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We will keep our running notation, with k a global field and A its adele ring.
Recall that last time, in order to control compactness properties, we introduced the modified

adelic groups H(A)1. These are defined by

H(A)1 := {h ∈ H(A) | |χ(h)|k = 1 ∀χ : H → Gm, χ is defined over k}

Note that H(A)1 = H(A) when H is anisotropic, since this means that H has no k-characters.

Theorem 1. Let H1 ↪−→ H2 be a closed k-subgroup with H2 a linear algebraic group. Then
[H1]→ [H2] is a closed embedding, where [H] = H(k)\H(Ak)
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Remark 2. We saw at the end of the last lecture that this is not true in general if we use H(A)
instead of H(A)1: we saw a counterexample with B ↪−→ PGL2 for B a Borel subgroup.

In order to handle reduction theory, even in the case G = GL2, over arbitrary number fields,
we will need to prove statements over Q or other small number fields to avoid large class number
problems. The following example is useful for this:

Example 3. For k′/k a finite separable extension and H any linear algebraic k-group, we have
H ↪−→ Rk′/k(Hk′) =: H ′, where Rk′/k(Hk′) is the Weil restriction functor (which is representable
by a linear algebraic k-group). This functor is defined by Rk′/k(Hk′)(A) = Hk′(A⊗k k′), so the
injection H ↪−→ Rk′/k(Hk′) is given by sending a k-morphism SpecA→ H to its base change by
k′.

Then we have [H ′] = Hk′(k
′)\Hk′(Ak′)

1, since Rk′/k(X
′)(Ak) = X ′(Ak′ = k′ ⊗k Ak) as

topological spaces: see [2, Example 2.4]. The fact that this identification sends Rk′/k(X
′)(Ak)

1 to
X ′(Ak′)

1 comes from the following proposition:

Proposition 4. If G′ is a linear algebraic k′-group, then characters χ′ : G′ → Gm defined over
k naturally give characters χ : Rk′/k(G

′) → Gm by χ′ 7→ Nk′/k ◦ Rk′/k(χ
′), and this map is an

isomorphism between the k′-character group of G′ and the k-character group of Rk′/k(G
′). See

[3, Ch.1, §2].

This proposition can allow certain problems for [G] to be studied in the split case, using Gk′ for
suitable k′/k.

Now, let’s prove Theorem 1:

Proof. in order to show that the continuous injective map [H1] ↪−→ [H2] is a closed embedding, the
key fact will be that the image is closed. Equivalently, we can show that H2(k)H1(A)1 ⊆ H2(A)1

is closed. See [1, Lemma 4.2.5] for this reduction step.
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Now, we can pick a representation (defined over k) ρ : H2 → GL(V ) such thatH1 = StabH2(L)
for some line L ⊆ V . This can always be done: see [4, §14]. In particular, choosing any point
x ∈ L \ {0}, we get a character χ : H1 → Gm = GL(L) defined functorially by h 7→ h·x

x
. On

A-points, this gives χA : H1(A)→ A×.
For x ∈ L \ {0}, consider the morphism H2 → V given functorially on points over any

k-algebra by h 7→ h · x, where V is the affine k-variety associated to V , i.e. we have V (A) =
V ⊗k A for any k-algebra A. Taking A = A, we get an orbit map H2(A) → V (A). Consider
Z := (A×)1 · H2(k) · x ⊆ V (A), and consider Z ′ = H2(A) ×V (A) Z inside H2(A). We can
check that Z ′ = H2(k)χ−1A (A×)1 (if h ∈ H2(A) is such that h · x ∈ (A×)1 · x, then in particular h
stabilizes L, so h ∈ H1). This contains H2(k) ·H1(A)1 as a closed subgroup, since h ∈ H1(A)1

implies that |χA(h)| ≤ 1. Thus, it suffices to show that Z is closed in V (A).
Let’s see that Z ⊆ V (A) is closed. Recall from algebraic number theory that the norm-one

part of the idèle class group k×\(A×)1 is compact. So, for a suitable compact subset K of (A×)1,
we have (A×)1 = K · k×. Thus, we have (A×)1 · H2(k) · x = K ·

(
H2(k)k× · x

)
. But since

H2(k) · k× · x ⊆ V (k) and V (k) is discrete in V (A), the fact that K · (H2(k) · k× · x) is closed in
V (A) follows from the fact that a compact subspace times a discrete subspace is closed.

Now, we want to address the following via reduction theory:

Questions. For G a connected reductive group over k:

1. When is [G] compact?

2. When it is non-compact, is there some approximate fundamental domain which can be used
to show that vol([G]) <∞.

Reduction theory will give us the following theorems:

Theorem 5 (“Theorem C”: Mostow-Tamagawa, Harder). For G a connected reductive group over
a global field k, [G] is compact iff DG is k-anisotropic (i.e. it has no non-trivial split tori, or
equivalently it has no proper parabolic k-subgroups).

