\GL2(Ak), ω). Assume that πv ∼= π′v for all but finitely
many non-archimedean v. Then V = V ′.

In this talk, we will only prove Theorem 1.7 under the hypothesis that πv ∼= π′v at all
archimedean places.

Remark 1.8. For almost all v the representation πv will be unramified, hence described in
a straightforward way from its Hecke eigenvalues.

Remark 1.9. These theorems remain true with GL2 replaced by GLn. However, they fail
in greater generality (e.g. for G = Sp2g).

These notes are concerned with the proof of Theorem 1.7, and will proceed as follows.
(1) We will begin by introducing the notion of the “Fourier expansion” of an automorphic

form. We will find that the “coefficients” of the Fourier expansion define a certain
“Whittaker functional”, which is a concept that you already met a long time ago.

(2) We will state a local uniqueness theorem for Whittaker functionals, and deduce a
global uniqueness theorem.

(3) We will conclude Theorem 4.1 from the uniqueness of global Whittaker functionals.
We will indicate partial progress towards Theorem 4.1.

(4) We will return to discuss the proof of the uniqueness of local Whittaker functionals
in the non-archimedean case (the archimedean case having been handled already in
[Tsai1]).

2. The Fourier expansion of a cusp form

Let π be a cuspidal automorphic representation for GL2. Fix g ∈ GL2(A) and ϕ ∈ π,
and consider the function

ϕg(x) := ϕ

((
1 x
0 1

)
g

)
: k\Ak → C.
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By Fourier analysis on locally compact abelian groups, noting that k\Ak is actually compact,
we have

ϕg(x) =
∑

ψ∈k̂\Ak

ϕN,ψ(g)ψ(x), (2.1)

where

ϕ̂N,ψ(g) :=

∫
k\Ak

ϕ

((
1 u
0 1

)
g

)
ψ(−u)du.

We can simplify this as follows. By fixing a basepoint ψ0, we obtain an isomorphism
k̂\Ak

∼= k by identifying λ ∈ k with the character ψλ : x 7→ ψ0(λx). (A good analogy is that
k\Ak

∼= Z\R.) In these terms, we have

ϕN,λψ0(g) =

∫
k\Ak

ϕ

((
1 u
0 1

)
g

)
ψ0(−λu)du.

The cuspidality of ϕ implies that the “constant” Fourier coefficient ϕN,1, corresponding to
the trivial character, vanishes. Therefore, we may restrict our attention to λ 6= 0. Then we
may we implement a change of variables λu 7→ u. Since λ ∈ k, the product formula implies
that this actually preserves the Haar measure. It takes the argument of ϕ to(

1 u
0 1

)
7→
(

1 uλ−1

0 1

)
=

(
λ−1

1

)(
1 u
0 1

)(
λ

1

)
.

Hence by left invariance of ϕ, we have

ϕN,λψ0
(g) =

∫
k\Ak

ϕ

((
1 u
0 1

)
g

)
ψ0(−λu)du =

∫
k\Ak

ϕ

((
1 u
0 1

)(
λ

1

)
g

)
ψ0(−u)du.

Setting x = 0 in (2.1), we have proved:

Theorem 2.1. For a cuspidal automorphic form ϕ, we have the Fourier expansion

ϕ(g) =
∑
λ∈k×

∫
k\Ak

ϕ

((
1 u
0 1

)(
λ

1

)
g

)
ψ0(−u)du.

Remark 2.2. What happens in general? We used a special feature of GL2 here, namely that
the unipotent radical N of a Borel is abelian. We used this in applying Fourier analysis,
which only detects functions on abelian groups. In general, you might expect that the
Fourier coefficients of ϕ only carry information about the abelianization of N .

However, for GLn this can be salvaged using the mirabolic subgroup

Pn =

(
GLn−1 ∗

0 1

)
⊂ GLn,

which can be viewed as the stabilizer of a vector in the standard representation. We induc-
tively prove that

f(g) =
∑

γ∈Nn−1(Q)\GLn−1(Q)

fN,ψ0

((
γ 0
0 1

)
g

)
.

