
NOTES ON REPRESENTATIONSOF GL(r) OVER A FINITE FIELDby Daniel Bump1. Indu
ed representations of �nite groups. Let G be a �nite group, andH a subgroup. Let V be a �nite-dimensional H-module. The indu
ed moduleV G is by de�nition the spa
e of all fun
tions F : G ! V whi
h have the prop-erty that F (hg) = h:F (g) for all h 2 H. This is a G-module, with group a
tion(gF )(g0) = F (g0g). On the other hand, if U is a G-module, let UH denote theH-module obtained by restri
ting the a
tion of G on U to the subgroup H. Thusthe underlying spa
e of UH is the same as that of U . If V is a G-module, we willo

asionally denote by �V : G ! GL(V ) the representation of G asso
iated withV . Thus if g 2 G, v 2 V , g:v and �V (g)(v) are synonymous.The Frobenius re
ipro
ity law amounts to a natural isomorphism(1.1) HomG(U; V G) �= HomH(UH ; V ):This is the 
orresponden
e between � 2 HomG(U; V G) and �0 2 HomH(UH ; V ),where �0(w) = �(w)(1), and 
onversely, �(w)(g) = �0(gw). There is also a naturalisomorphism(1.2) HomG(V G; U) �= HomH(V; UH):This may be des
ribed as follows. Given an element � 2 HomH(V; UH), we mayasso
iate an element �0 2 HomG(V G; U), de�ned by�0(f) = X
2G=H 
 �(f(
�1)):Thus indu
tion and restri
tion are adjoint fun
tors between the 
ategories ofH-modules and G-modules. It is also worth noting that they are exa
t fun
tors.Another important property of indu
tion is transitivity. Thus if H � K � G,where H and K are subgroups of G, and if V is an H-module, then(1.3) (V K)G �= V G:The isomorphism is as follows. Suppose that F 2 (V K)G. Thus F : G ! V K .We asso
iate with this the element f of V G de�ned by f(g) = F (g)(1). It is easily
he
ked that this F ! f is an isomorphism (V K)G ! V G.The problem of 
lassifying intertwining operators between indu
ed representa-tions was 
onsidered by Ma
key [Ma
℄ who proved the following Theorem.Typeset by AMS-TEX1



2 BY DANIEL BUMPTheorem 1.1. Suppose that G is a �nite group, that H1 and H2 are subgroups ofG, and that V1, V2 are H1- and H2-modules, respe
tively. Then HomG(V G1 ; V G2 )is naturally isomorphi
 to the spa
e of all fun
tions � : G ! HomC(V1; V2) whi
hsatisfy(1.4) �(h2 g h1) = �V2(h2) Æ�(g) Æ �V1(h1):We may exhibit the 
orresponden
e expli
itly as follows. Firstly, let us de�ne a
olle
tion fg;v1 of elements of V G1 indexed by g 2 G, v1 2 V1. Indeed, we de�nefg;v1(g0) = � g0g�1 v1 if g0g�1 2 H1;0 otherwise.It is easily veri�ed that if g, g0 2 G, h1 2 H1, v1 2 V1, thenfh1g;h1v1 = fg;v1; g0 fgg0;v1 = fg;v1 ;and if F 2 V G1 , F = X
2H1nG f
;F (
):From these relations, the existen
e of a 
orresponden
e as in the theorem is easilydedu
ed, where if L 2 HomG(V G1 ; V G2 ) 
orresponds to the fun
tion � : V1 ! V2,then �(g) v1 = (Lfg�1;v1)(1);and, for F 2 V G1 ,(1.5) (LF )(g) = X
2H1nG�(
�1)F (
 g):This 
ompletes the proof of Theorem 1.1.An intertwining operator L : V G1 ! V G2 therefore determines a fun
tion � on G.We say that L is supported on a double 
oset H2ng=H1 if the fun
tion � vanisheso� this double 
oset. The situation is parti
ularly simple if V1 and V2 are onedimensional. If � is a 
hara
ter of a subgroup H of G, we will denote by �G therepresentation V G, where V is a one-dimensional representation of H a�ording the
hara
ter �. Also, if g 2 G, we will denote by g� the 
hara
ter g�(h) = �(g�1hg)of the group gHg�1.Corollary 1.2. If �1 and �2 are 
hara
ters of the subgroups H1 and H2 of G, thedimension of HomG(�G1 ; �G2 ) is equal to the number of double 
osets in H2ng=H1whi
h support intertwining operators �G1 ! �G2 . Moreover, a double 
oset H2ng=H1supports an intertwining operator if and only if the 
hara
ters �2 and g�1 agree onthe group H1 \ g�1H2g.The 
omposition of intertwining operators 
orresponds to the 
onvolution of thefun
tions � satisfying (1.4). More pre
isely,



