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1. Hecke operators

1.1. Classical modular forms. We recall the definition of holomorphic modular forms
with respect to an arithmetic subgroup Γ ⊂ SL2(Z), introduced many lectures ago.

Definition 1.1. A f : H→ C is called a modular form of weight k with respect to Γ if we
have

f(γz) = (cz + d)kf(z) for all γ =
(
a b
c d

)
∈ Γ (1.1)

and also that f is holomorphic at the cusps.

Remark 1.2. For any g ∈ GL2(R)+, we define

f |k,g(z) = (det g)k/2(cz + d)−kf(gz).

(Since det g ∈ R>0, we can unambiguously take the “positive square root”.) The condition
(1.1) can then be abbreviated as

f |γ,k = f for all γ ∈ Γ.

1.2. Hecke operators. We will now focus our attention on the case

Γ = Γ0(N) :=

{(
a b
c d

)
: c ≡ 0 (mod N)

}
.

Let Mk(Γ0(N)) denote the space of weight k modular forms for Γ0(N), and Sk(Γ0(N)) ⊂
Mk(Γ0(N)) be the subspace of cusp forms. Actually, we will see later that it is more
general to consider the spaces Mk(Γ0(N), χ) ⊃ Sk(Γ0(N), χ) where χ : (Z/NZ)× → C× is
a Dirichlet character modulo N ; the definition of these is obtained by replacing (1.1) with

f(γz) = χ(a)(cz + d)kf(z) for all γ =
(
a b
c d

)
∈ Γ0(N).

We will define certain Hecke operators Tp on Mk(Γ0(N), χ), which also preserve the
subspaces Sk(Γ0(N), χ).
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Definition 1.3. Consider the double coset

Γ0(N)

(
1

p

)
Γ0(N) =

⋃
j

Γ0(N)γj .

We define

Tpf = “pk/2−1f |
k,[Γ0(N)

1
p

Γ0(N)]

” = pk/2−1
∑
j

ψ(γj)
−1f |k,γj .

Since γj is upper-triangular modulo N , we can reasonably define ψ(γj) to mean “ψ applied
to the upper left entry”.

Exercise 1.4. Check that we can take the coset representatives

{γj} =

{(
p

1

)}
∪
{(

1 b
p

)
: b = 0, . . . , p− 1

}
.

Then ψ(γj) means ψ(a).

Exercise 1.5. Compute the effect of Tp on the Fourier expansion of f =
∑
anq

n ∈
Mk(N,χ). [The correct answer is Tpf =

∑
bnq

n where bn = anp + χ(p)pk−1an/p.]

Definition 1.6. Let f, g ∈ Sk(Γ). Then we define the Petersson inner product

(f, g) :=

∫
F(Γ)

f(z)g(z)yk
dxdy

y2
(1.2)

where F(Γ) is a fundamental domain for Γ acting on H.

Exercise 1.7. Explain why (1.2) is well-defined.

Theorem 1.8. The Tp for (p,N) = 1 generate a commutative subalgebra of Mk(Γ0(N), χ),
and satisfy

(Tpf, g) = χ(p)(f, Tpg).

Theorem 1.8 implies that the Hecke operators Tp for p - N are individually normal,
hence diagonalizable. Furthermore, they commute with each other and can therefore be
simultaneously diagonalized.

Definition 1.9. A Hecke eigenform is a modular form f ∈ Mk(Γ0(N), χ) which is an
eigenvector for all Tp with p - N .

Exercise 1.10. Show that if f =
∑
anq

n is a Hecke eigenform with a1 6= 0, then its Fourier
coefficients an for (n, p) 6= 1 are determined by a1.

Example 1.11. LetN = dM and f ∈Mk(Γ0(M), χ). Then we can view f(z) ∈Mk(Γ0(N), χ)
and f(dz) ∈Mk(Γ0(N), χ). We claim that these are eigenforms for each Tp with (p,N) = 1,
with the same eigenvalue as f . For f(z), this is obvious from Exercise (1.4).

