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1 Introduction

1.1 References
Our main sources are [Go, 3.1] and [Ga] (cf. the seminar webpage):
* [Ga] Decomposition and estimates for cuspforms, notes by Garrett.
* [Go] Notes on Jacquet-Langlands’ theory, IAS lecture notes by Godement.

1.2 Notation
We start by recalling some notation and definitions. Let k be a global field, G a connected reductive
group over k, Z a maximal central torus of G, and ω : Z(k)\Z(A)→ C× a unitary character (i.e.,
valued in S1). Consider measurable functions ϕ : G(k)\G(A) → C such that for all z ∈ Z(A)
we have ϕ((·)z) = ω(z)ϕ almost everywhere, so |ϕ| is well-defined on G(k)\G(A)/Z(A) up to
change on a measure-0 set.

It makes sense to ask if ||ϕ||22 :=
´
G(k)\G(A)/Z(A)

|ϕ|2 is finite, in which case its value is insensitive
to changing ϕ on a measure-0 set (upon fixing the unimodular Haar measure on G(A) and a Haar
measure of Z(A) underlying the formation of these integrals; Tamagawa measure is a canonical
choice). Thus, it makes sense to define L2(G(k)\G(A), ω) to be the space of such ϕ up to change
on a measure-0 set such that ||ϕ||2 <∞. Note that there is a right regular representation of G(A)
on this space.

Remark 1.1. Since Z is smooth and geometrically connected, the continuous map G(A)/Z(A) ↪→
(G/Z)(A) is a homeomorphism onto an open image, so by discreteness of (G/Z)(k) in (G/Z)(A)
we see that G(k)/Z(k) is a discrete subgroup of G(A)/Z(A). The integral considered above is
really viewed as one on (G(k)/Z(k))\(G(A)/Z(A)), using a choice of Haar measure on (G/Z)(A)
or alternatively of such choices on G(A) and Z(A). In practice what matters for us is the finiteness
of certain integrals; when exact values matter later in life then one has to be more specific about the
choice of measures (such as to use the Tamagawa measure).

We can similarly define Lp(G(k)\G(A), ω) for any 1 ≤ p <∞, and the finiteness of the volume
of G(k)\G(A)/Z(A) (due to reduction theory) implies Lp(G(k)\G(A), ω) ⊂ L1(G(k)\G(A), ω)
for all 1 < p < ∞ (since 1 ∈ Lq(G(k)\G(A)/Z(A)), where 1/p + 1/q = 1). We always work
with the completion of the Haar measure, so we can disregard any measure-0 set when checking if a
function is measureable.

For any ϕ1, ϕ2 in this space, the product ϕ1ϕ2 is well-defined onG(k)\G(A)/Z(A) by unitarity
of ω and the integral

〈ϕ1, ϕ2〉 =

ˆ
G(k)\G(A)/Z(A)

ϕ1ϕ2
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converges. This integral is visibly invariant under the right regular representation of G(A) and
defines a structure of Hilbert space on L2(G(k)\G(A), ω), so this is a unitary representation of
G(A). In Section 2 we will define a closed G(A)-invariant subspace L2

cusp ⊂ L2(G(k)\G(A), ω)
consisting, at least informally, of functions whose integrals vanish along unipotent radicals of proper
parabolic subgroups.

1.3 Decomposition of cusp forms
The main result of this lecture and its sequel is:

Theorem 1.2. L2
cusp =

⊕̂
iVi with Vi topologically irreducible closed subrepresentations (i.e., an

orthogonal Hilbert direct sum), and for any i the set of j with Vj ' Vi is finite.

Remark 1.3. Instead of working with the adelic double coset space, we could fix an arithmetic
lattice Γ ⊂ G(R) and consider the space

L2
cusp(Γ\G(R), ω)

as defined in Lecture 5 with the action of the real points G(R). The same techniques can be
used to show that this decomposes as a Hilbert direct sum of topologically irreducible closed
subrepresentations of G(R), each appearing with finite multiplicity.

One might guess that this is implied by the corresponding adelic result, but this is not quite true.
For example, for k = Q, G = SL2, the statement about real points for a given level Γ includes the
following two statements (at least, after invoking some representation theory of SL2(R)):

• The space of cuspidal modular forms of any fixed weight and level Γ is finite-dimensional.

