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This will be the first part of several lectures discussing how to translate the classical theory
of modular forms into the study of appropriate subspaces of the Hilbert space of L2-functions on
certain adelic coset spaces.

1 From half-plane to Lie groups
For any connected reductive group G over a global field k and non-empty finite set S of places of k
containing the archimedean places, an S-arithmetic subgroup of G(k) (or more accurately: of G)
is a subgroup commensureable with G (Ok,S) for a flat affine Ok,S-group scheme G of finite type
with generic fiber G (e.g., if G = SLn over k then we can take G to be SLn over Ok,S). Such a G
always exists: the schematic closure of G in the Ok,S-group GLn relative to a closed k-subgroup
inclusion of G into the k-group GLn. (This schematic closure method gives rise to all G ’s since
any flat affine group scheme of finite type over a Dedekind domain is a closed subgroup scheme
of some GLn, by adapting the well-known analogue over fields, using that any finitely generated
torsion-free module over a Dedekind domain is projective and hence a direct summand of a finite
free module.) The notion of S-arithmeticity is independent of the choice of G and has reasonable
functorial properties in the k-group G; see [7, Ch. 1, 3.1.1(iv), 3.1.3(a)]. In the special case k = Q
and S = {∞} one usually says “arithmetic” rather than “S-arithmetic”.

Let Γ be an arithmetic subgroup of SL2(Q) (e.g., any congruence subgroup of SL2(Z)). Consider
a holomorphic function f : H→ C, where H is the upper half-plane {a+ bi ∈ C | b > 0} (with
respect to a fixed choice of i =

√
−1) on which SL2(R) acts transitively via linear fractional

transformations. Recall that SL2(R)/SO2(R) ' H as real-analytic manifolds via g 7→ g(i).

Definition 1.1. For g ∈ GL+
2 (R) (the identity component of GL2(R), or equivalently the subgroup

of GL2(R) with positive determinant), define

(
f |kg

)
(z) = f(gz)

(√
det g

cz + d

)k

.

Using this definition, we have:

Definition 1.2. The holomorphic function f is a Γ-automorphic form of weight k if f |kγ = f for
all γ ∈ Γ and f is moreover “holomorphic at the cusps”.

Let’s review from an “algebraic group” viewpoint what it means that f is holomorphic at the
cusps. The action of SL2(Q) on H via linear fractional transformations extends to a transitive
action on P1(Q) = Q ∪ {∞} that encodes the transitive conjugation action of SL2(Q) on the set
of Borel Q-subgroups of SL2 via the Q-isomorphism P1 ' SL2/B∞ (inverse to g 7→ g(∞)) onto
the “variety of Borel subgroups” of SL2, with B∞ the upper-triangular Borel subgroup (which is
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the SL2-stabilizer of∞). The action of SL2(Z) on P1(Q) = P1(Z) is transitive, so the action of Γ
has finitely many orbits.

If we consider the quotient of H by the action of Γ, it is non-compact but for a suitable “horocycle
topology” on H ∪ P1(Q) we get a compactification by adding in the finitely many Γ-orbits on
P1(Q), which we call cusps of Γ. The complex structure on Γ\H extends to this compactification
in a standard (and even unique) manner, as is explained in many introductory books on classical
modular forms. The stabilizer in SL2(R) of s ∈ P1(Q) is Bs(R) for the Borel Q-subgroup Bs

corresponding to s, so the Γ-stabilizer Γs := Γ ∩ Bs(Q) of s is an arithmetic subgroup of Bs

(arithmeticity interacts well with passage to algbraic subgroups). Letting Us denote the unipotent
radical of Bs, we have:

Lemma 1.3. If Γ0 is an arithmetic subgroup of Bs then Γ0 ∩ Us(Q) is infinite cyclic. Moreover,
Γ0 ∩ Us(Q) has index at most 2 in Γ0, with index 2 if and only if Γ0 contains an element γ whose
eigenvalues are equal to −1.

The conjugation action of Γ0 on Us(Q) is trivial, and Γ0 is infinite cyclic except exactly when
−1 ∈ Γ0, in which case Γ0 = 〈−1〉 × (Γ0 ∩ Us(Q)).

Proof. The intersection Γ0 ∩ Us(Q) is an arithmetic subgroup of Us ' Ga, so it is commensurable
with Ga(Z) = Z. A subgroup of Ga(Q) = Q commensurable with Z is clearly infinite cyclic.

Since Gm(Z) = Z× = {±1} is the entire torsion subgroup of Gm(Q) = Q×, the only
arithmetic subgroups of Gm over Q are the trivial group and {±1}. In particular, the trivial subgroup
of Gm(Q) is arithmetic, so by [7, 3.1.3(a)] applied to the quotient map Bs → Bs/Us ' Gm it
follows that any arithmetic subgroup of Bs(Q) contains its intersection with Us(Q) with finite
index. Thus, any element γ of Γ0 ⊂ Bs(Q) has some positive power belonging to Us(Q). Since Bs

is conjugate to B∞ ⊂ SL2, it follows that the eigenvalues of γ are inverse roots of unity in Q× and
hence are either both equal to 1 or both equal to −1, with the former happening if and only if γ is
unipotent, which is equivalent to the condition that γ ∈ Us(Q).

When there exist non-unipotent elements of Γ0, if γ, γ′ are two such elements, then γ′γ−1 is
unipotent (as we see by hand upon computing with B∞, for example), so Γ0 ∩ Us(Q) has index 1
or 2 in Γ0, with index 2 precisely when Γ0 contains an element γ whose eigenvalues are −1.

The conjugation action of Bs on the commutative Us ' Ga factors through a character of
Bs/Us ' Gm that is a square in the character lattice (as is well-known for the root system of SL2

and anyway is seen explicitly for s =∞). That must kill the 2-torsion elements in Gm(Q) = Q×

and so kills the image of Γ0 in (Bs/Us)(Q). Thus, the Γ0-conjugation on Us(Q) is trivial. Since
Γ0 ∩ Us(Q) is infinite cyclic, the only cases when infinite cyclicity might fail is when there exists a
non-unipotent γ ∈ Γ0. Assuming such a γ exists, we have just seen that γ commutes with the infinite
cyclic Γ0∩Us(Q), so Γ0 is commutative and generated by γ and Γ0∩Us(Q) with γ2 ∈ Γ0∩Us(Q).
The known structure of finitely generated abelian groups then implies that Γ0 fails to be infinite
cyclic if and only if Γ0 contains such a γ with order 2. Any such γ must be semisimple and so is
geometrically diagonalizable, yet both eigenvalues are −1 and so it is geometrically conjugate to
the central element −1. Thus, necessarily γ = −1, so we are done.

For each s ∈ P1(Q) there exists gs ∈ SL2(Q) such that gs · ∞ = s. We can even arrange
that gs ∈ SL2(Z) since P1(Q) = P1(Z). The holomorphic function f |kgs is invariant under the
group g−1

s Γsgs ⊂ B∞(Q) that is as described in Lemma 1.3; in particular, this group lies inside
{±1}×U∞(Q). If we take gs to come from SL2(Z) then all choices of gs are related throughB∞(Z)
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whose conjugation action on U∞ ' Ga is through multiplication against squares in Z× = {±1}
(and whose conjugation action on −1 is obviously trivial), so under this condition on gs we can say
that g−1

s Γgs is independent of the choice of gs. But without such an integrality requirement then
varying the choice of gs has the effect of scaling by (Q×)2 on U∞.

By Lemma 1.3, g−1
s Γgs meets U∞(Q) with index at most 2 and the standard Q-isomorphism

U∞ ' Ga defined by ( 1 x
0 1 ) 7→ x, identifies the intersection of g−1

s Γsgs and U∞(Q) with the infinite
cyclic group generated by a unique hs ∈ Q>0.

The function f |kgs is invariant under weight-k slashing against g−1
s Γsgs since f is Γ-automorphic

of weight k, but weight-k slashing against ( 1 x
0 1 ) ∈ U∞(R) has nothing to do with k: it is just

composition with additive translation by x on H. Hence, this holomorphic function is invariant
under z 7→ z + hs, so it descends to a holomorphic function on the open punctured unit disc ∆∗ via
the quotient map

qhs = e2πiz/hs : H→ H/(z ∼ z + hs) = ∆∗.

As such, we have a Fourier–Laurent expansion f |kgs =
∑

n∈Z an,s(f)qnhs , and “holomorphicity at s”
means that this Fourier expansion has no negative-degree terms; i.e., an,s(f) = 0 for all n < 0.

Remark 1.4. Although f |kgs is unaffected by replacing gs with γgs for γ ∈ Γ (and γgs is a
valid choice for gγ.s provided we don’t require gs to belong to SL2(Z), except of course when Γ ⊂
SL2(Z)), the full range of choices of gs for a given s is given by right multiplication against anything
in B∞(Q). Making such a change in gs for a given s changes f |kgs by weight-k slashing against an
element of B∞(Q) and also changes hs through multiplication against a nonzero rational square.
Thus, in general hs is not intrinsic to the orbit Γs but we see that the property “holomorphicity at s”
is independent of the choice of gs and consequently is intrinsic to Γs (since γgs is a valid choice of
gγs).

When Γ ⊂ SL2(Z) and we require gs ∈ SL2(Z) (so γgs remains a valid choice for gγs) then the
triviality of (Z×)2 makes hs intrinsic to Γs and the intervention of U∞(Z) descends to rotation of
∆∗ via multiplication against e2πim/hs for m ∈ Z. Thus, the Fourier expansion of f |kgs is intrinsic
to the orbit Γ.s up to precisely the operation of multiplying the nth coefficient by ζn for all n ∈ Z
with ζ an hsth root of unity. Continuing to assume Γ ⊂ SL2(Z), if moreover the period hs of the
cusp is equal to 1 (classicaly s is called a regular cusp in this case, and all cusps of Γ0(N) and
Γ1(N) are regular except for some specific small N ) then there is no ambiguity at all and hence
the “q-expansion at s” is really intrinsic to the cusp (i.e., independent of gs ∈ SL2(Z) and of the
representative s ∈ P1(Q) for a given Γ-orbit).

