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We’ll follow [2, §1.8-§1.11] for the bulk of today’s lecture. Recall the statement of Theorems C
and F of reduction theory:

Theorem 1 (“Theorem C”). For G a connected reductive group over a global field k, [G] =
G(A)1/G(k) is compact if and only if DG is k-anisotropic (“semi-simple k-rank is 0”).

Last time, we proved the forward implication: if DG contains a nontrivial split k-torus then
[G] is non-compact. In particular, this verifies Theorem C for any split G over any k, such as
GL2, SL2,PGL2.

Theorem 2 (“Theorem F”). Assume DG is k-isotropic. Choose a maximal split k-torus S ⊂ G
and minimal parabolic k-subgroup P with S ⊆ P ⊆ G. Then

G(A)1 = K · S(c)P (A)1G(k)

for some compact subset K ⊆ G(A)1 and some c > 0, with

S(c) := {s ∈ S(A) ∩G(A)1 | |α(s)|k ≤ c for all α ∈ ∆}

where ∆ is the basis for the positive system of roots Φ(P, S) in the relative root system Φ(G,S) of
non-trivial S-weights on Lie(G).

In the case G = SL2 and k = Q, we saw for suitable S and P that the image of S(c) in
[G]/G(Ẑ) may be identified with the ray {iy | y ≥ 1

c2
} in the upper half-plane.

Remark 3. Last time we saw that once both theorems are proved, we can replace P (A)1 in this
expression with a compact subset K ′ ⊆ P (A)1 by applying Theorem C to any Levi factor of P
(i.e., a k-subgroup mapping isomorphically onto the connected reductive P/Ru,k(P )).

To prove these theorems, we’ll start off by showing Theorem F when G is one of SL2, GL2,
or PGL2 and k is one of Q,Fq(t) (since Theorem C for split groups has been settled). We will
adapt the classical proof describing the fundamental domain for the action of SL2(Z) on the upper
half-plane into something more group-theoretic (and adelic).

Let V be a non-zero finite-dimensional k-vector space. We’ll denote V ⊗A as VA. Given a
point of VA, can we assign this a meaningful “norm”? Consider norms ‖ · ‖v on Vv = V ⊗k kv for
each place v; these are required to be compatible with | · |v on kv in the sense that ‖ax‖v = |a|v‖x‖v
and we furthermore ask it to satisfy the ultrametric inequality when v is non-archimedean. We will
impose a further compatibility condition: for all but finitely many v, ‖ · ‖v is the “sup-norm” with
respect to a common choice of k-basis.
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Remark 4. Why don’t we just pick a k-basis for V at the start and ask ‖ · ‖v to be a sup-norm for
this basis for all v? Our definition has the following advantage: if g ∈ GL(V ⊗A) = GL(V )(A),
then {‖g(·)‖v} is another such collection. Indeed, if we choose a k-basis for V to define kn ' V
then we get a lattice Lv ' O⊕nv ⊆ Vv for each finite v, and this is preserved by g for all but finitely
many v; i.e., gv ∈ GLn(Lv) for all but finitely many v. Thus ‖ · ‖v is the sup-norm for all but finitely
many v, so our notion is preserved by global automorphisms of VA := V ⊗A.

We call ξ ∈ VA primitive if ξ ∈ GL(V )(A) · (V − {0}) ⊆ VA. For example, in the case
V = k, a primitive adele is just an idele by another name. These adelic vectors have a very concrete
description that also explains the terminology:

Lemma 5. Fix a k-basis e = {ei} of V . An element ξ = (ξv) ∈ VA ⊂
∏

v Vv is primitive if and
only if every ξv is nonzero and for all but finitely many v the nonzero ξv has e-coordinates belonging
to Ov with at least one coordinate belonging to O×v . (In other words, for all but finitely many v, ξv
is a primitive vector in the Ov-lattice ⊕iOvei ⊂ ⊕ikvei = Vv.