Note that Pn = GLn−1 × Un. By Fourier analysis on Un, we have

f(g) =
∑

γ∈Pn−1(Q)\GLn−1(Q)

fUn,ψ0
(γg). (2.2)
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Now, viewing γ 7→ fUn,ψ0(γg) as a function on GLn−1(A), we can apply the induction
hypothesis to conclude that

fUn,ψ0(γg) =
∑

η∈Nn−2(Q)\GLn−2(Q)

(fUn,ψ0)Nn−1,ψ0(ηγg). (2.3)

Combining (2.2) and (2.3), we find that

f(g) =
∑

γ∈Pn−1(k)\GLn−1(k)

∑
η∈Nn−2(k)\GLn−2(k)

∫
[Un]×[Nn−1]

f(uηγg)ψ0(−u) du

=
∑

γ∈Nn−1(k)\GLn−1(k)

∫
Nn

f(uγg)ψ0(−u) du

Let’s summarize what has happened in this section. We have associated to ϕ ∈ π and
g ∈ G(A) a “Fourier coefficient”

ϕN,λψ0
(g) :=

∫
k\Ak

ϕ

((
1 u
0 1

)(
λ

1

)
g

)
ψ0(−u)du.

Focus on the case λ = 1. We can view ϕ 7→ ϕN,ψ0
as a map V → Fun(G(A),C) which has

the property that replacing g by
(

1 x
0 1

)
g transforms it as

ϕN,ψ0

((
1 x
0 1

)
g

)
=

∫
k\Ak

ϕ

((
1 u
0 1

)(
1 x
0 1

)
g

)
ψ0(−u)du

=

∫
k\Ak

ϕ

((
1 x+ u
0 1

)
g

)
ψ0(−x− u)ψ0(x)du

= ψ0(x)ϕN,ψ0
(g)

In other words, we obtain a map

V → FunN(A)(G(A), (C, ψ0)).

Definition 2.3. Let ψ be a nondegenerate character of N(A). A (global) Whittaker model
for V is a subrepresentation of FunN(A)(G(A), (C, ψ)) which is isomorphic to V , consisting
of functions f with moderate growth, i.e. such that

f

((
x 0
0 1

))
= O(|x|−T ) for all T.

Note that this definition forces the Whittaker model to also have central character ω.

To check that ϕ 7→ ϕN,ψ defines a Whittaker model, it only remains to explain why ϕN,ψ
has moderate growth. But since ϕN,ψ is obtained from ϕ by integrating against a character
over a compact set, this follows immediately from the fact that ϕ has moderate (even rapid,
since we assumed cuspidality) growth.

Corollary 2.4 (Global existence of Whittaker models). A cuspidal automorphic represen-
tation of GLn(A) has a Whittaker model.

Remark 2.5. We emphasize again that this fact is specific to GLn.

Remark 2.6. Note that by Frobenius reciprocity, a Whittaker model induces an N(A)-
equivariant map V → (C, ψ).
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3. Uniqueness of Whittaker models

3.1. Non-archimedean case. We’ll recall some results stated earlier, and defer their
proofs to later. In this section K is a non-archimedean local field. Fix a non-trivial additive
character ψ of K, and view it as a character of N(K) in the obvious way. We will choose a
model for the induced representation Ind

G(K)
N(K) ψ:

Ind
G(K)
N(K) ψ = {f ∈ C∞(G(K),C) | f(ng) = ψ(n)g}.

Definition 3.1. Let (π, V ) be an irreducible admissible representation of G(K). A (local)
Whittaker model for π is subspace of Ind

G(K)
N(K) ψ which is isomorphic to π.

Remark 3.2. A Whittaker model is the same as a non-zero map in

HomG(K)(V, Ind
G(K)
N(K) ψ) = HomN(K)(V, ψ)

by Frobenius reciprocity. An element of the latter space is called a Whittaker functional.

Theorem 3.3 (Local uniqueness of Whittaker models). Let (π, V ) be an irreducible admis-
sible representation of G(K). Then (π, V ) has at most one (local) Whittaker model, i.e. any
two Whittaker functionals on V are proportional.