Definition 1.5. If f is a Γ-automorphic form of weight k, we say that it is a cusp form if its Fourier
expansion at each cusp has vanishing constant term.

One can also express holomorphicity at the cusps as a “moderate growth” condition, which we
discuss later. It is this condition which translates more easily to the automorphic setting. In any
case, we are most interested in cusp forms; for such forms the “moderate growth” condition will
also follow from a representation-theoretic formulation of cuspidality that makes sense in a much
wider setting.

Definition 1.6. We define Mk(Γ) to be the space of Γ-automorphic forms of weight k, and Sk(Γ)
to be the space of Γ-cusp forms of weight k.
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For a Dirichlet character ψ mod N , Sk(N,ψ) denotes the space of Γ1(N)-cusp forms of weight
k such that if g ∈ Γ0(N), then f |kg = ψ([g])f , where [g] is the class of g in Γ0(N)/Γ1(N) '
(Z/NZ)×.

In order to identify modular forms with certain L2 functions on adelic coset spaces for certain
congruence subgroups Γ ⊂ SL2(Z), the idea is to first define a map sending Γ-cusp forms to L2

functions on Γ\SL2(R), and then use strong approximation for SL2 to identify Γ\SL2(R) with
KΓ\GL2(A)/GL2(Q), where A = AQ is the adele ring of Q and KΓ is a specific compact open
subgroup of GL2(Ẑ). One important part of this identification will be to identify the images of
Sk(Γ) and Sk(N,ψ) on the adelic side.

2 Function theory on Lie groups
We define a map Mk(Γ)→ C∞(Γ\SL2(R)) by sending f to φf : g 7→ (f |kg)(i). This is injective
because it is easy to verify that

f(x+ iy) = φf

(
y1/2 xy−1/2

y−1/2

)
y−k/2.

Proposition 2.1. For f ∈ Sk(Γ) we have φf ∈ L2(Γ\SL2(R)) when Γ\SL2(R) is equipped with
the SL2(R)-invariant measure arising from a choice of Haar measure on the unimodular group
SL2(R). If f ∈Mk(Γ) and f 6∈ Sk(Γ) then φf 6∈ Lp(Γ\SL2(R)) for all p ≥ 1 when k ≥ 2.

Proof. Define F (z) = |f(z)|(Im z)k/2. For g ∈ SL2(R), we have:

∣∣φf (g)
∣∣ =

∣∣∣∣∣f
(
ai+ b

ci+ d

)
1

(ci+ d)k

∣∣∣∣∣
=

∣∣∣∣∣f
(
ai+ b

ci+ d

)∣∣∣∣∣
(

1

|ci+ d|2

)k/2
= F (g(i)).

In particular, |φf | is right-invariant by the SL2(R)-stabilizer K := SO2(R) of i which is moreover
a (maximal) compact subgroup of SL2(R), so the L2 property can be checked using the induced
function on the quotient space

Γ\SL2(R)/K = Γ\H
with its induced SL2(R)-invariant measure arising from the Haar measure, namely a positive
constant multiple of (dx dy)/y2.

Since SL2(R) acts transitively on H and φf is left Γ-invariant, it follows that F is also left
Γ-invariant. Hence, F defines a continuous function on the quotient space Γ\H that is compactified
with finitely many cusps and has finite volume for its SL2(R)-invariant measure (dx dy)/y2. The
L2-property for φf on Γ\SL2(R) is therefore the same as that for F on Γ\H near each of the finitely
many cusps relative to the measure (dx dy)/y2.

For any g = ( a bc d ) ∈ SL2(R) the identity

(cz + d)2 Im

(
az + b

cz + d

)
= (Im z)

(
cz + d

cz + d

)
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implies

F (gz) = |f(gz)|(Im gz)k/2

= |(f |kg)(z)||(cz + d)k|(Im gz)k/2

= |(f |kg)(z)|(Im z)k/2.

By using the horocycle topology on H ∪ P1(Q), to analyze the behavior of F near a cusp
on Γ\H is the same as to analyze F (gsz) with z far up in a vertical strip of bounded width for
gs ∈ SL2(Q) as above (note that typically gs 6∈ Γ!). But this is exactly |(f |kgs)(z)|(Im z)k/2, so
if f is not “cuspidal at s” then |(f |kgs)(z)| approaches a nonzero constant value as Im z → ∞
so φf fails to be Lp for any p ≥ 1 since yk/2/y2 6∈ Lp((c,∞)) for any c > 0 when k ≥ 2. (This
calculation that near each cusp on Γ\SL2(R) we have φf = O(yk/2) as y → ∞ will turn into a
“moderate growth” condition in the adelic theory.)

Now suppose f ∈ Sk(Γ). The exponential decay of the Fourier expansion of f |kgs swamps out
the growth of (Im z)k/2 as this imaginary part gets large: by cuspidality the Fourier expansion is
bounded in absolute value by a constant multiple of |e2πi(x+iy)| = e−2πy, and e−2πyyk/2 tends to 0
as y →∞. Thus, F extends to a continuous function on the compactification of Γ\H by assigning
it value 0 at each cusp, so φf is a bounded function on the space Γ\SL2(R) that has finite volume.
Hence, φf belongs to L∞ ⊂ L2.

We conclude that the injective map Mk(Γ)→ C∞(Γ\SL2(R)) defined by f 7→ φf has image
that meets L2(Γ\SL2(R)) in exactly Sk(Γ). Let’s see how the properties of f ∈ Mk(Γ) translate
into properties of φf .

• Let s ∈ P1(Q) represent a cusp of Γ, and let Us be the unipotent radical of the corresponding
Borel Q-subgroup of SL2, so by Lemma 1.3 we know that Γ ∩ Us(R) is a subgroup of the
s-stabilizer Γs with index at most 2 and is an infinite cyclic subgroup of Us(R) ' R. We
claim that f is “cuspidal at s” (i.e., its Fourier expansion at s has vanishing constant term,
a property intrinsic to the cusp rather than depending on the representative s) if and only if´

(Γ∩Us(R))\Us(R)
φf (ug) du = 0 for all g ∈ SL2(R) (using any Haar measure du on Us(R),

the choice of which clearly doesn’t matter).

Once this is shown, it follows that an element f ∈ Mk(Γ) is cuspidal if and only if for the
unipotent radical U of every Borel Q-subgroup of SL2 we have

ˆ
UΓ\U(R)

φf (ug) du = 0

with UΓ := Γ ∩ U(Q) an arithmetic subgroup (so infinite cyclic in U(R)). This vanishing
condition for a given U only depends on the Γ-conjugacy class of U (since φf is left Γ-
invariant and we vary through all g ∈ SL2(R)), and its validity for all U will be called
cuspidality for φf (to be appropriately adapted to the L2 adelic theory).

To verify the asserted reformulation of cuspidality at s, we will calculate with the Fourier
expansion at s. Note that Us = gs · U∞ · g−1

s for a choice of gs ∈ SL2(Q) satisfying
gs(∞) = s. Write g−1

s g =
(
a b
c d

)
so for any function F : H→ C we have (F |k(g−1

s g))(w) =
(cw + d)−kF ((g−1

s g) · w). Let z = (g−1
s g) · i and α = (ci + d)−k, so for any function
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F : H → C we have (F |k(g−1
s g))(i) = αF (z). Finally, define fs = f |kgs. Now, we may

calculate the integral via the Fourier expansion at s as:

ˆ
(Γ∩Us(R))\Us(R)

φf (ug) du =

ˆ
((g−1

s ·Γsgs)∩U∞(R))\U∞(R)

φf (gsug
−1
s g) du

=

ˆ
((g−1

s ·Γsgs)∩U∞(R))\U∞(R)

(
(fs)|ku)|k(g−1

s g)
)

(i) du

= α

ˆ
((g−1

s ·Γsgs)∩U∞(R))\U∞(R)

((fs)|ku)(z) du

= α

ˆ
hsZ\R

fs(z + x) dx

= α

ˆ hs

0

fs(z + x) dx

= α

ˆ hs

0

∑
n≥0

an,s(f)(e2πi(z+x)/hs))n dx

= α · hs · a0,s(f)

Note that αhs ∈ C×, so this equals 0 if and only if a0,s(f) = 0, which amounts to the element
f ∈Mk(Γ) being cuspidal at s.

• Let K = SO2(R) be the SL2(R)-stabilizer of i ∈ H; this is a maximal compact subgroup of
SL2(R). Defining

r(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

it is easy to check from the definition of φf in terms of f that φf (g · r(θ)) = φf (g)e−ikθ; this
is an important refinement of the fact seen in the proof of Proposition 2.1 that |φf | is right
K-invariant. For f ∈ Sk(Γ), this says that φf is an eigenfunction forK under the right regular
representation R of SL2(R) on L2(Γ\SL2(R)) defined by (R(g) · φ)(h) = φ(hg) (which
makes sense on the L2-space since SL2(R) is unimodular), with eigencharacter r(θ) 7→ e−ikθ

encoding the weight k of f .