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 3Corollary 1.3. Let V1, V2 and V3 be modules of the subgroups H1, H2 and H3respe
tively, and suppose that L1 2 HomG(V G1 ; V G2 ) and L2 2 HomG(V G2 ; V G3 )
orrespond by Theorem 1.1 to fun
tions �1 : G ! HomC(V1; V2) and �2 : G !HomC(V2; V3). Then the 
omposition L2L1 
orresponds to the 
onvolution(1.6) �(g) = X
2H2nG�2(g
�1) Æ�1(
):This is easily 
he
ked.An important spe
ial 
ase:Corollary 1.4. If V is a module of the subgroup H of G, the endomorphism ringEndG(V G) is isomorphi
 to the 
onvolution algebra of fun
tions � : G! EndC(V )whi
h satisfy �(h2gh1) = �V (h2) Æ�(g) Æ �V (h1) for h1, h2 2 H.2. The Bruhat De
omposition. Let F = Fq be a �nite �eld with q elements,and let G = GL(r; F ). By an ordered partition of r, we mean a sequen
e J =fj1; : : : ; jkg of positive integers whose sum is r. If J is su
h a ordered partition,then P = PJ will denote the subgroup of elements of G of the form0BB�G11 G12 � � � G1k0 G22 � � � G2k... . . . ...0 � � � 0 Gkk1CCA ;where Guv is a ju� jv blo
k. The subgroups of the form PJ are 
alled the standardparaboli
 subgroups of G. More generally, a paraboli
 subgroup of G is any subgroup
onjugate to a standard paraboli
 subgroup. The term maximal paraboli
 subgrouprefers to a subgroup whi
h is maximal among the proper paraboli
 subgroups of G.Thus PJ is maximal if the 
ardinality of J is two.We have PJ =MJ NJ where M =MJ is the subgroup 
hara
terized by Guv = 0if u 6= v, and N = NJ is the subgroup 
hara
terized by Guu = Iju (the ju � juidentity matrix). Evidently M �= GL(j1; F )� � � � �GL(jk; F ). The subgroup M is
alled the Levi fa
tor of P , and the subgroup N is 
alled the unipotent radi
al.We wish to extend the de�nitions of paraboli
 subgroups to subgroups of groupsof the form G = G1 � � � � �Gk, where Gj �= GL(jk; F ). By a paraboli
 subgroup ofsu
h a group G, we mean a subgroup of the form P = P1 � � � � � Pk, where Pj isa paraboli
 subgroup of Gj . We will 
all su
h a P a maximal paraboli
 subgroupif exa
tly one of the Pj is a proper subgroup, and that subgroup is a maximalparaboli
 subgroup. If Mj and Nj are the Levi fa
tors and unipotent radi
als ofthe Pj , then M = M1 � � � � �Mk and N = N1 � � � � � Nk will be 
alled the Levifa
tor and unipotent radi
al respe
tively of P .A permutation matrix is by de�nition a square matrix whi
h has exa
tly onenonzero entry in ea
h row and 
olumn, ea
h nonzero entry being equal to one. Wewill also use the term subpermutation matrix to denote a matrix, not ne
essarilysquare, whi
h has at most one nonzero entry in ea
h row and 
olumn, ea
h nonzeroentry being equal to one. Thus a permutation matrix is a subpermutation matrix,and ea
h minor in a subpermutation matrix is equal to one. LetW be the subgroupof G 
onsisting of permutation matri
es. If M is the Levi fa
tor of a standardparaboli
 subgroup, letWM = W \M . IfM =MJ , we will also denote WM =WJ .If M is the Levi fa
tor of P , then in fa
t WM = W \ P .



4 BY DANIEL BUMPProposition 2.1. Let M and M 0 be the Levi fa
tors of standard paraboli
 sub-groups P and P 0, respe
tively, of G. The in
lusion of W in G indu
es a bije
tionbetween the double 
osets WM 0nW=WM and P 0nG=P .First let us prove that the natural mapW ! P 0nG=P is surje
tive. Indeed, we willshow that if g = (guv) 2 G, then there exists b0 2 B su
h that b0g has the form wb,for b 2 B. Sin
e B � P , P 0 this will show that w 2 P 0ng=P . We will re
ursivelyde�ne a sequen
e of integers �(r), �(r � 1); � � � ; �(1) as follows. �(r) is to be the�rst positive integer su
h that gr;�(r) 6= 0. Assuming �(r), �(r � 1); � � � ; �(u + 1)to be de�ned, we will let �(u) be the �rst positive integer su
h that the minordet0BBB� gu;�(r) gu;�(r�1) � � � gu;�(u)gu+1;�(r) gu+1;�(r�1) � � � gu+1;�(u)... ...gr;�(r) gr;�(r�1) � � � gr;�(u)
1CCCA 6= 0:Now the 
olumns of b0 are to be spe
i�ed as follows. The last 
olumn of b0 is to bedetermined by the requirement that the �(r)-th 
olumn of b0g is to have 1 in ther; �(r) position, and zeros above. Assuming that the last u� 1 
olumns of b0 havebeen spe
i�ed, we spe
ify the u-th 
olumn from the right of b0 by requiring that ther� u; �(r� u) entry of b0g equal 1, while if v < r� u, then the v; �(r� u) entry ofb0g equals zero. Now let w be the permutation matrix with has ones in the u; �(u)positions, zeros elsewhere. Then b = w�1b0g is upper triangular. This shows thatthe natural map W ! P 0nG=P is surje
tive.Now let us show that the indu
ed map WM 0nW=WM ! P 0nG=P is inje
tive.Suppose that P = PJ , P 0 = PJ 0 , J = fj1; � � � ; jkg, J 0 = fj01; � � � ; j0lg. Suppose thatw, w0 2W , p, p0 2 P 0 su
h that p0wp = w0. We must show that w and w0 lie in thesame double 
oset of WM 0nW=WM . Let us writew = 0�W11 � � � W1k... ...Wl1 � � � Wlk;1A w0 = 0B�W 011 � � � W 01k... ...W 0l1 � � � W 0lk 1CA ;

p = 0BB�P11 P12 � � � P1l0 P22 � � � P2l... . . . ...0 0 � � � Pll 1CCA ; p0 = 0BB�P 011 P 012 � � � P 01k0 P 022 � � � P 02k... . . . ...0 0 � � � P 0kk
1CCA ;where ea
h matrix Wuv or W 0uv is a j0u � jv blo
k, Puv is a ju � jv blo
k, and P 0uvis a j0u � j0v blo
k. Let us also denotefWtv = 0�Wt1 � � � Wtv... ...Wlv � � � Wlv 1A ; fW 0tv = 0B�W 0t1 � � � W 0tv... ...W 0lv � � � W 0lv1CA ;

eP 0t ;= 0B�P 0tt � � � P 0tl... ...0 � � � P 0ll1CA ; ePt;= 0�P11 � � � P1v... ...0 � � � Pvv1A :