Remark 3.4. This result holds in great generality (i.e. whenever it makes sense).

Definition 3.5. Let (π, V ) be an irreducible admissible representation of G(K). We say
that (π, V ) is generic if it admits a local Whittaker model.

3.2. Archimedean case. In the archimedean case, it is necessary to pose some growth
conditions. Let (π, V ) be an irreducible admissible representation of HG(K).

Definition 3.6. A Whittaker model is a space of functions

{Wξ : G(K)→ C : ξ ∈ V }

such that

(1) Wξ

((
1 x

1

)
g

)
= ψ(x)Wξ(g),

(2) Each Wξ is C∞ and Wπ(X)ξ = Wξ ∗ X̌.
(3) For each ξ ∈ V , there exists T such that

Wξ

(
a 0
0 1

)
= O(|a|T ) as |a| → ∞.

Theorem 3.7 (Local uniqueness of Whittaker models). Let (π, V ) be an irreducible admis-
sible representation of G(K). Then (π, V ) has at most one (local) Whittaker model, i.e. any
two Whittaker functionals on V are proportional.

Proof. The proof was covered in [Tsai1]. �

3.3. Global uniqueness. Using local uniqueness for Whittaker models, we can deduce
global uniqueness.

Theorem 3.8 (Global uniqueness for Whittaker models). Let (π, V ) be an irreducible cusp-
idal automorphic representation of GL2. If (π, V ) has a Whittaker model, then it is unique.
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Proof. Let W be a Whittaker model for (π, V ), so W is generated by Wξ for ξ ∈ V . With
respect to a decomposition V ∼=

⊗′
Vv, we may assume that there exists a pure tensor

ξ0 = (⊗ξ0v) such that Wξ0(e) 6= 0 since Wξ0(g) = Wg·ξ0(e). (This requires a bit of care at
the Archimedean places, since there we do not get an action of G(k∞).)

For ξS = (ξv)v∈S ∈ ⊗v∈SVv define ιS(ξS) = (ξv) ⊗ (ξ0w 6=v) ∈ V . Similarly, for gS =

(gv)v∈S ∈
∏
v∈S G(kv) define ιS(gS) ∈ G(Ak).

Define a representation Wv of G(kv) which is generated by Wξv (gv) := Wι(ξv)(ιv(gv))
as ξv ranges over Vv. This is easily checked to be a Whittaker model for Vv. By our
normalization, we have Wξ0v

(1) = 1. Then the restricted tensor product ⊗′Wv is defined
(with respect to the Wξ0v

), and we claim that∏
Wξ0v

(gv) = Wξ0(g). (3.1)

We first prove the claim for all g ∈ GL2(Ak,S) by induction on |S|. Picking w ∈ S and
fixing ξ0v , gv for v /∈ S, both sides define Whittaker models for Vw (as ξw varies and the
result is viewed as a function of gw), hence the functions in question are proportional. The
constant of proportionality can be computed by taking gw = e, where we find that it is∏
v 6=wWξ0v

(gv) by the induction hypothesis. This completes the case where g ∈ G(Ak,S) for
some finite set S.

Now a general (gv) ∈ G(Ak) has the property that gvξ0v = ξ0v for all but finitely many v,
so we may replace gv by e to reduce to the case already proven; the claim (3.1) follows.

We conclude that the vector Wξ0 (which is obviously non-zero since it evaluates to 1 on
e) is common to W and

⊗′
Wv within Ind

G(A)
N(A) ψ. Hence these two (irreducible!) repre-

sentations must coincide for any Whittaker model W . But the Wv were unique by local
uniqueness, proving the result.

�

4. Multiplicity One

We first prove a weaker version where we demand an isomorphism at all local places.

Theorem 4.1 (Weak Multiplicity One). Let (π, V ) and (π′, V ′) be two irreducible admissible
subrepresentations of A0(GL2(k)\GL2(Ak), ω). Assume that πv ∼= π′v for all v. Then
V = V ′.

