
NOTES ON REPRESENTATIONSOF GL(r) OVER A FINITE FIELDby Daniel Bump1. Indued representations of �nite groups. Let G be a �nite group, andH a subgroup. Let V be a �nite-dimensional H-module. The indued moduleV G is by de�nition the spae of all funtions F : G ! V whih have the prop-erty that F (hg) = h:F (g) for all h 2 H. This is a G-module, with group ation(gF )(g0) = F (g0g). On the other hand, if U is a G-module, let UH denote theH-module obtained by restriting the ation of G on U to the subgroup H. Thusthe underlying spae of UH is the same as that of U . If V is a G-module, we willoasionally denote by �V : G ! GL(V ) the representation of G assoiated withV . Thus if g 2 G, v 2 V , g:v and �V (g)(v) are synonymous.The Frobenius reiproity law amounts to a natural isomorphism(1.1) HomG(U; V G) �= HomH(UH ; V ):This is the orrespondene between � 2 HomG(U; V G) and �0 2 HomH(UH ; V ),where �0(w) = �(w)(1), and onversely, �(w)(g) = �0(gw). There is also a naturalisomorphism(1.2) HomG(V G; U) �= HomH(V; UH):This may be desribed as follows. Given an element � 2 HomH(V; UH), we mayassoiate an element �0 2 HomG(V G; U), de�ned by�0(f) = X2G=H  �(f(�1)):Thus indution and restrition are adjoint funtors between the ategories ofH-modules and G-modules. It is also worth noting that they are exat funtors.Another important property of indution is transitivity. Thus if H � K � G,where H and K are subgroups of G, and if V is an H-module, then(1.3) (V K)G �= V G:The isomorphism is as follows. Suppose that F 2 (V K)G. Thus F : G ! V K .We assoiate with this the element f of V G de�ned by f(g) = F (g)(1). It is easilyheked that this F ! f is an isomorphism (V K)G ! V G.The problem of lassifying intertwining operators between indued representa-tions was onsidered by Makey [Ma℄ who proved the following Theorem.Typeset by AMS-TEX1



2 BY DANIEL BUMPTheorem 1.1. Suppose that G is a �nite group, that H1 and H2 are subgroups ofG, and that V1, V2 are H1- and H2-modules, respetively. Then HomG(V G1 ; V G2 )is naturally isomorphi to the spae of all funtions � : G ! HomC(V1; V2) whihsatisfy(1.4) �(h2 g h1) = �V2(h2) Æ�(g) Æ �V1(h1):We may exhibit the orrespondene expliitly as follows. Firstly, let us de�ne aolletion fg;v1 of elements of V G1 indexed by g 2 G, v1 2 V1. Indeed, we de�nefg;v1(g0) = � g0g�1 v1 if g0g�1 2 H1;0 otherwise.It is easily veri�ed that if g, g0 2 G, h1 2 H1, v1 2 V1, thenfh1g;h1v1 = fg;v1; g0 fgg0;v1 = fg;v1 ;and if F 2 V G1 , F = X2H1nG f;F ():From these relations, the existene of a orrespondene as in the theorem is easilydedued, where if L 2 HomG(V G1 ; V G2 ) orresponds to the funtion � : V1 ! V2,then �(g) v1 = (Lfg�1;v1)(1);and, for F 2 V G1 ,(1.5) (LF )(g) = X2H1nG�(�1)F ( g):This ompletes the proof of Theorem 1.1.An intertwining operator L : V G1 ! V G2 therefore determines a funtion � on G.We say that L is supported on a double oset H2ng=H1 if the funtion � vanisheso� this double oset. The situation is partiularly simple if V1 and V2 are onedimensional. If � is a harater of a subgroup H of G, we will denote by �G therepresentation V G, where V is a one-dimensional representation of H a�ording theharater �. Also, if g 2 G, we will denote by g� the harater g�(h) = �(g�1hg)of the group gHg�1.Corollary 1.2. If �1 and �2 are haraters of the subgroups H1 and H2 of G, thedimension of HomG(�G1 ; �G2 ) is equal to the number of double osets in H2ng=H1whih support intertwining operators �G1 ! �G2 . Moreover, a double oset H2ng=H1supports an intertwining operator if and only if the haraters �2 and g�1 agree onthe group H1 \ g�1H2g.The omposition of intertwining operators orresponds to the onvolution of thefuntions � satisfying (1.4). More preisely,