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 5Evidently fW 0uv = eP 0ufWtv ePv, so W 0tv and Wtv have the same rank. Now the rank ofa subpermutation matrix is simply equal to the number of nonzero entries, and sorank(Wtv) = rank(fWtv)� rank(fWt�1;v)� rank(fWt;v+1) + rank(fWt�1;v+1):Thus rank(fWuv) = rank(fW 0uv). Sin
e this is true for every u, v it is apparentthat we 
an �nd elements multiply w on the left by elements of wM 2 WM andwM 0 2WM 0 su
h that wMwwM 0 = w0.Corollary 2.2 (The Bruhat De
omposition). We haveG = [w2W BwB (disjoint):This follows by taking P = B.3. Paraboli
 indu
tion and the \Philosophy of Cusp forms". Let J =fj1; : : : ; jkg be an ordered partition of r, and let Vu, u = 1; � � � ; k be modules forGL(ju; F ). Then V = V1
 � � �
Vk is a module for MJ . We may extend the a
tionof MJ on V to all of P , by allowing NJ to a
t trivially. Then let I(V ) = IM;G(V )denote the G-module obtained by indu
ing V from P . The module I(V ) is be saidto be formed from V by paraboli
 indu
tion.In order to have an analog of Frobenius re
ipro
ity for paraboli
 indu
tion, itis ne
essary to de�ne a fun
tor from the 
ategory of G-modules to the 
ategoryof M -modules, the so-
alled \Ja
quet fun
tor." Thus, let W be a G-module. Wede�ne a module J (W ) = JG;M (W ) to be the set of all elements u su
h that n:u = ufor all n 2 N . Sin
e N is normalized by M , J (W ) is an M -submodule of W . It is
alled the Ja
quet module. Other names for the Ja
quet fun
tor from the 
ategoryof G-modules to the 
ategory of M -modules whi
h have o

urred in the literatureare \lo
alization fun
tor," \trun
ation," and \fun
tor of 
oinvariants."Lemma 3.1. Let U be a G-module, U0 the additive subgroup generated by allelements of the form u � nu with u 2 U , n 2 N . Then U0 is an M -submoduleof U and we have a dire
t sum de
ompositionU = J (U)� U0:Sin
eM normalizesN , U0 is anM -submodule of U . We show �rst that J (U)\U0 =f0g. Indeed, suppose that u0 =Pi(ui � ni ui) is an element of U0. If this elementis also in J (U), thenu0 = 1jN j Xn2N nu0 = 1jN jXi "Xn2N nui �Xn2N nniui# = 0:On the other hand, to show U = J (U) + U0, let u 2 U . Thenu = 1jN j Xn2N nu+ 1jN j Xn2N(u� nu);where the �rst element on the right is in J (U), while the se
ond is in U0.



6 BY DANIEL BUMPProposition 3.2. Let U be a G-module, M and N the Levi fa
tor and unipotentradi
al, respe
tively, of a proper standard paraboli
 subgroup P of G. Then a ne
-essary and suÆent 
ondition for JG;M (U) 6= 0 is that there exists a nonzero linearfun
tional T on U su
h that T (nu) = T (u) for all n 2 N , u 2 U .Indeed, a ne
essary and suÆ
ient 
ondition for a given linear fun
tional T to havethe property that T (nu) = T (u) for all n 2 N , u 2 U is that its kernel 
ontain thesubmodule U0 of Lemma 3.1. Thus there will exist a nonzero su
h fun
tional if andonly if U0 6= U , i.e. if and only if J (U) 6= 0.Proposition 3.3. Suppose that V is an M -module and U a G-module. We havea natural isomorphism(3.1) HomG(U; I(V )) �= HomM (J (U); V ):Indeed, by Frobenius re
ipro
ity (1.1), we have an isomorphismHomG(U; I(V )) �= HomP (UP ; V ):Re
all that the a
tion of M on V is extended by de�nition to an a
tion of P byallowing N to a
t trivially. Then it is 
lear that a given M -module homomor-phism � : U ! V is a P -module homomorphism if and only if �(U0) = 0. ThusHomP (UP ; V ) �= HomM (UM=U0; V ). By Lemma 3.1, UM=U0 �= J (U).Proposition 3.3 shows that the Ja
quet 
onstru
tion and paraboli
 indu
tion areadjoint fun
tors.There is also a transitivity property of paraboli
 indu
tion, analogous to (1.3).Proposition 3.4. Let M is the Levi fa
tor of a paraboli
 subgroup P of G, and letQ be a paraboli
 subgroup of M with Levi fa
tor M0. Then there exists a paraboli
subgroup P0 � P of G su
h that the Levi fa
tor of P0 is also M0. Thus if V is anM0-module, then both IM0;M (V ) and IM;G(V ) are de�ned as M - and G-modules,respe
tively. We have(3.2) IM;G(IM0;M (V )) �= IM0;G(V ):We leave the proof to the reader.It is also very easy to show that:Proposition 3.5. The Ja
quet and paraboli
 indu
tion fun
tors are exa
t.An important strategy in 
lassifying the irredu
ible representations of redu
tivegroups over �nite or lo
al �elds 
onsists in trying to build up the representationsfrom lower rank groups by paraboli
 indu
tion. This strategy was 
alled the Phi-losophy of Cusp Forms by Harish-Chandra, who found motivation in the work ofSelberg and Langlands on the spe
tral theory of redu
tive groups. An irredu
iblerepresentation whi
h does not o

ur in IM;G(V ) for any representation V of theLevi fa
tor of a proper paraboli
 subgroup is 
alled 
uspidal.Proposition 3.6. Any irredu
ible representation of G o

urs in the 
ompositionseries of some represention of the form IM;G(V ), where V is a 
uspidal represen-tation of the Levi fa
tor M of a paraboli
 subgroup P .Indeed, let P be minimal among the paraboli
 subgroups su
h that the given rep-resentation of G o

urs as a 
omposition fa
tor of IM;G(V ) for some representation



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 7V of the Levi fa
tor M of P . (There always exist su
h paraboli
s P , sin
e wemay take P to be G itself.) If V is not 
uspidal, it o

urs in the 
omposition se-ries of IM0;M (V0) for some Levi fa
tor M0 of a proper paraboli
 subgroup of M .Now in Proposition 3.3 the given representation of G also o