Next note that
f |k,diag(d,1)γj = fk,diag(d,1)γjdiag(d−1,1)diag(d,1)

Since we can write
f(dz) = d−k/2f |k,diag(d,1),

the fact that conjugation by
(
d

1

)
permutes the coset representatives in Exercise 1.4

implies the claim for f(dz) as well.
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1.3. Automorphic forms. Recall that A0(G,ω) is equipped with an action of the Hecke
algebra

H(G(A)) =

′⊗
(H(G(Qp)), eK)

where eK = IG(Zp) is the indicator function of a hyperspecial maximal compact subgroup
K. The action is via convolution, meaning ϕ ∈ H(G(Qp)) takes

φ 7→ φ ∗ ϕ̌(y) =

∫
G(Qp)

φ(xg)ϕ(g−1) dg.

Definition 1.12. Define T̃p ∈ H(G(Qp)) to be the indicator of the double coset

Kp

(
1

p

)
Kp.

We will use the same notation for the induced operator (with appropriate twist to account
for the central character). We will only ever apply T̃p on a right Kp-invariant function φ,
on which it acts as

T̃pφ(g) =

∫
Kp

φ(gkp

(
p 0
0 1

)
)ω−1(kp) dkp.

Remark 1.13. Note that this definition is purely local. In other words, in terms of the
tensor product decomposition

π ∼=
′⊗
πp

of an automorphic representation, the action of H(G(Qp)) is only on the component πp.

There is a correspondence between modular forms and (certain) automorphic forms,
which we denoted f ↔ φf . Recall that (in our normalization) this was defined by

φf (g) = f |k,g(i)

and

f(x+ iy) = yk/2φf

(
y1/2 xy−1/2

y−1/2

)
(1.3)

How do the two kinds of Hecke operators match up under this correspondence?

Lemma 1.14. We have
pk/2−1T̃p(φf ) = φTp(f).

Exercise 1.15. Prove Lemma 1.14.

1.4. Spherical representations. Let F be a non-archimedean local field. Recall that
we say that a representation (π, V ) of GL2(F ) is spherical if V GL2(OF ) 6= 0. Recall the
classification of spherical representations from [Zav].

Theorem 1.16. Let F be a non-archimedean local field. If (V, π) is an irreducible admissible
representation of GL2(F ), which is spherical, then either:

(1) V ∼= π(χ1, χ2) is a (non-special, so χ1/χ2 6= | · |±1) principal series representations
with χ1, χ2 being unramified characters, or

(2) (V, π) is an unramified character.
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Furthermore, we saw that if V is spherical then V K is 1-dimensional, so the Hecke algebra
HK(G(Qp)) := H(K\G(Qp)/K) = eKH(G(Qp))eK acts through a character. Regarding
T̃p ∈ HK(G(Qp)), we have that the spherical representation π(χ1, χ2) where χi = | · |si
corresponds to Hecke eigenvalue ps1 + ps2 for T̃p. Since the central character pins down
s1 + s2, we conclude:

Corollary 1.17. There is a unique (up to isomorphism) spherical representation of GL2(F )

with given central character and eigenvalue for T̃p.

2. From classical modular forms to automorphic representations

2.1. The automorphic representation associated to a modular form. Let f ∈
Sk(Γ0(N), χ). We let πf ⊂ Acusp(G,ω) be the automorphic representation generated by
f .

Remark 2.1. Let us first clarify how ω and χ correspond to each other. We regard the
central character ω of Z(K)\Z(A) as a Hecke character on K×\A×K . Then it can can be
regarded as a Dirichlet character on (Z/NZ)×. We claim that (with the conventions made
here), that character is χ−1.

Why? If φf transform according to the central character ω then

φf (gιpdiag(z, z)) = ω(z)φf (g)

where ιp is the inclusion of GL2(Qp) into GL2(AQ). By Strong approximation and smooth-
ness of φf , the action of ιpdiag(z, z) coincides with that of ιpdiag(z′, z′) for z′ ∈ Q which is
sufficiently congruent to z modulo p. (See Example 2.6 for a more formulation of this claim.)
When we use an element of Z(Q) to cancel out ιpdiag(z′, z′), the archimedean coordinate
is multiplied by ι∞diag(z′, z′)−1.

