Lecture 3: Reduction Theory II Lecture by Brian Conrad Stanford Number Theory Learning Seminar October 18, 2017 Notes by Dan Dore

We will keep our running notation, with k a global field and \mathbf{A} its adele ring.

Recall that last time, in order to control compactness properties, we introduced the modified adelic groups $H(\mathbf{A})^1$. These are defined by

$$H(\mathbf{A})^1 := \{h \in H(\mathbf{A}) \mid |\chi(h)|_k = 1 \ \forall \chi \colon H \to \mathbf{G}_m, \chi \text{ is defined over } k\}$$

Note that $H(\mathbf{A})^1 = H(\mathbf{A})$ when H is anisotropic, since this means that H has no k-characters.

Theorem 1. Let $H_1 \hookrightarrow H_2$ be a closed k-subgroup with H_2 a linear algebraic group. Then $[H_1] \to [H_2]$ is a closed embedding, where $[H] = H(k) \setminus H(\mathbf{A}_k)^1$

Remark 2. We saw at the end of the last lecture that this is not true in general if we use $H(\mathbf{A})$ instead of $H(\mathbf{A})^1$: we saw a counterexample with $B \longrightarrow PGL_2$ for B a Borel subgroup.

In order to handle reduction theory, even in the case $G = GL_2$, over arbitrary number fields, we will need to prove statements over \mathbf{Q} or other small number fields to avoid large class number problems. The following example is useful for this:

Example 3. For k'/k a finite separable extension and H any linear algebraic k-group, we have $H \hookrightarrow R_{k'/k}(H_{k'}) =: H'$, where $R_{k'/k}(H_{k'})$ is the *Weil restriction* functor (which is representable by a linear algebraic k-group). This functor is defined by $R_{k'/k}(H_{k'})(A) = H_{k'}(A \otimes_k k')$, so the injection $H \hookrightarrow R_{k'/k}(H_{k'})$ is given by sending a k-morphism Spec $A \to H$ to its base change by k'.

Then we have $[H'] = H_{k'}(k') \setminus H_{k'}(\mathbf{A}_{k'})^1$, since $R_{k'/k}(X')(\mathbf{A}_k) = X'(\mathbf{A}_{k'} = k' \otimes_k \mathbf{A}_k)$ as topological spaces: see [2, Example 2.4]. The fact that this identification sends $R_{k'/k}(X')(\mathbf{A}_k)^1$ to $X'(A_{k'})^1$ comes from the following proposition:

Proposition 4. If G' is a linear algebraic k'-group, then characters $\chi' \colon G' \to \mathbf{G}_m$ defined over k naturally give characters $\chi \colon R_{k'/k}(G') \to \mathbf{G}_m$ by $\chi' \mapsto N_{k'/k} \circ R_{k'/k}(\chi')$, and this map is an isomorphism between the k'-character group of G' and the k-character group of $R_{k'/k}(G')$. See [3, Ch.1, §2].

This proposition can allow certain problems for [G] to be studied in the split case, using $G_{k'}$ for suitable k'/k.

Now, let's prove Theorem 1:

Proof. in order to show that the continuous injective map $[H_1] \hookrightarrow [H_2]$ is a closed embedding, the key fact will be that the image is *closed*. Equivalently, we can show that $H_2(k)H_1(\mathbf{A})^1 \subseteq H_2(\mathbf{A})^1$ is closed. See [1, Lemma 4.2.5] for this reduction step.

Now, we can pick a representation (defined over k) $\rho: H_2 \to \operatorname{GL}(V)$ such that $H_1 = \operatorname{Stab}_{H_2}(L)$ for some line $L \subseteq V$. This can always be done: see [4, §14]. In particular, choosing any point $x \in L \setminus \{0\}$, we get a character $\chi: H_1 \to \mathbf{G}_m = \operatorname{GL}(L)$ defined functorially by $h \mapsto \frac{h \cdot x}{x}$. On **A**-points, this gives $\chi_{\mathbf{A}}: H_1(\mathbf{A}) \to \mathbf{A}^{\times}$.