urs in IM0;G(V0),
ontradi
ting the assumed minimality of P .A

ording to the Philosophy of Cusp Forms, the 
uspidal representations shouldbe regarded as the basi
 building blo
ks from whi
h other representations are 
on-stru
ted by the pro
ess of paraboli
 indu
tion. Proposition 3.6 shows that everyirredu
ible representation of G may be realized as a subrepresentation of IM;G(V )where V is a 
uspidal representation of the Levi 
omponent P of a paraboli
 sub-group. Moreover, there is also a sense in whi
h this realization is unique: althoughP is not unique, its Levi fa
tor M and the representation V are determined up toisomorphism. More pre
isely, we haveTheorem 3.7. Let V and V 0 be 
uspidal representations of the Levi fa
tors Mand M 0 of standard paraboli
 subgroups P and P 0 respe
tively of G. Then eitherIM;G(V ) and IM 0;G(V 0) have no 
omposition fa
tor in 
ommon, or there is a Weylgroup element w in G su
h that wMw�1 = M 0, and a ve
tor spa
e isomorphism� : V ! V 0 su
h that(3.3) �(mv) = wmw�1 �(v) for m 2M , v 2 V .In the latter 
ase, the modules IM;G(V ) and IM 0;G(V 0) have the same 
ompositionfa
tors.Remark. The signi�
an
e of (3.3) is that if wMw�1 = M 0, then M and M 0 areisomorphi
, and so V 0 may be regarded as an M -module. Thus (3.3) shows that� is an isomorphism of V and V 0 as M -modules. In other words, for the indu
edrepresentations to have a 
ommon 
omposition fa
tor, not only do M and M 0 haveto be 
onjugate, but V and V 0 must be isomorphi
 as M -modules.We will defer the proof of this Theorem until the next se
tion. Of 
ourse the
omplete redu
ibility of representations of a �nite group G implies that two G-modules have the same 
omposition fa
tors if and only if they are isomorphi
. Wehave stated the theorem this way be
ause this is the 
orre
t formulation over alo
al �eld. Over a lo
al �eld, one en
ounters indu
ed representations whi
h mayhave the same 
omposition fa
tors, but still fail to be isomorphi
.There are two problems to be solved a

ording to the Philosophy of Cusp forms:�rstly, the 
onstru
tion of the 
uspidal representations; and se
ondly, the de
om-position of the representations obtained by paraboli
 indu
tion from the 
uspidalones. We will examine the se
ond problem in the following se
tions.It follows from transitivity of indu
tion that it is suÆ
ient for a given irredu
iblerepresentation to be 
uspidal that the representation does not o

ur in IM;G(V )for any maximal paraboli
 subgroup P . Indeed, suppose that the representation isnot 
uspidal. Then it o

urs in IM0;G(V ) for some proper paraboli
 subgroup P0of G, and some representation V of the Levi fa
tor M0 of P0. If P is a maximalparaboli
 subgroup 
ontaining P0, and ifM is the Levi fa
tor of P , then by (3.2) italso o

urs in IM;G(IM0;M (V )). Thus if an irredu
ible representation o

urs in a



8 BY DANIEL BUMPrepresentation indu
ed from a proper paraboli
 subgroup, it may be assumed thatthe paraboli
 is maximal.It follows from Proposition 3.3 that a a ne
essary and suÆ
ient 
ondition for therepresentation U to be 
uspidal is that JG;M (U) = 0 for every Levi fa
tor M of amaximal paraboli
 subgroup.4. Intertwining operators for indu
ed representations. In this se
tion weshall analyze the intertwining operators between two indu
ed representations. Weshall also prove Theorem 3.3. First let us establishProposition 4.1. Let J = fj1; � � � ; jkg, J 0 = fj01; � � � ; j0lg be two ordered partitionsof r, and let P = PJ , P 0 = PJ 0 . Let M �= GL(j1; F )� � � � � GL(jk; F ) and M 0 �=GL(j01; F )� � � � � GL(j0l; F ) be their respe
tive Levi fa
tors. Let Vu, (resp. V 0u) begiven 
uspidal GL(ju; F )-modules (resp. GL(j0u; F )-modules). Let V = V1
� � �
Vk,V 0 = V 01 
 � � � 
 Vl, and let d = dimC HomG(IM;G(V ); IM 0;G(V 0)). Then d = 0unless k = l, in whi
h 
ase, d is equal to the number of permutations � of f1; � � � ; kgsu
h that j�(u) = j0u; and su
h that V�(u) �= V 0u as GL(j�(u); F )-modules for ea
hu = 1; � � � ; k.To prove Proposition 4.1, assume �rst that we are given nonzero intertwiningoperator in HomG(IM;G(V ); IM 0;G(V 0)), whi
h is supported on a single double
oset of P 0nG=P . We will asso
iate with this intertwining operator a bije
tion� : f1; � � � ; kg ! f1; � � � ; lg whi
h has the required properties. Then we will showthat the 
orresponden
e between double 
osets whi
h support intertwining oper-ators and su
h � is a bije
tion, and that no 
oset 
an support more than oneintertwining operator. This will show that the dimension d is equal to the numberof su
h �.Given the intertwining operator, let � : G ! HomC(V; V 0) be the fun
tionasso
iated in Theorem 3.1. Thus(4.1) �(p0gp):v = p0�(g) p:v for p 2 P , p0 2 P 0, v 2 V .Re
all that we are assuming that � is supported on a single double 
oset P 0wP ,where by the Bruhat de
omposition we may take the representative w 2 W . Let� = �(w) : V ! V 0.Now let us show that wMw�1 =M 0.First we show thatM 0 � wMw�1. Suppose on the 
ontrary thatM 0 6� wMw�1.Let NP be the unipotent radi
al of P . Then Q = M 0 \ wPw�1 is a proper (notne
essarily standard) paraboli
 subgroup of M 0, whose unipotent radi
al NQ =M 0 \ wNPw�1 is 
ontained in the unipotent radi
al of wPw�1. Now let v 2 V ,and n 2 NQ. Applying (4.1) with g = w, p = w�1n�1w, p0 = n, we see thatn:�(w�1n�1w:v) = �(v). Now sin
e w�1n�1w is 
ontained in the unipotent radi
alof P , w�1n�1w:v = v, and so if n 2 NQ we have n:�(v) = �(v). Thus �(v) = 0,sin
e V 0 is 
uspidal. This shows that � is the zero map, whi
h is a 
ontradi
tion.Therefore M 0 � wMw�1. The proof of the opposite inequality M 0 � wMw�1 issimilar.Now the isomorphism m! wmw�1 of M onto M 0 makes V 0 into an M -module.(4.1) implies that if m 2M , v 2 V , then(4.2) wmw�1 �(v) = �(mv):



