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1 Introduction: Definition of the L-function

As usual, let k£ be a global field, A its adele ring, and G = GL,. We fix a multiplicative quasi-
character x, i.e. a continuous homomorphism y: k*\A* — C*. We have x = [][, x, with
Xv := X|,. For all but finitely many v, y, is unramified, i.e. x,|s, = 1.

We will also fix a non-trivial additive character ¢ of the compact abelian group A" /k*. Simi-
larly, we have ¢ = [ [, v, with b, := 1|,+. (Here, we regard k; as embedded into A by setting all
components other than v to 0). For all but finitely many v (including the archimedean places), the
largest (fractional) ideal of k, on which ), vanishes is @ﬂzhe choice of 9 is not such a big deal:

given any non-trivial 1/°, we have an isomorphism k — A+ /k* by the map \ — (z — wo()\x)) 1)

determines a unique Haar measure dx on A such that the Fourier inversion formula f(z) = ]?(—I)
holds with the Fourier transform f(£ ) = [ f(2)¥(—z) dx defined with respect to . This deter-
mines a Haar measure d*x on A*. These measures are product measures: there are Haar measures
(dz),, (d*x), on kI kX respectivel such that for almost all v, [, (dz), = f@f (d*z), = 1,
and we have dz = [ [, d,xz,d*x = ||, d; x (in the sense that if we take a compact open subset
U=1],U,of A* or A%, the two sides of this equation give the same thing evaluated on U: the
product on the right is finite since U, = 0, or & for all but finitely many v). These measures
descend to quotient measures on A /k* and £\ A*.

When £ is a number field, we also fix a maximal compact subgroup K, inside ]_[U‘ » GL2(ky)
which is Oy (R) at the real places and Uy(R) at the complex placesf_f]

Today, we want to define the global L-function L, (Y, s) attached to an irreducible admissible
representation 7 of G(A.) | We will also define e-factors €, (x, s). When m € Acusp (G(k)\G(A), w)

!As far as I can tell, this is not a priori obvious (although it is obvious that &, < ker v,, for all but finitely many
v). One must construct a particular “standard” character 1/ of A*/k* and verify that this condition is true for this
character, then use the fact that any other character is of the form x — z/JO()\a;) for \ € k, as discussed above. If
someone knows an a priori proof, please enlighten me.

ZProof: first, note that the Pontryagin dual of the compact abelian group A+ /k™ is discrete. Self-duality of k, for
all v implies that A is self-dual as well, so we can think of A/Jr/\kJr as a subspace of A (i.e. every character of A is of
the form z + 9% (ax) for some a € A). Since ¥° vanishes on k, so does 1/°(\-) for any \ € k, as multiplication by
stabilizes k. Thus, it suffices to show that the image of A/+/?Jr /k* is 0 in the compact group A /k+. But it is discrete,
hence finite. However, it is a k-vector subspace, since the condition of vanishing on k is preserved by multiplying
against k, so it is 0.

3(dx), is the unique self-dual Haar measure on k", and (d*z), is (dz),

[z

when v is archimedean and qvq—jl %
when v is non-archimedean with residue field F, . These factors are chosen to make || o (d*z), for all but finitely
many v.

“This is so the notion of “(g, K )-module”, and hence “irreducible admissible G (A )-representation” (see the next
footnote) makes sense. Note that the subgroup SOs is not intrinsic to the R-group GLo, as it depends on the choice of
an inner product; however, any two choices are conjugate.

SThis is really thought of as a representation of the global Hecke algebra 7, so at the archimedean places k, we just

get a (g, K)-module rather than a representation of G(k, ). We will continue making this abuse of notation everywhere.




is cuspidal automorphic, we will then show that the L-function satisfies the functional equation:

Lr(x,8) = ex(x. ) La(wx ™', 1 —s) (1)

Flath’s theorem says that we have a canonical decomposition 7 ~ ®; Ty, Where the 7, are
irreducible admissible representations of the local Hecke algebras H,. Since we have already
defined L-functions for such representations, the natural guess for an Euler product is:

Definition 1.1. Let 7 be an irreducible admissible representation of G(A) with local components
Ty Let x be a quasi-character of £*\ A*. Then we may define the L-function of 7 with respect to
X as a formal Euler product:

L(x,s) = HLm (Xv, S) )

Remark 1.2. Note that this definition does not require 7 to be cuspidal automorphic. However,
as we will see, the good analytic properties of this L-function depend crucially on this condition.
Indeed, the converse theorem tells us exactly that if L, (x, s) converges to an entire function which
is bounded in vertical strips and which satisfies (T)), then 7 is cuspidal automorphic.