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 3Corollary 1.3. Let V1, V2 and V3 be modules of the subgroups H1, H2 and H3respetively, and suppose that L1 2 HomG(V G1 ; V G2 ) and L2 2 HomG(V G2 ; V G3 )orrespond by Theorem 1.1 to funtions �1 : G ! HomC(V1; V2) and �2 : G !HomC(V2; V3). Then the omposition L2L1 orresponds to the onvolution(1.6) �(g) = X2H2nG�2(g�1) Æ�1():This is easily heked.An important speial ase:Corollary 1.4. If V is a module of the subgroup H of G, the endomorphism ringEndG(V G) is isomorphi to the onvolution algebra of funtions � : G! EndC(V )whih satisfy �(h2gh1) = �V (h2) Æ�(g) Æ �V (h1) for h1, h2 2 H.2. The Bruhat Deomposition. Let F = Fq be a �nite �eld with q elements,and let G = GL(r; F ). By an ordered partition of r, we mean a sequene J =fj1; : : : ; jkg of positive integers whose sum is r. If J is suh a ordered partition,then P = PJ will denote the subgroup of elements of G of the form0BB�G11 G12 � � � G1k0 G22 � � � G2k... . . . ...0 � � � 0 Gkk1CCA ;where Guv is a ju� jv blok. The subgroups of the form PJ are alled the standardparaboli subgroups of G. More generally, a paraboli subgroup of G is any subgrouponjugate to a standard paraboli subgroup. The term maximal paraboli subgrouprefers to a subgroup whih is maximal among the proper paraboli subgroups of G.Thus PJ is maximal if the ardinality of J is two.We have PJ =MJ NJ where M =MJ is the subgroup haraterized by Guv = 0if u 6= v, and N = NJ is the subgroup haraterized by Guu = Iju (the ju � juidentity matrix). Evidently M �= GL(j1; F )� � � � �GL(jk; F ). The subgroup M isalled the Levi fator of P , and the subgroup N is alled the unipotent radial.We wish to extend the de�nitions of paraboli subgroups to subgroups of groupsof the form G = G1 � � � � �Gk, where Gj �= GL(jk; F ). By a paraboli subgroup ofsuh a group G, we mean a subgroup of the form P = P1 � � � � � Pk, where Pj isa paraboli subgroup of Gj . We will all suh a P a maximal paraboli subgroupif exatly one of the Pj is a proper subgroup, and that subgroup is a maximalparaboli subgroup. If Mj and Nj are the Levi fators and unipotent radials ofthe Pj , then M = M1 � � � � �Mk and N = N1 � � � � � Nk will be alled the Levifator and unipotent radial respetively of P .A permutation matrix is by de�nition a square matrix whih has exatly onenonzero entry in eah row and olumn, eah nonzero entry being equal to one. Wewill also use the term subpermutation matrix to denote a matrix, not neessarilysquare, whih has at most one nonzero entry in eah row and olumn, eah nonzeroentry being equal to one. Thus a permutation matrix is a subpermutation matrix,and eah minor in a subpermutation matrix is equal to one. LetW be the subgroupof G onsisting of permutation matries. If M is the Levi fator of a standardparaboli subgroup, letWM = W \M . IfM =MJ , we will also denote WM =WJ .If M is the Levi fator of P , then in fat WM = W \ P .



