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1 Introduction: Definition of the L-function
As usual, let k be a global field, A its adele ring, and G “ GL2. We fix a multiplicative quasi-
character χ, i.e. a continuous homomorphism χ : kˆzAˆ Ñ Cˆ. We have χ “

ś

v χv with
χv :“ χ|kv . For all but finitely many v, χv is unramified, i.e. χv|Ov ” 1.

We will also fix a non-trivial additive character ψ of the compact abelian group A`{k`. Simi-
larly, we have ψ “

ś

v ψv with ψv :“ ψ|k`v . (Here, we regard k`v as embedded into A by setting all
components other than v to 0). For all but finitely many v (including the archimedean places), the
largest (fractional) ideal of kv on which ψv vanishes is Ov.1 The choice of ψ is not such a big deal:
given any non-trivial ψ0, we have an isomorphism k

„
ÝÑ {A`{k` by the map λ ÞÑ px ÞÑ ψ0pλxqq.2 ψ

determines a unique Haar measure dx on A such that the Fourier inversion formula fpxq “ p

pfp´xq

holds with the Fourier transform pfpξq “
´
fpxqψp´xq dx defined with respect to ψ. This deter-

mines a Haar measure dˆx on Aˆ. These measures are product measures: there are Haar measures
pdxqv, pd

ˆxqv on k`v , k
ˆ
v respectively3 such that for almost all v,

´
O`v
pdxqv “

´
Oˆv
pdˆxqv “ 1,

and we have dx “
ś

v dvx, d
ˆx “

ś

v d
ˆ
v x (in the sense that if we take a compact open subset

U “
ś

v Uv of A` or Aˆ, the two sides of this equation give the same thing evaluated on U : the
product on the right is finite since Uv “ Ov or Oˆ

v for all but finitely many v). These measures
descend to quotient measures on A`{k` and kˆzAˆ.

When k is a number field, we also fix a maximal compact subgroup K8 inside
ś

v|8 GL2pkvq

which is O2pRq at the real places and U2pRq at the complex places.4

Today, we want to define the global L-function Lπpχ, sq attached to an irreducible admissible
representation π ofGpAq.5 We will also define ε-factors επpχ, sq. When π Ď AcusppGpkqzGpAq, ωq

1As far as I can tell, this is not a priori obvious (although it is obvious that Ov Ď kerψv for all but finitely many
v). One must construct a particular “standard” character ψ0 of A`{k` and verify that this condition is true for this
character, then use the fact that any other character is of the form x ÞÑ ψ0pλxq for λ P k, as discussed above. If
someone knows an a priori proof, please enlighten me.

2Proof: first, note that the Pontryagin dual of the compact abelian group A`{k` is discrete. Self-duality of kv for
all v implies that A is self-dual as well, so we can think of {A`{k` as a subspace of A (i.e. every character of A is of
the form x ÞÑ ψ0paxq for some a P A). Since ψ0 vanishes on k, so does ψ0pλ¨q for any λ P k, as multiplication by λ
stabilizes k. Thus, it suffices to show that the image of {A`{k`{k` is 0 in the compact group A`{k`. But it is discrete,
hence finite. However, it is a k-vector subspace, since the condition of vanishing on k is preserved by multiplying
against k, so it is 0.

3pdxqv is the unique self-dual Haar measure on k`v , and pdˆxqv is pdxqv
|x|v

when v is archimedean and qv
qv´1

pdxqv
|x|v

when v is non-archimedean with residue field Fqv . These factors are chosen to make
´

Oˆ
v
pdˆxqv for all but finitely

many v.
4This is so the notion of “pg,K8q-module”, and hence “irreducible admissible GpAq-representation” (see the next

footnote) makes sense. Note that the subgroup SO2 is not intrinsic to the R-group GL2, as it depends on the choice of
an inner product; however, any two choices are conjugate.

5This is really thought of as a representation of the global Hecke algebraH, so at the archimedean places kv we just
get a pg,Kq-module rather than a representation of Gpkvq. We will continue making this abuse of notation everywhere.
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is cuspidal automorphic, we will then show that the L-function satisfies the functional equation:

Lπpχ, sq “ επpχ, sqLπpωχ
´1, 1´ sq (1)

Flath’s theorem says that we have a canonical decomposition π »
Â1

v πv, where the πv are
irreducible admissible representations of the local Hecke algebras Hv. Since we have already
defined L-functions for such representations, the natural guess for an Euler product is:

Definition 1.1. Let π be an irreducible admissible representation of GpAq with local components
πv. Let χ be a quasi-character of kˆzAˆ. Then we may define the L-function of π with respect to
χ as a formal Euler product:

Lπpχ, sq :“
ź

v

Lπvpχv, sq (2)

Remark 1.2. Note that this definition does not require π to be cuspidal automorphic. However,
as we will see, the good analytic properties of this L-function depend crucially on this condition.
Indeed, the converse theorem tells us exactly that if Lπpχ, sq converges to an entire function which
is bounded in vertical strips and which satisfies (1), then π is cuspidal automorphic.

