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As always, G “ GL2, and we work over a global field k with adele ring A. Today, we will prove
the converse theorem. We also fix a non-trivial additive character ψ : k`zA` Ñ C everywhere.
This is a converse to the following theorem, shown in Lecture 23:

Theorem 1. Suppose that π Ď AcusppGpQqzGpAq, ωq is a cuspidal automorphic representation.
Then for every character χ of kˆzAˆ, Lπpχ, sq is entire, bounded in vertical strips, and satisfies the
functional equation:

Lπpχ, sq “ επpχ, sqLπpωχ
´1, 1´ sq (1)

Precisely, the converse theorem states:

Theorem 2 (Converse Theorem). If π “
Â1

v πv is an irreducible admissible representation of
GpAq such that:

• π has unitary central character ω : kˆzAˆ Ñ C.

• For each v, πv is an irreducible admissible representation of Gpkvq.

• Each πv is pre-unitary.

• Each πv is infinite-dimensional (i.e. generic, i.e. admits a Whittaker model).

• πv is spherical for all but finitely many v.

Then, if Lπpχ, sq is entire, bounded in vertical strips, and satisfies the functional equation (1), π
appears in AcusppGpkqzGpAq, ωq.

The first step of the proof will be to produce a map π Ñ FunpGpAq,Cq, and then we will verify
that the image lies inside AcusppGpkqzGpAq, ωq. We will only use the L-function to see that the
functions in the image are w-invariant for w “

`

0 1
´1 0

˘

P Gpkq.
Now, we build a candidate map. Recall that for π1 Ď Acusp and ϕ P π1 an automorphic form in

π1, we have the following identity, coming from Fourier inversion:

ϕpgq “
ÿ

αPkˆ

Wϕrp
α 0
0 1 q gs (2)

Here, Wϕ is the function on GpAq corresponding to ϕ in the Whittaker model of π1.
Note that the terms in the right-hand side of this formula makes sense without assuming that π1

appears in the space of automorphic forms, since the Whittaker model is attached intrinsically to
the GpAq-representation π1. Thus we may use (2) as a candidate formula for our map from π to
AcusppGpQqzGpAq, ωq.

More precisely, since πv is generic for all v, the local Whittaker models Wv exist for all v,
and therefore we have the global Whittaker model π » W “

Â1

v Wv. For each v such that πv is

1



spherical and ψv has conductor 0, we consider the unique element W 0
v P Wv which is GL2pOvq-

invariant and which is uniformly equal to 1 on GL2pOvq. The elements of W are finite sums of
functions

ś

vWv with Wv “ W 0
v for all but finitely many v.

Then, our candidate map W Ñ FunpGpAq,Cq is defined by:

W ÞÑ

¨

˝ϕW : g ÞÑ
ÿ

αPkˆ

W
`

p α 0
0 1 q g

˘

˛

‚

Once we have shown that this sum converges absolutely to a nice function, cuspidality will follow
immediately (indeed, the Fourier expansion corresponding to (2) has no constant term!).

Thus, we need to show:

(1) The series above defining ϕW is absolutely convergent, and the resulting function is smooth
with moderate growth.

(2) The function ϕW is left-invariant under Gpkq.

This will suffice for the proof of the converse theorem, since we will have defined a non-zero
map of GpAq representations from the irreducible W to AcusppGpkqzGpAq, ωq. Since we know
this latter space decomposes as a direct sum of irreducible representations with multiplicity 1, it
will follow that π is uniquely a direct summand of this space.

Proof of (1): We first observe that there is considerable redundancy in the sums defining ϕW pgq: at least
formally, ϕh¨W pgq “ ϕW pghq for h P K8 ˆ GpAf q. As we shall see later, the Iwasawa
decomposition at archimedean places and unitarity of ψ and ω will allow us to simplify even
further, reducing to the sums defining ϕW pgq for g “

`

x8 0
0 1

˘

ˆ Id for x8 P Aˆ
8. Thus, we

are free to work in this simplifed setting for our initial estimates. In fact, because it will cause
no further difficulty and be useful later, we will make our initial estimates when g “ p x 0

0 1 q

for any x P A. We will also assume W “
Â

Wv is a pure tensor.