Proof. It is clear that GL(VA) preserves the class of vectors satisfying the proposed characterization
of primitivity, and every element of V − {0} obviously satisfies those conditions, so by definition
of primitivity it follows that the proposed characterization is a necessary condition for primitivity.
To check sufficiency, consider ξ = (ξv) satisfying these conditions, so there is a finite set S of
places of k containing all archimedean places such that for all v 6∈ S the vector ξv is primitive in
the Ov-lattice ⊕iOvei. Since GLn(Ov) acts transitively on the set of primitive vectors in On

v for all
v 6∈ S (even all non-archimedean v) and GL(Vv) acts transitively on Vv − {0} for all v ∈ S (even
all v), we see that GL(VA) carries ξ to e1 (and so ξ ∈ GL(VA)(V − {0}) as desired).

For primitive ξ, ‖ξv‖v 6= 0 for all v, and ‖ξv‖v = 1 for almost all v, so
∏

v ‖ξv‖v is a product of
finitely many non-zero terms and hence trivially converges to a positive number. For such ξ, we
define the adelic height1 ‖ξ‖ to be

∏
v ‖ξv‖v. By Remark 4, for any g ∈ GL(VA), ‖g(·)‖ also gives

a height on primitive vectors, and the ratio of ‖g(·)‖ to ‖ · ‖ is clearly bounded above and below by
positive constants.

Proposition 6 (Properties of Heights). (i) ‖tξ‖ = |t|k · ‖ξ‖ for t ∈ A× and ξ primitive.

(ii) For ‖ · ‖, ‖ · ‖′ two heights, there is some c, C > 0 such that

c ≤ ‖ξ‖′/‖ξ‖ ≤ C

for all primitive ξ.

(iii) If {ξn} are primitive and ξn → 0 in VA, then ‖ξn‖ → 0.

(iv) (Approximate converse to (iii)) If {ξn} are primitive with ‖ξn‖ → 0, then there exist λn ∈ k×
such that λnξn → 0.

1This has nothing to do with other notions of height in arithmetic geometry!
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Remark 7. Note that (iv) is as good as we can hope for, since if ‖ξn‖ → 0, then by (i) ‖λnξn‖ =
|λn|k‖ξn‖ = ‖ξn‖ → 0 as well by the product formula. Certainly multiplying by such elements
could destroy the property that ξn → 0 in VA.

The first two properties in Proposition 6 are easy: (ii) follows from the easy analysis fact that all
norms on a finite-dimensional topological vector space over a locally compact field are metrically
equivalent (i.e. the analogous inequality as in the statement of (ii) holds), and (i) is immediate from
the construction.

By (ii), in order to prove (iii) it is harmless to fix a k-basis of V and to let ‖ · ‖v be the sup norm
with respect to this basis for all v. Then, it is easy to verify that ξn → 0 implies that the sequence
‖ξn‖ is at least bounded. To prove (iii), we give the following simple argument suggested by Zev
Rosengarten during the lecture that is much simpler than Springer’s suggested argument. Upon
fixing a k-basis of V we may assume that ‖ · ‖v is the sup-norm with respect to this basis for all
v. Then the condition that ξn → 0 in VA implies that for large enough n, ‖ξn‖v ≤ 1 for all v and
that there is some finite set of places v1, . . . , vn such that ‖ξn‖vi → 0 for each i. Then we can see
directly that this implies that the product ‖ξn‖ =

∏
v ‖ξn‖v goes to 0, as desired.

To prove (iv), the key step is to reduce to the case dimk V = 1 (so in effect, the case V = k),
for which Springer gives no argument beyond asserting it is true. I realized during the lecture that
the argument I had in mind for proving (iv) was wrong, and got myself completely confused (and
began to have doubts if (iv) is true), but Sheela Devadas pointed out Lemma 5 and how this does the
job as follows.