The property of f that we still need to capture is that it is a holomorphic function on H. There
is a unique left-invariant tensor field of type (0,2) on SL2(R) inducing a given quadratic form
q : sl2(R) → R. To further impose right-invariance of the tensor field under K can be arranged
via averaging over K, in which case it descends to such a tensor field on SL2(R)/K whose effect
on the tangent space at the identity is invariant under the adjoint action of K. By consideration of
K-weights in the complexification, we see that the space of K-invariants in Sym2((sl2(R)/k)∗)
is 1-dimensional. But we can make such a K-invariant quadratic form that is positive-definite by
choosing an initial positive-definite quadratic form q0 on sl2(R)/k and averaging it under the adjoint
representation of K (such averaging preserves positive-definiteness, whereas it may not preserve
non-degeneracy if we pick a non-degenerate q0 with mixed signature). Thus, up to R×-multiple
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there is a unique nonzero left-invariant tensor field of type (0,2) on SL2(R)/K and up to sign it is a
Riemannian metric tensor.

To any oriented pseudo-Riemannian manifold (M, ds2) with pure dimension n there is a
canonically associated Laplace–Beltrami operator on the space Ωp(M) of smooth global p-forms
on M given by

∆p := δp+1 ◦ dp + dp−1 ◦ δp
where δp : Ωp(M) → Ωp−1(M) is the operator (−1)n(p+1)+1 ∗n−p+1 dn−p∗p with ∗j : Ωj(M) →
Ωn−j(M) arising from the usual Hodge star on each fiber ∧j(T∗m(M)) defined by the induced
non-degenerate symmetric bilinear form 〈·, ·〉j,m on ∧j(T∗m(M)) arising from ds2(m) on Tm(M)
and the orientation of ∧n(Tm(M)) (i.e., ω ∧ (∗mη) = 〈ω, η〉j,mµ(m) for ω, η ∈ ∧j(T∗m(M)) and
µ(m) the unique vector in the positive half-line of ∧n(T∗m(M)) satisfying 〈µ(m), µ(m)〉n,m = ±1.
Since ∗n−j∗j = (−1)j(n−j), so (−1)n(p+1)+1 ∗n−p+1 ∗p−1 = (−1)p, we can equivalently write
δp = (−1)p ∗−1

p−1 dn−p∗p For p = 0 this is δ1d0 = − ∗−1
0 d ∗1 d on smooth functions.

Changing the orientation of M has no effect on ∆p (as it suffices to check this on each connected
component, where there is just a sign change possible on the orientation; such a sign change negates
the Hodge-star in every degree, and so visibly has no effect on ∆p from the definition involving two
Hodge-stars), so via globalization from orientable open subsets it can be defined without needing
(M, ds2) to even admit an orientation, let alone for an orientation to be chosen.

Example 2.2. Let’s compute ∆0(f) relative to an oriented local coordinate system {y1, . . . , yn}.
Defining gij = 〈∂yi , ∂yj〉 as usual, so ds2 =

∑
ij gijdxi ⊗ dxj , dyi is dual to

∑
k g

ik∂yk for the
matrix (gij) inverse to (gij). Hence, we compute (via symmetry of the metric tensor) that the
induced bilinear form on the cotangent bundle satisfies

〈dyi, dyj〉 =
∑
k,`

gikgk`g
j` = gji = gij,

so orientedness of the coordinate system implies that the oriented unit top-degree differential form is
µ := | det(gij)|1/2dy1 ∧ · · · ∧ dyn. Also, by definition clearly ?(µ) = (−1)r where (n− r, r) is the
signature of the metric tensor (equivalently, this is the sign (−1)r of det(gij)). The determination
of µ yields that

dyi ∧ ?1(dyj) = gij| det(gk`)|1/2dy1 ∧ · · · ∧ dyn
for all i, so

?(dyj) =
∑
i

(−1)i−1gij| det(gk`)|1/2dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn.

Hence,
?(df) =

∑
ij

gij| det(gk`)|1/2∂yj(f)dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn,

so

d ? (df) =
∑
ij

∂yi(g
ij| det(gk`)|1/2∂yj(f))dy1 ∧ · · · ∧ dyn =

∑
ij

∂yi(g
ij| det(gk`)|1/2∂yj(f)

| det(gk`)|1/2
µ.
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We noted above that ?(µ) = (−1)r, so

∆0(f) = − ? d ? (df) = (1)r+1
∑
ij

∂yi(g
ij| det(gk`)|1/2∂yj(f)

| det(gk`)|1/2

= (−1)r+1
∑
ij

(gij∂2
yiyj

(f) + ∂yi(g
ij)∂yj(f) + (1/2∆)∂yi(∆)gij∂yj(f)

for ∆ := | det(gk`)|. In other words:

∆0 = (−1)r+1
∑
ij

(gij∂2
yiyj
− (∂yi(g

ij) + (1/2∆)∂yi(∆)gij)∂yj).

This is a differential operator on C∞(M) of order exactly 2 everywhere, with no “constant term”,
and by inspection it is elliptic if and only if the symmetric inverse matrix (gij) is definite, which
is to say that the metric tensor is Riemannian up to an overall sign. (In the general Riemannian
case the operator ∆p on Ωp(M) is elliptic for all p [10, 6.34–6.36].) The messy coefficient of the
degree-1 part of ∆0 can be expressed in terms of the Christoffel symbols of the metric tensor, but
we don’t need that and so don’t address it here. (In the special case of a flat metric we can pick local
oriented coordinates for which the matrix (gij) is constant and even gij = εiδij for signs εi = ±1, so
then ∆0 = (−1)r+1

∑
i εi∂

2
yi

with r equal to the number of negative εi’s. This recovers the familiar
Laplacian on Rn up to an overall sign.)

Example 2.3. For any Lie groupG with finitely many connected components and maximal compact
subgroup K (so K meets every connected component of G and K0 = K ∩G0, with K0 maximal
compact in G0), we can find a K-invariant positive-definite quadratic form q on g/k (unlike for
G = SL2(R), there is generally more than a ray’s worth of such q’s). From this we get an
associated left-invariant Riemannian metric on G/K and hence a left-invariant degree-2 elliptic
Laplace–Beltrami operator on Ωp(G/K) for all p ≥ 0.

For any Lie group G, each X ∈ g gives rise to a visibly left-invariant R-linear derivation of
C∞(G) via the recipe

(Xf)(g) = ∂t|t=0(f(g expG(tX))).

The unique smooth vector field giving rise to this derivation must be left-invariant by uniqueness, so
it is the left-invariant vector field extending X at the identity since expG(tX) is a parametric curve
through the identity with velocity X at the identity. The interaction of such a differential operator
X with the right regular representation on smooth functions is given by

(X ◦R(g0))(f) = X(R(g0)(f)) : g 7→ ∂t|t=0((R(g0)(f))(g expG(tX)))

= ∂t|t=0(f(g expG(tX)g0))

= ∂t|t=0(f(gg0 expG(tAdG(g−1
0 )(X)))),

which is to say
X ◦R(g0) = R(g0) ◦ AdG(g−1

0 )(X). (1)

The identity X(Y f)− Y (Xf) = [X, Y ](f) is proved in [2, III, §3.7, Def. 7, Prop. 27(ii),(iii)];
this uses crucially that the definition of (Xf)(g) involves right multiplication by expG(tX), rather
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than left multiplication; see [2, III, §3.7, Def. 7(b)]. Thus, the operations f 7→ Xf uniquely extend
to an action of the associative universal enveloping algebra U(g) on C∞(G). The Poincaré-Birkhoff-
Witt theorem giving the structure of U(g) thereby identifies the space D(G) of left-invariant
differential operators on C∞(G) with U(g). We want to relate this to the space D(G/K) of left
G-invariant differential operators on C∞(G/K). This is a special case of the following more general
considerations.

Let G be any Lie group, and H a closed subgroup. There is a natural inclusion C∞(G/H) ↪→
C∞(G)H , and since π : G→ G/H is an H-bundle it is easy to see that this inclusion is an equality.
Letting D(G) and D(G/H) respectively denote the spaces of left invariant differential operators on
G and on G/H (left-invariant for the G-action in the latter case), we want to describe D(G/H) in
terms of the space D(G)H of elements of D(G) invariant for the natural action of H through right
multiplication on G. Since elements of D(G) are left-invariant by G, the identification of D(G)
with U(g) carries D(G)H over to U(g)H where H acts through its AdG on g.

For any D ∈ D(G)H and f ∈ C∞(G/H), the smooth function D(f ◦ π) on G is invariant for
the right multiplication by H since D ∈ D(G)H ; i.e., D(f ◦ π) ∈ C∞(G)H = C∞(G/H). Hence,
D(f ◦ π) = (Df) ◦ π for a unique Df ∈ C∞(G/H).

Lemma 2.4. For D ∈ D(G)H , the R-linear map C∞(G/H)→ C∞(G/H) defined by f 7→ Df is
a differential operator on G/H . If D has order ≤ d then D has order ≤ d.

Proof. This problem is local over G/H , since the formation of Df is clearly of local nature over
G/H (i.e., its restriction to an open U ⊂ G/H only depends on f |U ). Since the left G-action is
just coming along for the ride and not really doing anything, using that G→ G/H is an H-bundle
thereby reduces our task to the analogue where G→ G/H is replaced by H × V → V for an open
subset V ⊂ Rn and where we work with f ∈ C∞c (V ). Letting e : V → H × V be v 7→ (1, v),
we see that Df = D(f ◦ π) ◦ e for f ∈ C∞c (V ). Now H has done its job (to provide the product
structure), and to exhibit this as a differential operator can replaceH with a coordinate neighborhood
of 1. In this case everything is obvious (including that D has order ≤ d if D does).

Proposition 2.5 (Helgason). If h admits an H-stable complement in g under AdG then the natural
map of associative R-algebras U(g)H = D(G)H → D(G/H) defined by D → D is surjective.
Moreover, an element of D(G/H) with order d can be lifted to an element of D(G)H with order d.