Remark 1.3. This definition does not depend on the choice of v, since the definitions of the local
L-functions do not depend on a choice of additive character. See

2 Review of global Whittaker models

The first result we need is that when 7 is cuspidal automorphic, the Euler product defining L (y, $)
converges on some right half-plane. It turns out that a much weaker condition suffices:

Definition 2.1. We say that an irreducible admissible representation 7 ~ (X). m, of G(A) is
pre-unitary if 7, admits a ‘H,-invariant hermitian form for each v.

Remark 2.2. The reason we say “pre-unitary” instead of “unitary” for such representations is that
the latter is reserved for Hilbert space representations.

In what follows, it will be convenient to assume that , is infinite-dimensional for all v, i.e.
that 7, is not a twist of the determinant character’| This condition turns out to be equivalent to the
existence of a global Whittaker model. This follows from the following theorem, which describes
the relationship between local and global Whittaker models:

Proposition 2.3. Let 7 be an irreducible admissible representation of G(A ). Then we have:

e 7 has a Whittaker model if and only if 7, has a Whittaker model for all v. Equivalently, 7 has
a Whittaker model if and only if for all v, 7, is infinite-dimensional.

e If 7 has a Whittaker model, it is necessarily unique and spanned by functions of the form
Wi(g) =11, Wu(g,) with W, € W(m,) such that for all but finitely many non-archimedean v,
W, = W2. The function W € W(r,) is the unique function which is invariant by GLy(&,)
and which satisfies W) |q1,(0,) = 1.

®This condition is probably not essential for showing convergence of the L-function, using the GL; theory at places
where 7, is one-dimensional.



e Moreover, for all g € G(A), for any W € W(r), the function z — W ((” 1) - g) is O(|z| ™)
for all N > 0]

Proof. This is the content of [1, Theorem 3.5.4, p. 326] We will sketch the proof below for
convenience.

Assuming that 7, is infinite-dimensional for all v, we have seen that local Whittaker models
W(m,) exist for all v. For all but finitely many non-archimedean v, 7, is spherical and the largest
ideal of k, on which v, is trivial is &,. For such v, there is a unique WS € W(m,) such that
W2(g) = 1forall g € GLy(0,): see [2, Theorem 11, p. 1.52]. Thus, it makes sense to consider
the restricted product W(r) := ®; W(r,) with respect to the W?. This is generated by functions
W: g ], Wy(gy) for W, € W(m,) for all v and W,, = W for all but finitely many v. Then it is
straightforward to check that this space has the desired properties of a global Whittaker model, so
this settles the question of existence in the case that 7, is infinite-dimensional for all v. The rapid
descent claim follows from the fact that the Whittaker models at archimedean places satisfy rapid
descent (in Lecture 19, this property is shown in the proof of existence of archimedean Whittaker
models).

Now, let )V be a Whittaker model for 7. First, we construct a vector ¢ € 7 such that W,,(1) # 0.
For an arbitrary non-zero ¢y, we have W, (g) # 0 for some g € G(A). Since the action of
gv € G(k,) for v non-archimedean on 7 is given by right-translation in W, we have W10 (9) =
W (99,"), so we may assume g is supported at the archimedean places. Then, a similar but slightly
tricker argument removes the archimedean parts of g, working first with the representation of K, on
7, and then with the representation of g on 7. If W,(1) # 0 for some ¢, the functional ¢ — W,,(1)
is non-zero, so we can find some pure tensor on which it does not vanish: thus we may assume
© = Q,(¢Y). Let .2 m, — 7 be given by ¢, — 0, @ (®. %)

Now, we define local Whittaker functions by W, (g,) = Wy(,,)(¢(g,)) wWhere v: G(k,) —
G(A) is given by g, — ¢, X (1)y2,. These clearly define a H,-equivariant homomorphism from
7, to a space of Whittaker functions on G (k,) (i.e. functions that transform appropriately and which
have moderate growth - these properties follow immediately from the properties of V). We’ve seen
that W0 (1) = W, (1) # 0, so this map is non-zero: since 7, is irreducible, it is an embedding.
Thus, we have constructed Whittaker models W () for all v, so the 7, are infinite-dimensional.

