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We will keep our running notation, with & a global field and A its adele ring.
Recall that last time, in order to control compactness properties, we introduced the modified
adelic groups H(A)!. These are defined by

H(A)' :={h € HA) | |x(h)|x = 1Vx: H = G,,, Y is defined over k}
Note that H(A)' = H(A) when H is anisotropic, since this means that H has no k-characters.

Theorem 1. Let H; — H, be a closed k-subgroup with H> a linear algebraic group. Then
[H,] — [Hs) is a closed embedding, where [H] = H(k)\H(Aj)*

Remark 2. We saw at the end of the last lecture that this is not true in general if we use H(A)
instead of H(A)': we saw a counterexample with B — PGL, for B a Borel subgroup.

In order to handle reduction theory, even in the case G = GL,, over arbitrary number fields,
we will need to prove statements over Q or other small number fields to avoid large class number
problems. The following example is useful for this:

Example 3. For k'/k a finite separable extension and H any linear algebraic k-group, we have
H — Ry i(Hy) = H', where Ry, (Hyy) is the Weil restriction functor (which is representable
by a linear algebraic k-group). This functor is defined by Ry, (H)(A) = Hyp (A ®; k'), so the
injection H —— Ry /x(Hy) is given by sending a k-morphism Spec A — H to its base change by
K.

Then we have [Hl] = Hk/(]{?/)\Hk/<Ak/)1, since Rk//k(X/)(Ak) = X/(Ak/ =k Rk Ak) as
topological spaces: see [2, Example 2.4]. The fact that this identification sends Ry, /i, (X")(Ay)! to
X'(Aw)! comes from the following proposition:

Proposition 4. If G’ is a linear algebraic £’-group, then characters x': G’ — G,, defined over
k naturally give characters x: Ry /i(G') = Gy, by X' +— Ny 0 Ry k(X'), and this map is an
isomorphism between the k’-character group of G’ and the k-character group of Ry ,,(G'). See
I3, Ch.1, §2].

This proposition can allow certain problems for [G] to be studied in the split case, using G} for
suitable £’ /k.

Now, let’s prove Theorem I}

Proof. in order to show that the continuous injective map [H;| — [H>] is a closed embedding, the
key fact will be that the image is closed. Equivalently, we can show that Hy(k)H;(A)' C Hy(A)!
is closed. See [[1, Lemma 4.2.5] for this reduction step.



Now, we can pick a representation (defined over k) p: Hy — GL(V') such that H; = Staby, (L)
for some line L C V. This can always be done: see [4, §14]. In particular, choosing any point
z € L\ {0}, we get a character x: H; — G, = GL(L) defined functorially by i — %£. On
A-points, this gives ya: Hi(A) - A*.

For x € L\ {0}, consider the morphism Hy — V given functorially on points over any
k-algebra by h — h - z, where V is the affine k-variety associated to V, i.e. we have V(A) =
V @y A for any k-algebra A. Taking A = A, we get an orbit map Hs(A) — V(A). Consider
Z = (A*)' - Hy(k) - C V(A), and consider Z' = Hy(A) Xy (a) Z inside Hy(A). We can
check that Z’ = Hy(k)x s (AX)! (if h € Hy(A) is such that b - z € (AX)! - z, then in particular h
stabilizes L, so h € H;). This contains Hy(k) - H;(A)! as a closed subgroup, since h € Hy(A)*
implies that |xa (k)| < 1. Thus, it suffices to show that Z is closed in V' (A).

Let’s see that Z C V(A) is closed. Recall from algebraic number theory that the norm-one
part of the idele class group £*\(A*)! is compact. So, for a suitable compact subset K of (A*)!,
we have (A*)! = K - k*. Thus, we have (AX)' - Hy(k) -2 = K - (Hy(k)k* - ). But since
Hy(k) - k> -2 CV (k) and V (k) is discrete in V(A), the fact that K - (Hz(k) - k* - x) is closed in
V(A) follows from the fact that a compact subspace times a discrete subspace is closed. [l

Now, we want to address the following via reduction theory:
Questions. For G a connected reductive group over k:

1. When is [G] compact?

2. When it is non-compact, is there some approximate fundamental domain which can be used
to show that vol([G]) < oc.

Reduction theory will give us the following theorems:

Theorem 5 (“Theorem C”: Mostow-Tamagawa, Harder). For GG a connected reductive group over
a global field k, [G] is compact iff ZG is k-anisotropic (i.e. it has no non-trivial split tori, or
equivalently it has no proper parabolic k-subgroups).