For $x \in L \setminus \{0\}$, consider the morphism $H_2 \to \underline{V}$ given functorially on points over any k-algebra by $h \mapsto h \cdot x$, where \underline{V} is the affine k-variety associated to V, i.e. we have $V(A) = V \otimes_k A$ for any k-algebra A. Taking $A = \mathbf{A}$, we get an orbit map $H_2(\mathbf{A}) \to \underline{V}(\mathbf{A})$. Consider $Z := (\mathbf{A}^{\times})^1 \cdot H_2(k) \cdot x \subseteq V(\mathbf{A})$, and consider $Z' = H_2(\mathbf{A}) \times_{V(\mathbf{A})} Z$ inside $H_2(\mathbf{A})$. We can check that $Z' = H_2(k)\chi_{\mathbf{A}}^{-1}(\mathbf{A}^{\times})^1$ (if $h \in H_2(\mathbf{A})$ is such that $h \cdot x \in (\mathbf{A}^{\times})^1 \cdot x$, then in particular h stabilizes L, so $h \in H_1$). This contains $H_2(k) \cdot H_1(\mathbf{A})^1$ as a *closed* subgroup, since $h \in H_1(\mathbf{A})^1$ implies that $|\chi_{\mathbf{A}}(h)| \leq 1$. Thus, it suffices to show that Z is closed in $V(\mathbf{A})$.

Let's see that $Z \subseteq V(\mathbf{A})$ is closed. Recall from algebraic number theory that the norm-one part of the idèle class group $k^{\times} \setminus (\mathbf{A}^{\times})^1$ is *compact*. So, for a suitable compact subset K of $(\mathbf{A}^{\times})^1$, we have $(\mathbf{A}^{\times})^1 = K \cdot k^{\times}$. Thus, we have $(\mathbf{A}^{\times})^1 \cdot H_2(k) \cdot x = K \cdot (H_2(k)k^{\times} \cdot x)$. But since $H_2(k) \cdot k^{\times} \cdot x \subseteq V(k)$ and V(k) is *discrete* in $V(\mathbf{A})$, the fact that $K \cdot (H_2(k) \cdot k^{\times} \cdot x)$ is closed in $V(\mathbf{A})$ follows from the fact that a *compact* subspace times a discrete subspace is closed. \Box

Now, we want to address the following via *reduction theory*:

Questions. For G a connected reductive group over k:

- 1. When is [G] compact?
- 2. When it is non-compact, is there some approximate fundamental domain which can be used to show that $vol([G]) < \infty$.

Reduction theory will give us the following theorems:

Theorem 5 ("Theorem C": Mostow-Tamagawa, Harder). For G a connected reductive group over a global field k, [G] is compact iff $\mathscr{D}G$ is k-anisotropic (i.e. it has no non-trivial split tori, or equivalently it has no proper parabolic k-subgroups).

Remark 6. For $k = \mathbf{Q}$ and G semisimple and simply connected, the strong approximation theorem implies that [G] is compact iff $G(\mathbf{R})/G(\mathbf{Z})$ is.¹ The latter statement is how people would have stated this in the 1950's, with no adelic points in sight.

Let's see an example where the simply-connected assumption may be relaxed:

Example 7. Let (L,q) be a quadratic lattice over \mathbb{Z} such that $L_{\mathbb{Q}}$ is non-degenerate and \mathbb{Q} -anisotropic, meaning that it has no non-trivial rational zeros.² Then $SO(q)(\mathbb{R})/SO(q)(\mathbb{Z}) = SO(L_{\mathbb{R}})/SO(L)$ is *compact*.

Indeed, the "universal cover" $\text{Spin}(q) \to \text{SO}(q)$ is a central isogeny of Q-groups, so Spin(q) is Q-anisotropic³ and simply connected. Thus by Theorem C and the remark following it, $\text{Spin}(q)(\mathbf{R})/\text{Spin}(q)(\mathbf{Z})$ is compact, but it has "finite index" image in X.