Proof. As discussed in §2, the Fourier coefficient corresponding to ψ furnishes non-vanishing
Whittaker models on V and V ′. By Theorem 3.8 these Whittaker models coincide; call the
common Whittaker model W .

The assumption gives an abstract isomorphism θ : V → V ′. Let ϕ ∈ V and ϕ′ = θ(ϕ).
We have the diagram (by uniqueness of Whittaker models)

V V ′

W

θ
∼

ϕ7→ϕN,ψ
∼

ϕ′ 7→ϕ′N,ψ

∼

By irreducibility of W the images of ϕ and ϕ′ in W must be proportional, so the Fourier
expansions are proportional. Hence we find that every ϕ ∈ V lies in V ′ and vice versa, so
they are the same space. �

To proceed to the proof of the strong Multiplicity One theorem, we now assume that
πv ∼= π′v for all v outside a finite set S of places, excluding all the archimedean places.
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Remark 4.2. The assumption on Archimedean places is unnecessary. After we develop the
theory of L-functions attached to automorphic representations, we’ll be able to give a proof
of the full strong Multiplicity One Theorem.

It will suffice to produce a single non-zero function common to V and V ′, which we will
do by writing a Fourier expansion. Since πv ∼= π′v outside S, they have the same Whittaker
model Wv and we pick a function fv ∈ Wv which is required to be the spherical function
normalized to value 1 on Kv if Wv is spherical.

For the v ∈ S, we haveWv,W
′
v ⊃ C∞c (k×v ) by the theory of the Kirillov model. Therefore,

we can choose fv, f ′v to agree on
(
k×v

1

)
. Set f =

⊗
fv, f ′ =

⊗
f ′v. Then we have the

Fourier series

ϕ(g) =
∑
a∈k×

f

((
a 0
0 1

)
g

)
ϕ′(g) =

∑
a∈k×

f ′
((

a 0
0 1

)
g

)
By construction, ϕ and ϕ′ agree on G(k)G(k∞)B(A)K, so it will suffice to see that

G(k)G(k∞)B(A)K = G(A). (4.1)

We’ll deduce this from Strong Approximation, which implies that SLn(k) SLn(k∞) is dense in
SLn(Ak), hence in turn that SLn(k) SLn(k∞)U = SLn(Ak) for any open compact subgroup
U ⊂ SLn(Ak). Consider the short exact sequence

1→ SLn(A)→ GLn(A)→ A× → 1.

Strong approximation implies that G(k)G(k∞)B(A)K ⊃ SLn(A). On the other hand, B(A)
surjects onto A×, so we deduce (4.1). �

Exercise 4.3. Formulate and prove an analogous statement over global function fields. If
you are familiar with Weil’s interpretation of adeles in terms of BunG, give a direct geometric
proof that

B(k)\B(A)/U ∩B(A)
∼−→ B(k)\G(A)/U

which implies (4.1).

�

5. Proof of uniqueness of local Whittaker models

5.1. Toy case: finite fields. Let’s momentarily consider the toy case of finite fields. We
want to argue that every representation in Ind

G(Fq)

N(Fq)
ψ shows up with multiplicity one. By

an elementary exercise (which appeared on a recent qualifying exam!), this is equivalent to
showing that

HomG(Fq)(Ind
G(Fq)

N(Fq)
ψ, Ind

G(Fq)

N(Fq)
ψ)

is commutative. By Mackey Theory, this coincides with the Hecke algebra

C[N,ψ\G/N,ψ] = {∆: G→ C : ∆(ngn′) = ψ(n)∆(g)ψ(n′)}.

So we need to prove that C[N,ψ\G/N,ψ] is commutative.
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Let’s write down double coset representatives for N\G/N . We know from Bruhat de-
composition that

B\G/B =

(
1

1

)
∪
(

1
1

)
.

Therefore

N\G/N =
⋃

a,b∈F×q

(
a

b

)
∪

⋃
a,b∈F×q

(
b

a

)
.

We seek functions ∆: G→ C such that

∆(ngn′) = ψ(n)∆(g)ψ(n′).

We can define ∆ separately on each double coset by specifying its value on a representative,
but the condition of being well-defined is that ∆ annihilate the stabilizer.