4 BY DANIEL BUMPProposition 2.1. Let M and M 0 be the Levi fators of standard paraboli sub-groups P and P 0, respetively, of G. The inlusion of W in G indues a bijetionbetween the double osets WM 0nW=WM and P 0nG=P .First let us prove that the natural mapW ! P 0nG=P is surjetive. Indeed, we willshow that if g = (guv) 2 G, then there exists b0 2 B suh that b0g has the form wb,for b 2 B. Sine B � P , P 0 this will show that w 2 P 0ng=P . We will reursivelyde�ne a sequene of integers �(r), �(r � 1); � � � ; �(1) as follows. �(r) is to be the�rst positive integer suh that gr;�(r) 6= 0. Assuming �(r), �(r � 1); � � � ; �(u + 1)to be de�ned, we will let �(u) be the �rst positive integer suh that the minordet0BBB� gu;�(r) gu;�(r�1) � � � gu;�(u)gu+1;�(r) gu+1;�(r�1) � � � gu+1;�(u)... ...gr;�(r) gr;�(r�1) � � � gr;�(u)
1CCCA 6= 0:Now the olumns of b0 are to be spei�ed as follows. The last olumn of b0 is to bedetermined by the requirement that the �(r)-th olumn of b0g is to have 1 in ther; �(r) position, and zeros above. Assuming that the last u� 1 olumns of b0 havebeen spei�ed, we speify the u-th olumn from the right of b0 by requiring that ther� u; �(r� u) entry of b0g equal 1, while if v < r� u, then the v; �(r� u) entry ofb0g equals zero. Now let w be the permutation matrix with has ones in the u; �(u)positions, zeros elsewhere. Then b = w�1b0g is upper triangular. This shows thatthe natural map W ! P 0nG=P is surjetive.Now let us show that the indued map WM 0nW=WM ! P 0nG=P is injetive.Suppose that P = PJ , P 0 = PJ 0 , J = fj1; � � � ; jkg, J 0 = fj01; � � � ; j0lg. Suppose thatw, w0 2W , p, p0 2 P 0 suh that p0wp = w0. We must show that w and w0 lie in thesame double oset of WM 0nW=WM . Let us writew = 0�W11 � � � W1k... ...Wl1 � � � Wlk;1A w0 = 0B�W 011 � � � W 01k... ...W 0l1 � � � W 0lk 1CA ;

p = 0BB�P11 P12 � � � P1l0 P22 � � � P2l... . . . ...0 0 � � � Pll 1CCA ; p0 = 0BB�P 011 P 012 � � � P 01k0 P 022 � � � P 02k... . . . ...0 0 � � � P 0kk
1CCA ;where eah matrix Wuv or W 0uv is a j0u � jv blok, Puv is a ju � jv blok, and P 0uvis a j0u � j0v blok. Let us also denotefWtv = 0�Wt1 � � � Wtv... ...Wlv � � � Wlv 1A ; fW 0tv = 0B�W 0t1 � � � W 0tv... ...W 0lv � � � W 0lv1CA ;

eP 0t ;= 0B�P 0tt � � � P 0tl... ...0 � � � P 0ll1CA ; ePt;= 0�P11 � � � P1v... ...0 � � � Pvv1A :



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 5Evidently fW 0uv = eP 0ufWtv ePv, so W 0tv and Wtv have the same rank. Now the rank ofa subpermutation matrix is simply equal to the number of nonzero entries, and sorank(Wtv) = rank(fWtv)� rank(fWt�1;v)� rank(fWt;v+1) + rank(fWt�1;v+1):Thus rank(fWuv) = rank(fW 0uv). Sine this is true for every u, v it is apparentthat we an �nd elements multiply w on the left by elements of wM 2 WM andwM 0 2WM 0 suh that wMwwM 0 = w0.Corollary 2.2 (The Bruhat Deomposition). We haveG = [w2W BwB (disjoint):This follows by taking P = B.3. Paraboli indution and the \Philosophy of Cusp forms". Let J =fj1; : : : ; jkg be an ordered partition of r, and let Vu, u = 1; � � � ; k be modules forGL(ju; F ). Then V = V1
 � � �
Vk is a module for MJ . We may extend the ationof MJ on V to all of P , by allowing NJ to at trivially. Then let I(V ) = IM;G(V )denote the G-module obtained by induing V from P . The module I(V ) is be saidto be formed from V by paraboli indution.In order to have an analog of Frobenius reiproity for paraboli indution, itis neessary to de�ne a funtor from the ategory of G-modules to the ategoryof M -modules, the so-alled \Jaquet funtor." Thus, let W be a G-module. Wede�ne a module J (W ) = JG;M (W ) to be the set of all elements u suh that n:u = ufor all n 2 N . Sine N is normalized by M , J (W ) is an M -submodule of W . It isalled the Jaquet module. Other names for the Jaquet funtor from the ategoryof G-modules to the ategory of M -modules whih have ourred in the literatureare \loalization funtor," \trunation," and \funtor of oinvariants."Lemma 3.1. Let U be a G-module, U0 the additive subgroup generated by allelements of the form u � nu with u 2 U , n 2 N . Then U0 is an M -submoduleof U and we have a diret sum deompositionU = J (U)� U0:SineM normalizesN , U0 is anM -submodule of U . We show �rst that J (U)\U0 =f0g. Indeed, suppose that u0 =Pi(ui � ni ui) is an element of U0. If this elementis also in J (U), thenu0 = 1jN j Xn2N nu0 = 1jN jXi "Xn2N nui �Xn2N nniui# = 0:On the other hand, to show U = J (U) + U0, let u 2 U . Thenu = 1jN j Xn2N nu+ 1jN j Xn2N(u� nu);where the �rst element on the right is in J (U), while the seond is in U0.