Remark 6. For k = Q and G semisimple and simply connected, the strong approximation theorem
implies that [G] is compact iff G(R)/G(Z) is.1 The latter statement is how people would have
stated this in the 1950’s, with no adelic points in sight.

Let’s see an example where the simply-connected assumption may be relaxed:

Example 7. Let (L, q) be a quadratic lattice over Z such that LQ is non-degenerate and Q-
anisotropic, meaning that it has no non-trivial rational zeros.2 Then SO(q)(R)/SO(q)(Z) =
SO(LR)/SO(L) is compact.

Indeed, the “universal cover” Spin(q) → SO(q) is a central isogeny of Q-groups, so Spin(q)
is Q-anisotropic3 and simply connected. Thus by Theorem C and the remark following it,
Spin(q)(R)/Spin(q)(Z) is compact, but it has “finite index” image in X .

1Strictly speaking, G(Z) is of course meaningless since G is a Q-group. But thinking of G as a subgroup of some
GLn, we can take a Zariski closure and thus get a fixed Z-model to keep in mind.

2However, we will allow L to be indefinite over R, i.e. it could have real zeros.
3SO(q) is k-anisotropic in the sense of not containing any non-trivial k-split torus iff q is k-anisotropic in the

nineteenth century sense of having no zeros over k: see [4, Homework 6, Problem 5]
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Theorem 8 (“Theorem F”: Gauß-Minkowski). If DG is k-isotropic and S ⊆ G is a maximal k-split
torus and P ⊇ S is a minimal parabolic k-subgroup, then there exists a compact subset K ⊆ G(A)1

and some c > 0 such that G(A)1 = K · S(c)P (A)1 ·G(k), where we define:

S(c) = {s ∈ S(A) ∩G(A)1 | |α(s)|k ≤ c ∀α ∈ ∆ = basis of Φ(P, S) ⊆ Φ(G,S)}

In English, this is the set of points of s ∈ S(A) such that |χ(s)| ≤ 1 for all k-characters χ of G,
and |α(s)| ≤ c for α running over a basis of the roots of P .

Remark 9. Theorem F implies that vol
(
[G]
)
<∞ always; this is due to Borel–Harish-Chandra

and Harder. Brian will write something up about this.

Example 10. Let G = SL2, k = Q. Then via strong approximation, we have:

G(Q)\G(A)/G(Ẑ) ·K∞ = SL2(Z)\SL2(R)/K∞

Here, K∞ is a maximal compact subgroup of G(R), e.g. we could take K∞ = SO2(R), and we
take the obvious Z-structure on G.

Now, we can use the classical “NAK-decomposition” of SL2(R): this says that SL2(R) is
diffeomorphic to the product N × A × K∞ with N = {( 1 x

0 1 )} is the unipotent radical of the
upper Borel subgroup, A is the split maximal torus {

(
t 0
0 t−1

)
}, and K∞ is the maximal compact

subgroup SO2(R) as we noted already. Then we can obtain a diffeomorphism SL2(R)/K∞ ' hi,
the upper half-plane, via the map g 7→ g(i) = x+ it2 (i.e. g ∈ SL(2) acts on hi by fractional linear
transformations).

Now, let’s see how to interpret Theorem F in this classical context. Since G is Q-split and
G = DG, in particular DG is Q-isotropic. Then we can pick S = A the diagonal maximal torus,
P = B− ⊇ S, the lower triangular Borel subgroup. Then

(
t 0
0 t−1

)
7→ t−2 is a basis for Φ(P, S),

so S(c) is the set of
(
t 0
0 t−1

)
with t−2 ≤ c, i.e. the set with t2 ≥ 1

c
. In the upper half-plane this

corresponds to {yi | y ≥ 1
c
}.

How does the volume work out? We can see that NA = {
(
t z
0 t−1

)
} has left Haar measure dt

t2
dz.

But z = x
t

in the coordinates (x, t) for N and A, so dt
t2
dz = dt

t2
d
(
x
t

)
= dx dy

y2
, using y = t2. Then,

the volume-finiteness reduces to the integral (since we know the integration in the x-direction is
over a finite interval, e.g. because ( 1 1

0 1 ) ∈ SL2(Z) sends x to x+ 1):
ˆ ∞

1√
c

dt

t2
<∞

Remark 11. The proof of Theorems C and F for GL2, SL2, and PGL2 with k = k0 ∈ {Q,F(t)} is
done by hand, via “adelizing Gauß”. To avoid complications with class numbers, the general case
over any global field k is reduced to the case k = k0. Then that case is further reduced to GL2, SL2,
and PGL2 cases, up to giving a direct proof that compactness of [G] implies DG is k-anisotropic.4