Thus, we are considering sums of the form
ÿ

αPkˆ

W
`

p αx 0
0 1 q

˘

. (3)

We now turn our attention to bounding the summands. We first observe that for Wv “ W 0
v ,

we have W 0
v

`

p x 0
0 1 q

˘

“ 0 if x R Ov. In general, Wv has compact support in kv. Thus, there
is a compact open subset U Ă Af such that the support of x ÞÑ W

`

p x 0
0 1 q

˘

is contained in
pA8 ˆ Uq XAˆ.

We also need an estimate of W
`

p x 0
0 1 q

˘

that is valid for |x| large (which is possible even if

xf P U ). The first step is to give uniform estimates for W 0
v

´

`

xv 0
0 1

˘

¯

. Since πv is spherical for

the places where we have defined W 0
v , we know that πv » πµv ,νv is (non-special) unramified

principal series (i.e. µv, νv are unramified characters). Thus, we have the explicit formula:

W 0
v

´

`

xv 0
0 1

˘

¯

“ |xv|
1{2

ÿ

i,jě0
i`j“vpxvq

µvp$
i
vqνvp$

j
vq
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Since we assumed that πv is pre-unitary for all v, there exists ´1 ă 0 ď t ă 1 such that
|µv| “ | ¨ |

t{2 and |νv| “ | ¨ |´t{2 (cf. Lecture 16, Theorem 4). Thus, for each term i, j ě 0,
i` j “ vpxvq, we have

|µvp$vq
iνvp$vq

j
|v ď |xv|

´1{2.

Thus,
ˇ

ˇ

ˇ

ˇ

W 0
v

´

`

xv 0
0 1

˘

¯

ˇ

ˇ

ˇ

ˇ

ď pvpxvq ` 1q|xv|
1{2´1{2
v “ vpxvq ` 1 ď |xv|

´1

where here we use that for vpxvq ě 0, vpxvq ` 1 ď |xv|
´1.

For any other finite place v, we have:
ˇ

ˇ

ˇ

ˇ

Wv

´

`

xv 0
0 1

˘

¯

ˇ

ˇ

ˇ

ˇ

ď Cv|xv|
´1´σv

for some Cv ą 0, σv ą 0. There is also a bound available for the archimedean places (due to
rapid decay of the Whittaker functions for the archimedean places). Multiplying everything
together gives us that:

ˇ

ˇ

ˇ
W

`

p x 0
0 1 q

˘

ˇ

ˇ

ˇ
ď C1|x|

´1´σe´C2}x}8

for some C1, C2, σ ą 0.

Combined this estimate with the vanishing outside of A8 ˆ U , we conclude that for

F “ C1 ¨ χA8ˆU ¨ e
´C2}x}8 ,

a function on A, we have
ˇ

ˇ

ˇ
W

`

p x 0
0 1 q

˘

ˇ

ˇ

ˇ
ď |x|´1´σF pxq

for all x P Aˆ.

Note that F is a positive Bruhat-Schwarz function on A. Using this, we can estimate (3) in
terms of F :

ˇ

ˇϕW pp x 0
0 1 qq

ˇ

ˇ ď
ÿ

αPkˆ

ˇ

ˇ

ˇ
W

`

p αx 0
0 1 q

˘

ˇ

ˇ

ˇ

ď
ÿ

αPkˆ

|αx|´1´σF pαxq

ď |x|´1´σ
ÿ

αPkˆ

F pαxq

(where in the last step we have used the product formula |α| “ 1 for α P kˆ.) Because F is
Bruhat-Schwarz,

ř

αPkˆ F pαxq is rapidly decreasing as |x| Ñ 8, and we conclude not only
that the sum converges absolutely but that ϕW pp x 0

0 1 qq is rapidly decreasing as |x| Ñ 8.

We can also use this estimate to control the behavior as |x| Ñ 0: using Poisson summation,
we find

ÿ

αPkˆ

F pαxq ď
ÿ

αPk

F pαxq “ |x|´1
ÿ

αPk

pF px´1αq
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Since pF is also Bruhat-Schwarz, as |x| Ñ 0 the sum is dominated by the term when α “ 0
(the difference is rapidly decreasing), and we conclude

ˇ

ˇϕW pp x 0
0 1 qq

ˇ

ˇ “ Op|x|´2´σq.