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 9This implies that if V , V 0 are regarded as M -modules, they are isomorphi
, sin
e� is an isomorphism. By S
hur's Lemma, there 
an be only one isomorphism(up to 
onstant multiple) between irredu
ible M -modules, and sin
e by (4.1) � isdetermined by �, it follows that there 
an be at most one intertwining operatorsupported on ea
h double 
oset. On the other hand, if w is given su
h that M 0 =wMw�1, and if the indu
edM -module stru
ture on V 0 makes V and V 0 isomorphi
,then denoting by � su
h an isomorphism, so that (4.2) is satis�ed, it is 
lear that(4.1) is also satis�ed, sin
e the unipotent matri
es in both P and P 0 a
t triviallyon V and V 0.Thus by Proposition 2.1, the dimension d of the spa
e HomG(IM;G(V ); IM 0;G(V 0))of intertwining operators is exa
tly equal to the number of w 2WM 0nW=WM su
hthat wMw�1 = M 0, and su
h that the indu
ed M -module stru
ture on V 0 makesV �= V 0. It is 
lear that this is equal to the number of permutations � of f1; � � � ; kgsu
h that j�(i) = j0i; and su
h that V�(i) �= V 0i as GL(j�(i); F )-modules for ea
hi = 1; � � � ; k.Corollary 4.2. Let P � G be the standard paraboli
 subgroup PJ where J is theordered partition fj1; � � � ; jkg of r. Let M �= GL(j1; F )�� � ��GL(jk; F ) be the Levifa
tor of P , and let Vu be given 
uspidal GL(ju; F )-modules. Let V = V1
� � �
Vk.Then I(V ) is redu
ible if and only there exist distin
t u, v su
h that ju = jv, andVu �= Vv as GL(ju; F )-modules.This follows from Proposition 4.1 by taking P 0 = P .We now give the proof of Theorem 3.7. The only part whi
h is not 
ontained inProposition 4.1 is the �nal assertion that if there exists a Weyl group element w inG su
h that wMw�1, and � su
h that (3.3) is satis�ed, then the indu
ed moduleshave the same 
omposition fa
tors.The problemmay be stated as follows. Let J = fj1; � � � ; jkg and J 0 = fj01; � � � ; j0kgbe two sets of positive integers whose sum is r, and assume that J 0 is obtainedfrom J by permuting the indi
es j1. Thus there exists a bije
tion � : f1; � � � ; kg !f1; � � � ; kg su
h that j�(i) = j0i: Let Vi be a 
uspidal GL(ji; F )-module for i =1; � � � ; k, and let V 0i = V�(i). Let P = PJ , P 0 = PJ 0 , M = MP , and M 0 = MP 0 .Then V = V1
� � �
Vk and V 0 = V 01
� � �
V 0k areM - andM 0-modules respe
tively.What is to be shown is that IM;G(V ) and IM 0;G(V 0) have the same 
ompositionfa
tors. Clearly it is suÆ
ient to show this when � simply inter
hanges two adja-
ent 
omponents. Moreover in that 
ase, by transitivity and exa
tness of paraboli
indu
tion (Propositions 3.4 and 3.5) it is suÆ
ient to show this when k = 2. Nowif V �= V 0 this is obvious. On the other hand, if V 6�= V 0 then by Corollary 4.2,IM 0;G(V 0) is irredu
ible, and a nonzero intertwining map IM;G(V ) ! IM 0;G(V 0)exists by Proposition 4.1. Consequently IM;G(V ) �= IM 0;G(V 0). This 
ompletes theproof of Theorem 3.7.5. The Kirillov Representation. Let G = Gr = GL(r; F ) as before, and letPr be the subspa
e 
onsisting of elements having bottom row (0; : : : ; 0; 1). LetN = Nr be the subgroup of unipotent upper triangular matri
es, and let Ur be thesubgroup 
onsisting of matri
es whi
h have only zeros above the diagonal, ex
eptfor the entries in the last 
olumn. Thus Ur �= F r�1. If k � r, we will denote by Gkthe subgroup of G, isomorphi
 to GL(k; F ), 
onsisting of matri
es of the form� � 00 Ir�k � ;