• The 2-dimensional Riemannian orbifold Γ\H admits finitely many cuspidal eigenfunctions
for the Laplacian of any fixed eigenvalue.

The corresponding adelic result does not imply either of these statements without bringing in some
more refined information concerning “admissibility” of the adelic representation.

Given a topologically irreducible closed subrepresentation of a unitary (Hilbert) representation
of G(A), using the inner product it always splits off as a direct summand. Thus, the only difficulty
in proving Theorem 1.2 is that it is not a priori clear that there are any topologically irreducible
closed subrepresentations of a given Hilbert space representation – the spaces involved are infinite-
dimensional, so there is no formal reason that a descending chain of closed subrepresentations needs
to stabilize1.

We will prove Theorem 1.2 by showing that certain natural integral operators on L2
cusp are

compact, then using the spectral theorem for compact self-adjoint operators to find finite dimensional
eigenspaces, which can be exploited to produce topologically irreducible closed subrepresentations.
The integral operators we define on L2

cusp will extend naturally to all of L2, but working in L2
cusp

will be necessary to prove the key estimates that allow us to show they are compact.
In this lecture, we will defineL2

cusp and the integral operators, then deduce Theorem 1.2 assuming
compactness of these operators. We will also prove the analogous compactness statement in the

1Think of the shift operator on `2(N), f 7→ (n 7→ f(n + 1)).
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simplest case of SL2(Z)\SL2(R), before treating the general (adelic) case in the next lecture. Thus,
whereas this lecture can be mostly understood independently of the previous lectures, in the next
lecture we will need the full strength of the reduction theory discussed in previous lectures.

2 Cusp forms
We now define the Hilbert space of cusp forms L2

cusp(G(k)\G(A), ω) ⊆ L2(G(k)\G(A), ω) (to
then be denoted L2

cusp for convenience). We consider the unipotent radicals U of parabolic k-
subgroups P ⊆ G. One could define L2

cusp as the set of all ϕ ∈ L2(G(k)\G(A), ω) such that for
each such U and for almost all g,

ˆ
U(k)\U(A)

ϕ(ug) du = 0. (1)

However, to avoid a subtlety later on in applying Fubini’s theorem (cf. Remark 2.4 below), we will
instead adopt a distributional definition. Before making this definition, we introduce some notation:
for any affine k-group scheme H of finite type we define

H∞ := H(
∏
v|∞

kv), Hfin := H(Af)

(so in the function field case we have H∞ = 1 and Hfin = H(A)).

Definition 2.1. For ϕ ∈ L2(G(k)\G(A), ω), we say that ϕ is cuspidal at P if for all

f ∈ C∞c (U(A)\G(A)) := C∞c (U∞\G∞)⊗ C∞c (Ufin\Gfin)

(with C∞c (Ufin\Gfin) the space of compactly supported locally constant functions Ufin\Gfin → C)
the “constant term”

(fϕ)P :=

ˆ
U(k)\G(A)

fϕ (2)

vanishes. (Note that the measureable fϕ is integrable on U(k)\G(A) because f is continuous and
compactly supported on U(k)\G(A) and fϕ inherits local integrability from the integrability of |ϕ|
on G(k)\G(A)/Z(A) due to the discreteness of G(k) in G(A) and the map G(A)→ G(A)/Z(A)
being a topological Z(A)-fibration.)

When this holds for all P , we say ϕ is a cusp form.

Remark 2.2. Using the action of G(k) on G(A) by conjugation and the unimodularity of G(A), it
follows that for any γ ∈ G(k) we have (fϕ)P = (fϕ)γPγ−1 . Thus, to check cuspidality it suffices
to consider one P from each G(k)-conjugacy class of parabolic k-subgroups; by the structure
theory of connected reductive groups over fields, if P0 is a minimal parabolic k-subgroup then the
set of parabolic k-subgroups of G containing P0 is finite and meets each G(k)-conjugacy class of
parabolic k-subgroups in a single member, called its “standard” representative relative to P0.