Theorem 2.2. Let f ∈ Sk(Γ0(N), χ) be an eigenform with respect to almost all Hecke
operators. Then πf is irreducible.

Proof Sketch. The basic idea is as follows. Suppose πf decomposes into a sum of irreducible
representations. For any constituent, the local components are almost all unramified, and
then their spherical vectors are obtained from f , so their Hecke eigenvalues are all the same.
By the classification of spherical representations, this implies that they are isomorphic. Also,
since f is of weight k by inspection of the eigenvalue for the Laplacian, and f is killed by
the lowering operator, the same holds for a vector in the archimedean component ∞ in
all of the irreducible constituents, so they are also isomorphic at ∞. Being isomorphic at
∞ and almost all non-archimedean places, the Strong Multiplicity One theorem ([Feng])
implies that the constituents are globally isomorphic, hence by Multiplicity One are the
same space. �

We now give a more careful development of the proof. Let π̂f denote the closure of πf
in L2

cusp(GL2(Q)\GL2(AQ), ω).

Lemma 2.3. We have a Hilbert direct decomposition

π̂f =
⊕̂
i∈I

π̂i

where πi is an admissible automorphic representation.
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Proof. We use that π̂f is a closed subrepresentation of L2
cusp(GL2(Q)\GL2(AQ), ω), which

decomposes discretely by [Howe1], [Howe2]. In fact we claim that any sub or quotient
representation of a Hilbert direct sum of irreducible representations is again of this form.
By duality, it suffices to prove the statement for quotients.

Let V =
⊕̂
Vi � W be such a quotient. By Zorn’s lemma, the collection of irreducible

mutually orthogonal subrepresentations of W has a maximal element; we have to see that
there is no non-zero vector orthogonal to their Hilbert direct sum W ′ ⊂ W . Otherwise,
the image of some Vi is non-zero in W/W ′, hence gives an irreducible subrepresentation of
(W ′)⊥, which is a contradiction. �

As indicated in the proof sketch, it will suffice to show that the πi are all isomorphic. By
Flath’s theorem, we have

πi ∼=
′⊗
πi,p

and by Strong Multiplicity One ([Feng], Theorem 1.7) it will suffice to show that for any
i, j we have πi,p ∼= πj,p for almost all finite p, and at ∞.

We have
φf =

∑
i∈I

φi, φi ∈ πi.

We must have φi 6= 0, since the projection map is G(A)-equivariant and the translates of
φf generate πf . Then φi is a Hecke eigenvector for Tp with Hecke eigenvalue ap(f).

We can write φi as a finite sum of pure tensors, almost all of whose local components are
the spherical vector in πi,p. Hence for almost all p, the pure tensor has the same component
in at πi,p. Since the Hecke algebra acts locally, this shows that the spherical vector has
eigenvalue ap(f) for almost all p.

Next we move on to the archimedean place. The point is that the holomorphicity of f is
equivalent to φf being killed by the lowering operator L, while the fact that f has weight k
corresponds to

φf (gkθ) = eikθφf (g), kθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO2(R),

or in other words that φf is the k-weight space of U(g). Therefore each πi,∞ has a non-zero
vector, namely φi, which is killed by the lowering operator and in the k-weight space. But
by the classification of irreducible admissible (g,K)-modules, this property characterizes the
discrete series of weight k, i.e. it pins down πi,∞ up to isomorphism. This completes the
proof. �

We can put an equivalence relation on Hecke eigenforms by saying that f ∼ f ′ if f and
f ′ share almost all Hecke eigenvalues. Then the proof of Theorem 2.2 shows that:

Corollary 2.4. There is a bijection between equivalence classes of f ∈ Mk(Γ0(N), ω) and
irreducible summands πf ⊂ Acusp(GL2, ω).

2.2. Newforms. In Example 1.11 we saw that there are maps

Mk(Γ0(M), χ) ⇒Mk(Γ0(Md), χ) (2.1)

sending f(z) 7→ f(z) and f(z) 7→ f(dz).