Note that the hypothesis on H is satisfied when H is compact, since the finite-dimensional
continuous linear representations of a compact group are semisimple.

Proof. The proof we give is a streamlined version of the proof of [6, Lemma 16]. Choose
D′ ∈ D(G/H) (i.e., a differential operator on G/H invariant under the left G-action). We
seek D ∈ D(G)H such that D = D′. Let m = dimG and n = dim(G/H), and pick a basis
{v1, . . . , vn, . . . , vm} of g whose first n elements span an AdG|H-stable complement to h. For
U ⊂ Rn a sufficiently small open neighborhood of 0, there is a diffeomorphism of U onto an open
neighborhood N of ξ0 := π(1) ∈ G/H given by

(t1, . . . , tn) 7→ π(expG(t1X1 + · · ·+ tnXn)).

Since D′ is a differential operator over G/H , for any f ′ ∈ C∞(G/H) the restriction (D′f)|U ∈
C∞(U) is given by a standard differential operator in the coordinates {t1, . . . , tn}. That is, there
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exists a polynomial P ∈ C∞(U)[∂t1 , . . . , ∂tn ] independent of f such that

(D′f)|U = P (f |U)

(really f |U should be transported to a smooth function on N via the diffeomorphism U ' N
mentioned above). Evaluating both sides at e0 turns the coefficients functions of P into real
numbers, so we get P0 ∈ R[y1, . . . , yn] such that

(D′f)(ξ0) = (P0(∂t1 , . . . , ∂tn)((f ◦ π)(expG(t1v1 + · · ·+ tnvn))))|t=0.

A general point ξ ∈ G/H has the form g(ξ0) for some g ∈ G, so the assumed (!) left-invariance
of D′ under the G-action on G/H implies (D′f)(ξ) = (D′(f ◦ λg))(ξ0) with λg : G/H → G/H
the left-multiplication action of g. Hence,

(D′f)(ξ) = (P0(∂t1 , . . . , ∂tn)((f ◦ π)(g expG(t1v1 + · · ·+ tnvn))))|t=0.

A coordinate system on G near g is given by

(t1, . . . , tm) 7→ g expG(t1v1 + · · ·+ tnvn + · · ·+ tmvm)

for (t1, . . . , tm) belonging to a fixed open Ω ⊂ U ×Rm−n around 0 independent of g. Thus, even
though expG : g→ G is rarely a homomorphism, we are motivated to consider the construction D
assigning to each F ∈ C∞(G) the function DF : G→ R defined by

(DF )(g) = (P0(∂t1 , . . . , ∂tn)(F (g expG(t1v1 + · · ·+ tnvn + . . . tmvm))))|t=0

= (P0(∂t1 , . . . , ∂tn)(F (g expG(t1v1 + · · ·+ tnvn))))|t=0

(the second equality since P0(∂t1 , . . . , ∂tn) commutes with specializing any of tn+1, . . . , tm to 0). It
is obvious by consideration of the above local coordinate system near a chosen but arbitrary g0 ∈ G
that DF is smooth and that F 7→ DF is a differential operator on C∞(G). Note that if D′ has
order d then we can arrange that P0 has total degree d, so D clearly has order at most d. We shall
prove that D is left G-invariant and right H-invariant, and that D = D′ (so we would be done: in
particular, D must have order exactly d, since otherwise it would have order at most d − 1 and
hence so would D = D′, contrary to how d was defined).

If F = f ◦ π for f ∈ C∞(G/H) then

(DF )(g) = (P0(∂t1 , . . . , ∂tn)((f ◦ π)(g expG(t1v1 + · · ·+ tnvn))))|t=0 = (D′f)(g(ξ0)),

so if it is shown that D ∈ D(G)H then (Df)(gH) = (DF )(g) = (D′f)(g(ξ0)), which is to say
D = D′ as desired. Hence, our task is reduced to checking that the differential operator D on G
is left G-invariant and right H-invariant. Left G-invariance of D says (DF ) ◦ λg0 = D(F ◦ λg0)
for all g0 ∈ G and F ∈ C∞(G) (where λg0 is left multiplication by g0 on G), and this is identity is
obvious from how DF is defined. Right H-invariance of D says (DF ) ◦ ρh = D(F ◦ ρh) for all
h ∈ H and F ∈ C∞(G) (where ρh is right multiplication by h on G), and proving this will require
more effort (in effect, establishing an H-invariance property of P0).

By definition of D we have

(DF )(gh) = (P0(∂t1 , . . . , ∂tn)(F (g expG(AdG(h)(t1v1 + · · ·+ tnvn))h)))|t=0

= (P0(∂t1 , . . . , ∂tn)((F ◦ ρh)(g expG(AdG(h)(t1v1 + · · ·+ tnvn)))))|t=0,
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so for right H-invariance it suffices (upon renaming F ◦ ρh as F ) to show that

(P0(∂t1 , . . . , ∂tn)(F (g expG(AdG(h)(t1v1 + · · ·+ tnvn)))))|t=0

is independent of h ∈ H . Since {v1, . . . , vn} spans an AdG|H-stable subspace V ⊂ g, if
Mh ∈ GLn(R) is the matrix for AdG(h) relative to the ordered basis {v1, . . . , vn} of V , this
final expression is the same as

(P0(M−1
h (∂t1), . . . ,M−1

h (∂tn))(F (g expG(t1v1 + · · ·+ tnvn))))|t=0.

Thus, the right H-invariance is reduced to showing that P0 : Rn → R is invariant under
composition with the matrices M−1

h = Mh−1 for all h ∈ H . Since (D′f)(g(ξ0)) for f ∈ C∞(G/H)
is unaffected by multiplication on g by anything in H on the right and likewise such f ◦ π is
unaffected by right H-multiplication on G, the formula for (D′f)(g(ξ0)) in terms of P0 implies the
desired H-invariance for P0 by plugging gh in place of h in the formula for (D′f)(g(ξ0)) similarly
to the preceding calculation of (DF )(gh).

We conclude that the Laplace-Beltrami operator ∆K ∈ D(SL2(R)/K) arises from an element
of U(sl2(R))K with degree 2, and this latter element must have no “constant part” since ∆K kills
constant functions by design. Hence, ∆K arises from a sum D1 +D2 for Dj ∈ U(sl2(R))K with
degree j (possibly D1 = 0, but definitely D2 6= 0). By Poincaré-Birkhoff-Witt, the natural map

Symj(g)→ U≤j(g)/U<j(g)

is an isomorphism for all j > 0 and any finite-dimensional Lie algebra g over a field of characteristic
0. Thus,

U≤j(sl2(R))K/U<j(g)K ' Symj(sl2(R))K ,

and for j = 2 we have already noted that the right side is 2-dimensional (with an evident line
arising from U≤2(k)/U<2(k)) whereas for j = 1 the right side is 1-dimensional (arising from the
line k ⊂ U≤1(k) = R⊕ k).

Via the decomposition SL2(R) = NAK, it is clear that the image of U(k) ⊂ U(sl2(R))K in
D(SL2(R)/K) vanishes since a K-invariant smooth function on SL2(R) = NA × K is pulled
back from a smooth function on NA. It follows that the image of U≤2(sl2(R))K in D(SL2(R)/K)
is at most 1-dimensional, coinciding with the image of any single line not arising from U(k). We
now construct a canonical such line more broadly.

For any finite-dimensional semisimple Lie algebra g over a field F of characteristic 0 the
canonical symmetric bilinear Killing form κ : g×g→ F defined by κ(X, Y ) = Tr(ad(X)◦ad(Y ))
is non-degenerate and equivariant for the adjoint representation of g on itself. Thus, this gives rise
to a canonical nonzero central element C homogenous of degree 2 in the center z of U(g) called the
Casimir element; this is defined in [2, Ch. I, §3.7].

For a connected semisimple F -group G with Lie algebra g, the Casimir element C cannot lie in
Lie(T ) for a maximal F -torus T since centrality of C would then force it to lie in the Lie algebra of
every maximal torus over F yet the intersection of such Lie algebras coincides with Lie(ZG) = 0 (as
char(F ) = 0). Hence, the image in D(SL2(R)/K) of U≤2(sl2(R))K that is at most 1-dimensional
is spanned by the image of C. We know that ∆K is a nonzero element in this image, so ∆K is the
effect of some R×-multiple of C!
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Scaling the Riemannian metric by a > 0 scales the Hodge-star by 1/a and so (by its definition)
scales ∆K by 1/a2. Thus, we can scale the metric so that ∆K is the effect of ±2C for a unique sign.
In Appendix A we will see that the sign comes out to be negative; i.e., ∆K = −2C (for a suitable
choice of the metric that we will work out in Appendix A too).

3 Characterization of cusp forms
If g ∈ SL2(R), we can use the NAK decomposition to write

g =

(
1 x
0 1

)(
y1/20

0 y−1/2

)
· r(θ).

Let’s use these coordinates to write down the element of D(SL2(R)) corresponding to −2C for the
Casimir element C of U(sl2(R)). In Appendix A (the discussion preceding Lemma A.1) we work
it out. Denoting that differential operator as ∆ (since its composition with C∞(SL2(R)/K) →
C∞(SL2(R)) recovers the Laplace-Beltrami operator ∆K , as discussed in Appendix A), we get:

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
− y ∂2

∂x ∂θ

in D(SL2(R)).

Remark 3.1. On any connected Lie group G with semisimple Lie algebra, the Killing form defines
a non-degenerate quadratic form that is (negative-)definite if and only if the group is compact. By
non-degeneracy it always defines a left-invariant pseudo-Riemannian metric tensor, and hence s
Laplace-Beltrami operator on each Ωp(G). But these operators are never elliptic when the metric
is not Riemannian (i.e., when G is non-compact). The operator ∆ above on C∞(SL2(R)) is
non-elliptic by inspection of its principal symbol.