Remark 1.3. This definition does not depend on the choice of ψ, since the definitions of the local
L-functions do not depend on a choice of additive character. See §3.

2 Review of global Whittaker models
The first result we need is that when π is cuspidal automorphic, the Euler product defining Lπpχ, sq
converges on some right half-plane. It turns out that a much weaker condition suffices:

Definition 2.1. We say that an irreducible admissible representation π »
Â1

v πv of GpAq is
pre-unitary if πv admits aHv-invariant hermitian form for each v.

Remark 2.2. The reason we say “pre-unitary” instead of “unitary” for such representations is that
the latter is reserved for Hilbert space representations.

In what follows, it will be convenient to assume that πv is infinite-dimensional for all v, i.e.
that πv is not a twist of the determinant character.6 This condition turns out to be equivalent to the
existence of a global Whittaker model. This follows from the following theorem, which describes
the relationship between local and global Whittaker models:

Proposition 2.3. Let π be an irreducible admissible representation of GpAq. Then we have:

• π has a Whittaker model if and only if πv has a Whittaker model for all v. Equivalently, π has
a Whittaker model if and only if for all v, πv is infinite-dimensional.

• If π has a Whittaker model, it is necessarily unique and spanned by functions of the form
W pgq “

ś

vWvpgvq with Wv PWpπvq such that for all but finitely many non-archimedean v,
Wv “ W 0

v . The function W 0
v PWpπvq is the unique function which is invariant by GL2pOvq

and which satisfies W 0
v |GL2pOvq ” 1.

6This condition is probably not essential for showing convergence of the L-function, using the GL1 theory at places
where πv is one-dimensional.
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• Moreover, for all g P GpAq, for any W PWpπq, the function x ÞÑ W
`

p x 1 q ¨ g
˘

is Op|x|´Nq
for all N ą 0.7

Proof. This is the content of [1, Theorem 3.5.4, p. 326].8 We will sketch the proof below for
convenience.

Assuming that πv is infinite-dimensional for all v, we have seen that local Whittaker models
Wpπvq exist for all v. For all but finitely many non-archimedean v, πv is spherical and the largest
ideal of kv on which ψv is trivial is Ov. For such v, there is a unique W 0

v P Wpπvq such that
W 0
v pgq “ 1 for all g P GL2pOvq: see [2, Theorem 11, p. 1.52]. Thus, it makes sense to consider

the restricted productWpπq :“
Â1

vWpπvq with respect to the W 0
v . This is generated by functions

W : g ÞÑ
ś

vWvpgvq for Wv PWpπvq for all v and Wv “ W 0
v for all but finitely many v. Then it is

straightforward to check that this space has the desired properties of a global Whittaker model, so
this settles the question of existence in the case that πv is infinite-dimensional for all v. The rapid
descent claim follows from the fact that the Whittaker models at archimedean places satisfy rapid
descent (in Lecture 19, this property is shown in the proof of existence of archimedean Whittaker
models).

Now, letW be a Whittaker model for π. First, we construct a vector ϕ P π such that Wϕp1q ‰ 0.
For an arbitrary non-zero ϕ0, we have Wϕ0pgq ‰ 0 for some g P GpAq. Since the action of
gv P Gpkvq for v non-archimedean on π is given by right-translation inW , we have Wg´1

v ¨ϕ0
pgq “

Wϕ0pgg
´1
v q, so we may assume g is supported at the archimedean places. Then, a similar but slightly

tricker argument removes the archimedean parts of g, working first with the representation of K8 on
π, and then with the representation of g on π. If Wϕp1q ‰ 0 for some ϕ, the functional ϕ ÞÑ Wϕp1q
is non-zero, so we can find some pure tensor on which it does not vanish: thus we may assume
ϕ “ b1vpϕ

0
vq. Let ι : πv Ñ π be given by ϕv ÞÑ ϕv b pb

1
v1‰vϕ

0
v1q.