Finally, we show that for any pure tensor £ = @; §& € m, We € W is the function g —
[ 1, We,(gy). This argument is given in Lecture 22 (there, 7 is assumed to be cuspidal automorphic,
but this condition is never used in the proof). First, the formula is shown by induction on |S| that
for any finite set S of places and g € G(A) with g, = 1 for v ¢ S. This induction argument
is an application of the local uniqueness results. Then, one passes to the limit by using the fact
that if ) &, € 7 and g € G(A), there is a finite set of places S such that &, is G(&,)-fixed and
gv € G(0,) for all v outside of S.

This settles the question of uniqueness and finishes the proof.

]

"This condition is part of the definition of a global Whittaker model given in [2]. However, in [3]], the definition only
requires that this function be O(|z|™) for some N, i.e. that it is of “moderate growth”. This is sufficient for uniqueness,
since the local uniqueness theorem at archimedean places only requires moderate growth.

8There’s a small gap in the proof here, since this book does not prove that Whittaker functions for GLy(C) are
analytic on the underlying real analytic manifold. This should follow from the same sort of elliptic regularity arguments
he gives in the real case.




Corollary 24. If 1 € A, (G(k)\G(A), w) is cuspidal automorphic, then 7, is infinite-dimensional
for all v.

Proof. Via Fourier analysis on the compact abelian group A* /k™, we showed in Lecture 22 that 7
has a Whittaker model. Thus, we may apply the previous proposition.

There is an alternative proof which does not use Whittaker models. This argument should
generalize better to more general connected reductive groups, when Whittaker models may not
existﬂ If ¢ € 7 is any vector, we can think of it as a continuous function on G(A). Thus,
it makes sense to consider ¢|sr,(a). Since m, =~ (C,det p) for some character p, ¢ satisfies
©(g99,) = p(det(g,))p(g) for any g € G(A), g, € G(k,). In particular, if g, € SLy(k,), we have
©(990) = ¢(g). Thus, @|si,(a) is left-invariant by SLy(k) and right-invariant by SLy(k,) as well
as by some compact open subgroup K. However, by strong approximation for SL,, we have
SLy(A) = SLy(k)SLa(ky) K, s0 ¢|sr,(a) is constant. Now, by applying the same argument to the
functions r,¢ for g € G(A), we see that ¢ is actually invariant under left translation by SLy(A);
since SLy(A) is normal in G(A), this is equivalent to ¢ being invariant under right translation by
SL(A). Since this is true for any ¢ € 7, we see that 7|g1,,(a) is the trivial representation. Thus, T,
is trivial on SLy(k,) for all v, which implies that 7, is a twist of the determinant for all v, and thus
7 is one-dimensional. O

3 Review of the local theory

Lectures 14 and 20 develop the theory of local L-functions (in the non-archimedean and archimedean
cases respectively), zeta integrals, and e-factors. We will recall the main theorems and definitions
here for convenience. The setup is that we have an infinite-dimensional irreducible admissible
G (kv)—representatioﬂ T, @ quasi-character y, of k), a non-trivial character ¢, of k£, and a

Whittaker model 7 — W(,) defined with respect to 1),,.
First, we define zeta integrals:

Definition 3.1. For W € W(r,), we define the zeta integral:

Zo(W, e, 5) — /( WD)l el

We also have the slight variant:
Definition 3.2. Let g € G(k,). Then we have:
(W, g3 X, 5) = /( | W((" 1) g)xo(@) M ali ™ d*a = Zu(pgW, X, 5)
k)

Here, p, is right-translation by g.

°For a general connected reductive group, we can replace the role of SLy by G’ = D¥, which is semisimple and
thus admits no characters. (Note that DGLy = SLo). However, this group may fail to be simply connected, preventing
the use of a strong approximation argument. Thus, one would instead pass to the group Q' its simply connected central
cover. Then one can show that G(A) — G(A) has a commutative cokernel. Thus any representation of G(A)) whose
pullback to G(A) is trivial must be a character.

10As above, we treat the phrase “irreducible admissible Gi(k,)-representation” as shorthand for “irreducible ad-
missible H,-representation”. In the non-archimedean case, these are actually representations of G(k,), but in the
archimedean case, they are merely (g, K )-modules.



The zeta integrals satisfy:

Proposition 3.3. For any W € W(r), the zeta integrals converge for Re(s) » 0 and admit analytic
continuations to meromorphic functions with at most 2 poles.