For each f ∈ C∞c (N(A)\G(A)), the integral condition (2) defines a closed subspace in
L2(G(k)\G(A), ω), and the set of these conditions for all f is invariant under the G(A)-action.
Thus, we obtain:
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Lemma 2.3. L2
cusp(G(k)\G(A), ω) ⊆ L2(G(k)\G(A), ω) is a closed G(A)-stable subspace.

Remark 2.4. By the Fubini theorem, which can be shown to apply due to volume-finiteness of
G(k)\G(A)/Z(A), the integral (2) is equal to:

ˆ
U(A)\G(A)

ˆ
U(k)\U(A)

f(ug)ϕ(ug) du dg =

ˆ
U(A)\G(A)

f(g)

ˆ
U(k)\U(A)

ϕ(ug) du dg

where we have used that f is left-invariant under U(A). Thus, (1) for almost all g implies this
integral is zero, and so the definition of cuspidality in terms of the integrals (1) implies cuspidality
in the distributional sense we have adopted in Definition 2.1.

3 The integral action
Consider the algebra C∞c (G(A)) with convolution product

(f1 ? f2)(g) =

ˆ
G(A)

f1(g′)f2(g′
−1
g)dg′.

This algebra acts on L2(G(k)\G(A), ω) via integral operators:

(f · ϕ)(y) =

ˆ
G(A)

f(x)ϕ(yx)dx.

(It is easy to check via Fubini’s Theorem that f ·ϕ is measureable and belongs toL2(G(k)\G(A), ω)).
To explain why the definition of f · ϕ is appropriate, observe that if we let ρ denote the right regular
representation of G(A) on the unitary Hilbert representation L2(G(k)\G(A), ω) then

f · ϕ =

ˆ
G(A)

f(g)ρ(g)(ϕ)dg

as an integral valued in the Hilbert space L2(G(k)\G(A), ω); i.e., this is an instance of the standard
procedure (called a Gelfand-Pettis integral) by which C∞c (G(A)) acts on any unitary Hilbert
representation (V, ρ) of G(A) (namely, π(f)(v) =

´
f(g)ρ(g)(v)dg).

The operator Tf : ϕ 7→ f · ϕ is compatible with the G(A)-action on V and on C∞c (G(A)) via
(g.f)(x) = f(xg−1):

(f · ρ(g0)(v)) =

ˆ
G(A)

f(g)ρ(g)(ρ(g0)(v))dg =

ˆ
G(A)

f(g)ρ(gg0)(v)dg

=

ˆ
G(A)

f(gg−1
0 )ρ(g)(v)dg

= (g0.f) · v.

Likewise, ρ(g0)(f · v) = (`g0 .f) · v for the left regular representation of G(A) on C∞c (G(A))
defined by (`g.f)(x) = f(g−1x). Observe as well that the operator Tf is bounded:

||Tfv||2 ≤
ˆ
|f(g)f(g′)||〈gv, g′v〉|dgdg′ ≤

ˆ
|f(g)f(g′)|||gv||||g′v||dgdg′ = ||f ||21||v||2,

4



so ||Tf || ≤ ||f ||1.
Although for our purposes we will not need anything more than the individual operators, we

verify that this defines an algebra action:

(f1 · (f2 · v)) =

ˆ
f1(g)ρ(g)(f2 · v)dg

=

ˆ
f1(g)((`g.f2) · v)dg

=

ˆ
f1(g)

ˆ
(`g.f2)(g′)ρ(g′)(v)dg′dg

=

ˆ
(

ˆ
f1(g)(`g.f2(g′))dg)ρ(g′)(v)dg′

=

ˆ
(f1 ? f2)(g′)ρ(g′)(v)dg

= (f1 ? f2) · v.

Moreover, the operator Tf has output that is continuous since unimodularity allows us to move
the input variable inside of f in the integral:

(Tf (ϕ))(y) =

ˆ
G(A)

f(y−1g)ϕ(g)dg

(so the uniform continuity of f on its compact support and the locally-L1 property of ϕ do the job).
In fact, writing f as a finite sum of elementary tensors in C∞c (G(A)) = C∞c (G∞) ⊗ C∞c (Gfin)
shows that Tf (ϕ) is right-invariant by a compact open subgroup of Gfin and smooth in G∞ (with
fixed non-archimedean part); the theorem on differentiation through the integral implies that for
smooth vector fields X on G∞ we have X(Tf ) = TXf .