Fix a k-basis e = {ei} of V . Choose ξ ∈ VA = ⊕iAei such that ξv 6= 0 for all v. Writing ξ =∑
i ξiei with ξi ∈ A, for each place v we let cv ∈ k×v be an element satisfying |cv|v = supi |ξi|v 6= 0.

For non-archimedean v, clearly cv is well-defined up to O×v -multiple, so the adele [ξ] := (cv) ∈ A
is well-defined (for a fixed choice of e!) up to multiplication against

∏
v|∞ k

×
v ×

∏
v 6|∞O×v .

The crucial observation (whose proof led to noting Lemma 5) is that an element ξ ∈ VA is
primitive if and only if ξv 6= 0 for all v and the associated adele [ξ] = (cv) ∈ A is an idele (i.e.,
[ξ] is a primitive adele). In particular, by design we see that when we use the height defined by
sup-norm relative to e at every place of v then any primitive ξ satisfies ||ξ|| = |[ξ]|k (the right side
being the idelic norm of [ξ], which is independent of the choice of cv’s with e fixed).

It is clear from the definition of the adelic topology on VA described in terms of e and from the
definition of [ξ] that if {ξn} is a sequence of primitive vectors and [ξn] → 0 in A then ξn → 0 in
VA. For any λ ∈ k× and primitive ξ we have [λξ] = λ[ξ] in A×, so to prove property (iv) of adelic
heights it suffices (in view of the settled properties (i) and (ii)!) to treat the case V = k.

The proof of property (iv) of adelic heights is now reduced to a statement about the idele group
equipped with its usual idelic norm:

Lemma 8. Let {ξn} be a sequence in A× such that |ξn|k → 0. There exist elements λn ∈ k× such
that λnξn → 0 in A.

Proof. Let S be a non-empty finite set of places containing the archimedean places and big enough
so that the ring Ok,S of S-integers has trivial class group. This says A× = k×(

∏
v∈S k

×
v )US for

US :=
∏

v 6∈S O×v . Multiplying each ξn by an arbitrary element of US is harmless (since A has a
base of neighborhoods of 0 stable under multiplication by US and all elements of US have idelic
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norm equal to 1). Thus, we may arrange that ξn ∈ k×S for all n, where kS :=
∏

v∈S kv. Multiplying
each ξn by an element of O×k,S introduces factors at places outside S, but a further multiplication by
elements of US gets rid of that. Hence, it suffices to find elements λn ∈ O×k,S such that λnξn → 0
in kS (rather than in A). Our task has now been “localized” into the more concrete topological
k-algebra kS (for which k×S has the subspace topology, in contrast with A× ⊂ A!).

For a choice of v0 ∈ S and c0 ∈ k×v0 with |c0|v0 < 1, via the evident inclusion k×v0 ↪→ k×S we can
write ξn = can0 ξ

′
n for integers an and ξ′n ∈ k×S such that |c0|v0 ≤ ||ξ′n||S ≤ 1. In particular, can0 → 0

in kS , so it suffices that every ξ′n admits an O×k,S-multiple contained within a common compact
subset of kS . In fact, this can be done using a common compact subset of k×S . provided that the
norm k×S /O

×
k,S → R>0 is a proper map. But it is classical that this norm map is topologically

identified with the quotient map modulo (k×S )1/O×k,S (followed by the harmless inclusion of a
discrete subgroup into R>0 in the function field case), and the the S-unit theorem gives the
compactness of (k×S )1/O×k,S .

Here is an overview of the ideas in the reduction of Theorems C and F for general groups G
over general k to the special cases GL2, SL2,PGL2 over finite Galois extensions of k. At a crucial
step, adelic heights will be used.