Taking everything together, we’ve now established:

Lemma 3. For W a pure tensor and x P Aˆ, the series defining ϕW pp x 0
0 1 qq is absolutely

convergent, and satisfies the growth conditions:

(a) For any N we have, as |x| Ñ 8,

|ϕW
`

p x 0
0 1 q

˘

| “ Op|x|´Nq

(b) There exists a q ą 0 such that as |x| Ñ 0,

|ϕW
`

p x 0
0 1 q

˘

| “ Op|x|´qq

Using these estimates, we can now show

Theorem 4. For any g and W P W , the sum defining ϕW pgq is absolutely convergent.
Moreover, ϕW is a C8 function on GpAq, and for any g P GpAq,

(a) For any N ą 0 we have, as |x| Ñ 8,

|ϕW
`

p x 0
0 1 q g

˘

| “ Op|x|´Nq

(b) There exists a q ą 0 such that as |x| Ñ 0,

|ϕW
`

p x 0
0 1 q g

˘

| “ Op|x|´qq

Proof. For any h P K8 ˆ GpAf q, the series defining ϕW pgq is the same as that defining
ϕh¨W pgh

´1q, so, to prove ϕW pgq is well-defined and smooth at g, by changing W it suffices to
assume g “ g8 ˆ Id and that g8 “ u8m8 for u upper nilpotent and m in the diagonal torus
(here we have also used the Iwasawa decomposition at each archimedean place). Similarly, it
suffices to prove the desired estimates for such a g and any W .

We start by proving absolute convergence. Since any W is a finite sum of pure tensors, it
suffices to suppose W is a pure tensor. We write u8 ˆ 1 “ p 1 u0 1 q and m8 ˆ 1 “ p xz 0

0 z q so
that

g “ p 1 u0 1 q p
xz 0
0 z q .

Now we observe that (using the ψ-invariance of W under left multiplication by upper unipo-
tents and the central character of W ):

W
`

p α 0
0 1 q p

1 u
0 1 q p

xz 0
0 z q

˘

“ ψpuαqωpzqW
`

p αx 0
0 1 q

˘

Thus, because ψ and ω are unitary,

|W
`

p α 0
0 1 q g

˘

| “ |W
`

p αx 0
0 1 q

˘

|.
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Thus, we obtain absolute convergence from Lemma 3.

We now show smoothness. Since W is fixed by a compact open in GpAf q, so is ϕW , and
thus it remains only to show that as we vary g8 in a small neighborhood we obtain a smooth
function. Note that W lives in a finite dimensional subspace of W on which K8 acts by
analytic characters, i.e.

pk8 ˆ Idq ¨W “ χ1pkqa1W1 ` . . .` χnpkqanWn

for characters χi of K8, ai P C, and a basis Wi for the finite dimensional space. Thus, we
find

ϕW pu8m8k8q “ ϕk8ˆId¨W pu8m8q

“

n
ÿ

i“1

χipkqai ¨ ϕWi
pu8m8q

On the other hand, using the coordinates x, z, and u as above, we find

ϕWi
pu8m8q “

ÿ

αPkˆ

ψpuαqωpzqWi

`

p αx 0
0 1 q

˘

.

Putting these together, we find that the absolute convergence is uniform, and thus it converges
to a smooth (in fact analytic) function because the terms are also smooth (in fact analytic).

Finally, the estimates are immediate by following the proof of Lemma 3 using the same
termwise removal of u8 and z8 as above (the characters then disappear when we take the
absolute value of a term).

Proof of (2): Now, we need to show that our function ϕW on GpAq is left Gpkq-invariant. First, we
will show that ϕW is left-invariant by b P Bpkq, the upper-triangular Borel subgroup. For
b “ p 1 ˚0 1 q, we use the fact that W is a Whittaker function and that ψ is trivial on k. For
b “ p ˚ 0

0 1 q, left-invariance is built into the definition since we are adding W
`

p α 0
0 1 q g

˘

over all
α P kˆ. Finally, when b “ p α 0

0 α q, we get invariance because ω is trivial on kˆ.

Now, by Bruhat decomposition, we have boiled down the question of verifying left Gpkq-
invariance to showing the following identity:

ϕW pgq “ ϕW pwgq

for w “
`

0 1
´1 0

˘

. Instead of trying to prove this directly for a single value of g, it will be
helpful to consider the values on a vertical line through x. Precisely, we define two functions
on Aˆ:

F1pxq :“ ϕW
`

p x 0
0 1 q g

˘

, F2pxq :“ ϕW
`

w p x 0
0 1 q g

˘

“ ωpxqϕW

´

`

x´1 0
0 1

˘

wg
¯

.