Now, we define local Whittaker functions by Wϕvpgvq “ Wιpϕvqpιpgvqq where ι : Gpkvq Ñ
GpAq is given by gv ÞÑ gv ˆ p1qv1‰v. These clearly define aHv-equivariant homomorphism from
πv to a space of Whittaker functions on Gpkvq (i.e. functions that transform appropriately and which
have moderate growth - these properties follow immediately from the properties ofW). We’ve seen
that Wϕ0

v
p1q “ Wϕp1q ‰ 0, so this map is non-zero: since πv is irreducible, it is an embedding.

Thus, we have constructed Whittaker modelsWpπvq for all v, so the πv are infinite-dimensional.
Finally, we show that for any pure tensor ξ “

Â1

v ξv P π, Wξ P W is the function g ÞÑ
ś

vWξvpgvq. This argument is given in Lecture 22 (there, π is assumed to be cuspidal automorphic,
but this condition is never used in the proof). First, the formula is shown by induction on |S| that
for any finite set S of places and g P GpAq with gv “ 1 for v R S. This induction argument
is an application of the local uniqueness results. Then, one passes to the limit by using the fact
that if

Â1

v ξv P π and g P GpAq, there is a finite set of places S such that ξv is GpOvq-fixed and
gv P GpOvq for all v outside of S.

This settles the question of uniqueness and finishes the proof.

7This condition is part of the definition of a global Whittaker model given in [2]. However, in [3], the definition only
requires that this function be Op|x|N q for some N , i.e. that it is of “moderate growth”. This is sufficient for uniqueness,
since the local uniqueness theorem at archimedean places only requires moderate growth.

8There’s a small gap in the proof here, since this book does not prove that Whittaker functions for GL2pCq are
analytic on the underlying real analytic manifold. This should follow from the same sort of elliptic regularity arguments
he gives in the real case.
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Corollary 2.4. If π Ď AcusppGpkqzGpAq, ωq is cuspidal automorphic, then πv is infinite-dimensional
for all v.

Proof. Via Fourier analysis on the compact abelian group A`{k`, we showed in Lecture 22 that π
has a Whittaker model. Thus, we may apply the previous proposition.

There is an alternative proof which does not use Whittaker models. This argument should
generalize better to more general connected reductive groups, when Whittaker models may not
exist.9 If ϕ P π is any vector, we can think of it as a continuous function on GpAq. Thus,
it makes sense to consider ϕ|SL2pAq. Since πv » pC, det ρq for some character ρ, ϕ satisfies
ϕpggvq “ ρpdetpgvqqϕpgq for any g P GpAq, gv P Gpkvq. In particular, if gv P SL2pkvq, we have
ϕpggvq “ ϕpgq. Thus, ϕ|SL2pAq is left-invariant by SL2pkq and right-invariant by SL2pkvq as well
as by some compact open subgroup K. However, by strong approximation for SL2, we have
SL2pAq “ SL2pkqSL2pkvqK, so ϕ|SL2pAq is constant. Now, by applying the same argument to the
functions rgϕ for g P GpAq, we see that ϕ is actually invariant under left translation by SL2pAq;
since SL2pAq is normal in GpAq, this is equivalent to ϕ being invariant under right translation by
SL2pAq. Since this is true for any ϕ P π, we see that π|SL2pAq is the trivial representation. Thus, πv
is trivial on SL2pkvq for all v, which implies that πv is a twist of the determinant for all v, and thus
π is one-dimensional.

3 Review of the local theory
Lectures 14 and 20 develop the theory of localL-functions (in the non-archimedean and archimedean
cases respectively), zeta integrals, and ε-factors. We will recall the main theorems and definitions
here for convenience. The setup is that we have an infinite-dimensional irreducible admissible
Gpkvq-representation10 πv, a quasi-character χv of kˆv , a non-trivial character ψv of k`v , and a
Whittaker model π „

ÝÑWpπvq defined with respect to ψv.
First, we define zeta integrals:

Definition 3.1. For W PWpπvq, we define the zeta integral:

ZvpW,χv, sq “

ˆ
pkvqˆ

W
`

p x 1 q
˘

χvpxq
´1
|x|2s´1v dˆx

We also have the slight variant:

Definition 3.2. Let g P Gpkvq. Then we have:

ζvpW, g;χv, sq “

ˆ
pkvqˆ

W
`

p x 1 q ¨ g
˘

χvpxq
´1
|x|2s´1v dˆx “ ZvpρgW,χv, sq

Here, ρg is right-translation by g.
9For a general connected reductive group, we can replace the role of SL2 by G1 “ DG , which is semisimple and

thus admits no characters. (Note that DGL2 “ SL2). However, this group may fail to be simply connected, preventing
the use of a strong approximation argument. Thus, one would instead pass to the group ĂG1, its simply connected central
cover. Then one can show that rGpAq Ñ GpAq has a commutative cokernel. Thus any representation of GpAq whose
pullback to rGpAq is trivial must be a character.