Lemma 3.1. The action of C∞c (G(A)) clearly preserves any closed G-stable subspace. Further-
more, if two closed G-stable subspaces are isomorphic as unitary representations of G, then any
such isomorphism respects the induced actions of C∞c (G(A)).

Proof. From the definition, f · ϕ can be approximated by finite sums of the form
∑
ci(ρ(gi)(ϕ))

for some ci ∈ C and gi ∈ G(A), and thus is contained in any G-invariant subspace containing ϕ.
Passage to limits preserves a closed subspace, so this gives the first claim. The second claim is
obvious since our description of the effect of C∞c (G(A)) in terms of a Hilbert-valued integral only
relied on the underlying unitary G(A)-representation space.

4 Decomposition and compact operators
In this section we will show that Theorem 1.2 follows from:

Theorem 4.1. For f ∈ C∞c (G(A)), the bounded operator Tf : ϕ 7→ f · ϕ on L2(G(k)\G(A), ω)
restricts to a compact operator on the closed subspace L2

cusp(G(k)\G(A), ω).

Theorem 4.1 will be proven in the next lecture; an analog for SL2(Z)\SL2(R) is proven in the
next section.
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4.1 Analytic Preliminaries
We will use the notation H for a Hilbert space over C with inner product 〈·, ·〉, and T for a bounded
operator from H to H . 2 We have the following basic definitions:

Definition 4.2.

• T is compact if T (B1) is compact, where B1 is the unit ball in H .

• T is self-adjoint if T ∗ = T , where T ∗ is the operator defined uniquely by the requirement
that 〈Tx, y〉 = 〈x, T ∗y〉.

We define an anti-involution f 7→ f ∗ on C∞c (G(A)) by

f ∗(x) = f(x−1)

where z denotes the complex conjugate of z ∈ C.

Lemma 4.3. For f ∈ C∞c (G(A)), Tf∗ = (Tf )
∗ as operators on L2(G(k)\G(A), ω).

Proof. Compute from the definition.

We will use the following weak version on the spectral theorem for compact self-adjoint
operators:

Theorem 4.4 (Spectral Theorem). If T : H → H is a non-zero compact self-adjoint operator, then
T admits a non-zero eigenvalue λ, and for any non-zero λ ∈ C, the eigenspace Hλ := ker(T − λ)
is finite-dimensional.

Remark 4.5. Because the action of C∞c (G(A)) preserves any closed G(A)-stable subspace, and
the restriction of a compact self-adjoint operator to a closed G(A)-stable subspace is compact
self-adjoint, we see that if f ∈ C∞c (G(A)) satisfies f = f ∗ then Tf is a compact self-adjoint
operator on any closed G(A)-stable subspace of L2

cusp(G(k)\G(A), ω).

We will also need the following non-degeneracy result for the action of C∞c (G(A)).

Lemma 4.6. There exists a sequence fi ∈ C∞c (G(A)) such that for all v ∈ L2(G(k)\(G(A), ω),
fi · v → v as i→∞.

A sequence as in Lemma 4.6 is called an approximate identity. To construct it, one can take a
sequence of functions approaching the delta function at the identity (as a distribution); the existence
of such a sequence holds very generally, and such a sequence will satisfy the conclusion of Lemma
4.6 for the Gelfand-Pettis action on any Hilbert space.

2All operators considered between Hilbert spaces will be bounded, even if not claimed explicitly.
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4.2 Compactness implies decomposition
Now, the fact that Theorem 4.1 implies Theorem 1.2 follows essentially from:

Lemma 4.7. Assuming Theorem 4.1, every non-zero closed G(A)-stable subspace V ⊂ L2
cusp

contains a non-zero topologically irreducible closed G(A)-stable subspace.