Definition 2.5. The span Mold
k (Γ0(N)) of the images of (2.1) for all 1 < d | M in

Mk(Γ0(N)) is called the space of old forms. The newforms Mnew
k (Γ0(N)) are the orthogonal

complement of Mold
k (Γ0(N), χ) under the Petersson inner product.



6 TONY FENG

Example 2.6. We already know from Example 1.11 that the process of producing oldforms
doesn’t alter Hecke eigenvalues, so they must lie in the same automorphic representation.
Let’s see this explicitly.

Recall from (1.3) that the modular form attached to an automorphic form is

f(z) = y−k/2Φ

((
y1/2 y−1/2x

y−1/2

))
Let’s see how the action of G(Af ) turns newforms into oldforms. The action is to right
multiply by

ιp

(
p−1

1

)
where ιp is the inclusion of G(Qp) into G(AQ). By Strong Approximation for SL2 (plus the
fact that Q has class number one), we can write any adele g ∈ GL2(A) as

g = γg∞k, γ ∈ GL2(Q), g∞ ∈ GL2(R), k ∈ K0(N)

where K0(N) is the compact open subgroup corresponding to Γ0(N). Then

γg∞k

(
ιp

(
p−1

1

))
= γ′

(
ιp
(
p

1

))
g∞k

′,

where ιp is the diagonal inclusion of G(Q) into G(Ap
Q). So we see that if Φ corresponds to

f(z), then ιp
(
p−1

1

)
Φ essentially corresponds to the oldform f(pz).

Theorem 2.7 (“Classical multiplicity one”). Suppose f, f ′ ∈Mnew
k (Γ0(N)) are Hecke eigen-

forms which are newforms, and that ap(f) = ap(f
′) for almost all p. Then f and f ′ are

proportional.

Remark 2.8. As Example 1.11 shows, this is definitely false without the assumption of
both f and f ′ being newforms.

2.3. The conductor of a local representation.

Theorem 2.9 (Casselman, Novodvorskii). Let F be a non-archimedean local field with
uniformizer $ and (V, π) be an admissible infinite-dimensional representation of GL2(F ),
with central character ω. There exists a largest ideal cond(π) of OF such that the space{

v : π(g)v = ω(a)v for all g =

(
a b
c d

)
∈ Γ0(cond(π))

}
(2.2)

is non-zero, and moreover it is 1-dimensional.

Remark 2.10. The result was generalized to GLn by Jacquet-Piatetski-Shapiro-Shalika.

The proof, which we defer to §2.9, will be by case analysis. For the principal series and
special representations, one has an explicit model of the representation. For supercuspidal
representations, one can use the Kirillov model for this purpose, but that analysis relies on
more theory. A corollary of the proof of Theorem 2.9 is a more precise estimate on the
number of fixed vectors as the level increases:

Corollary 2.11. We have

dim{v : π(g)v = ω(g)v for all g ∈ Γ0(cond(π)$i} = i+ 1.

Definition 2.12. The cond(π) as in Theorem 2.9 is called the conductor of π.

Example 2.13. If π is spherical, then cond(π) = OF .
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2.4. The conductor of an automorphic representation. Now we turn our attention
to the global case.

Definition 2.14. Let π be a (global) automorphic representation of GL2. Then we have
by Flath’s theorem

π ∼=
′⊗
p

πp.

Define the conductor of π to be

cond(π) :=
∏

cond(πp).

By Example 2.13, this is well-defined.

Theorem 2.9 leads to a distinguished vector in the representation πf . Indeed, for the
infinite place we take the lowest weight vector, and for each finite place we take a vector in
the 1-dimensional space (2.2) for the conductor cond(πp). As πp is unramified for almost
all p, (2.2) becomes simply the 1-dimensional space of spherical functions, so we get a
well-defined element of

⊗′
πv.

Proposition 2.15. The preceding construction gives a bijection between newforms and con-
stituents of πf .

Proof. We first need to check that the distinguished vector φ induces a newform fφ. Let
N = cond(π). It is clear from the definition that πf cannot contain any oldforms of level
N , as an oldform would give a vector invariant by a bigger group. Now, fφ is evidently a
Hecke eigenform of level Γ0(N), so by the orthogonality of different cuspidal automorphic
representations it must be a newform. This shows at least that we have a well defined
association from cuspidal automorphic representations to newforms.