Proposition 3.2. If f ∈ Sk(Γ), then ∆φf = −(k/2)((k/2)− 1)φf

Proof. By definition,

φf (g) = φf (( 1 x
0 1 )( y

1/2 0

0 y−1/2 ))e−ikθyk/2f(x+ iy)e−ikθ.

This gives us that

∆φf = (−yk/2+2e−ikθ)
∂2f

∂x2
+ (−yk/2+2e−ikθ)

∂2f

∂y2
+ (−yk/2+1e−ikθ · k)

∂f

∂y

− k

2

(
k

2
− 1

)
yk/2f(x+ iy)e−ikθ + (−yk/2+1e−ikθ · (−ik))

∂f

∂x

= −k
2

(
k

2
− 1

)
φf ,

where the last equality follows from the Cauchy-Riemann equations characterizing holomorphicity
of f (recall that ∂

∂z
= 1

2
( ∂
∂x

+ i ∂
∂y

)).
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Proposition 3.3. The image of Sk(Γ) in L2(Γ\SL2(R)) is exactly characterized as the set of all φ
such that:

• R(r(θ))(φ) = e−ikθφ; i.e., φ is an eigenfunction for K under the right regular representation,
with “weight” k under the standard parameterization r : R/2πZ ' K, or in other words φ is
an L2-section of a hermitian line bundle on Γ\SL2(R)/K.

• the pullback of φ to a Γ-invariant locally L1 function on SL2(R) is an eigenfunction for
∆ in the distributional sense, with eigenvalue −(k/2)(k/2− 1) (so φ is smooth by elliptic
regularity: the function φ̃ = eikθφ satisfies R(θ0)(φ̃) = φ̃ for all θ0, which is to say that the
L2-function φ̃ is right K-invariant, so by “coset Fubini” φ̃ is the pullback of an L2-function on
SL2(R)/K = H that is likewise killed by ∆K that is the elliptic Laplace-Beltrami operator
on H),

• it satisfies the “cuspidality condition”
ˆ

(Γ∩U(R))\U(R)

φ(ug) du = 0

for all g ∈ SL2(R) and all unipotent radicals U of Borel Q-subgroups of SL2.

Remark 3.4. In these applications of ellipticity one even gets real-analyticity and not just smooth-
ness for φ: see [1, Appendix, Ch. 4, Part II] for an elegant proof of inhertiance of real-analyticity in
the elliptic regularity theorem.

For φ satisfying the conditions of Proposition 3.3, so φ is smooth, the formula for f in terms of
φf motivates making the definition

f(x+ iy) := φ

((
y1/2 xy−1/2

y−1/2

))
y−k/2

for x ∈ R and y > 0. This is smooth function on H. It’s straightforward to check that f |kγ = f for
γ ∈ Γ precisely because of the left Γ-invariance of φ, and that if f is holomorphic then its zeroth
Fourier coefficient vanishes at each cusp of Γ precisely because of the cuspidality condition.

Thus, f ∈ Sk(Γ) as soon as we know f is holomorphic with f |kgs bounded near s for each
s ∈ P1(Q) (with gs ∈ SL2(Q) carrying∞ to s, the choice of which we have seen doesn’t matter).
This boundedness property for all s can be deduced from a “moderate growth” condition on φ that
is a consequence of the cuspidality condition (see Remark 3.7), but the proof of holomorphicity (in
effect, that f satisfies the Cauchy-Riemann equations ∂f/∂z = 0) lies rather deeper: it requires
some input from representation theory. Moreover, this deduction of holomorphicity for f built from
such φ seems to be omitted from many standard references discussing the representation-theoretic
aspects of classical modular forms (such references generally only prove the much easier converse
direction), so we give a proof in Appendix A using the representation theory of sl2(R).

Proposition 3.3 motivates the following definition:

Definition 3.5. A Γ-cusp form on G = SL2(R) is a smooth function φ : G→ C such that:

(1) φ(γ · g) = φ(g) for all γ ∈ Γ
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(2) φ is “K-finite” for a maximal compact subgroup K of G; i.e., the span of {κ · φ}κ∈K is
finite-dimensional (this property is independent of the choice of K since all such K’s are
related to each other through G-conjugation);

(3) φ is an eigenfunction of ∆, 1

(4) φ is cuspidal (i.e.,
´

(Γ∩U(R))\U(R)
φ(ug)du = 0 for all g ∈ G and unipotent radicals U of

Borel Q-subgroups of SL2).

Proposition 3.3 says that if such a φ is an eigenfunction for K with eigencharacter r(θ) 7→ e−ikθ

and the eigenvalue of ∆ on φ is−(k/2)(k/2−1) then we get exactly the functions φf for f ∈ Sk(Γ).
However, there are lots of cusp forms for Γ that are eigenfunctions for K with an eigencharacter that
has nothing to do with its Laplacian eigenvalue, so these don’t arise from Sk(Γ). Such additional φ
arise from non-holomorphic Maass forms. An example of a non-cuspidal Maass form (although
Maass cusp forms also exist) is the Eisenstein series:

E

(
z,

1

2
+
it

2

)
=
∑

(c,d)=1
c,d∈Z

(Im z)1/2+it/2

|cz + d|1+it

Note that ∆E = 1+t2

4
E. Although we are focused on cusp forms, we take this opportunity to define

more general automorphic forms:

Definition 3.6. A Γ-automorphic form on G = SL2(R) is a smooth function φ : G→ C satisfying
(1), (2), and (3) of Definition 3.5, plus

(4′) φ is of “moderate growth” at the cusps of Γ: there is an A > 0 such that for each cusp s of Γ
and gs ∈ G such that gs(∞) = s,∣∣∣∣∣φ

(
gs

(
y1/2 xy−1/2

0 y−1/2

))∣∣∣∣∣� yA.

(4′′) As a function on Γ\G, φ is square-integrable.

Remark 3.7. First, Proposition 2.1 shows that φf is even bounded, hence of moderate growth. In
general, the cuspidality condition for all cusps implies the moderate growth condition at all cusps.
Morally, having a negative Fourier coefficient at a cusp s prevents us from being square-integrable
near that cusp, but see [8, Cor. 3.4.3] for a rigorous argument (which has the benefit of being more
generalizable).

Second, as we’ve phrased it, it’s not clear how to generalize to other reductive groups G the
statement itself of the moderate growth condition. We note (without proving, although it follows
from the Iwasawa decomposition) that it is equivalent to the following suggestive reformulation.
The group SL2(R), as a closed subspace of Mat2(R), inherits the sup norm ‖ · ‖; i.e. ‖

(
a b
c d

)
‖ =

max(|a|, |b|, |c|, |d|). Then φ as above is of moderate growth at each cusp if and only if there exists
an A′ > 0 such that φ(g)� ‖g‖A′ . See [4] for more details and the generalization to reductive G.

1To generalize beyond SL2(R), one needs to replace the eigenfunction condition for ∆ with one for the entire center
of the universal enveloping algebra acting naturally through differential operators on smooth functions; in the SL2-case,
this center is generated over R by ∆.
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4 More spaces of forms and functions
What about Sk(N,ψ)? Fix a Dirichlet character ψ : (Z/NZ)× → C×. We can consider ψ as a
unitary character on the idèles in the usual way, via the identification A×/Q×R× = Ẑ×.

Let G = GL2/Q, and for finite places v define Kv = GL2(Ov), a maximal compact subgroup of
GL2(Qv). Also, let Z denote the scheme-theoretic center of G (i.e. the diagonal scalar matrices).
For all v | N , we set

KN
v = {

(
a b
c d

)
∈ Kv | c ≡ 0 mod N}

By strong approximation for SL2 we can see that:

SL2(A) = SL2(Q) · SL2(R) ·
∏
v|N

SL2(Ov)
N ·

∏
v-N ·∞

SL2(Ov),

where SL2(Ov)
N consists of elements of SL2(Ov) which are upper triangular modulo N . Then

observing that the left side is the kernel of G(A) under the determinant map, the right side is the
kernel of the determinant map on

G(Q) ·GL+
2 (R) ·

∏
v|N

KN
v ·

∏
v-N ·∞

Kv

and both G(A) and the product above yield the same image (namely, all ideles) under the determi-
nant map. Hence,

G(A) = G(Q) ·GL+
2 (R) ·

∏
v|N

KN
v ·

∏
v-N ·∞

Kv.

Hence, any g ∈ G(A) may be written as g = γ · g∞ · κ0 with γ ∈ G(Q), g∞ ∈ GL+
2 (R), κ0 ∈∏

v|N K
N
v ·
∏

v-N ·∞Kv =: KN
0 .

We define a map Sk(N,ψ) → L2(G(Q)\G(A)) by setting φf (g) =
(
f |kg∞

)
(i)ψ(κ0). The

notation L2(G(Q)\G(A)) (used here and throughout) is misleading. The elements thereof are not
square-integrable on G(Q)\G(A); rather, they are required by definition to admit a unitary (idèlic)
central character (i.e. defined on Z(A) and trivial on Z(Q)) and to have their resulting absolute
value function on (Z(A) · G(Q))\G(A) be square-integrable (for the measure arising from the
Haar measure on the unimodular G(A)).