Clearly it suffices to show that F1pxq “ F2pxq (take the value at 1).

Now, we can take “Mellin transforms” so we can relate this discussion to the L-functions.
Recall from Lecture 23 that we studied the ζ-integral:

ζpW, g;χ, sq “

ˆ
kˆzAˆ

W
`

p x 0
0 1 q g

˘

χpxq´1|x|2s´1 dˆx
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Thus, we have:

ζpW, g;χ, sq “

ˆ
Aˆ

W
`

p x 0
0 1 q

˘

χpxq´1|x|2s´1 dˆx “

ˆ
kˆzAˆ

F1pxqχpxq
´1
|x|2s´1 dˆx

where the right hand side converges for Re s ąą 0.

This shows that we can think of ζpW, g;χ, sq as the Mellin transform of F1, and similarly that
we can think of ζpW,wg;ωχ´1, 1´ sq as the Mellin transform of F2 when Re s ăă 0.

Now, where defined, these ζ integrals are related to the L-functions by:

ζpW, g;χ, sq “ Lπpχ, sq
ź

v

ζvpWv, gv;χv, sq

Lπvpχv, sq

Here, the factors in the product on the right are 1 whenever Wv “ W 0
v , so it is a finite product.

Similarly:

ζpW,wg;ωχ´1, 1´ sq “ Lπpωχ
´1, 1´ sq

ź

v

ζvpWv, wgv;ωvχ
´1
v , sq

Lπvpωvχ
´1
v , sq

Now, because we have assumed Lπ is entire, and by local considerations the terms of the finite
products are entire, we find that the Mellin transforms of F1 and F2 are both entire. Moreover,
the functional equations we have assumed for Lπ combined with the local functional equations
show that these entire functions agree, i.e. the analytic continuation of the Mellin transform
of F1 equals the analytic continuation of the Mellin transform of F2.

Note, however, that this does not immediately imply F1 “ F2. One must show the entire
Mellin transform is bounded in vertical strips (using the assumed fact for Lπ and an analysis
of the local factors), and then use an argument with Mellin inversion for F ‹ F1 and F ‹ F2

for F compactly supported to show that F1 “ F2. The boundedness in vertical strips will be
necessary to compare integrals in the two inversion formulae, one of which will be taking
place along a vertical line with very postive real value, and the other along a vertical line
with very negative real value; we refer the reader to [1] for a more thorough discussion. This
finishes the proof of (2), and thus of the converse theorem itself!

We give an example application:

Theorem 5. The elliptic curve E : y2 “ x3 ´ x over Q is modular.

To prove this, we will use the following:

Exercise 6. The L-function of E{Q is the same as the L-function for the Großencharacter of the
associated CM field Qpiq sending p to the unique generator of p which is congruent to 1 mod
p1` iq3.

So, the L-function for E is equal to the L-function for an automorphic form on kˆzAˆ for
k “ Qpiq, which has good analytic behavior by Tate’s thesis. The same holds for all the twists,
given by composition of an idele class character of Q with the norm map. In order to apply
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the Converse theorem, we now need to show that this L-function is equal to Lπpχ, sq for some
irreducible admissible GpAq-representation π (and similarly for the twists). We will do this by
building πv separately for each v and taking π “

Â1

v πv.
In other words, we need to show that for each place v of Q, we can find a πv with the same

L-factor and ε-factor as the Großencharacter. We can check that at 8, we can take the discrete
series of weight 2. At p - 2 ¨ p8q, we can take an unramified principal series, and at p “ 2, we have
a supercuspidal representation. All of these are more or less explicit in terms of the given data (there
is a bit of work to be done at two since I don’t think we have talked about the relations between
characters of quadratic extensions and supercuspidals in this seminar).

Remark 7. This example illustrates a general principle about applications of the converse theorem
to functoriality (another example to which this principle applies is the Jacquet-Langlands transfer
from automorphic representations of quaternion algebras to automorphic representations GL2.) To
apply the converse theorem to prove a global functoriality, one needs two ingredients: the first is
a good understanding of the relevant local functorialities (in the above example, constructing the
local representations of GL2{Q whose L and ε-factors match with the L and ε-factors of the local
restrictions of the idele character for Qpiq), and the second is the ability to prove good analytic
properties of the global L-function in the initial setting (in the above example, the application of
Tate’s thesis).
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