10 BY DANIEL BUMPwhere `�' denotes an arbitrary k � k blo
k, and Ir�k denotes the r � k � r � kidentity matrix. Identifying GL(k; F ) with this subgroup of Gr, the subgroups Pk,Nk and Uk are then 
ontained as subgroups of Gr. Thus Pk = Gk�1:Uk (semidire
tprodu
t).Let  =  F be a �xed nontrivial 
hara
ter of the additive group of F . For k � r,let �k : Nk ! C� be the 
hara
ter of Nk de�ned by�k0BBBBB�0BBBBB� 1 x12 x13 � � � x1k1 x23 � � � x2k1 . . . .... . . 1
1CCCCCA1CCCCCA =  (x12 + x23 + � � �+ xk�1;k):We will denote �r as simply �. Then let K = Kr be the module of Pr indu
ed fromthe 
hara
ter � of Nr. By de�nition K is a spa
e of fun
tions Pr ! C. However,ea
h fun
tion in K is determined by its value on Gr�1, and it is most 
onvenientto regard K as a spa
e of fun
tions on Gr�1. Spe
i�
ally,K = ff : Gr�1 ! Cjf(ng) = �r�1(ng) f(g) for n 2 Nr�1g;and the group a
tion is de�ned by��h u1� f� (g) = �(gu) f(gh) for g, h 2 Gr�1, u 2 Ur, f 2 K.K is 
alled the Kirillov representation of the group Pr.Theorem 5.1. The Kirillov representation of Pr is irredu
ible.To prove this, it is suÆ
ient to show that HomPr (K;K) is one dimensional. Letthere be given a double 
oset in NrnPr=Nr whi
h supports an intertwining operatorK ! K. Let � : Pr ! C be the fun
tion asso
iated with the given intertwiningoperator. We may take a 
oset representative h whi
h lies in Gr�1. We will provethat h = Ir�1. Theorem 5.1 will then follow from Corollary 1.2.Suppose by indu
tion that we have shown that h 2 Gk, where 1 � k � r�1. Wewill show then that h 2 Gk�1. (If k = 1, this is to be interpreted as the assertionthat h = 1.) Let � Ik�1 u1� 2 Uk;where u is a 
olumn ve
tor in F k�1. We have�h Ir�k � = 0� Ik�1 h:u1 Ir�k+11A�h Ir�k �0� Ir�1 u1 Ir�k+11A�1 ;and the bi-invarian
e property (1.4) of � implies that�k0�0� Ik�1 h:u1 Ir�k1A1A = �k0�0� Ik�1 u1 Ir�k1A1A :Sin
e this is true for all u, it follows that h 2 Gk�1.
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 representations. Now let G be the representation of G indu
ed fromthe representation � of N whi
h was introdu
ed in Se
tion 5. Our obje
tive is toprove the following famous theorem of Gelfand and Graev [GG℄. The 
orrespondingtheorems over lo
al �elds and adele groups are due to Shalika [Sh℄. These resultsare often referred to as \multipli
ity one" theorems.Theorem 6.1. The representation G of G is multipli
ity-free.Let(6.1) w0 = w0(r) = 0� 1. . .1 1A :be the \longest" element of the Weyl group. If J = fj1; � � � ; jkg is a orderedpartition of r, we will also denotew(J) = 0B�w0(j1) . . . w0(jk)1CA ;where w0(j) is de�ned by (6.1).We will need some elementary fa
ts about the a
tion of the Weyl group on theroot system. Let � be the set of all roots of G relative to the Cartan subgroup A,and let 
 be the set of all simple positive roots. If � 2 
, s� 2 W will denote thesimple re
e
tion su
h that s�(�) = ��. If S is any subset of 
, there is a orderedpartition J = fj1; � � � ; jkg of r su
h that the subgroup of W generated by the s�su
h that � 2 S isWM , whereM =MJ . Thus there is a bije
tion between the set ofsubsets of 
 and the ordered partitions of r. The root system 
(M) of M relativeto A (whi
h is the disjoint union of the root systems for GL(j1); � � � ; GL(jk)) isnaturally in
luded in 
.Lemma 6.2. Let M be the Levi fa
tor of a standard paraboli
 subgroup of G. If�, �1; � � � ; �l 2 
 su
h that � =2 
(M), �1; � � ��l 2 
(M), and if �+ �1 + : : :+ �lis a root, then �+ �1 + : : :+ �l > 0 if and only if � > 0.Lemma 6.3. Let S be a subset of 
, and let J be the ordered partition of r su
hthat the subgroup ofW generated by the s� su
h that � 2 S isWM , whereM =MJ .Then if � 2 S, w(J)(�) < 0, and �w(J)(�) 2 S. On the other hand, if � 2 
 but� =2 S, then w(J)(�) = � + �, where � is the sum of roots in 
(M), and in this
ase w(J)(�) > 0.We omit the proofs of Lemmas 6.2 and 6.3, whi
h are not hard to 
he
k.Lemma 6.4. If w 2 W and a 2 A su
h that �(n) = �(wan (wa)�1) whenever nand wan (wa)�1 are both in N , then there exists a ordered partition J of r su
hthat w = w0w(J), and a is in the 
enter of MJ .To prove this, we apply Lemma 6.3 with S be the set of � 2 
 su
h that w� isa positive root. Let us show �rst that if � 2 S, then w� is a simple root. Letx� : F ! G be the standard one-parameter subgroup of G, so that if a 2 A, � 2 F ,then ax�(�)a�1 = x�(�(a)�). Let X� be the image of x�. Let � 2 F , and let