Next we need to rule out the possibility that there are two different newforms f, f ′ in
π. By the one-dimensionality in Theorem 2.9, if this were not the case then without loss of
generality we may assume that cond(f) | cond(f ′). By Corollary 2.11, the oldforms f(piz)
account for all functions in (2.2) transforming by ω under Γ0(cond(f ′)).

�

Proof of Theorem 2.7. Theorem 2.15 plus Strong Multiplicity One for cuspidal automor-
phic representations (and the fact that modular forms of weight k have the same infinity
type, as was explained in the proof of Theorem 2.2) immediately imply the classical Strong
Multiplicity One Theorem for modular forms, Theorem 2.7. �

2.5. L-functions. We now compare the classical L-function attached to a modular form
with the L-function of its associated automorphic representation.

Definition 2.16. Let f ∈ Mk(Γ0(N), χ) be a modular form. We define its L-function to
be

L(f, s) :=

∫ ∞
0

f(iy)ys
dy

y
.

Explicitly, if

f =

∞∑
n=1

ane
2πinz

then
L(f, s) = (2π)−sΓ(s)

∑
ann

−s.
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If f is a newform, then we have Tp(f) = apf for every p, hence

L(s, f) = (2π)−sΓ(s)
∏
p

(
1− app−s + pk−1−2s

)−1

Corollary 2.17. If f ∈ Sk(Γ0(1)) is a cuspidal eigenform of level one, then we have
L(f, s) = L(πf , s− k−1

2 ).

Proof. We have Tpnf = apnf . Since f is an eigenform, and Tn, Tm commute if (m,n) = 1
we have (at least formally) ∑

ann
−s =

∏
p

(∑
apkp

−ks
)
.

From the relation
TpnTp = Tpn+1 + pk−1Tpn−1

we find that (for Rep s� 0)(∑
apnp

−ns
)

= (1− app−s + pk−1−2s)−1.

Therefore, we have

L(f, s) = (2π)−sΓ(s)
∏
p

(1− app−s + pk−1−2s)−1.

On the other hand,

L(πf , s) = (2π)−s−
k−1
2 Γ(s+

k − 1

2
)
∏
p<∞

(1− ps1p−s)−1(1− ps2p−s)−1.

Since ap = p
k−1
2 (ps1 + ps2), this can be rewritten as

L(πf , s) = (2π)−s−
k−1
2 Γ(s+

k − 1

2
)
∏
p<∞

(1− app−s−
k−1
2 + p−2s)−1.

�

Remark 2.18. It is true more generally that if f ∈Mk(Γ0(N)) is a newform, then L(f, s) =
L(πf , s). See [Gelb] §6.

However, if f is not a newform but comes from a newform f0, then we will obviously
have L(πf , s) = L(πf0 , s) = L(f0, s), which is not equal to L(f, s).

2.6. Proof of Theorem 2.9. We proceed in cases, using the classification of irreducible
admissible representations over a local field. The proof follows [Cass].

2.6.1. Principal series. By the Iwasawa decomposition, any f ∈ π(µ1, µ2) is determined by
its restriction to GL2(OF ). The central character is µ1µ2. Since a function in π(µ1, µ2) is
determined by its restriction to GL2(OF ), the space{

v : π(g)v = ω(a)v for all g =

(
a b
c d

)
∈ Γ0($i)

}
(2.3)

is the same as the space of functions f : GL2(OF )→ C such that

f

((
a b

d

)
g

(
a′ b′

c′ d′

))
= µ1(a)µ2(d)f(g)µ1µ2(a′),

for all g ∈ GL2(OF ),
(
a b

d

)
g ∈ B(Zp),

(
a′ b′

c′ d′

)
∈ Γ0($i)).
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To do this, we want to compute a convenient set of coset representatives for

B(OF )\GL2(OF )/Γ0($i).