10As above, we treat the phrase “irreducible admissible Gpkvq-representation” as shorthand for “irreducible ad-
missible Hv-representation”. In the non-archimedean case, these are actually representations of Gpkvq, but in the
archimedean case, they are merely pg,K8q-modules.
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The zeta integrals satisfy:

Proposition 3.3. For any W PWpπq, the zeta integrals converge for Repsq " 0 and admit analytic
continuations to meromorphic functions with at most 2 poles.

These transform according to the gamma factors:

Proposition 3.4. There is some meromorphic function γvpχv, sq, which is in Cpq´sv q in the non-
archimedean case, such that for any W PWpπq:

Zvp|W,ωvχ
´1
v , 1´ sq “ γvpχ, sqZvpW,χ, sq

Here, |W pgq :“ W pgwq with w “
`

0 1
´1 0

˘

the Weyl group element, so |W “ ρwW . We could reword
this as:

ζvpW,wg;ωvχ
´1
v , 1´ sq “ γvpχ, sqζvpW, g;χ, sq

Furthermore, these satisfy the functional equation:

γvpχ, sqγvpωvχ
´1
v , 1´ sq “ ωπp´1q

Now, we can define the L-functions. First, we need to define Lvpρ, sq for a character ρ of kˆv .
This is:

Definition 3.5. Let ρ be a character of kˆv . First, let kv be non-archimedean. We define the
L-function:

Lvpρ, sq “

#

1 ρ ramified
p1´ ρp$vqq

´s
v q

´1 ρ unramified

Now, if kv “ R and ρpxq “ |x|rvpsgnpxqqm, ψvpxq “ e2πiux, we define:

LRpρ, sq “ π´
s`r`m

2 Γ

ˆ

s` r `m

2

˙

If kv “ C, ρpxq “ |x|rxmxn, and ψvpxq “ e4πiRepwxq, we define:

LCpρ, sq “ 2p2πq´ps`r`m`nqΓps` r `m` nq

This lets us define the L-function for the irreducible admissible representation πv:

Definition 3.6. When kv is non-archimedean, we define Lπvpχv, sq as:

Lπvpχv, sq “

$

’

’

’

’

&

’

’

’

’

%

1 πv cuspidal
Lpχ´1v µv, 2s´

1
2
q ¨ Lpχ´1v νv, 2s´

1
2
q πv “ πµv ,νv , µv{νv ‰ | ¨ |

˘1

Lpχ´1v µv, 2s´
1
2
q πv “ πµv ,νv , µv{νv “ | ¨ |

Lpχ´1v νv, 2s´
1
2
q πv “ πµv ,νv , µv{νv “ | ¨ |

´1

When kv “ R or C and πv “ πµv ,νv is a principal series, we define:

Lπvpχv, sq “ Lpχ´1v µv, 2s´
1

2
q ¨ Lpχ´1v νv, 2s´

1

2
q

When kv “ R and πv “ πpρq for ρ a quasi-character of C, we define:

Lπvpχv, sq “ Lpρ, sq
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Remark 3.7. As we can see directly, the definition of the local L-functions does not depend on ψv.
However, the zeta integrals do depend on ψv, via the dependence of the measure and the Whittaker
model.

These are related to the zeta integrals by:

Proposition 3.8.

tZvpW,χv, sq | W PWpπvqu “ Lπvpχv, sq ¨Crq
´2s, q2ss

The L-functions transform according to the ε-factors:

Definition 3.9. Define:

εvpχv, sq “ γvpχv, sq ¨
Lπvpχv, sq

Lπvpχ
´1
v ωv, 1´ sq

We can eliminate the γ factor from this definition to get:

επvpχv, sq :“
Zvp|W,ωπvχ

´1
v , 1´ sq

ZvpW,χv, sq
¨

Lπvpχv, sq

Lπvpχ
´1
v ωπv , 1´ sq

whenever ZvpW,χv, sq is not the 0 function.
The functional equation for the γ factors immediately gives us:

Proposition 3.10. The local ε-factors satisfy the functional equation

εvpχv, sq ¨ εvpχ
´1
v ωv, 1´ sq “ ωvp´1q

4 Convergence
Now, we want to show that the Euler product defining Lπpχ, sq converges for sufficiently nice π. It
turns out that the following condition is sufficient:

Theorem 4.1. Let π be an irreducible admissible representation of GpAq which is moreover pre-
unitary, such that πv is infinite-dimensional for all v. Then the Euler product defining Lπpχ, sq
converges for Repsq " 0.