12 BY DANIEL BUMPn = x�(�) 2 X�. Then n and (wa)n (wa)�1 are both in N , sin
e (wa)n (wa)�1 =xw�(�(a) �). Sin
e �jX� is nontrivial, the hypothesis of the Lemma implies that�jXw� is also nontrivial. Thus w� is a simple root.Furthermore, the hypothesis of the Lemma implies that  (�(a) �) =  (�), and
onsequently �(a) = 1 for all � 2 S. This implies that a is in the 
enter of WJ .Let us show now that wMw�1 is the Levi fa
tor of a standard paraboli
 sub-group. Indeed, M is generated by the set of one parameter subgroupsfX�j� 2 � is a linear 
ombination of roots in Sg;so wMw�1 is generated by the set of one parameter subgroupsfX�j� 2 � is a linear 
ombination of roots in wSg:As we have just shown that wS is a subset of 
, this wMw�1 is the Levi fa
tor ofa standard paraboli
 subgroup.Now we show that if � 2 
, then (ww(J))(�) < 0. Firstly, if � =2 S, then byLemma 6.3, (ww(J))(�) = w(�)+w(�), where � is the sum of roots in 
(M). Nowwe apply Lemma 6.2. Note that w(�) =2 
(wMw�1), while w(�) is the sum of rootsin 
(wMw�1), so by Lemma 6.2, (ww(J))(�) is negative sin
e w(�) is negative bythe de�nition of S. On the other hand, if � 2 S, then by Lemma 6.2 �w(J)(�) 2 S,and so w(�w(J)(�)) > 0 by the de�nition of S. Thus (ww(J))(�) < 0 in this 
asealso.Sin
e ww(J) takes every simple positive root to a negative root, ww(J) = w0,and so w = w0w(J). This 
ompletes the proof of Lemma 6.2.We turn now to the proof of Theorem 6.1. The strategy is to prove that the alge-bra of endomorphisms of G is abelian. This implies that G is multipli
ity free, sin
eif G 
ontains k 
opies of some irredu
ible representation, then the endomorphismring of G 
ontains a 
opy of the ring of k � k matri
es over C.The proof depends on the existen
e of the anti-automorphism �(g) = w0 tg w0 ofG. Evidently �(gg0) = �(g) �(g0). Furthermore, � stabilizes N , and its 
hara
ter �.By Corollary 1.4, the endomorphism ring of G is isomorphi
 to the 
onvolutionalgebra of fun
tions � satisfying(6.2) �(n1 g n2) = �(n1)�(g) �(n2)for n1, n2 2 N , g 2 G. Evidently � indu
es an anti-involution on this ring. We willargue that any su
h fun
tion � is stabilized by �. This will prove that the ring isabelian, sin
e then �1 ��2 = �(�1 ��2) = ��2 � ��1 = �2 ��1.Let us therefore 
onsider a fun
tion � satisfying (6.2), whi
h is supported ona single double 
oset in NnG=N . It follows from the Bruhat de
omposition thatwe may 
hoose a 
oset representative in the form wa where w 2 W , a 2 A. Then(6.2) amounts to the assertion that the hypotheses of Lemma 6.2 are satis�ed. Wemay therefore �nd J su
h that w = w0w(J), and a is in the 
enter of MJ . Thus�(wa) = w0 t(w0 w(J) a)w0 = w0 aw(J)w0w0 = w0 w(J)a = wa. This shows that� stabilizes every double 
oset of NnG=N whi
h supports a fun
tion � satisfying(6.2). Therefore the 
onvolution algebra is �-stable, as required.
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ible G-module. If there exists a nonzero G-homomorphismV ! G, then we 
all V generi
. In this 
ase, the image of V in G is 
alled theWhittaker model of V . By Theorem 6.1, it is the unique spa
e WV of fun
tionsf on G with the property that f(ng) = �(n) f(g) for n 2 N , stable under righttranslation by G su
h that the G-module a
tion by right translation onWV a�ordsa representation isomorphi
 to V .LetC� denote a one-dimensionalN -module a�ording the 
hara
ter �, so that G =CG� . By Frobenius re
ipro
ity (1.1), the existen
e of a G-module homomorphismV ! G is equivalent to the existen
e of an N -module homomorphism V ! C�.Thus V is generi
 if and only if there exists a linear fun
tional T on V su
h thatT (n:v) = �(n)T (v) for all n 2 N , and v 2 V . If su
h a fun
tional exists, it isunique up to s
alar multiple, sin
e by (1.1) and Theorem 6.1, the dimension of thespa
e of su
h fun
tionals isdimHomN (V;C�) = dimHomG(V;G) � 1:Let C� denote a one-dimensional N -module a�ording the 
hara
ter �, so thatG = CG� . Whether or not V is irredu
ible, we will 
all a linear fun
tional T onV su
h that T (n:v) = �(n)T (v) for all n 2 N , and v 2 V Whittaker fun
tional.Thus a Whittaker fun
tional is essentially an N -module homomorphism G ! C�.By Frobenius re
ipro
ity, the existen
e of a G-module homomorphism V ! G isequivalent to the existen
e of a Whittaker fun
tional. Thus V admits a Whittakerfun
tional if and only if it has an irredu
ible 
omponent whi
h is generi
. If V isirredu
ible, then by (1.1) and Theorem 6.1, the dimension of su
h fun
tionals isdimHomN (V;C�) = dimHomG(V;G) � 1:7. Cuspidal representations are generi
. We will proveProposition 7.1. Let V be a 
uspidal G-module, T0 be a nonzero fun
tional onV . Then there exists a nonzero Whittaker fun
tional T in the linear span of thefun
tionals v 7! T0(pv) (p 2 Pr). Moreover, if v0 2 V su
h that T0(v0) 6= 0, thenthere exists g 2 Gr�1 su
h that T (gv0) 6= 0.We will follow the notations introdu
ed in Se
tion 5. Furthermore, if 1 � k � r, letNk = Uk+1 � Uk+2 � : : : � Ur, so that N = NkNk. Let us assume by indu
tion thatThere exists a nonzero fun
tional Tk in the linear span of the fun
tionals v 7! T0(pv)(p 2 Pr) su
h that Tk(nv) = �(n)Tk(v) for n 2 Nr�k. Moreover, there existsgk 2 Gr�1 su
h that Tk(gkv0) 6= 0.Sin
e Nr is redu
ed to the identity, the indu
tion hypothesis is satis�ed when k = 0.We will show that if it is satis�ed for k < r � 1, then it is satis�ed for k + 1.Let Sk be the spa
e of all linear fun
tionals T in the linear span of the fun
tionalsv 7! Tk(p v) (p 2 Pr�k). Observe that if T 2 Sk, then T (nv) = �(n)T (v) for alln 2 Nr�k, be
ause if p 2 Pr�k and n 2 Nr�k, then pnp�1 2 Nr�k, and �(pnp�1) =�(n). Thus we have a (right) a
tion of Pr�k on Sk, de�ned by T p(v) = T (pv).The subgroup Ur�k of Pr�k is abelian, and so its a
tion on Sk may be de
om-posed into one-dimensional eigenspa
es. Let T be an nonzero element of Sk be su
hthat T (nv) = �(n)T (v) for n 2 Ur�k, where � is a 
hara
ter of Ur�k. Sin
e Tk isa linear 
ombination of su
h eigenfun
tions, we may assume that T (gkv0) 6= 0.
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annot be the trivial 
hara
ter be
ause V is 
uspidal: for if J isthe ordered partition fr � k � 1; k + 1g of r, and if � is zero, then if � = 1 wehave T (nv) = T (v) for all n in the unipotent radi
al of PJ , be
ause su
h n 
an befa
tored as n1 n2 where n1 2 Ur�k and n2 2 Nr�k, and n2 satis�es �(n2) = 1. ByProposition 3.2, this 
ontradi
ts the 
uspidality of V .Now sin
e � 6= 1, there exists g 2 Gr�k�1 su
h that �(n) = �(gng�1) for alln 2 Ur�k. Then Tk+1 = T g satis�es T g(nv) = �(n)T g(v) for all n 2 Ur�k, andindeed for all n 2 Ur�k�1 = Ur�k Ur�k. Also, we may take gk+1 = g�1gk, so thatTk+1(gk+1v0) = T (gkv0) 6= 0. This 
ompletes the indu
tion.Now Tr�1 is 
learly a nonzero Whittaker fun
tional, and Tr�1(gr�1v0) 6= 0.Theorem 7.2. Cuspidal representations are generi
.This is an immediate 
onsequen
e of Proposition 7.1.Theorem 7.3. Let V be a 
uspidal G-module. Then as a Pr-module, V is isomor-phi
 to the Kirillov representation.To see this, observe �rst by Theorems 6.1 and 7.2, HomG(V;G) is one-dimensional.Thus Frobenius re
ipro
ity (1.1),dimHomPr (VPr ;K) = dimHomG(V;G) = 1:Thus there exists a unique nontrivial Pr-homomorphism � : V ! K, and by Theo-rem 5.1, this is surje
tive. We must show that it is inje
tive. Let V0 be the kernelof �, whi
h is a Pr-module. Then K does not o