These transform according to the gamma factors:

Proposition 3.4. There is some meromorphic function ~, (X, s), which is in C(g, ®) in the non-
archimedean case, such that for any W € W(r):

Zo(W,woxs 1= 8) = 7(x, 8) Zo(W, X, 8)

Here, W(g) := W (gw) withw = ( ° §) the Weyl group element, so W = pwW . We could reword
this as:
G(Wwgswox, ', 1= 8) = 7(x, 8)G (W, g X, 5)
Furthermore, these satisfy the functional equation:
711(X7 S)/}/’U(W’UX;17 1- 8) = wﬂ(_l)

Now, we can define the L-functions. First, we need to define L,(p, s) for a character p of k7.
This is:

Definition 3.5. Let p be a character of k. First, let k, be non-archimedean. We define the
L-function:
1 ified
Lu(p.s) = -
(1= p(wy)q,*)~" punramified
Now, if k, = R and p(z) = |z["(sgn(z))™, ¥, (x) = ™% we define:

LR(p, S) _ 7T_s+r2+mr<8 +7r+ m>

2
Ifk, = C, p(z) = |z|"2™Z", and 1, (z) = ™ Re(w?) e define:
Le(p, s) = 2(2n)~GH M40 (s 4 1 4+ m + n)
This lets us define the L-function for the irreducible admissible representation 7,,:

Definition 3.6. When £k, is non-archimedean, we define L, (., s) as:

1 m, cuspidal

Lo (xo.s) = L(xgluv, 25— 5) - L(Xy 00,28 = 5) Ty = My, fo/V # | - |2
L(x, " o, 25 — 3) To = My ws Mo/ Vo = | - |
L(xy v, 25 — %) To = Tpgs o/ Vo = | |7

When k£, = R or C and 7, = 7, ,, is a principal series, we define:

. 1 ) 1
Lr, (xur8) = L0G 0,25 = 5) - L0 10,25 = 5)

When k, = R and 7, = 7(p) for p a quasi-character of C, we define:

L7rv (Xm S) = L(pv 5)

5



Remark 3.7. As we can see directly, the definition of the local L-functions does not depend on 1,.
However, the zeta integrals do depend on %, via the dependence of the measure and the Whittaker
model.

These are related to the zeta integrals by:
Proposition 3.8.
{Zs(W.x0,8) | W eW(m)} = La, (X, 5) - Cla™™, ¢*]
The L-functions transform according to the e-factors:

Definition 3.9. Define:

Lﬂ'v (X'lﬂ S)
Lﬂ'v (X;lwl}? 1 - S)

GU(XMS) = 7@()(075) )

We can eliminate the «y factor from this definition to get:

ZU<W7MFUX;171 - S) Lﬂ'v(X”U’S)
ZU(W7 X’U7 S) Lﬂ'v (X;lwﬂ'zﬂ 1 - S)

S (Xva 3) =

whenever Z,(W, x,, s) is not the 0 function.
The functional equation for the v factors immediately gives us:

Proposition 3.10. The local e-factors satisfy the functional equation

€v( X S) - ev(xqjlwv,l —8) = wy(—1)

4 Convergence

Now, we want to show that the Euler product defining L, (x, s) converges for sufficiently nice 7. It
turns out that the following condition is sufficient:

Theorem 4.1. Let 7 be an irreducible admissible representation of G(A) which is moreover pre-
unitary, such that 7, is infinite-dimensional for all v. Then the Euler product defining L (x;, s)
converges for Re(s) » 0.

Note that this implies convergence of the L-function when 7 is cuspidal automorphic, since
Aeusp(G(k)\G(A), w) is contained in the unitary Hilbert G(A )-representation L2 . (G(k)\G(A),w).

cusp

Proof. Flath’s theorem tells us that 7, is spherical for all but finitely many non-archimedean v
i.e. G2 = {0}. (Indeed, these spaces are then necessarily one-dimensional and are then used to

define the restricted tensor product (X)’ 7, ~ 7). Thus, we may choose a finite set of places Sy such
that for all v ¢ Sy, we have:

1'Note that GLs (0%,) is not actually intrinsic to the k-group GLo. However, given an arbitrary choice of &, s-model
of GLg, it is isomorphic to the standard integral model ¢4.%% away from finitely many places. Then any vector in the
admissible 7 is fixed by some open compact subgroup Ky of GLa(A ¢), and with respect to this arbitrary choice of
model, K is equal to GL2 (&) at all but finitely many places. Thus, our claim does not depend on a choice of integral
model, but the specific set of places S is not intrinsically determined. Similar comments apply whenever we discuss
GLy(0)).



e v is non-archimedean.

e T, is spherical.