Remark 6. For £ = Q and G semisimple and simply connected, the strong approximation theorem
implies that [G] is compact iff G(R)/G(Z) is[[| The latter statement is how people would have
stated this in the 1950’s, with no adelic points in sight.

Let’s see an example where the simply-connected assumption may be relaxed:

Example 7. Let (L,q) be a quadratic lattice over Z such that Lq is non-degenerate and Q-
anisotropic, meaning that it has no non-trivial rational zerosf| Then SO(g)(R)/SO(q)(Z) =
SO(Lgr)/SO(L) is compact.

Indeed, the “universal cover” Spin(q) — SO(q) is a central isogeny of Q-groups, so Spin(q)
is Q—anisotropi and simply connected. Thus by Theorem C and the remark following it,
Spin(q)(R)/Spin(q)(Z) is compact, but it has “finite index” image in X.

IStrictly speaking, G(Z) is of course meaningless since G is a Q-group. But thinking of G as a subgroup of some
GL,,, we can take a Zariski closure and thus get a fixed Z-model to keep in mind.

2However, we will allow L to be indefinite over R, i.e. it could have real zeros.

3S0(q) is k-anisotropic in the sense of not containing any non-trivial k-split torus iff ¢ is k-anisotropic in the
nineteenth century sense of having no zeros over k: see [4, Homework 6, Problem 5]
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Theorem 8 (“Theorem F’: Gau3-Minkowski). If ZG is k-isotropic and S C G is a maximal k-split
torus and P O S is a minimal parabolic k-subgroup, then there exists a compact subset K C G(A)!
and some ¢ > 0 such that G(A)! = K - S(c)P(A)' - G(k), where we define:

S(c) ={s € S(A)NG(A) | |a(s)|r < cVa € A = basisof ®(P,S) C (G, S)}

In English, this is the set of points of s € S(A) such that |x(s)| < 1 for all k-characters x of G,
and |a(s)| < ¢ for a running over a basis of the roots of P.

Remark 9. Theorem F implies that vol ([G]) < oo always; this is due to Borel-Harish-Chandra
and Harder. Brian will write something up about this.

Example 10. Let G = SL,, £ = Q. Then via strong approximation, we have:
G(Q)\G(A)/G(Z) - Ko = SLy(Z)\SLs(R)/ Ko

Here, K, is a maximal compact subgroup of G(R), e.g. we could take K, = SO5(R), and we
take the obvious Z-structure on G.

Now, we can use the classical “N AK-decomposition” of SLy(R): this says that SLy(R) is
diffeomorphic to the product N x A x K., with N = {(} %)} is the unipotent radical of the
upper Borel subgroup, A is the split maximal torus {(é t91 )}, and K, is the maximal compact
subgroup SO, (R) as we noted already. Then we can obtain a diffeomorphism SLy(R)/ K >~ b;,
the upper half-plane, via the map g — ¢(i) = x + it* (i.e. g € SL(2) acts on b; by fractional linear
transformations).

Now, let’s see how to interpret Theorem F in this classical context. Since G is Q-split and
G = 2@, in particular ZG is Q-isotropic. Then we can pick S = A the diagonal maximal torus,
P = B~ D S, the lower triangular Borel subgroup. Then (t 0 ) > 172 is a basis for ®(P, 9),

-1
so S(c) is the set of (%) with 72 < ¢, i.e. the set with t% tz L. In the upper half-plane this
corresponds to {yi | y > <}.
How does the volume work out? We can see that NA = {(8 e )} has left Haar measure % dz.
But z = £ in the coordinates (z,¢) for N and A, so % dz = % d(%) = dfyﬁy, using y = 2. Then,
the volume-finiteness reduces to the integral (since we know the integration in the x-direction is

over a finite interval, e.g. because (1) € SLa(Z) sends x to z + 1):

Remark 11. The proof of Theorems C and F for GLs, SLy, and PGLy with & = kg € {Q,F(t)} is
done by hand, via “adelizing GauB3”. To avoid complications with class numbers, the general case
over any global field k is reduced to the case k = ky. Then that case is further reduced to GLs, SLo,
and PGL; cases, up to giving a direct proof that compactness of [G]| implies ZG is k—anisotropic