Note that this implies convergence of the L-function when π is cuspidal automorphic, since
AcusppGpkqzGpAq, ωq is contained in the unitary HilbertGpAq-representationL2

cusppGpkqzGpAq, ωq.

Proof. Flath’s theorem tells us that πv is spherical for all but finitely many non-archimedean v,11

i.e. πGL2Ov
v ‰ t0u. (Indeed, these spaces are then necessarily one-dimensional and are then used to

define the restricted tensor product
Â1 πv » π). Thus, we may choose a finite set of places S0 such

that for all v R S0, we have:
11Note that GL2pOvq is not actually intrinsic to the k-group GL2. However, given an arbitrary choice of Ok,S-model

of GL2, it is isomorphic to the standard integral model G L2 away from finitely many places. Then any vector in the
admissible π is fixed by some open compact subgroup Kf of GL2pAf q, and with respect to this arbitrary choice of
model, Kf is equal to GL2pOvq at all but finitely many places. Thus, our claim does not depend on a choice of integral
model, but the specific set of places S0 is not intrinsically determined. Similar comments apply whenever we discuss
GL2pOvq.

6



• v is non-archimedean.

• πv is spherical.

• χv is unramified.

• The largest ideal of kv on which ψv vanishes is Ov.

•
´

Ovdx “
´

Oˆv
dˆx “ 1.

We know by the classification of spherical representations given in Lecture 15 that for all such v, πv
is either a twist of the determinant character or πv » πµv ,νv with µv, νv unramified quasi-characters
of kˆv with µv{νv ‰ | ¨ |˘1. By Proposition 2.3, we do not need to worry about the former possibility.
Then, we have:

Lπvpχv, sq “ Lpµvχ
´1
v , s1qLpνvχ

´1
v , s1q

Here, s1 :“ 2s´ 1
2
. Now, since µv, νv, χv are all unramified, we have:

Lπvpχv, sq “ p1´ µvχ
´1
v p$vqq

´s1

v q
´1
p1´ νvχ

´1
v p$vqq

´s1

v q
´1

Here, $v is the uniformizer of Ov and qv is the cardinality of the residue field at v. (We assume of
course that the valuation | ¨ | on kv is normalized so |$v| “ q´1).

Since πv is pre-unitary, it follows from Lecture 16 that either µ1, µ2 are both unitary or µ2 “ µ1
´1

and µ :“ µ1µ
´1
2 “ |µ1|

2 “ |µ2|
´2 “ | ¨ |σv for some 0 ă σv ă 1. Thus, in either case, we have:

|µ1pxq| “ |x|
σv{2, |µ2pxq| “ |x|

´σv{2

for some 0 ď σv ă 1 (the case that µ1, µ2 are both unitary is the case σv “ 0). Applying this to
x “ $v, we have:

|µ1p$vq| “ q´σv{2v , |µ2p$vq| “ qσv{2v

Thus, we may reduce the convergence of the Euler product in (2) to the convergence of:

ź

vRS0

1

p1´ χ´1v p$vqµvp$vqq´s
1

v qp1´ χ´1v p$vqνvp$vqq´s
1

v q

This in turn reduces to convergence of the sums:
ÿ

vRS0

χ´1v p$vqµvp$vqq
´s1

v ,
ÿ

vRS0

χ´1v p$vqνvp$vqq
´s1

v

Since χ is a quasi-character of kˆzAˆ, we must have |χpxq| “ |x|t for some t P R and all x P Aˆ.
Thus, we have |χp$vq| “ |χvp$vq| “ q´tv . Therefore, taking absolute values in the above sums
reduces our convergence question to that of:

ÿ

vRS0

q´pReps1q`t˘σvq
v ď

ÿ

vRS0

q´pReps1q`t´1q
v

Finally, this converges for Repsq " 0: it is essentially the logarithm of the ζ-function of k.
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5 ε-factors
Now, we must define the global ε-factor επpχ, sq. Since we use Whittaker models for the definition,
we will assume that πv is infinite-dimensional for all v in this section: by Corollary 2.4, this is the
case when π is cuspidal automorphic.