X 18 unramified.

The largest ideal of k, on which v, vanishes is &,.
o [O,dx = fﬁx d*z = 1.

We know by the classification of spherical representations given in Lecture 15 that for all such v, 7,
is either a twist of the determinant character or 7, ~ 7, ,, with 4, v, unramified quasi-characters
of kX with y, /v, # |- |*'. By Proposition we do not need to worry about the former possibility.
Then, we have:

L, (X, 8) = L(poxy, ', 8" ) L(voxy, ' 8')
Here, s’ := 25 — % Now, since i, I, X, are all unramified, we have:

!

L, (Xos 8) = (1 — poxy H(@0)a, ") L = vy (@) gy * ) ™

Here, w, is the uniformizer of &, and g, is the cardinality of the residue field at v. (We assume of
course that the valuation | - | on k, is normalized so |w,| = ¢ ).

Since 7, is pre-unitary, it follows from Lecture 16 that either 1, , ji5 are both unitary or j15 = fi;
and g = gyt = |ui|? = |72 = | - |°v for some 0 < o, < 1. Thus, in either case, we have:

|0'v/2 ‘70'1,/2
)

()] = |z s ()] = |2

for some 0 < o0, < 1 (the case that y1, uo are both unitary is the case o, = 0). Applying this to
T = ww,, we have:

(@)l = ¢, 7% Jpa(w)| = g7

Thus, we may reduce the convergence of the Euler product in (2)) to the convergence of:

1—[ 1

véSo (1 - X;l(w’v)/"tﬂ(wU>qv_S,)(1 - X;l(wv)yv<wv)%1_8/)

This in turn reduces to convergence of the sums:

DG @)m(@)g K (@)v(@)g,

v¢So vESo

/

Since  is a quasi-character of k*\A*, we must have |y (z)| = |z| for some t € R and all z € A*.
Thus, we have |x(w@,)| = |xu(@)| = ¢,*. Therefore, taking absolute values in the above sums
reduces our convergence question to that of:

Z q;(Re(S')+tiav) < Z qv—(Re(S/Ht—l)
v¢So v#So

Finally, this converges for Re(s) » 0: it is essentially the logarithm of the (-function of k. ]



5 e-factors

Now, we must define the global e-factor e, (, s). Since we use Whittaker models for the definition,
we will assume that 7, is infinite-dimensional for all v in this section: by Corollary this is the
case when T is cuspidal automorphic.

Recall that we have:

Zv(Wame;171 - S) Lm(XwS)
ZU(V[/? XU7 S) Lﬂ'v (X’lewﬂWﬂ 1 - S)

677'1; (X”? S) =

for all W € W(m,) such that Z, (W, x,, $) is not identically 0.
Now, assume that v ¢ Sy. By [2, Theorem 11, p. 1.52], there is a uniquely determined spherical
function W) € W(m,) with W})|(s,) = 1. We have the following result:

Proposition 5.1. For any v ¢ Sj, we have:
Z'U<W1?7 Xv7 8) = L7T'u (XW S)

Proof. We can compute the zeta integral for TV as:
ZoWExs) = [ WA D)xle) al !

= i />< W3<(w"u1)>X(wnu>—1|wnu|25—l d*u

=3 [ (=)@ v
= _i w((=" 1) )x(w) g D

In [2, §3.16, (268)], Godement computes that (here, d = 0 since 0, is the largest ideal of k,
contained in ker v),,)

—n/2 i 7
0 (wn _ )4 Zz‘+‘=n p“v(w )Vv(w ) n =0
WU << 1)) - {0 ! n<0



Thus, we have:

e8]
AV s) = 33 W((= 1))l

n=—oo
_ Z Xv —-n —n 25—5) Z Mv(wi>yv(wj)
i+j=n
% . .
= <Z :uv v > Z wj Xv J)Q;ﬁ/
1 1

1= poxa Hw@w)g 1 = vyxg H(w)g™
= L(pox, 58 ) L(ve, X, ' 8')
= Lm;(Xva )