Similarly to the previous case, we have:

Proposition 4.1. For f ∈ Sk(N,ψ), we have the following properties:

• φf is well-defined 2 and an eigenfunction for the right regular action of Z(A) with unitary
central character ψ; i.e., φf (gz) = ψ(z)φf (g) for any z ∈ Z(A) and g ∈ G(A) (so |φf |
descends to a continuous function on Z(A)G(Q)\G(A)),

• φf belongs to L2(G(Q)\G(A)) (which makes sense by the previous condition) 3,

2This follows fromG(Q)∩
(

GL+
2 (R) ·

∏
v|N K

N
v ·
∏
v-N ·∞Kv

)
= Γ0(N) and the action of Γ0(N) on Sk(N,ψ).

3This follows from “Theorem F”’ in the lectures on reduction theory applied to GL2 and Proposition 2.1. In
particular, volume-finiteness of Z(A)G(Q)\G(A) follows from volume-finiteness of [GL2].
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• φf : G(A) → C is smooth (i.e., it is locally constant in the finite-adelic part for fixed
archimedean component and it is smooth in the archimedean component for fixed finite-adelic
part),

• φf is a “weight k” eigenfunction for the right regular action of K (i.e., φf (g · r(θ)) =
e−ikθφf (g));

• φf is cuspidal in the sense that
´
U(Q)\U(A)

φf (ug)du = 0 for all g ∈ G(A) and all unipotent
radicals U of Borel Q-subgroups of GL2 (this integral makes sense since U(Q)\U(A) =
Q\A is compact, and since we allow variation across all g it follows from the left G(Q)-
invariance of φf that it is enough to check this vanishing property for one U because the
collection of such U is a single G(Q)-conjugacy class);

• ∆ · φf |GL+
2 (R) = −k

2

(
k
2
− 1
)
φf |GL+

2 (R), where ∆ is the order-2 left-invariant differential
operator arising from the Casimir element of U(sl2(R)) ⊂ U(gl2(R));

• φf (g · κ0) = φf (g) · ψ(κ0) for any κ0 ∈ KN
0 .

Furthermore, any element φ ∈ L2(G(Q)\G(A)) which satisfies the above properties is of the form
φf for a uniquely-determined f ∈ Sk(N,ψ).

Again the key point is to verify holomorphicity; one applies the argument from Appendix A
mutatis mutandi.

Remark 4.2. To give a definition of cuspidality that is more intrinsic to L2(G(Q)\G(A)), it is
better to speak in terms of “almost every g” rather than consider each g in isolation (since it doesn’t
make sense to integrate an Lp-function along a measure-0 subset); there are subtleties in doing so,
discussed in the Appendix of [9].

Definition 4.3. A cuspidal automorphic form on G = GL2 is a smooth4 function φ : G(A)→ C
such that:

(1a) φ(γ · g) = φ(g) for all γ ∈ G(Q) and all g ∈ G;

(1b) There exists a unitary character ψ on Z(Q)\Z(A) = Q×\A× such that φ(gz) = φ(g) · ψ(z)
for all z ∈ Z(A) and g ∈ G(A);

(2a) φ is invariant under a compact open subgroup of G(Af );

(2b) φ is K∞-finite;

(3) φ is z-finite, where z is the center of the universal enveloping algebra of Lie(G∞) (it doesn’t
matter in this definition if one takes z over R or over C, but in practice one always takes it
over C for convenience beyond the setting of split reductive groups such as SL2);

(4) φ is cuspidal.
4This means that it is smooth at the archimedean place∞ and locally constant at the finite-adelic part.
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Remark 4.4. As in the classical setting, one can define the space of automorphic forms on G(A)
that are not necessarily cuspidal. As before, one must then separately insist on an adelic moderate
growth condition similar to that of Remark 3.7. We record this here briefly; see [4, §4] for more.
Also, see [5] for relevant sanity-checks about the adelic topology (for example one can use the
results therein to verify that the moderate growth condition doesn’t depend on the choice of norm
we make below).

Because G is not Zariski-closed in Mat2, we cannot simply use norms of entries of g ∈ G(A)
to define an adelic norm. Instead, if a, b, c, d are the entries of g, we can let

‖g‖ = supv
(
max ‖av‖v, ‖b‖v, ‖c‖v, ‖d‖v, ‖ad− bc‖−1

v

)
.

With this definition, we say φ : G(A)→ C is of moderate growth if there exists an A > 0 such that
|φ(g)| � ‖g‖A for all g ∈ G(A). This may look ad hoc; in general, the idea is to control the size
using a finite generating set of the coordinate ring of the algebraic group (the choice of which turns
out not to matter).

5 L-functions
Recall that in his proof of the analytic continuation and functional equation for the zeta function,
Riemann defines:

Z(2s) := π−sΓ(s)ζ(2s) =

ˆ ∞
0

θ(s)− 1

2
ts d×t

where θ(s) is the theta function θ(s) :=
∑∞

n=−∞ e
−πn2s. The Poisson summation formula implies

that θ(s−1) = s1/2θ(s), and this in turn implies the functional equation Z(s) = Z(1 − s), or in
other words:

π−s/2Γ

(
s

2

)
ζ(s) = π

1−s
2 Γ

(
1− s

2

)
ζ(1− s)

as meromorphic functions with poles at 0 and 1. Also, we have the Euler product formula:

ζ(s) =
∏
p

(
1− p−s

)−1

for s with Re(s) > 1.
Tate’s thesis provides an adelic interpretation of these facts. He shows that:

Z(s) =

ˆ
A×

f(a)|a|s d×a (2)

where | · | is the idelic norm and f(a) =
∏

p fp(a) ·
(
e−πt

2
)
∞

, with fp the indicator function of Zp
on Qp. Then, we can manipulate (2) when Re(s) > 1 as:

Z(s) =

∏
p

ˆ
Zp

|a|s d×a

 ˆ ∞
−∞

e−πt
2

ts d×t =

∏
p

(1− p−s)−1

 πs/2Γ(s/2)

Then, we get the functional equation for Z(s) by adelic Poisson summation.
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We can also do this with a Dirichlet character χ : (Z/NZ)× → C×. In the classical version, we
define:

Lfin(s, χ) =
∞∑
n=1

χ(n)

ns

Note that this definition only “sees” primes p - N , i.e. that χ(m) = 0 whenever (m,N) 6= 1.
For the adelic version of this, we pull back χ from (Z/NZ)× via the quotient map Q×\A× '

R× × Ẑ× → (Ẑ/N Ẑ)× to an idèle character ψ : Q×/A× → C×. Then we define the adelic
L-function:

L(s, ψ) =

ˆ
A×

f(a)ψ(a)|a|s d×a

L(s, ψ) will be the product of Lfin(s, χ) with local factors at p | N and∞. Here, we have to choose
f more carefully than before, according to the conductor of χ. Then, applying adelic Poisson
summation, we get a functional equation for this L-function. We can get a functional equation
for Lfin(s, χ) from this by using local functional equations for the extra local factors and dividing
through by these factors.

We want to repeat this story for modular forms. In the classical version, we can define L-
functions of modular forms via the Fourier expansion. Let f =

∑
n≥1 anq

n ∈ Snew
k (N,χ). We

assume that f is a normalized eigenform, meaning that it is a simultaneous eigenfunction for the
Hecke operators and that a1 = 1 (in which case the eigenvalue for the Hecke operator Tp is ap). The
subset Snew

k (N,χ) is the orthogonal complement (with respect to the Petersson inner product) to
the space of “oldforms” defined by f(z) = g(Mz) where g is a cusp form with level dividing N/M
with M > 1.

Then we define:

Lfin(s, f) :=
∑
n≥1

an
ns

=
∏
p-N

(
1− app−s + χ(p)pk−1+2s

)∏
p|N

(
1− app−s

)−1

Here, the second equality holds for Re(s) sufficiently large.
A slightly better version is:

L(s, f) :=

ˆ ∞
0

f(iy)ys d×y =

ˆ ∞
0

∑
n≥1

ane
−2πny

 ys−1 dy = (2π)−sΓ(s) · Lfin(s, f)

Observe that φf
((

y 0
0 1

)
∞

)
= f(iy) · yk/2. Then we have:

L(s+ k/2, f) =

ˆ
Q×\A×

φf

((
y 0
0 1

)
∞

)
ψ−1(y0)|y|s d×y (3)

where y = yQ · y∞ · y0 with yQ ∈ Q×, y∞ ∈ R>0, y0 ∈ Ẑ×.
Now, this gives an L-function for f which is written in terms of adelic information, but it is

unsatisfying in a number of ways: it does not clearly generalize to settings other than GL2(Q), and
it does not obviously lead to a functional equation or product formula.

The idea is that we can find a “canonical function” which depends on a representation associated
to φf (e.g. a matrix coefficient) and take an appropriate adelic version of its “Mellin transform.”
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Depending on how we phrase this, we might need to also include a well-chosen Bruhat–Schwartz
function to ensure convergence (e.g. f(a) in (2), which is compactly-supported at the finite places
and Schwartz at the infinite place).5

Recall that A is its own Pontryagin dual. This comes from compatible versions of self-duality
at each place: at the real place, this is the familiar statement that R ' R̂, normalized such that
ξ ←→ (χξ : x 7→ e−2πiξx). At each place p < ∞, we have an isomorphism Qp ' Q̂p having the
normalization ξ ←→ (χξ : x 7→ e2πiξx).6

Note these isomorphisms respect the natural actions of Q×v (including v = ∞) on each side
(therefore, we have the same for the global self-duality statement). Moreover, under the induced
isomorphism A ' Â (denoted a←→ χa), we see that χa vanishes on Q if and only if a ∈ Q ⊂ A.