Consider some connected reductive G over k. If G has positive semisimple k-rank (so the
relative root system is non-empty), let S be a maximal k-split torus. For α ∈ Φ(G,S), we have
Sα = (kerα)0red ⊆ S is a codimension-1 torus killed by α : S −� Gm. Then ZG(Sα) is a connected
reductive group with semisimple k0-rank 1. When G is split, so is ZG(Sα). Via extensive use
of the serious structure theory of reductive groups over fields, one can reduce Theorem F for G
to the corresponding theorems for all of the ZG(Sα)’s (which are split when G is split); this is
[2, 2.3-2.4]. I will later try to find time to write up an exposition of how this is done; it is not at all
obvious. In this way, Theorem F over any k is reduced to the case of semisimple k-rank equal to 1;
the special feature of such cases is that all proper parabolic k-subgroups are minimal, and so all
such k-subgroups constitute a single G(k)-conjugacy class. This reduction step for split k-groups
remains within the split setting, so the case of Theorem F for split G over any k is reduced to split
G of semisimple k-rank equal to 1. We have also noted above that Theorem C for split G is already
settled.

The following fundamental fact is a special role for the groups GL2, SL2,PGL2 in the general
structure theory (and is an immediate consequence of the general structure theory of split connected
reductive groups over fields):

Lemma 9. Over any field, the split connected reductive G of semisimple rank 1 are precisely the
groups H × T for a split torus T and H = SL2,GL2,PGL2.

Thus, for split G of semisimple k-rank equal to 1 we have [G] = [H]× [T ] for one of those 3
possibilities for H , and it is classical that [T ] is compact (the adelic synthesis of finiteness of gener-
alized class groups and the S-unit theorem). Theorem F for general split G over a general k (nothing
remains to be done for Theorem C for such G) thereby reduces to the cases of GL2, SL2,PGL2 over
k. Let’s grant these special cases over general k, so Theorem F is settled in the general split case
over general k; we also already settled Theorem C in the general split case over general k.
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In the general case of semisimple k-rank 0 (there is nothing to do for Theorem F in such cases),
we want to show that [G] is compact (so Theorem C would be settled in general). Let T ⊂ G be a
maximal k-torus containing a split maximal k-torus S. (We have S central in G since we’re in the
case of semisimple k-rank equal to 0.) Pick a finite Galois extension k′/k splitting T . The natural
map

[G] ↪−→ [Rk′/k(Gk′)] = [Gk′ ]

is a closed embedding as we saw Lecture 2! Since Gk′ is split (as Tk′ is a split maximal k′-torus)
and Theorem F is settled in the split case in general (conditional on the cases of GL2, SL2,PGL2

still to be done!), we obtain a description Gk′(Ak′)
1 = K · T (c′)P (Ak′)

1G(k′) for a compact set
K. One can then use the general relationship of Φ(G,S) and Φ(Gk′ , Tk′) applied in this setting
with empty Φ(G,S) to deduce enough information about Tits’ ∗-action of Gal(k′/k) on Φ(Gk′Tk′)
to see that the way [G] lies inside [Gk′ ] is controlled by the compact part of T (c′), from which the
desired compactness of [G] follows; this is [2, 3.5] (which rests on the subtle [2, 2.6]); I will try to
write up an exposition of the details on this later. In this way Theorem C is settled in general (once
again, conditional on Theorem F for GL2, SL2,PGL2 over general k).

For the case of semisimple rank 1 (and Theorem F), we choose a faithful representation
G ↪−→ GL(V ) such that P is the stabilizer of a line. The condition of having semisimple rank
1 ensures that there is only one G(k)-conjugacy class of proper parabolic k-subgroups of G (in
other words, they are all minimal). One has to use lots of arguments with adelic heights on this
high-dimensional V (including property (iv)) to harness the explicit description of [Gk′ ] for a finite
Galois extension k′/k splitting G (using Theorems C and F for the split Gk′ over k′) to get the
desired description of [G] as in Theorem F. This is [2, 3.6]; I will try to write up an exposition of
the details on this later.