ur in V0 as a 
omposition fa
tor.If V0 is not redu
ed to the identity, let v0 be a nonzero ve
tor. It follows fromProposition 7.1 that there exists a Whittaker fun
tional T on V and g 2 Gr�1 su
hthat T (gv0) 6= 0. Sin
e g 2 Pr, and sin
e V0 is a Pr-module, gv0 2 V0, and so therestri
tion of T to V0 is not identi
ally zero. Thus if C� denotes a one dimensionalN -module a�ording the 
hara
ter �, dimHomN (V0;C�) > 0. By Frobenius re
i-pro
ity, this is equal to the dimension of HomPr (V0;K). This is a 
ontradi
tion,sin
e V0 does have K as a 
omposition fa
tor.Thus a 
uspidal representation V has a unique Pr-embedding in K, whi
h is anisomorphism. This realization of V as a spa
e of fun
tions on Gr�1 is 
alled theKirillov model of V . Kirillov models were introdu
ed on GL(2) by Kirillov [K℄, andused extensively by Ja
quet and Langlands [JL℄. For r > 2, Kirillov models wereintrodu
ed by Gelfand and Kazhdan [GK℄.Corollary 7.4. If V is a 
uspidal G-module, thendim(V ) = (qr�1 � 1)(qr�2 � 1) � : : : � (q � 1):Indeed, this is the dimension of K.8. A further \Multipli
ity One" Theorem. The theorem in this se
tion
omplements Theorem 6.1.Theorem 8.1. Let P be a standard paraboli
 subgroup of G, and let V0 be a 
uspidalrepresentation of the Levi fa
tor M of G, and let V = IM;G(V0). Then V has aunique Whittaker model.Thus V has a unique generi
 
omposition fa
tor, and if V is irredu
ible, V is itselfgeneri
.
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omplex numbers given the stru
ture of a one-dimensional N -module a�ording the 
hara
ter �. We must 
al
ulate the dimension of HomN (V; �),whi
h by Frobenius re
ipro
ity is the same as the dimension of HomG(V;G). ByTheorem 1.1, this equals the dimension of the spa
e of fun
tions � : G! HomC(V0;C�)whi
h satisfy �(ngp) = �C� (n) Æ�(g) Æ �V0(p) if n 2 N , p 2 P . Thus(8.1) �(ngp):v = �(n)�(g):p(v)for n 2 N , p 2 P , v 2 V0. We will show that the spa
e of su
h fun
tions isone-dimensional.We will use the notations of Se
tion 6 for the root system.Let NwP be a double 
oset on whi
h � does not vanish. By Proposition 1.2, wemay 
hoose w 2W , and we may 
hoose w modulo right multipli
ation by elementsof WM . Let S be the set of all � 2 
 su
h that w�1� 2 �(M). Then w�1S is aset of linearly independent roots in �(M), and so there exists w1 2WM su
h that(ww1)�1� < 0 for all � 2 S. Sin
e NwP = Nww1P , we may repla
e w by ww1,i.e. we may 
hoose the 
oset representative w so that w�1� < 0 for all � 2 
 su
hthat w�1� 2 �(M).We show now that this implies that w = w0. It is suÆ
ient to show thatw�1� < 0 for all � 2 
. Sin
e we already know this when w�1� 2 �(M), we mayassume w�1� =2 �(M). Suppose on the 
ontrary that w�1� > 0. Let n 2 X� su
hthat �(n) 6= 1. Su
h n exists sin
e � is a simple root. Now w�1nw 2 Xw�1�. Sin
ew�1� is a positive root whi
h is not in �(M), w�1nw lies in the unipotent radi
alof P , and therefore w�1nw:v = v for all v 2 V0. Now by (8.1),�(w):v = �(w:w�1nw):v = �(nw):v = �(n)�(w):v;so �(w) is simply the zero map. This 
ontradi
tion shows that w = w0.We have shown that the only double 
oset whi
h 
ould support an intertwiningoperator is Nw0P . Now let us show that this parti
ular double 
oset supportsexa
tly one su
h intertwining operator. Let P = PJ , and let w(J) be as in Se
tion 6.Then w0w(J) lies in the 
oset Nw0P , and � is determined by the fun
tional T =�(w0w(J)) of V0, sin
e we must have(8.2) �(nw0p) = �(n)T Æ �V0(w(J)p):We will show that there is, up to 
onstant multiple, a unique fun
tional T on V0su
h that we may de�ne � by (8.2). Indeed, for this de�nition to be 
onsistent, itis ne
essary and suÆ
ient that(8.3) �(n)T Æ �V0(w(J)p) = T Æ �V0(w(J))whenever n 2 N , p 2 P su
h that nw0p = w0. If nw0p = w0, then p = w�10 n�1w0is lower trianguler, hen
e is an element of w(J)�1NJw(J). Let us write p =w(J)�1n1w(J), where n1 2 NJ . Note that �(n1) = �(n)�1, so (8.3) is equiva-lent to T Æ �V0(n1) = �(n1)T:Thus T must be a Whittaker fun
tional on V0, and the spa
e of su
h is one di-mensional by Theorems 7.2 and 6.1. We see that the spa
e HomN (V; �) is onedimensional.