Remark 12. Granting Theorems C and F, we can see that the formula

G(A)1 = K · S(c) · P (A)1 ·G(k)

4Direct proofs are possible, but this is more uniform.
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can be massaged further. We can apply Theorem C to the Levi factor P/U , with U = Rk,u(P )5,
L = ZG(S) ⊆ P = L n U . Then since the maximal k-split torus S is central in L, DL is
k-anisotropic, so we may apply Theorem C so see that [L] is compact. We have:

[L] = L(k)\L(A)1 = P (k)\P (A)1/U(A)

Because U is k-split unipotent, U(A)/U(k) is also compact: the k-split property says exactly
that U has a composition series with Ga-quotients, and one can show (for example, in [1]) that
compactness of Ga(A)/Ga(k), which is a classical algebraic number theory fact, then implies
compactness of U(A)/U(k). Also, P (A)/P (k)→ L(A)/L(k) is a “U(A)/U(k)-fibration”. Thus,
P (A)1/P (k) is compact, so we have a compact subset K ′ ⊆ P (A) with K ′ · P (k) = P (A).

Therefore, we can write:
G(A)1 = K · S(c) ·K ′ ·G(k)

Here, we absorbed the P (k) into G(k).

Let’s show one direction of Theorem C:

Lemma 13. If DG is isotropic, then [G] is not compact.

Proof. Pick a faithful representation G ↪−→ GL(V ) and a non-trivial split torus S ⊂ DG. Such
an S is not central, this representation has a non-trivial S-weight χ : S → Gm on V . We pick
some ξ ∈ Vχ \ {0}. Since χ : S → Gm splits back up to isogeny, it is surjective on N -th powers
for some N . Now, we can pick a sequence sn ∈ S(A) such that χ(sn) → 0 in A, by picking
some sequence in A× which limits to 0 in A, then lifting after taking some powers. Then, we have
sn · ξ → 0 ∈ V ⊗A as n→∞. Since S ⊆ DG and DG = (DG)1 (it has no characters), we have
S(A) ⊆ (DG)(A) ⊆ G(A)1, so sn · ξ ∈

(
G(A)1 · V

)
\ {0}, and this goes to 0 as n→∞.

Suppose [G] = G(A)1/G(k) were compact. We’ll show that this implies 0 is isolated in
G(A)1 · V ⊆ V ⊗ A, giving a contradiction. Compactness of [G] gives us a compact subset
K ⊆ G(A)1 such that G(A)1 = K · G(k), so G(A)1 · V = K · V , since G(k) acts on V . We
know that V ⊆ V ⊗A is discrete. Then we can pick an open subset U ⊆ V ⊗A around 0 such
that U ∩ V = {0}. Now, by compactness of K we can pick some open U ′ ⊆ U around 0 so
K−1 · U ′ ⊆ U . Then (K · V ) ∩ U ′ ⊆ K ·

(
V ∩K−1 · U ′

)
⊆ K · (V ∩ U) = K · 0 = 0, so 0 is

discrete in K · V = G(A)1 · V .

Example 14. This shows that [G] is not compact for G = GL2, SL2,PGL2, etc., or more generally
for any k-split G which is not a torus.

Now, let’s see how to reduce the remaining direction of Theorem C and Theorem F to the case
k = k0 ∈ {Q,Fq(t)}:

In general, we can write k as a finite separable extension of k0. Let G0 = Rk/k0(G). Now,
we’ve seen that we have a canonical topological identification G(Ak) = G0(Ak0) which respects
the subspaces G(Ak)

1 and G0(Ak0)
1, so [G] = [G0]. If DG is k-anisotropic, then the same must

be true for G0, so we see that Theorem C for G and Theorem C for G0 are equivalent (since we
already proved the converse direction in general).

5Since G is reductive, (Rk,u(P ))k = Rk,u(Pk), so L is reductive
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For Theorem F, pick some split torus S and minimal parabolic subgroup P ⊇ S. Taking
Weil restrictions, we get G0 ⊇ P0 ⊇ Rk/k0(S) ⊇ S0 with P0 = Rk/k0(P ), which is still minimal
parabolic (Weil restriction induces an inclusion-preserving bijection between parabolic subgroups
of G and G0), and S0 ⊆ Rk/k0(S) a maximal split torus of the same rank as S (i.e. using the fact
that S =

∏
Gm, we can take products of the canonical inclusion Gm ↪−→ Rk/k0(Gm) which we

considered earlier).
For any c > 0, after some thought relating Φ(G,S) and Φ(G0, S0), we have S0(c) ⊆ S(c′) for

some c′ > 0, where we consider both of these as subsets of G0(Ak0) = G(Ak). Thus, Theorem F
also reduces to working over k0. In the end, the split case over k0 reduces to the GL2, SL2,PGL2

cases, and this implies the general split case.
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