Proof. Choose v ∈ V − {0}. Then, using an approximate identity as in Lemma 4.6, there is some
fi ∈ C∞c (G(A)) with fi · v 6= 0, so the compact operator Tfi |V is nonzero. Now, either

Tfi + T ∗fi = Tfi+f∗i

or
1√
−1

(
Tfi − T ∗fi

)
=

1√
−1

(
Tfi−f∗i

)
is non-zero on V since fi is a linear combination of the two. Both operators are self-adjoint and
compact, so there exists f ∈ C∞c (G(A)) such that Tf |V is a nonzero compact self-adjoint operator.
Theorem 4.4 gives a non-zero eigenvalue λ of Tf such that the eigenspace Vλ is a (non-zero)
finite-dimensional subspace of V .

We now chose w ∈ Vλ − {0} which minimizes the dimension of the intersection of Vλ with the
closed G(A)-stable subspace 〈G(A) · w〉 topologically generated by w (i.e., the closure of the span
of its G(A)-orbit). This gives the desired topologically irreducible closed G(A)-stable subspace:

Claim 4.8. The closure 〈G(A) · w〉 is topologically irreducible.

Suppose the claim is false. Then there exists a proper non-zero closed G(A)-stable subspace
V ′ ⊆ 〈G(A) · w〉. We may write 〈G(A) · w〉 = V ′ ⊕ V ′⊥, and w = (v′, x) with respect to this
decomposition with both v′ and x non-zero. Since w ∈ Vλ, and V ′ and V ′⊥ are stable under Tf , v′

and v are both in Vλ. In particular, we find

dim 〈G(A) · v′〉 ∩ Vλ ≤ dimV ′λ < dimV ′λ + dim(V ′λ)
⊥ = dim 〈G(A) · w〉 ∩ Vλ

and thus v′ contradicts the minimality assumption for w, and we conclude.

Now, we will prove that Theorem 4.1 implies Theorem 1.2:

Proof. First, we will show the decomposability statement. By Zorn’s lemma, there exists a maximal
collection {Vi} of topologically irreducible mutually orthogonal closed G(A)-stable subspaces.
Then Lemma 4.7 implies that L2

cusp =
⊕̂
Vi (otherwise, apply the lemma to the nonzero orthogonal

complement of the Hilbert direct sum of these subspaces to find a subspace that can be added to the
collection {Vi}).

Now, we will show the finite multiplicity statement. Suppose that V is a non-zero unitary
representation of G(A) such that ⊕̂∞

i=1
V ↪−→ L2

cusp (3)

as unitary representations. Looking at a single copy of V ⊂ L2
cusp and arguing as in the proof

of Lemma 4.7, we find that there is f ∈ C∞c (G(A)) such that Tf |V is a non-zero self-adjoint
compact operator. In particular, by Theorem 4.4, it admits a non-zero eigenvalue λ. But, for a closed
G(A)-invariant subspace W , by Lemma 3.1 the restriction Tf |W depends only on the structure of
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W as a unitary representation of G(A), and thus (3) implies that the λ-eigenspace of Tf on L2
cusp is

infinite-dimensional. This contradicts Theorem 4.4 since Tf is a compact self-adjoint operator on
L2

cusp.

5 Compactness of integral operators for SL2(Z)\SL2(R)

As a warm-up to Theorem 4.1 (to be proved in the sequel lecture), we now prove an analogue in
which the adelic coset space G(k)\G(A) is replaced with SL2(Z)\SL2(R). In the statement of the
theorem below, the integral operators are defined by essentially the same formulas as in the adelic
setting.

Theorem 5.1. For any f ∈ C∞c (SL2(R)), the integral operator Tf on L2
cusp(SL2(Z)\SL2(R)) is

compact.

We give an outline of the proof, which will be similar in the adelic setting for a general G:

1. Our goal is to show that f ·B1 ⊂ L2
cusp has compact closure (with B1 the closed unit ball).

2. This compactness will follow by a theorem reminiscent of the Arzelà-Ascoli theorem once
we prove that the functions in f · B1 are uniformly bounded and equicontinuous (i.e. the
functions in this set are each uniformly continuous with the constants for uniform continuity
the same across all such functions, and they all have a common bound on their L2-norm as
well).