In particular, the Pontryagin dual
(̂
A/Q

)
is isomorphic to Q, and this respects the multiplication

action of Q× on each side. We call λ1 ∈
(̂
A/Q

)
the character corresponding to 1 ∈ Q. Concretely,

λ1(av) = e−2πia∞
∏

v<∞ e
2πiav . Alternatively, one can use strong approximation for A to (make

sense of) and write λ1(av) = e−2πia∞
∏

v<∞ 1Ov(av).
We set Wφ(g) := φ1(g) =

´
A
φ
(
( 1 x

0 1 ) g
)
λ1(x) dx. Then Fourier inversion gives us a new

version of (3) to get a canonical definition of the L-function. In particular, we have

L(s+ k/2, f) =

ˆ
Q×\A×

∑
ξ∈Q×

Wφ

((
yξ 0
0 1

)
∞

)
ψ−1(y0)|y|s d×y (4)

=

ˆ
A×

Wφ

((
y 0
0 1

)
∞

)
ψ−1(y0)|y|s d×y. (5)

The upshot, as we will see after the talk on Kirillov models, is that the Whittaker functional Wφ

arises locally. Moreover, we can characterize it uniquely using the local representation at each place.
This leads to a canonical definition of the completed L-function with a built-in product formula.
We finish by listing some tasks that still remain (some of these will be addressed in “Adelization of
Modular Forms, Part II”; others will be major themes of the seminar at large):

1. Use Whittaker models to define the global L-function purely from the perspective of repre-
sentation theory, and deduce its product formula and functional equation (depending on a
version of the |kwN operator), plus functional equations for the local factors.

2. Explain the action of the Hecke operators Tp in terms of corresponding Hecke operators
acting on automorphic forms.

3. Identify the space Snew
k (N,ψ) of newforms inside L2

cusp(G(Q)\G(A), ψ) using an adelic
version of the Petersson inner product.

4. Understand how the representation πf generated by φf behaves (especially locally):

(i) Show that πf is a completed tensor product of local representations at each place.

(ii) Show that πf is irreducible if f is a cuspidal eigenform.

5This turns out not to be necessary for (4).
6This is well-defined as a character on Q and continuous for the p-adic topology, so it extends to Qp.
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(iii) Prove representation-theoretic multiplicity-one statements and the Converse Theorem.
For example, we would like to deduce the following fact from representation-theoretic
knowledge: “if f1, f2 are normalized Hecke eigenforms in the new space for which the
eigenvalues ap are equal for all but finitely many p then f1 = f2.”

A Proof of Proposition 3.3
Recall that φ : Γ\SL2(R) → C is a smooth function with SO2(R)-weight k ∈ Z such that
∆φ = −(k/2)(k/2−1)φ. Our aim is to show that f(x+iy) := φ

(
y1/2 xy−1/2

y−1/2

)
y−k/2 is holomorphic

if φ is cuspidal.
The key point is going to be that the K = SO2(R)-weight k and the ∆ eigenvalue −k

2
(k

2
− 1)

of φ are compatible. This allows us to show that φ is the lowest-weight vector in an irreducible
(g, K)-module (a copy of the so-called D+

k ). In particular, the lowering operator in g kills φ; a
straightforward calculation shows that Lφ vanishes exactly when ∂f

∂z
does; see Lemma A.3. Our

proof will be phrased, however, in the language of differential operators.
Lemma A.1 encodes the compatibility of the K-weight and the ∆-eigenvalue of φ in terms of

the action of the raising and lowering operators. Lemma A.3 shows the connection between φ being
annihilated by the lowering operator and f being holomorphic. The key step is Lemma A.2, whose
representation-theoretic interpretation is that the (g, K)-module generated by φ is unitary, allowing
us to deduce that the lowering operator indeed kills φ. For more representation-theoretic context,
including the theory of (g, K)-modules and the definition of D+

k , see Ch. 2 of [3].7

We have the usual basis for g

e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)

satisfying the familiar commutation relations:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Similarly, a basis for gC is given by the elements

R :=
1

2

(
1 i
i −1

)
, L :=

1

2

(
1 −i
−i −1

)
, H = −i

(
0 1
−1 0

)
.

Note that R and L are complex conjugates, we have “equivalent” commutation relations:

[H,R] = 2R, [H,L] = −2L, [R,L] = H,

and H = ir′(0) for the parameterization r(θ) = ( cos θ − sin θ
sin θ cos θ ) that we have been using for K =

SO2(R) ⊂ SL2(R).

7Recall that for us, φ having “weight k” means that φ(gr(θ)) = φ(g)e−ikθ, where we use the usual “counterclock-
wise” parametrization r(θ) of SO2(R). Both of these are the opposite conventions to those in [3], where the clockwise
parametrization and the opposite definition of weights are used. The net effect is that an eigenfunction φ has the same
weight k in our setting as it does in [3].
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Using the commutation relations, it is a classical exercise to check that the Killing form sl2 in
characteristic 0 is (X, Y ) 7→ 4 · tr(XY ) and from this that the Casimir operator on g = sl2(R) and
gC is given by

1

8
(H2 + 2RL+ 2LR) = C =

1

8
(h2 + 2ef + 2fe).

Returning to the action on C∞(Γ\SL2(R)), one can check (via differentiation)8 that the sl2-triple
{R,L,H} giving a basis of gC acts via the following operators:

R := e−2iθ

(
iy
∂

∂x
+ y

∂

∂y
− 1

2i

∂

∂θ

)

L := e2iθ

(
−iy ∂

∂x
+ y

∂

∂y
+

1

2i

∂

∂θ

)
H := i

∂

∂θ
.

One can then compute by hand 9 that

−y2

(
∂2

∂x2
+

∂2

∂y2

)
− y ∂2

∂x ∂θ
= −1

4
(H2 + 2RL+ 2LR)

= −2C

= −RL+
1

4

∂2

∂θ2
− 1

2i

∂

∂θ
.

The effect of the left side on C∞(SL2(R)/K) makes the ∂θ-term disappear, yielding the classical
formula y2(∂2

x + ∂2
y) for the Laplacian associated to the left-invariant hyperbolic Riemannian metric

ds2 = y−2(dx⊗2 + dy⊗2)

on SL2(R)/K = H.
Before proceeding with the proof of Proposition 3.3, we make one more observation: with

these operators in place, the weight-k eigenfunction relation R(r(θ)) : φ 7→ e−ikθφ for φ under
the SO2(R)-action implies at the level of the action of sl2(R) via differential operators that
r′(0) : φ 7→ −ikφ. Since H = ir′(0) in sl2(C), we conclude that φ is an eigenfunction for
H with eigenvalue k; i.e. Hφ = kφ.

Lemma A.1. Let φ : Γ\SL2(R)→ C be a smooth function satisfying the first two conditions of
Proposition 3.3. That is, φ is an eigenfunction for SO2(R) with weight k and an eigenfunction for
∆ with eigenvalue −(k/2)(k/2− 1). Then RLφ = 0.

Proof. Using the Iwasawa (i.e., NAK) decomposition, the function

φ̃(x, y, θ) := eikθφ(x, y, θ)

8see [3, Prop. 2.2.5] for this computation, keeping in mind that the opposite parametrization of SO2(R) is used there
9again, see [3, Prop. 2.2.5]
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is independent of θ due to φ being an SO2(R)-eigenfunction of weight k. Therefore,(
1

4

∂2

∂θ2
− 1

2i

∂

∂θ

)
φ =

(
1

4

∂2

∂θ2
− 1

2i

∂

∂θ

)
(e−ikθφ̃) = −k

2

4
φ+

k

2
φ = −(k/2)(k/2− 1)φ,

yet
RL = (1/4)∂2

θ − (1/2i)∂θ −∆,

so the ∆-eigenfunction hypothesis on φ implies that (RL)(φ) = 0 as desired.

Lemma A.2. Let φ : Γ\SL2(R)→ C be a smooth, square-integrable eigenfunction for SO2(R) of
weight k such that RLφ = 0. If φ is cuspidal then Lφ = 0.

Granting this lemma for a moment, we connect the lowering operator to holomorphicity of our
candidate modular form f :

Lemma A.3. Let φ : Γ\SL2(R) → C be a smooth eigenfunction of SO2(R)-weight k. Define
f(x+ iy) := φ

(
y1/2 xy−1/2

y−1/2

)
y−k/2. Then

2
∂f

∂z
= iy−k/2−1ei(k−2)θLφ.

In particular, Lφ = 0 if and only if f is holomorphic.

Proof. We can rewrite f = y−k/2eikθφ(x, y, θ) since φ is a weight-k eigenfunction for K =
SO2(R). Then

2
∂

∂z
f =

(
∂

∂x
+ i

∂

∂y

)
f = y−k/2eikθ

(
∂φ

∂x
+ i

∂φ

∂y

)
− ik

2
y−k/2−1eikθφ

= iy−k/2−1eikθ
(
−iy∂φ

∂x
+ y

∂φ

∂y

)
− ik

2y
f

= iy−k/2−1eikθ
(
− 1

2i

∂φ

∂θ

)
− ik

2y
f + iy−k/2−1ei(k−2)θLφ,

where the final equality uses the description of L as a first-order differential operator. By “differen-
tiating” the condition that φ is a weight-k eigenfunction for K, we have ∂φ/∂θ = −ikφ. Plugging
this into the first term on the right side at the end, we obtain that

2
∂

∂z
f = iy−k/2−1eikθ

(
k

2
φ

)
− ik

2y
f + iy−k/2−1ei(k−2)θLφ

=
ik

2y
f − ik

2y
f + iy−k/2−1ei(k−2)θLφ

= iy−k/2−1ei(k−2)θLφ

It remains to prove Lemma A.2:
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Proof. Using the NAK decomposition for SL2(R) and the identification of SL2(R)/K with H,
the Haar measure on SL2(R) in such “(x, y, θ)” coordinates is (y−2dx dy)dθ. We will show that´

Γ\SL2(R)
|Lφ|2 dxdy

y2 dθ vanishes.
The proof strategy is to show that R and L roughly behave as adjoints with respect to the inner

product for certain K-eigenfunctions in L2
cusp(Γ\SL2(R)) (depending on the K-weight of those

functions). More specifically, we will find that our integrand is exact, and more specifically is equal
to dω for a 2-form ω on Γ\SL2(R) such that ω(x, y, θ) decays rapidly as (x, y) approaches any
cusp of Γ (ultimately due to cuspidality of φ). A careful limiting application of Stokes’ Theorem to
compact “cutoffs” of the K-bundle Γ′\SL2(R) → Γ′\H near the cusps will then give the result,
where Γ′ is a suitable finite-index subgroup of Γ.