So far we have relied on a lot of serious structure theory of reductive groups (which we have
admittedly swept under the rug here, ultimately just pointing to the places in [2] where it is used) to
bring the general task over general k down to the special cases of GL2, SL2,PGL2 over general k.
We saw in the last lecture how to reduce the Theorems C and F in general over k to the same results
for the Weil restriction down to any k0 over which k is finite separable. Such a k0 can always be
found that is either Q or some Fq(t). However, if we start with GL2 over some general k, its Weil
restriction to k0 is never split when k 6= k0 (though its semisimple k0-rank is equal to 1)!

Now let’s finally do something real: use adelic heights and their properties in the case that
dimV = 2 and k0 = Q,Fq(t) to study GL2, SL2,PGL2 for these special fields. (We have seen that
adelic heights play a crucial role for more general V in the treatment of more general G too.) Fix a
basis of the 2-dimensional V . Take the height to rest on the sup-norm with respect to this basis for
all non-archimedean v and (for k0 = Q) use the usual Euclidean length for v =∞.

Define a (maximal) compact subgroup of GL(kv) given by

Kv = {g ∈ GL(Vv) | ‖g(·)‖v = ‖ · ‖v} =

{
GL2(Ov), v 6=∞;

O2(R), v =∞,

Taking the direct product, we get a compact subgroup K =
∏

vKv ⊆ GL(VA).
For B = ( ∗ ∗0 ∗ ) the upper-triangular Borel subgroup of GL2, we have GL2/B ' P1 by sending
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g to g(∞). A mild argument shows that there is a topological isomorphism

GL2(A)/B(A) ' (GL2/B)(A) = P1(A) =
∏
v

P1(kv)

This uses that for v 6=∞, by the valuative criterion of properness (or just clearing denominators of
homogeneous coordinates) we have P1(kv) = P1(Ov). Hence, as an exercise we get GL2(A) =
K ·B(A).

For c > 0, we let:
B(c) = {

(
t1 ∗
0 t2

)
∈ B(A) | |t1/t2|k ≤ c}

Proposition 10. For any ε0 > 0 and c = (2/
√

3) + ε0 we have:

GL2(A) = K ·B(c) ·GL2(k)

This implies Theorem F for GL2 (over k = k0) by restricting to the “norm-1” parts of GL2(A)
and B(c), i.e. by restricting to g ∈ GL2(A) such that | det g|k = 1 and b ∈ B(c) such that
|t1/t2|k = 1. The case of SL2 is treated by a variant of the same method, and the case of PGL2 can
be deduced from that of GL2 (details left to the reader). Springer states the result with c = 2/

√
3

(no doubt inspired by the classical case of SL2 over Q), but we’ll see in the proof below that
non-discreteness of adelic heights for number fields makes it unclear how to really achieve that
value for c; our later needs don’t require such a specific value (any c > 2/

√
3 is sufficient too).

Proof. This proof is inspired by classical arguments with SL2(Z) acting on the upper half-plane,
such as those appearing in [1, Chapter VII]. The strategy will be to take a point in GL2(A), vary it
across the entire orbit of G(k), show that the height is bounded away from 0, and pick an element
which is close to the infimum. We shall use the adelic height as above defined with respect to the
standard basis of k2.

Choose g ∈ GL2(A). We seek γ ∈ GL2(k) with g · γ ∈ K · B(c). For varying ξ ∈ k2 − {0}
(which is acted on transitively by GL2(k)), we claim that the height ‖g(ξ)‖ is bounded away from 0.
If not, pick some sequence {ξn} with ‖g(ξn)‖ → 0. By Proposition 6 (iv), we get λn ∈ k× such that
λng(ξn) = g(λnξn)→ 0. Since g is fixed, this means that λnξn ∈ k2 − 0 goes to 0 in A2, which is
a contradiction since k2 is discrete in A2 and λnξn 6= 0 for all n.