3. To prove the uniform boundedness and equicontinuity, we will use a fundamental estimate
which uniformly bounds (f · ϕ)(y) for all y ∈ SL2(Z)\SL2(R) and cuspidal ϕ in the unit
ball of L2. This will give equicontinuity when applied to X(f · ϕ) = (Xf) · ϕ for X any
smooth vector field on G(R) – the functions f · ϕ are smooth, so to control the constants for
their continuity it will suffice to control these derivatives.

We will focus on establishing the fundamental estimate, and will not give further details on the
deduction of Theorem 5.1 from it.

5.1 Siegel sets
For c > 0, we consider Siegel set Ω(c) ⊂ SL2(R),

Ω(c) :=

(
1 [−1

2
, 1

2
]

0 1

)
·


(
t 0
0 t−1

)
| t > 0, t2 ≥ c

 ·K
where K = SO2(R). Note that t2 is the value of the “upper-right” root α when applied to the
indicated diagonal torus element, so that the condition on the torus element m can be written as
α(m) ≥ c (and the condition of positivity on t says that m belongs to the identity component A of
the group of R-points of the diagonal torus).

The image of this set under the orbit map for i =
√
−1 ∈ H is equal the closed half-strip of

points x+ iy ∈ H satisfying x ∈ [−1
2
, 1

2
], y ≥ c.
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5.2 The fundamental estimate
For any y ∈ SL2(R), we use the NAK decomposition to write y = nymyky with ny in the upper
unipotent subgroup of SL2(R), my in the identity component of the diagonal torus, and ky in the
maximal compact K := SO2(R).

Theorem 5.2. Fix f ∈ C∞c (SL2(R)). For any ` > 0, there exists C = Cf,` > 0 such that for all
y ∈ Ω

(
1
2

)
and all ϕ ∈ L2

cusp(SL2(Z)\SL2(R)), we have:∣∣(f · ϕ)(y)
∣∣ ≤ C

∣∣α(my)
∣∣−` ||ϕ||L2

Proof. We have

(f · ϕ)(y) =

ˆ
SL2(R)

f(x)ϕ(yx) dx =

ˆ
SL2(R)

f(y−1x)ϕ(x) dx. (4)

Our basic strategy will be to bound the term coming from f (with an important modification) in
order to estimate the value of this integral using the integral of ϕ on SL2(Z)\SL2(R). In order to
do so, we must first cut down our domain of integration uniformly in y to one that can be covered
by finitely many fundamental domains.

To do so, note that y−1x ∈ Supp f if and only if x ∈ y · Supp f , in which case

x ∈ nymyK · Supp f.

Since K · Supp f is compact, the value of α(mg) is bounded for g ∈ K · Supp f . Thus there exists
an interval [c1, c2] such that

α(mx) ⊆ [α(my)c1, α(my)c2] ≥ 1

2
c1.

So, taking c = 1
2
c1, we may rewrite the integral (4) as

ˆ
{α(mx)≥c}

f
(
y−1x

)
ϕ(x) dx =

ˆ
(

1 Z
0 1

)
\{α(mx)≥c}

∑
j∈Z

f
(
y−1

(
1 j
0 1

)
x
)ϕ(x) dx (5)

We now analyze the sum ∑
j∈Z

f
(
y−1

(
1 j
0 1

)
x
)

(6)

appearing in the integrand. It is helpful to consider this sum geometrically: we have a parameterized
curve

γ : R 7→ SL2(R), t 7→ y−1 ( 1 t
0 1 )x

and we are summing up the values of f at the points γ(j) for j ∈ Z. The image of γ in H is a
horocycle around y−1 · ∞ (i.e. a circle in the upper half plane tangent to y−1 · ∞). In particular,
different choices of y and x can lead to different parameterization of the same horocycle (or, rather,
the same lift of a horocycle to the unit tangent bundle SL2(R) of H), and it will be helpful for some
estimates later on in the proof to account for this by fixing some standard parameterization.
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To accomplish this, note that we may rewrite γ(t) as

γ(t) = y−1mym
−1
y ( 1 t

0 1 )mym
−1
y x = y−1my

(
1 α(my)−1t
0 1

)
m−1
y x,

so that the parameterization coming from x and y is the same as the one coming from m−1
y x and

m−1
y y up to a change in speed. Thus, it is natural to define a function fx,y ∈ C∞c (R) by pulling

back f via this standard parameterization,

fx,y(t) := f(y−1my ( 1 t
0 1 )m−1

y x).