Note that Γ0($i) ⊃ Γ($i), the kernel of reduction mod $i, so that

B(OF )\GL2(OF )/Γ0($i) = B(OF /$i)\GL2(OF /$i)/B(OF /$i). (2.4)

Viewing GL2(OF /$i)/B(OF /$i) = P1(OF /$i), the orbits of the left B(OF /$i)-action
are represented by

(1, 1), (1, $), (1, $2), . . . (1, $i).

Tracing through what this means, it tell us that coset representatives for (2.4) are

{
(

1 0
$j 1

)
: j = 0, . . . , i}.

Now we compute the stabilizer: we need to solve for a, b, d, a′, b′, d′ such that(
a b

d

)(
1 0
$j 1

)
=

(
1 0
$j 1

)(
a′ b′

d′

)
This leads to the system of equations (mod $i):

a′ = a+$jb

b′ = b

$ja′ = $jd

d = d′ +$jb′

We can use this to eliminate a, b′, and d′, so the stabilizer is parametrized by a′, b, d subject
to the one equation

$ja′ = $jd.

The issue is then to solve for the number of j such that

µ1(a′ +$jb)µ2(d) = µ1(a′)µ2(a′).

for all permissible a′, b′, d. Therefore we must have cond(µ1) | $j . Since we are given
that d′ ≡ a (mod $i), we next need that cond(µ2) | $i−j . There is a unique solution for
cond(µ1) cond(µ2) = $i, j = cond(µ1). Furthermore, we see that the number of solutions
then increases by 1 when we increment i.

2.6.2. Special representations. Next we consider the special representations σ(µ| · |±1/2, µ| ·
|∓1/2). The same analysis as before shows that the induced representation has conductor
equal to cond(µ)2. However, we have to worry whether or our-dimensional space contributes
to σ(µ| · |±1/2, µ| · |∓1/2) or to the 1-dimensional subquotient. It is easy to check that this
can only happen if cond(µ) = O×F , and more work shows that it does in fact happen in this
case. Therefore, we find that

cond(π) =

{
cond(µ)2 cond(µ) = O×F
($) otherwise
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2.6.3. Supercuspidal representation. We will use the theory of the Kirillov model. Fix an ad-
ditive character ψ : F → C× with conductor OF . Recall that a supercuspidal representation
has a unique realization on C∞c (F×) such that(

ρ

(
a b

d

)
f

)
(α) = ω(d)ψ

(
b

d
α

)
f
(a
d
α
)

for all
(
a b

d

)
∈ B(F ). (2.5)

Since GL2(F ) is generated by B(F ) and w =
(

0 1
−1 0

)
, the representation is completely

determined once we specify ρ(w).
It is more convenient to describe ρ(w) in terms of the Fourier transform, and it is

convenient to normalize things in the following way. For f ∈ C∞c (F×) and a character
ν : O×F → C×, we define

fn(ν) =

∫
O×
F

f(u$n)ν(u) du.

(Here the Haar measure on O×F is normalized to have volume 1.) Define the formal power
series

f(ν, t) =
∑

tnfn(ν).

Since f is compactly supported, only finitely many terms can be non-zero. To get the Fourier
transform with respect to a character ν̃ of F×, we set t = ν̃($) and ν = ν̃|O×

F
.

The action of ρ(w) is closely related to a Fourier transform. Its effect on the Fourier
expansion is governed by the following Proposition.

Proposition 2.19 ([JL] p.48, 90-91). For every ν there is a formal power series C(ν, t)
such that

(ρ(w)f)(ν, t) = C(ν, t)f(ν−1ω−1
0 , t−1z−1

0 )

for every f ∈ C∞c (F×), where ω0 = ω|O×
F
and z0 = ω($). Moreover, C(ν, t) is a monomial

C0(ν)tnν for some nν ≤ −2.

Now, we want to find the v such that

ρ

(
a b
c d

)
v = ω(a)v for all

(
a b

d

)
∈ Γ0($i). (2.6)

Let H =
(

0 1
−$i 0

)
. Note that

H−1

(
a b

d

)
H =

(
a $−mc

$mb d

)
.