¹Strictly speaking, $G(\mathbf{Z})$ is of course meaningless since G is a Q-group. But thinking of G as a subgroup of some GL_n , we can take a Zariski closure and thus get a fixed Z-model to keep in mind.

²However, we will allow L to be indefinite over \mathbf{R} , i.e. it could have real zeros.

 $^{{}^{3}}SO(q)$ is k-anisotropic in the sense of not containing any non-trivial k-split torus iff q is k-anisotropic in the nineteenth century sense of having no zeros over k: see [4, Homework 6, Problem 5]

Theorem 8 ("Theorem F": Gauß-Minkowski). If $\mathscr{D}G$ is k-isotropic and $S \subseteq G$ is a maximal k-split torus and $P \supseteq S$ is a minimal parabolic k-subgroup, then there exists a compact subset $K \subseteq G(\mathbf{A})^1$ and some c > 0 such that $G(\mathbf{A})^1 = K \cdot S(c)P(\mathbf{A})^1 \cdot G(k)$, where we define:

$$S(c) = \{ s \in S(\mathbf{A}) \cap G(\mathbf{A})^1 \mid |\alpha(s)|_k \le c \; \forall \alpha \in \Delta = \text{ basis of } \Phi(P, S) \subseteq \Phi(G, S) \}$$

In English, this is the set of points of $s \in S(\mathbf{A})$ such that $|\chi(s)| \leq 1$ for all k-characters χ of G, and $|\alpha(s)| \leq c$ for α running over a basis of the roots of P.

Remark 9. Theorem F implies that $vol([G]) < \infty$ always; this is due to Borel–Harish-Chandra and Harder. Brian will write something up about this.

Example 10. Let $G = SL_2$, $k = \mathbf{Q}$. Then via strong approximation, we have:

$$G(\mathbf{Q}) \setminus G(\mathbf{A}) / G(\mathbf{Z}) \cdot K_{\infty} = \mathrm{SL}_{2}(\mathbf{Z}) \setminus \mathrm{SL}_{2}(\mathbf{R}) / K_{\infty}$$

Here, K_{∞} is a maximal compact subgroup of $G(\mathbf{R})$, e.g. we could take $K_{\infty} = SO_2(\mathbf{R})$, and we take the obvious **Z**-structure on G.

Now, we can use the classical "*NAK*-decomposition" of $SL_2(\mathbf{R})$: this says that $SL_2(\mathbf{R})$ is diffeomorphic to the product $N \times A \times K_{\infty}$ with $N = \{\begin{pmatrix} 1 & x \\ 0 & t^{-1} \end{pmatrix}\}$ is the unipotent radical of the upper Borel subgroup, A is the split maximal torus $\{\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}\}$, and K_{∞} is the maximal compact subgroup $SO_2(\mathbf{R})$ as we noted already. Then we can obtain a diffeomorphism $SL_2(\mathbf{R})/K_{\infty} \simeq \mathfrak{h}_i$, the upper half-plane, via the map $g \mapsto g(i) = x + it^2$ (i.e. $g \in SL(2)$ acts on \mathfrak{h}_i by fractional linear transformations).

Now, let's see how to interpret Theorem F in this classical context. Since G is Q-split and $G = \mathscr{D}G$, in particular $\mathscr{D}G$ is Q-isotropic. Then we can pick S = A the diagonal maximal torus, $P = B^- \supseteq S$, the lower triangular Borel subgroup. Then $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mapsto t^{-2}$ is a basis for $\Phi(P, S)$, so S(c) is the set of $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$ with $t^{-2} \leq c$, i.e. the set with $t^2 \geq \frac{1}{c}$. In the upper half-plane this corresponds to $\{yi \mid y \geq \frac{1}{c}\}$.