Here, s’ = 2s — 1. Now, since W is right-invariant by G(&,) and w = ( % §) € G(G,), w
have W9 = WY, Thus, we can compute the e-factor for v ¢ Sy as:

Z<WO wvaulal *S) va(XvaS)
e T W v Tl e 1)
_ Z(Wo wﬂ'vXU 1—5) Lz, (X0, 5)
- Z(WY, xv, ) ‘ Lz, (X 'wr,, 1 — 5)
Ly, (X, 'Wr,, 1 — 5) Lz, (X 5)
C Le(ws) Le (G 'wr, 1—s)
=1

Thus, the following definition makes sense:

Definition 5.2. Let 7 be an irreducible admissible representation of G(A) with , infinite-dimensional
for all v. Then the e-factor of 7 is defined by the Euler product:

ex(X,8) = 1_[ €ry(Xos S)

v

We saw above that €, (., ) is the constant function 1 for all but finitely many v, so convergence
of this product is automatic.

Remark 5.3. Unlike the L-function, the definition of the e factor here appears to depend on ),
since the local € factors legitimately do depend on ). However, if 7 is cuspidal automorphic, the
functional equation L, (x, s) = ex(x, s)Lr(wx ', 1 — s) shows that the global ¢, (Y, s) is actually
independent of 1.

We can multiply together the local functional equations for the e-factors to get:



Theorem 5.4. If 7 is an irreducible admissible representation of G(A) such that 7, is infinite-
dimensional for all v, we have:

(X, 8)er(X Fwn, 1 — 8) = we(—1)

Proof. Indeed, for each place v, Proposition says that we have a functional equation of the
above form for the local e-factors, and we have [ [, wy, (—1) = w.(—1). O

Remark 5.5. When 7 is cuspidal automorphic, the central character w, is k£*-invariant, so this says:

e (X, $)en(X Mwr, 1= 8) = 1

This also follows from the functional equation.

6 Functional Equation

Now, we will assume that 7 € Acusp(G(k)\G(A),w), i.e. that 7 is a cuspidal automorphic
irreducible admissible representation of G(A). In this case, the L-function L, (x, s) satisfies all of
the good analytic behavior we might ask for:

Theorem 6.1. Let 7 € A, (G(k)\G(A),w) be an irreducible admissible cuspidal automorphic
representation of G(A). Then for every quasi-character x of k*\A*, the function L. (y, s) is entire,
bounded in every vertical strip, and satisfies the functional equation:

Lw(Xv 5) = 67T(X7 S)Lw(wx_l, 1- 5)

Proof. Let ¢ € 7. Then for all g € G(A), we have the Fourier expansion:

p9) = D, Wel(*1)-9)

aek>

Here, ¢ — W, is the (unique!) Whittaker model 7 — V(7). We can identify W, concretely as
the “Fourier coefficient” of ¢ with respect to ¢: W, (g) = fA+/k+ e((*1) - g)v(—u) du.
Now, we have the zeta integral:

Cogins) = [ el((59) - i) el 3

KX\ A%

Since ¢ € Acusp(G(k)\G(A),w), the function z — ¢((*1)-g) is rapidly decreasing as
|z| — o0, so the |x| = 1 part of the integral converges absolutely for any s. On the other hand, we
have the identity:



The first inequality follows from the fact that the central character of 7 is w;,;, and the third follows
from the fact that ¢ is left-invariant by G(k).

Thus, go((ff_l E g) is rapidly decreasing as |z| — oo as well. This means that o ((* 1) - g) is

rapidly decreasing as |z| — 0, so the |x| < 1 part of the integral (3)) converges absolutely for all s
as well. Now, we apply the Fourier expansion inside the integral (3)):

Clp, g3 x; 8 Z / 7)) - g)x(azr) az|* T d* e

aekX* \AX

~ /A Wo((" 1) - g)x(z) M e =: ¢

This identity holds as long as the right-hand side CN is convergent. By one of the defining properties
of the global Whittaker model, the function z ~— W ((* ) - ) is rapidly decreasing as |z| — 0,
so the |z| > 1 part of the integral converges for all s. For |z| < 1, we claim that that I, at least
bounded on G(A), so this integral converges for Re(s) » 0.