Therefore, B(OF ) and HB(OF )H−1 generate Γ0($i). So (using that conjugation by H
swaps a and d), (2.6) is equivalent to the following system of equations:

ρ

(
a b
c d

)
v = ω(a)v for all

(
a b

d

)
∈ B(OF ). (2.7)

ρ

(
a b
c d

)
Hv = ω(d)Hv for all

(
a b

d

)
∈ B(OF ). (2.8)

Now let’s find what constraints (2.7) imposes on f . According to the transformation
property (2.5) of the Kirillov model, (2.7) is equivalent to

ω(d)ψ

(
b

d
α

)
f
(a
d
α
)

= ω(a)f(α) for all
(
a b

d

)
∈ B(OF ).
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or simplifying,

f
(a
d
α
)

= ω
(a
d

)
ψ

(
− b
d
α

)
f(α) for all

(
a b

d

)
∈ B(OF ).

Since ψ has conductor OF and b/d varies freely within OF , this is equivalent to:
(1) f vanishes outside OF , and
(2) f(uα) = ω(u)f(α) for all u ∈ O×F .

The second condition implies that the Fourier coefficients of F are supported on a particular
family of characters. Considering∫

O×
F

f($nu)ν(u) du = f($n)

∫
O×
F

ω(u)ν(u) du

we see that (2.7) is equivalent to:

fn(ν) is supported on ν = ω−1|O×
F
and n ≥ 0. (2.9)

We apply a similar analysis to (2.8): it tells us that

ω(d)ψ

(
b

d
α

)
(Hf)

(a
d
α
)

= ω(d)(Hf)(α), for all
(
a b

d

)
∈ B(OF ).

which is equivalent to

(Hf)n(ν, t) is supported on n ≥ 0 and ν trivial. (2.10)

Let’s translate this into a statement about f . We can write

H =

(
0 1
−$i 0

)
=

(
0 1
−1 0

)(
$i 0
0 1

)
so we can write ρ(H)f = ρ(w)([$i]f). Then

(Hf)(1, t) = (w([$i]f))(1, t)

= C0(1)tn1︸ ︷︷ ︸
C(1,t)

([$i]f)(ω−1, z−1
0 t−1)

= C0(1)tn1f(ω−1, t−1z−1
0 )t−iz−i0 .

So what we’ve found is that (2.10) is equivalent to:

f(ν, t) is supported on ν = ω and n1 − n− i ≥ 0. (2.11)

Combining (2.9) and (2.11), we find that the dimension of the space is #{i : 0 ≤ n ≤ i+n1}.

2.7. Local components. Let f ∈ Snew
k (Γ0(N)) be an eigenform (note that ask for trivial

nebentypus). It is natural to ask what we can say about the automorphic representation
πf . For example, we have a classification of local representations; can we say what the local
components of πf are? All all the places are easy: for p =∞, the infinity type is the discrete
series of weight k. For p - N , πf is spherical, and can therefore be pinpointed from its Hecke
eigenvalues.

It is difficult to say what happens at the primes p | N in general, but we now know enough
to answer this in a special case. In the course of our analysis in the proof of Theorem 2.9,
we saw the following outcomes concerning the conductors:
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Representation Conductor
π(µ1, µ2) c(µ1)c(µ2)
π(µ1, µ2) c(µ)2 or ($)

supercuspidal ≥ 2

Suppose N =
∏
pi is a product of distinct primes. Then πf has conductor ($) at pi, so

it cannot be supercuspidal, since we saw in the proof of Theorem 2.9 that the conductor
of a supercuspidal representation is contained in $2. If πf,pi were principal series, then its
conductor would be an even power of $ since the triviality of the central character implies
cond(µ1) = cond(µ2). Therefore πf,pi must be a special representation. In summary, we
have the following:

Theorem 2.20. Suppose N =
∏
pi is a product of distinct primes. If f ∈ Sk(Γ0(N)) is a

newform and T (p)f = apf for all p, then πf has the following local components:
(1) π∞ is the discrete series representation of weight k.
(2) If (p,N) = 1 then πp is the principal series representation π(µ1, µ2) where |µi| = |t|si

is determined by the conditions

µ1µ2 = 1

ap = p
k−1
2 (ps1 + ps2)

(3) If p = pi, then πp is the special representation with trivial central character χp.
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