How does the volume work out? We can see that $NA = \{ \begin{pmatrix} t & z \\ 0 & t^{-1} \end{pmatrix} \}$ has left Haar measure $\frac{dt}{t^2} dz$. But $z = \frac{x}{t}$ in the coordinates (x, t) for N and A, so $\frac{dt}{t^2} dz = \frac{dt}{t^2} d\left(\frac{x}{t}\right) = \frac{dx dy}{y^2}$, using $y = t^2$. Then, the volume-finiteness reduces to the integral (since we know the integration in the x-direction is over a finite interval, e.g. because $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbf{Z})$ sends x to x + 1):

$$\int_{\frac{1}{\sqrt{c}}}^{\infty} \frac{dt}{t^2} < \infty$$

Remark 11. The proof of Theorems C and F for GL_2 , SL_2 , and PGL_2 with $k = k_0 \in {\mathbf{Q}, \mathbf{F}(t)}$ is done by hand, via "adelizing Gauß". To avoid complications with class numbers, the general case over any global field k is *reduced* to the case $k = k_0$. Then *that* case is further reduced to GL_2 , SL_2 , and PGL_2 cases, up to giving a direct proof that compactness of [G] implies $\mathscr{D}G$ is k-anisotropic.⁴

Remark 12. Granting Theorems C and F, we can see that the formula

$$G(\mathbf{A})^1 = K \cdot S(c) \cdot P(\mathbf{A})^1 \cdot G(k)$$

⁴Direct proofs are possible, but this is more uniform.

can be massaged further. We can apply Theorem C to the Levi factor P/U, with $U = \mathscr{R}_{k,u}(P)^5$, $L = Z_G(S) \subseteq P = L \ltimes U$. Then since the maximal k-split torus S is central in L, $\mathscr{D}L$ is k-anisotropic, so we may apply Theorem C so see that [L] is compact. We have:

$$[L] = L(k) \setminus L(\mathbf{A})^1 = P(k) \setminus P(\mathbf{A})^1 / U(\mathbf{A})$$

Because U is k-split unipotent, $U(\mathbf{A})/U(k)$ is also compact: the k-split property says exactly that U has a composition series with \mathbf{G}_a -quotients, and one can show (for example, in [1]) that compactness of $\mathbf{G}_a(\mathbf{A})/\mathbf{G}_a(k)$, which is a classical algebraic number theory fact, then implies compactness of $U(\mathbf{A})/U(k)$. Also, $P(\mathbf{A})/P(k) \rightarrow L(\mathbf{A})/L(k)$ is a " $U(\mathbf{A})/U(k)$ -fibration". Thus, $P(\mathbf{A})^1/P(k)$ is compact, so we have a compact subset $K' \subseteq P(\mathbf{A})$ with $K' \cdot P(k) = P(\mathbf{A})$.

Therefore, we can write:

$$G(\mathbf{A})^1 = K \cdot S(c) \cdot K' \cdot G(k)$$

Here, we absorbed the P(k) into G(k).

Let's show one direction of Theorem C:

Lemma 13. If $\mathscr{D}G$ is isotropic, then [G] is *not* compact.

Proof. Pick a faithful representation $G \hookrightarrow \operatorname{GL}(V)$ and a non-trivial split torus $S \subset \mathscr{D}G$. Such an S is not central, this representation has a non-trivial S-weight $\chi \colon S \to \mathbf{G}_m$ on V. We pick some $\xi \in V_{\chi} \setminus \{0\}$. Since $\chi \colon S \to \mathbf{G}_m$ splits back up to isogeny, it is surjective on N-th powers for some N. Now, we can pick a sequence $s_n \in S(\mathbf{A})$ such that $\chi(s_n) \to 0$ in \mathbf{A} , by picking some sequence in \mathbf{A}^{\times} which limits to 0 in \mathbf{A} , then lifting after taking some powers. Then, we have $s_n \cdot \xi \to 0 \in V \otimes \mathbf{A}$ as $n \to \infty$. Since $S \subseteq \mathscr{D}G$ and $\mathscr{D}G = (\mathscr{D}G)^1$ (it has no characters), we have $S(\mathbf{A}) \subseteq (\mathscr{D}G)(\mathbf{A}) \subseteq G(\mathbf{A})^1$, so $s_n \cdot \xi \in (G(\mathbf{A})^1 \cdot V) \setminus \{0\}$, and this goes to 0 as $n \to \infty$.