To see this claim, first note that ¢ is bounded on G(A): in fact, it is even rapidly decreasing on
G(A), by definition of cusp forms. Now, the Fourier coefficient

Wolg) = [ o(()-g)otw du

is the integral of a bounded function (7, being a character of a compact group, is unitary) over the
compact group A" /k*, so it is bounded as well.
Now, let S be a finite set of places containing S,. We havef__z]

SDSOH/X gv)XU( ) 1‘x|2s ldxx x H/x gv)Xv( ) 1|$|12;S_1dxl’

v¢S

For large enough S, for any v ¢ S, we have W, ((* 1) - g,) = xv(z) = ||, = L forallz € O:
indeed, it suffices for v to be a non-archimedean place such that y, is unramified, g, € G(&,), and
W, = W2.

Since & has volume 1 with respect to the Haar measure d*x for all v ¢ Sy, this gives:

¢ = lim [ [¢Wa, gui x0rs) = [ [ Co(War g0 X 8)

5250
veS

Here, the local zeta integral (,(W,, g,; xv, ) is defined as:
Cv(an Gus Xvs 5) = / Wv((x 1) : gv)XU<w)_1|fL’|?)S_1dXI = Zv(pngv; Xv, S)
ke

with p,, the right translation operator on W(,). Now, fix some g,. We claim that ¢,(W,, g4} Xv, 5)
is equal to L, (., s) for all but finitely many v. Indeed, for all but finitely many v, the function
pg, Wy € W(m,) is equal to W. Then, if additionally v ¢ Sy, we have:

Cv(angv§Xv>5) = Zv(ngWUQXmS) = ZU(WB;XmS) = erv(XmS)

12Strictly speaking, it does not make sense to write W, since ¢ may not be a pure tensor in 7. However, W is a
finite linear combination of functions of the form g — [ [, W, (g), so the integral for {(y, g; X, s) breaks into a finite
sum of integrals of this form. All formulas involving W, below should be interpreted as such a sum.

11



by Proposition [5.1] R
Thus, by Theorem for any particular g, the infinite product defining ¢ converges for
Re(s) » 0. Thus, we have proven:

Proposition 6.2. For any cusp form ¢, g € G(A), and quasi-character y, the zeta integral
¢(¥, g; X, s) admits an Euler product:

(.95 8) = | [ Co(Wa, 905 X, 9)

for Re(s) » 0.
By the local theory, as developed in Lectures 14 and 20, we have:

{Z(Wei X0r8) | Wy € W(m)} = Li, (X0, 5)Clg™, ¢*]

Thus, for each v € Sy we may choose W, such that (,(W,, €; xu,5) = Z(Wy, Xu, S) = La, (X0, S)-
By Proposition 5.1} for v ¢ Sy, (,(W2, €; X4, ) = Lr, (Xv, 5). Thus, the function

W':zHWéxHWB

VESH v¢So

is in W(r). There is a unique ¢ € m mapping to W’ under the isomorphism = — (7). Thus, we
may apply Proposition[6.2) and Theorem [4.1]to see that for Re(s) » 0:

LW(X)'S) = HLFU(X'IHS) = HCU(qu?gU;XU?S) = C(ga € X, S)

Thus, the integral ((, e; x, s) defines an analytic continuation of L, (, s). Since the integral defin-
ing C(&, e; x, s) converges absolutely for all s € C, it defines an entire function. The dependence on
s in the integrand is only via the factor |x|**~1, which is an entire function in s. Since its absolute
value only depends on Re(s), we see that L (x, s) is also bounded in vertical strips.

Now, we are ready to prove the functional equation. Via Proposition |6.2{and Theorem we
have, for Re(s) » 0 and any g € G(A):

e, g3x:8) _ I Go(Wo, gui X, 8)
Lz (X, 5) o L (Xers)

Here, the product on the right-hand side is finite. Thus, both sides define meromorphic functions of
s, so they are equal everywhere.
Thus, we can multiply together finitely many local functional equations to get:

C(Sovwg;wxila]-_s) — ¢ ( S)C(@aganS) (4)

L7r<wX_171 - S) LW(X?‘S)
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Now, by left G(k)-invariance of o, we have p(wg) = ¢(g), so:

Q(gp,wg;wx_l, 1-— S) = / . @((x 1) 'wg)w_lx(x)|x|1_25 dxl’
EX\ A X

- / o((1,) - g (@)l d*z
EX\AX

e e
= ((, 95 X 8)

Thus, we may cancel the ¢ terms in (@) to complete the proof.
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