We can then express the sum (6) as ∑
j∈Z

fx,y(α(my)
−1j)

which, by Poisson summation, is equal to

α(my)
∑
j∈Z

f̂x,y(α(my)j).

where f̂x,y is the Fourier transform of fx,y. Combining with (5), we obtain

(f · ϕ)(y) =

ˆ
(

1 Z
0 1

)
\{α(mx)≥c}

α(my)
∑
j∈Z

f̂x,y(α(my)j)

ϕ(x) dx (7)

Note that
f̂x,y(0) =

ˆ
R

f(y−1 ( 1 t
0 1 )x)dt

is invariant under left translation of x by upper unipotent matrices (as this just correspond to a shift
in the variable t). Thus, the integral

ˆ
R

f̂x,y(0)ϕ(x)dx

vanishes by cuspidality of ϕ, and as we are free to exchange the order of summation and integration
in (7), we find that we may remove the term j = 0 to obtain

(f · ϕ)(y) =

ˆ
(

1 Z
0 1

)
\{α(mx)≥c}

α(my)
∑

j∈Z−{0}

f̂x,y(α(my)j)

ϕ(x) dx (8)

Taking absolute values and using the fundamental domain Ω(c) for the domain of integration,
we find

|(f · ϕ)(y)| ≤ supx∈Ω(c)

∣∣∣∣∣∣α(my)
∑

j∈Z−{0}

f̂x,y(α(my)j)

∣∣∣∣∣∣ ·
ˆ

Ω(c)

|ϕ(x)|dx.
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Because Ω(c) can be covered by finitely many copies of a fundamental domain for SL2(Z)\SL2(R)3,
there is a constant C1 such that

ˆ
Ω(c)

|ϕ(x)| ≤ C1

ˆ
SL2(Z)\SL2(R)

|f | ≤ C1||f ||L2

where the latter inequality holds because SL2(Z)\SL2(R) has finite volume. Thus,

|(f · ϕ)(y)| ≤ C1 · supx∈Ω(c)

∣∣∣∣∣∣α(my)
∑

j∈Z−{0}

f̂x,y(α(my)j)

∣∣∣∣∣∣ ||f ||L2 ,

and it remains only to control the supremum appearing.
By a calculation similar to the one we used at the beginning of the proof to show the domain

of integration could be restricted, we find that there is a compact subset K ′ ⊂ SL2(R) such that
y−1my and m−1

y x are both contained in K ′ for any y ∈ Ω(1/2), x ∈ Ω(c). Using this, it can be
shown that the functions fx,y for all such y, x are contained in a compact subset of C∞c (R). Thus,
by continuity properties of the Fourier transform on the Schwartz space (for its natural topology),
the Fourier transforms of these functions are contained in a compact subset of Schwartz space,
which implies that there is a constant C2 such that for all y, x as above and any t,

f̂x,y(t) ≤ C2(1 + |t|)−`−1.

Thus,∣∣∣∣∣∣α(my)
∑

j∈Z−{0}

f̂x,y(α(my)j)

∣∣∣∣∣∣ ≤ C2|α(my)|
∑

j∈Z−{0}

(1+|α(my)j|−`−1) ≤ C2|α(my)|−`
∑

j∈Z−{0}

|j|−`−1.

The sum converges to a value C3, and combining everything we conclude

|(f · ϕ)(y)| ≤ C1C2C3||f ||L2 .

Remark 5.3. We will explain more of the analytic details used in bounding the Fourier transforms
when we tackle the general case of Theorem 4.1 in the next lecture.

3This point is not handled carefully in [Ga], and the argument given there for bounding the integral in terms of the
L2 norm of ϕ and the supremum of the terms involving f uniformly for all y in Ω(1/2) seems to be insufficient.

11


	Introduction
	References
	Notation
	Decomposition of cusp forms

	Cusp forms
	The integral action
	Decomposition and compact operators
	Analytic Preliminaries
	Compactness implies decomposition

	Compactness of integral operators for SL2(Z) "026E30F SL2(R)
	Siegel sets
	The fundamental estimate