Remark 12. Granting Theorems C and F, we can see that the formula

G(A)Y' = K-S(c)- P(A)" - G(k)

“Direct proofs are possible, but this is more uniform.



can be massaged further. We can apply Theorem C' to the Levi factor P/U, with U = %m(P)E],
L = Zg(S) € P = L x U. Then since the maximal k-split torus S is central in L, ZL is
k-anisotropic, so we may apply Theorem C so see that [L] is compact. We have:

L] = L(k\L(A)" = P(k)\P(A)'/U(A)

Because U is k-split unipotent, U(A)/U (k) is also compact: the k-split property says exactly
that U has a composition series with G,-quotients, and one can show (for example, in [[1]) that
compactness of G,(A)/G,(k), which is a classical algebraic number theory fact, then implies
compactness of U(A)/U(k). Also, P(A)/P(k) — L(A)/L(k)isa“U(A)/U(k)-fibration”. Thus,
P(A)'/P(k) is compact, so we have a compact subset K’ C P(A) with K - P(k) = P(A).
Therefore, we can write:
GA)' =K-S(c)- K- G(k)

Here, we absorbed the P (k) into G(k).
Let’s show one direction of Theorem C:
Lemma 13. If 2 is isotropic, then [G] is not compact.

Proof. Pick a faithful representation G —— GL(V') and a non-trivial split torus S C ZG. Such
an S is not central, this representation has a non-trivial S-weight x: S — G,, on V. We pick
some { € V) \ {0}. Since x: S — G, splits back up to isogeny, it is surjective on N-th powers
for some N. Now, we can pick a sequence s,, € S(A) such that x(s,) — 0in A, by picking
some sequence in A which limits to 0 in A, then lifting after taking some powers. Then, we have
s &= 0eV ®Aasn— oo. Since S C G and 2G = (2G)* (it has no characters), we have
S(A) C (2G)(A) C G(A)', 505, - & € (G(A)- V) \ {0}, and this goes to 0 as n — oc.
Suppose [G] = G(A)'/G(k) were compact. We’ll show that this implies 0 is isolated in
G(A)' -V C V ® A, giving a contradiction. Compactness of [G] gives us a compact subset
K C G(A)! such that G(A)! = K - G(k), so G(A)! - V = K -V, since G(k) acts on V. We
know that V' C V ® A is discrete. Then we can pick an open subset U C V' ® A around 0 such
that U NV = {0}. Now, by compactness of K we can pick some open U’ C U around 0 so
KU CU.Then (K-V)NU'CK-(VNK - U)CK-(VNU)=K-0=0,s00is
discretein K -V = G(A)! - V. O

Example 14. This shows that [G] is not compact for G = GLg, SLy, PGLs, etc., or more generally
for any k-split G which is not a torus.

Now, let’s see how to reduce the remaining direction of Theorem C and Theorem F to the case
k=kye{Q,F,t)}:

In general, we can write k as a finite separable extension of ky. Let Gy = Ry /kO(G). Now,
we’ve seen that we have a canonical topological identification G(Aj) = Go(Ayg,) which respects
the subspaces G(A},)!' and Go(Ay,)', so [G] = [Go]. If 2 is k-anisotropic, then the same must
be true for GG, so we see that Theorem C for G and Theorem C for GGy are equivalent (since we
already proved the converse direction in general).

SSince G is reductive, (%, (P))z = %5 ,(Pg). so L is reductive

4



For Theorem F, pick some split torus S and minimal parabolic subgroup P O S. Taking
Weil restrictions, we get Go 2 Py 2 Ry/i,(S) 2 So with Py = Ry /i, (P), which is still minimal
parabolic (Weil restriction induces an inclusion-preserving bijection between parabolic subgroups
of G and G)), and Sy C Ry, (S) a maximal split torus of the same rank as S (i.e. using the fact
that S = [ [ G,,,, we can take products of the canonical inclusion G,,, — Ry/k,(G.,) which we
considered earlier).

For any ¢ > 0, after some thought relating ®(G, S) and ®(G, Sp), we have Sy(c) C S(c) for
some ¢ > 0, where we consider both of these as subsets of G(Ay,) = G(Ag). Thus, Theorem F
also reduces to working over k. In the end, the split case over k, reduces to the GL,, SLy, PGLy
cases, and this implies the general split case.
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