Recall that we have:

επvpχv, sq “
Zvp|W,ωπvχ

´1
v , 1´ sq

ZvpW,χv, sq
¨

Lπvpχv, sq

Lπvpχ
´1
v ωπv , 1´ sq

for all W PWpπvq such that ZvpW,χv, sq is not identically 0.
Now, assume that v R S0. By [2, Theorem 11, p. 1.52], there is a uniquely determined spherical

function W 0
v PWpπvq with W 0

v |GpOvq ” 1. We have the following result:

Proposition 5.1. For any v R S0, we have:

ZvpW
0
v , χv, sq “ Lπvpχv, sq

Proof. We can compute the zeta integral for W 0
v as:

ZvpW
0
v , χv, sq “

ˆ
Fˆ
W 0
v

`

p x 1 q
˘

χpxq´1|x|2s´1 dˆx

“

8
ÿ

n“´8

ˆ
Oˆv

W 0
v

´

`

$nu
1

˘

¯

χp$nuq´1|$nu|2s´1 dˆu

“

8
ÿ

n“´8

ˆ
Oˆv

W 0
v

´

`

$n

1

˘

¯

χp$q´nq´np2s´1q dˆu

“

8
ÿ

n“´8

W 0
v

´

`

$n

1

˘

¯

χp$q´nq´np2s´1q

In [2, §3.16, (268)], Godement computes that (here, d “ 0 since Ov is the largest ideal of kv
contained in kerψv)

W 0
v

´

`

$n

1

˘

¯

“

#

q´n{2
ř

i`j“n µvp$
iqνvp$

jq n ě 0

0 n ă 0
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Thus, we have:

ZpW 0
v , χv, sq “

8
ÿ

n“´8

W 0
v

´

`

$n

1

˘

¯

χvp$q
´nq´np2s´1q

“

8
ÿ

n“0

χvp$q
´nq´np2s´

1
2
q
ÿ

i`j“n

µvp$
i
qνvp$

j
q

“

˜

8
ÿ

i“0

µvp$
i
qχvp$

´i
qq´is

1

v

¸

¨

˝

8
ÿ

j“0

νvp$
j
qχvp$

´j
qq´js

1

v

˛

‚

“
1

1´ µvχ´1v p$qq
´s1

1

1´ νvχ´1v p$qq
´s1

“ Lpµvχ
´1
v , s1qLpνv, χ

´1
v , s1q

“ Lπvpχv, sq

Here, s1 “ 2s ´ 1
2
. Now, since W 0

v is right-invariant by GpOvq and w “
`

0 1
´1 0

˘

P GpOvq, we
have }W 0

v “ W 0
v . Thus, we can compute the ε-factor for v R S0 as:

επvpχv, sq “
Zp}W 0

v , ωπvχ
´1
v , 1´ sq

ZpW 0
v , χv, sq

¨
Lπvpχv, sq

Lπvpχ
´1
v ωπv , 1´ sq

“
ZpW 0

v , ωπvχ
´1
v , 1´ sq

ZpW 0
v , χv, sq

¨
Lπvpχv, sq

Lπvpχ
´1
v ωπv , 1´ sq

“
Lπvpχ

´1
v ωπv , 1´ sq

Lπvpχv, sq
¨

Lπvpχv, sq

Lπvpχ
´1
v ωπv , 1´ sq

“ 1

Thus, the following definition makes sense:

Definition 5.2. Let π be an irreducible admissible representation ofGpAqwith πv infinite-dimensional
for all v. Then the ε-factor of π is defined by the Euler product:

επpχ, sq :“
ź

v

επvpχv, sq

We saw above that επvpχv, sq is the constant function 1 for all but finitely many v, so convergence
of this product is automatic.

Remark 5.3. Unlike the L-function, the definition of the ε factor here appears to depend on ψ,
since the local ε factors legitimately do depend on ψ. However, if π is cuspidal automorphic, the
functional equation Lπpχ, sq “ επpχ, sqLπpωχ

´1, 1´ sq shows that the global επpχ, sq is actually
independent of ψ.

We can multiply together the local functional equations for the ε-factors to get:
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Theorem 5.4. If π is an irreducible admissible representation of GpAq such that πv is infinite-
dimensional for all v, we have:

επpχ, sqεπpχ
´1ωπ, 1´ sq “ ωπp´1q

Proof. Indeed, for each place v, Proposition 3.10 says that we have a functional equation of the
above form for the local ε-factors, and we have

ś

v ωπvp´1q “ ωπp´1q.

Remark 5.5. When π is cuspidal automorphic, the central character ωπ is kˆ-invariant, so this says:

επpχ, sqεπpχ
´1ωπ, 1´ sq “ 1

This also follows from the functional equation.