Suppose $[G] = G(\mathbf{A})^1/G(k)$ were compact. We'll show that this implies 0 is isolated in $G(\mathbf{A})^1 \cdot V \subseteq V \otimes \mathbf{A}$, giving a contradiction. Compactness of [G] gives us a compact subset $K \subseteq G(\mathbf{A})^1$ such that $G(\mathbf{A})^1 = K \cdot G(k)$, so $G(\mathbf{A})^1 \cdot V = K \cdot V$, since G(k) acts on V. We know that $V \subseteq V \otimes \mathbf{A}$ is discrete. Then we can pick an open subset $U \subseteq V \otimes \mathbf{A}$ around 0 such that $U \cap V = \{0\}$. Now, by compactness of K we can pick some open $U' \subseteq U$ around 0 so $K^{-1} \cdot U' \subseteq U$. Then $(K \cdot V) \cap U' \subseteq K \cdot (V \cap K^{-1} \cdot U') \subseteq K \cdot (V \cap U) = K \cdot 0 = 0$, so 0 is discrete in $K \cdot V = G(\mathbf{A})^1 \cdot V$.

Example 14. This shows that [G] is not compact for $G = GL_2, SL_2, PGL_2$, etc., or more generally for any k-split G which is not a torus.

Now, let's see how to reduce the remaining direction of Theorem C and Theorem F to the case $k = k_0 \in {\mathbf{Q}, \mathbf{F}_q(t)}$:

In general, we can write k as a finite separable extension of k_0 . Let $G_0 = R_{k/k_0}(G)$. Now, we've seen that we have a canonical topological identification $G(\mathbf{A}_k) = G_0(\mathbf{A}_{k_0})$ which respects the subspaces $G(\mathbf{A}_k)^1$ and $G_0(\mathbf{A}_{k_0})^1$, so $[G] = [G_0]$. If $\mathscr{D}G$ is k-anisotropic, then the same must be true for G_0 , so we see that Theorem C for G and Theorem C for G_0 are equivalent (since we already proved the converse direction in general).

⁵Since G is reductive, $(\mathscr{R}_{k,u}(P))_{\overline{k}} = \mathscr{R}_{\overline{k},u}(P_{\overline{k}})$, so L is reductive

For Theorem F, pick some split torus S and minimal parabolic subgroup $P \supseteq S$. Taking Weil restrictions, we get $G_0 \supseteq P_0 \supseteq R_{k/k_0}(S) \supseteq S_0$ with $P_0 = R_{k/k_0}(P)$, which is still minimal parabolic (Weil restriction induces an inclusion-preserving bijection between parabolic subgroups of G and G_0), and $S_0 \subseteq R_{k/k_0}(S)$ a maximal split torus of the same rank as S (i.e. using the fact that $S = \prod \mathbf{G}_m$, we can take products of the canonical inclusion $\mathbf{G}_m \longrightarrow R_{k/k_0}(\mathbf{G}_m)$ which we considered earlier).

For any c > 0, after some thought relating $\Phi(G, S)$ and $\Phi(G_0, S_0)$, we have $S_0(c) \subseteq S(c')$ for some c' > 0, where we consider both of these as subsets of $G_0(\mathbf{A}_{k_0}) = G(\mathbf{A}_k)$. Thus, Theorem F also reduces to working over k_0 . In the end, the *split* case over k_0 reduces to the GL₂, SL₂, PGL₂ cases, and this implies the general split case.

References

- [1] Brian Conrad, *Finiteness theorems for algebraic groups over function fields*, Compositio Mathematica **148** (2012), no. 2, pp. 555 639.
- [2] _____, Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012), no. 1-2, 61–97.
- [3] Joseph Oesterlé, *Nombres de Tamagawa et groupes unipotents en caractéristique p*, Invent. Math. **78** (1984), no. 1, 13–88.
- [4] http://math.stanford.edu/~conrad/252Page/. Notes from a graduate course on linear algebraic groups, taught by Brian Conrad at Stanford University.