By the Leibniz rule for R, together with the fact that R and L are complex conjugates, we have

|Lφ|2 = (Lφ)
(
Lφ
)

= R
(
Lφ(φ)

)
− (RLφ)

(
φ
)

= R
(
Lφ(φ)

)
.

We claim this function multiplied against the oriented volume form (y−2dx dy)dθ is exact. Indeed,
consider the 2-form

ω = −e−2iθ(Lφ)φ

(
dzdθ

y
+ i

dxdy

2y2

)
.

Note that

∂φ

∂θ
= ikφ and

∂

∂θ
(Lφ) = −iHLφ = −i(LH − 2L)φ = −i(k − 2)(Lφ)

In particular, this implies that
∂

∂θ

(
(Lφ)φ

)
= 2i(Lφ)φ,

so
∂

∂θ

(
e−2iθ(Lφ)φ

)
= 0.

Hence, we have

dω = d

(
−e−2iθ(Lφ)φ

(
y−1 dxdθ − iy−1 dydθ +

i

2
y−2 dxdy

))
= e−2iθ ∂

∂y

(
y−1(Lφ)φ

)
dxdydθ + ie−2iθy−1 ∂

∂x

(
L(φ)φ

)
dxdydθ

− i

2y2

∂

∂θ

(
e−2iθ(Lφ)φ

)
dxdydθ.

The final term being subtracted vanishes, so

dω =

(
e−2iθ(−y−2)(Lφ)φ+ e−2iθy−1 ∂

∂y

(
(Lφ)φ

)
+ ie−2iθy−1 ∂

∂x

(
L(φ)φ

))
dxdydθ

=
(
−e−2iθ(Lφ)φ

) dxdydθ

y2
+

(
e−2iθy

∂

∂y

(
(Lφ)φ

)
+ e−2iθiy

∂

∂x

(
(Lφ)φ

)) dxdydθ

y2

=
(
−e−2iθ(Lφ)φ

) dxdydθ

y2
+

(
R
(

(Lφ)φ
)

+ e−2iθ 1

2i

∂

∂θ

(
(Lφ)φ

)) dxdydθ

y2
,
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the final equality by the determination of R as a first-order differential operator. Rearranging the
order of summation, we get

dω =

(
R
(

(Lφ)φ
)

+

(
−e−2iθ + e−2iθ 1

2i

∂

∂θ

)(
(Lφ)φ

)) dxdydθ

y2

=

(
R
(

(Lφ)φ
)

+
(
−e−2iθ + e−2iθ

)(
(Lφ)φ

)) dxdydθ

y2

= R
(
Lφ(φ)

) dxdydθ
y2

(the second equality due to the identity ∂θ((Lφ)φ) = 2i(Lφ)φ.
We conclude that ˆ

Γ\SL2(R)

|Lφ|2 dxdy
y2

dθ =

ˆ
Γ\SL2(R)

dω

as oriented integrals, provided that the right side is at least finite. In particular, it is harmless
to replace dω with the corresponding density |dω| (so all convergence issues involve manifestly
non-negative quantities).

The NAK-decomposition realizes SL2(R) as an S1-bundle over H. As long as Γ acts freely on
H, the coset space Γ\SL2(R) is also an S1-bundle over Γ\H. For convenience, we will denote the
structure map in that case as π : Γ\SL2(R)→ Y (Γ). Suppose Γ′ ⊂ Γ is a finite-index subgroup.
Then Lφ = 0 if and only if Lφ′ = 0, where φ′ is the pullback of φ to the finite cover Γ′\SL2(R).10

Since Γ is arithmetic, it has a finite-index subgroup Γ′ ⊂ SL2(Z) such that Γ′ ∩K = {1}. Then Γ′

acts freely on H and we may use it in place of Γ for the remainder of the argument.
Let M be the 2-manifold with boundary obtained from X(Γ) by removing an (open) ε-

neighborhood of each cusp.11 Then E := π−1(M) ⊂ Γ\SL2(R) is a compact oriented Riemannian
3-manifold with boundary (∂E is a disjoint union of S1-bundles over circles of radius ε, indexed by
the cusps of Γ). Then

ˆ
Γ\SL2(R)

|Lφ|2 dxdy
y2

dθ =

ˆ
Γ\SL2(R)

|dω|

=

ˆ
E
|dω|+

ˆ
(Γ\SL2(R)) − E

|dω|

≤
ˆ
∂E
|ω|+

ˆ
(Γ\SL2(R)) − E

|dω|,

the final inequality by Stokes’ Theorem for the oriented compact manifold with boundary E . We
claim that both of these final integrals decay to 0 as ε → 0. Since φ is automorphic and L is
SL2(R)-invariant, the formula defining ω shows that the decay (in y) of the first integral is reduced
to the decay of (Lφ)φ near each cusp. Likewise, our computation of dω reduces the decay of the
second integral to the decay (in y) of R((Lφ)(φ)) near each cusp. We explain how to deduce these
decay properties from results proved in [8].

10The L operator on C∞(Γ′\SL2(R)) takes the same form as the L operator on C∞(Γ′\SL2(R)).
11This corresponds to cutting away the “large-y” portion of a Siegel domain in Y (Γ) for each cusp.
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In [8, Cor. 3.6.1], it is shown that for each smooth compactly-supported function α ∈ C∞c (SL2(R)),
there is a constant c0(α) > 0 such that

|(ψ ∗ α)(g)| ≤ c0(α)‖ψ‖2 (6)

for any ψ ∈ L2
cusp(Γ\SL2(R)).12 But the proof is robust: we will show via the same method

(plus induction) that for each n ≥ 0, there is a constant c−n(α) > 0 such that for any ψ ∈
L2

cusp(Γ\SL2(R)) and cusp s,

|(ψ ∗ α)(gsg)| ≤ c−n(α)y−n‖ψ‖2, (7)

where gs ∈ SL2(Z) such that gs(∞) = s and g ∈ SL2(R) such that g(i) = x + iy. Note that
Equation (6) is the n = 0 case. Suppose now that we have Equation (7) for some n ≥ 0.

In view of the identity LX(ψ ∗ α) = ψ ∗ LX(α) for any left-invariant differential operator LX ,
one can apply Equation (7) to the functions LX(α) ∈ C∞c (SL2(R)) to conclude that

|LX(ψ ∗ α)(gsg)| ≤ c−n(LX(α))y−n‖ψ‖2.

Note that left-translation by U∞(R) = g−1
s Us(R)gs preserves the quantity y−n. Thus, by integration

over Γs\Us(R) (for s a cusp), we get a similar estimate for the “constant term” at s:

|LX(ψ ∗ α)Bs(gsg)| ≤ vol(Γs\Us(R)) · c−n(LX(α))y−n‖ψ‖2,

where FBs(g) :=
´

Γs\Us(R)
F (ug) du.

On the other hand, note that (F ∗ α)Bs = FBs ∗ α. Hence, cuspidality of ψ (i.e. vanishing of
ψBs for each cusp s) implies cuspidality of ψ ∗ α. Then [8, Prop. 3.5.4] implies that

|(ψ ∗ α)(gsg)| ≤ cy−1

 3∑
i=1

|LXi
(ψ ∗ α)Bs(gsg)|

 ,

where {X1, X2, X3} is a basis of g and c > 0 is a constant depending on the choice of gs and
{X1, X2, X3}.13 For convenience, fix {X1, X2, X3} to be {e, f, h}. Combining these two inequali-
ties, we see that there is a constant c−n−1(α, gs) > 0 depending on α and gs such that

|(ψ ∗ α)(gsg)| ≤ c−n−1(α, gs)y
−n−1‖ψ‖2

for any ψ ∈ L2
cusp(Γ\SL2(R)) and cusp s. But there are only finitely many cusps s and at most two

choices of gs ∈ SL2(Z) for each s, so we may set c−n−1(α) := maxgs c−n−1(α, gs) > 0. Then

|(ψ ∗ α)(gsg)| ≤ c−n−1(α)y−n−1‖ψ‖2

for any ψ ∈ L2
cusp(Γ\SL2(R)) and cusp s, which is Equation (7) in the n+ 1 case. Thus, we have

established Equation (7) for all n ≥ 0.
By [8, Prop. 3.3.5], there is an α0 ∈ C∞c (SL2(R)) such that φ = φ ∗ α0. Recalling that the

operators L and R are SL2(R)-invariant, we apply (7) with ψ = φ and α = α0 (or α equal to one
of Lα0, RLα0, Rα0, as needed) to see that |(Lφ)φ| and |R((Lφ)φ)| decay faster than any power of
y−n near the cusp s. Therefore, both of the integrals

´
∂E |ω| and

´
(Γ\SL2(R)) − E |dω| decay to 0 as

ε→ 0, proving that Lφ = 0.
12Recall that we assumed the cuspidal φ belongs to L2(Γ\SL2(R)), since this is the situation of Proposition 3.3.
13For example, if s =∞, gs = 1, and we use the basis {e, f, h}, then c = 1 suffices.
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