6 Functional Equation
Now, we will assume that π Ď AcusppGpkqzGpAq, ωq, i.e. that π is a cuspidal automorphic
irreducible admissible representation of GpAq. In this case, the L-function Lπpχ, sq satisfies all of
the good analytic behavior we might ask for:

Theorem 6.1. Let π Ď AcusppGpkqzGpAq, ωq be an irreducible admissible cuspidal automorphic
representation of GpAq. Then for every quasi-character χ of kˆzAˆ, the function Lπpχ, sq is entire,
bounded in every vertical strip, and satisfies the functional equation:

Lπpχ, sq “ επpχ, sqLπpωχ
´1, 1´ sq

Proof. Let ϕ P π. Then for all g P GpAq, we have the Fourier expansion:

ϕpgq “
ÿ

αPkˆ

Wϕ

`

p α 1 q ¨ g
˘

Here, ϕ ÞÑ Wϕ is the (unique!) Whittaker model π „
ÝÑWpπq. We can identify Wϕ concretely as

the “Fourier coefficient” of ϕ with respect to ψ: Wϕpgq “
´
A`{k`

ϕ
`

p 1 u1 q ¨ g
˘

ψp´uq du.
Now, we have the zeta integral:

ζpϕ, g;χ, sq :“

ˆ
kˆzAˆ

ϕ
`

p x 0
0 1 q ¨ g

˘

χpxq´1|x|2s´1dˆx (3)

Since ϕ P AcusppGpkqzGpAq, ωq, the function x ÞÑ ϕ
`

p x 1 q ¨ g
˘

is rapidly decreasing as
|x| Ñ 8, so the |x| ě 1 part of the integral converges absolutely for any s. On the other hand, we
have the identity:

ϕ
´

`

x´1

1

˘

¨ g
¯

“ ωπpxq
´1ϕ

`

p 1 x q ¨ g
˘

“ ωπpxq
´1ϕ

`

w´1 p x 1 q ¨ wg
˘

“ ωpxq´1ϕ
`

p x 1 q ¨ wg
˘

10



The first inequality follows from the fact that the central character of π is ωπ, and the third follows
from the fact that ϕ is left-invariant by Gpkq.

Thus, ϕ
´

`

x´1

1

˘

¨ g
¯

is rapidly decreasing as |x| Ñ 8 as well. This means that ϕ
`

p x 1 q ¨ g
˘

is
rapidly decreasing as |x| Ñ 0, so the |x| ď 1 part of the integral (3) converges absolutely for all s
as well. Now, we apply the Fourier expansion inside the integral (3):

ζpϕ, g;χ, sq „
ÿ

αPkˆ

ˆ
kˆzAˆ

Wϕ

`

p αx 1 q ¨ g
˘

χpαxq´1|αx|2s´1dˆx

„

ˆ
Aˆ

Wϕ

`

p x 1 q ¨ g
˘

χpxq´1|x|2s´1dˆx “: rζ

This identity holds as long as the right-hand side rζ is convergent. By one of the defining properties
of the global Whittaker model, the function x ÞÑ W

`

p x 1 q ¨ g
˘

is rapidly decreasing as |x| Ñ 8,
so the |x| ą 1 part of the integral converges for all s. For |x| ď 1, we claim that that Wϕ at least
bounded on GpAq, so this integral converges for Repsq " 0.

To see this claim, first note that ϕ is bounded on GpAq: in fact, it is even rapidly decreasing on
GpAq, by definition of cusp forms. Now, the Fourier coefficient

Wϕpgq “

ˆ
A`{k`

ϕ
`

p 1 u1 q ¨ g
˘

ψp´uq du

is the integral of a bounded function (ψ, being a character of a compact group, is unitary) over the
compact group A`{k`, so it is bounded as well.

Now, let S be a finite set of places containing S0. We have:12

rζ “ lim
SĚS0

ź

vPS

ˆ
kˆv

Wv

`

p x 1 q ¨ gv
˘

χvpxq
´1
|x|2s´1v dˆxˆ

ź

vRS

ˆ
Oˆv

Wv

`

p x 1 q ¨ gv
˘

χvpxq
´1
|x|2s´1v dˆx

For large enough S, for any v R S, we have Wv

`

p x 1 q ¨ gv
˘

“ χvpxq “ |x|v “ 1 for all x P Oˆ
v :

indeed, it suffices for v to be a non-archimedean place such that χv is unramified, gv P GpOvq, and
Wv “ W 0

v .
Since Oˆ

v has volume 1 with respect to the Haar measure dˆx for all v R S0, this gives:

rζ “ lim
SĚS0

ź

vPS

ζvpWv, gv;χv, sq “
ź

v

ζvpWv, gv;χv, sq

Here, the local zeta integral ζvpWv, gv;χv, sq is defined as:

ζvpWv, gv;χv, sq :“

ˆ
kˆv

Wv

`

p x 1 q ¨ gv
˘

χvpxq
´1
|x|2s´1v dˆx “ ZvpρgvWv;χv, sq

with ρgv the right translation operator onWpπvq. Now, fix some gv. We claim that ζvpWv, gv;χv, sq
is equal to Lπvpχv, sq for all but finitely many v. Indeed, for all but finitely many v, the function
ρgvWv PWpπvq is equal to W 0

v . Then, if additionally v R S0, we have:

ζvpWv, gv;χv, sq “ ZvpρgvWv;χv, sq “ ZvpW
0
v ;χv, sq “ Lπvpχv, sq

12Strictly speaking, it does not make sense to write Wv, since ϕ may not be a pure tensor in π. However, W is a
finite linear combination of functions of the form g ÞÑ

ś

vWvpgq, so the integral for ζpϕ, g;χ, sq breaks into a finite
sum of integrals of this form. All formulas involving Wv below should be interpreted as such a sum.
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by Proposition 5.1.
Thus, by Theorem 4.1, for any particular g, the infinite product defining rζ converges for

Repsq " 0. Thus, we have proven:

Proposition 6.2. For any cusp form ϕ, g P GpAq, and quasi-character χ, the zeta integral
ζpϕ, g;χ, sq admits an Euler product:

ζpϕ, g;χ, sq “
ź

v

ζvpWv, gv;χv, sq

for Repsq " 0.

By the local theory, as developed in Lectures 14 and 20, we have:

tZpWv;χv, sq | Wv PWpπvqu “ Lπvpχv, sqCrq
´2s, q2ss

Thus, for each v P S0 we may choose W 1
v such that ζvpWv, e;χv, sq “ ZpWv, χv, sq “ Lπvpχv, sq.

By Proposition 5.1, for v R S0, ζvpW 0
v , e;χv, sq “ Lπvpχv, sq. Thus, the function

W 1 :“
ź

vPS0

W 1
v ˆ

ź

vRS0

W 0
v

is inWpπq. There is a unique ξ P π mapping to W 1 under the isomorphism π
„
ÝÑWpπq. Thus, we

may apply Proposition 6.2 and Theorem 4.1 to see that for Repsq " 0:

Lπpχ, sq “
ź

v

Lπvpχv, sq “
ź

v

ζvpW
1
v, gv;χv, sq “ ζpξ, e;χ, sq

Thus, the integral ζpξ, e;χ, sq defines an analytic continuation of Lπpχ, sq. Since the integral defin-
ing ζpξ, e;χ, sq converges absolutely for all s P C, it defines an entire function. The dependence on
s in the integrand is only via the factor |x|2s´1, which is an entire function in s. Since its absolute
value only depends on Repsq, we see that Lπpχ, sq is also bounded in vertical strips.

Now, we are ready to prove the functional equation. Via Proposition 6.2 and Theorem 4.1, we
have, for Repsq " 0 and any g P GpAq:

ζpϕ, g;χ, sq

Lπpχ, sq
“
ź

v

ζvpWv, gv;χv, sq

Lπvpχv, sq

Here, the product on the right-hand side is finite. Thus, both sides define meromorphic functions of
s, so they are equal everywhere.

Thus, we can multiply together finitely many local functional equations to get:

ζpϕ,wg;ωχ´1, 1´ sq

Lπpωχ´1, 1´ sq
“ επpχ, sq

ζpϕ, g;χ, sq

Lπpχ, sq
(4)
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Now, by left Gpkq-invariance of ϕ, we have ϕpwgq “ ϕpgq, so:

ζpϕ,wg;ωχ´1, 1´ sq “

ˆ
kˆzAˆ

ϕ
`

p x 1 q ¨ wg
˘

ω´1χpxq|x|1´2s dˆx

“

ˆ
kˆzAˆ

ϕ
`

p 1 x q ¨ g
˘

ω´1χpxq|x|1´2s dˆx

“

ˆ
kˆzAˆ

ϕ
´

`

x´1

1

˘

¨ g
¯

χpxq|x|1´2sdˆx

“ ζpϕ, g;χ, sq

Thus, we may cancel the ζ terms in (4) to complete the proof.
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