Fix a small ε > 0. By approximating an infimum, we may pick ξ0 such that ‖g(ξ0)‖ ≤
(1 + ε) infξ ‖g(ξ)‖. (The non-discreteness of adelic heights for number fields makes it unclear how
to avoid ε in the number field case.) By right multiplication on g by an element γ0 of GL2(k), we
can change the basis to reduce to the case ξ0 = e1. Thus, we are in the situation where:

for all ξ ∈ k2 − {0}, ‖g(e1)‖ ≤ (1 + ε)‖gξ‖ (1)

This property is invariant under left multiplication on g by K =
∏

vKv since for v 6=∞, GL2(Ov)
preserves the sup norm ‖ · ‖v and O2(R) preserves the Euclidean norm. We want to show that the
inequality (1) implies that g ∈ K · B(c). Since GL2(A) = K · B(A), we know that g = mb for
m ∈ K, b =

(
t1 t1u
0 t2

)
∈ B(A) with t1, t2 ∈ A×, u ∈ A. Without loss of generality, we can replace

g with m−1g = b. Now, since left multiplication by K preserves the property (1), we know that:

|t1|k = ‖ge1‖ ≤ (1 + ε)‖g(λe1 + µe2)‖ for all (λ, µ) ∈ k2 − 0
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Note that g(λe1 + µe2) = (λ+ µu)t1e1 + µt2e2. Fix µ = 1.
We can divide by |t2|k, and get, defining α = t1/t2:

x := |α|k ≤ (1 + ε)‖(λ+ u)α · e1 + e2‖

for all λ ∈ k and some u ∈ A. We want to show that this implies |x| ≤ (2/
√

3) + ε′ with ε′ → 0 as
ε→ 0. We’ll handle the two cases k = Q, k = Fq(t) separately, starting with the case k = Q.

It is harmless to scale α by Q×, so we may assume (by strong approximation) that α ∈ R>0×Ẑ×.
This means that |α|Q = |α∞|. We can choose λ ∈ Q such that |λ + u|v ≤ 1 for all v 6= ∞, and
|λ + u|v ≤ 1

2
for v = ∞. This uses the fact that the map [0, 1) × Ẑ → AQ/Q induced from the

injection [0, 1) × Ẑ ↪−→ AQ is bijective since the “polar parts” of elements of Qp are in Q, and
only finitely many are non-zero.

Then, since ‖ · ‖ is the product of the sup-norms at each finite place with the Euclidean norm at
∞, we see that since |αv|v = 1, ‖(λ+ u)αe1 + e2‖v ≤ 1 for each finite v, so we get from (1):

x = |t1/t2|k = |α|∞ ≤ (1 + ε)‖(λ+ u)αe1 + e2‖∞ ≤ (1 + ε)

√
x2

4
+ 1

and this implies that x ≤ 2√
3

+ o(ε). (The same deduction with ε = 0 is exactly the algebraic
calculation giving rise to the exact bounds for a fundamental domain in the classical setting with
SL2 over Q.)

When k = Fq(t), we can do this the same way with Fq[t] in the role of Z. We can scale α by
Fq(t) so that |α|v ≤ 1 for v 6= ∞ and pick λ ∈ Fq(t) such that |λ + µ|v ≤ 1 for all v 6= ∞ and
|λ + µ|v ≤ 1

q
at∞. Then we get that the sup norm ‖(λ + u)αe1 + e2‖ is at most ‖λ + u‖ ≤ 1 at

each place v 6=∞ and it is max 1, x
q

at v =∞, so we get x ≤ max(1, x/q), so we must have x ≤ 1

(since x 6≤ x/q for x > 0).

There remains finally the task of how to settle GL2, SL2,PGL2 over general k! It is remarkable
that these core cases (with general k, not just k0 as above) control the fate of the most general
case. At a later time these notes will be expanded to discuss this important point (the exposition
in [2] appears to be obscure about it). For example, Lemma 10.1 in Jacquet-Langlands’ book on
automorphic forms seems likely to give what we need via a direct argument over any global field;
I’ll come back to this.
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