It is easy to check by hand that

StabN×N

((
a

b

))
=

{(
1 x

1

)
,

(
1 y

1

)
: ax = by

}
.

If a 6= b, then x 6= y so that ψ is forced to annihilate such a double coset.

Exercise 5.1. Show more abstractly that the stabilizer in N×N of NgN is N∩g−1Ng. Use
this to give a proof of the above fact without doing any computations with 2× 2-matrices.

Now, to show commutativity we will use Gelfand’s trick: we will write down an anti-
involution that preserves the space in question. Indeed, let w0 = ( 1

1 ) and define the
anti-involution

ι(g) = w0g
tw−10 .

By inspection, ι preserves N and the double cosets that have not been ruled out.

Exercise 5.2. Why doesn’t this proof work over local fields?

5.2. Proof for non-archimedean local fields. We’ll take as our starting point:

Proposition 5.3. Let V be an admissible irreducible representation. If V admits a Whit-
taker model then so does its contragredient Ṽ .

Proof. This follows from a theorem of Gelfand and Kazdhan; see [Ngo] Proposition 4.6.2. �

Recall the Hecke algebra HG(K) = C∞c (G(K)). We have actions `g and rg on HG(K),
given by `gf(x) = f(g−1x) and rgf(x) = f(xg).

Theorem 5.4 (Invariance of Bessel distributions, [Bump] Theorem 4.4.2). Let

∆: H(GL2(kv))→ C

be a distribution such that
∆(`nrn′f) = ψ(n)∆(f)ψ(n′).

Then ∆ is preserved by ι.

Theorem 5.5. Let V be an irreducible admissible representation of GL2(kv) and Ṽ its
contragredient representation. Then

dim HomN (V, (C, ψ)) · dim HomN (Ṽ , (C, ψ)) ≤ 1.
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Proof. Let λ∨ : V → (C, ψ) be a non-zero Whittaker functional and λ : Ṽ → (C, ψ) a non-
zero Whittaker functional. We will show that λ∨ determines λ, and vice versa.

If λ and λ∨ were smooth then we would have a Bessel distribution

g 7→ 〈λ, π̃(g)λ∨〉

to which we could apply Theorem 5.4. However, there is no reason that this should be the
case, so we will have to work a bit harder. What we do get from λ and λ∨ are G-equivariant
maps

φλ∨ : H(G)→ Ṽ (5.1)

f 7→
∫
G

f(h)(h−1 · `∨) dh

and

φλ : H(G)→ V (5.2)

f 7→
∫
G

f(h)(h−1 · `) dh.

From the explicit formulas we easily check that

φλ∨(rg · f) = g · φλ∨(f)

φλ∨(`n · f) = ψ(n)φλ∨(f)

φλ(rg · f) = g · φλ(f)

φλ(`n · f) = ψ(n)φλ(f)

The pairing Ṽ ⊗ V → C then pulls back to a pairing

H(G)⊗H(G)→ Ṽ ⊗ V → C.

The map G×G→ G given by (g1, g2) 7→ g−11 g2 induces a map

H(G)⊗H(G)→ H(G)

by integrating over the fibers, which are orbits for the diagonal G action by (rg, rg). So the
G-equivariance implies that this descends to a map

H(G)⊗H(G) Ṽ ⊗ V C

H(G)

θ

such that θ(ngn′) = ψ(n)θ(g)ψ(n′). Hence Theorem 5.4 implies that

〈f1, f2〉 = θ(f1 ∗ f2) = θ(ι(f2) ∗ ι(f1)) = 〈ι(f2), ι(f1)〉. (5.3)

Since the pairing between V and Ṽ is perfect, (5.3) shows that if f2 is in the kernel of (5.2)
(i.e. (5.3) vanishes for all f1) then ι(f2) is in the kernel of (5.1). In other words, (5.1)
determines the kernel of (5.2), hence the map (5.2) up to scalar (by irreducibility), and vice
versa. Since λ∨ determined (5.1) and λ determined (5.2), this shows that λ pins down λ∨
and vice versa. �
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