6 BY DANIEL BUMPProposition 3.2. Let U be a G-module, M and N the Levi fator and unipotentradial, respetively, of a proper standard paraboli subgroup P of G. Then a ne-essary and suÆent ondition for JG;M (U) 6= 0 is that there exists a nonzero linearfuntional T on U suh that T (nu) = T (u) for all n 2 N , u 2 U .Indeed, a neessary and suÆient ondition for a given linear funtional T to havethe property that T (nu) = T (u) for all n 2 N , u 2 U is that its kernel ontain thesubmodule U0 of Lemma 3.1. Thus there will exist a nonzero suh funtional if andonly if U0 6= U , i.e. if and only if J (U) 6= 0.Proposition 3.3. Suppose that V is an M -module and U a G-module. We havea natural isomorphism(3.1) HomG(U; I(V )) �= HomM (J (U); V ):Indeed, by Frobenius reiproity (1.1), we have an isomorphismHomG(U; I(V )) �= HomP (UP ; V ):Reall that the ation of M on V is extended by de�nition to an ation of P byallowing N to at trivially. Then it is lear that a given M -module homomor-phism � : U ! V is a P -module homomorphism if and only if �(U0) = 0. ThusHomP (UP ; V ) �= HomM (UM=U0; V ). By Lemma 3.1, UM=U0 �= J (U).Proposition 3.3 shows that the Jaquet onstrution and paraboli indution areadjoint funtors.There is also a transitivity property of paraboli indution, analogous to (1.3).Proposition 3.4. Let M is the Levi fator of a paraboli subgroup P of G, and letQ be a paraboli subgroup of M with Levi fator M0. Then there exists a parabolisubgroup P0 � P of G suh that the Levi fator of P0 is also M0. Thus if V is anM0-module, then both IM0;M (V ) and IM;G(V ) are de�ned as M - and G-modules,respetively. We have(3.2) IM;G(IM0;M (V )) �= IM0;G(V ):We leave the proof to the reader.It is also very easy to show that:Proposition 3.5. The Jaquet and paraboli indution funtors are exat.An important strategy in lassifying the irreduible representations of redutivegroups over �nite or loal �elds onsists in trying to build up the representationsfrom lower rank groups by paraboli indution. This strategy was alled the Phi-losophy of Cusp Forms by Harish-Chandra, who found motivation in the work ofSelberg and Langlands on the spetral theory of redutive groups. An irreduiblerepresentation whih does not our in IM;G(V ) for any representation V of theLevi fator of a proper paraboli subgroup is alled uspidal.Proposition 3.6. Any irreduible representation of G ours in the ompositionseries of some represention of the form IM;G(V ), where V is a uspidal represen-tation of the Levi fator M of a paraboli subgroup P .Indeed, let P be minimal among the paraboli subgroups suh that the given rep-resentation of G ours as a omposition fator of IM;G(V ) for some representation



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 7V of the Levi fator M of P . (There always exist suh parabolis P , sine wemay take P to be G itself.) If V is not uspidal, it ours in the omposition se-ries of IM0;M (V0) for some Levi fator M0 of a proper paraboli subgroup of M .Now in Proposition 3.3 the given representation of G also ours in IM0;G(V0),ontraditing the assumed minimality of P .Aording to the Philosophy of Cusp Forms, the uspidal representations shouldbe regarded as the basi building bloks from whih other representations are on-struted by the proess of paraboli indution. Proposition 3.6 shows that everyirreduible representation of G may be realized as a subrepresentation of IM;G(V )where V is a uspidal representation of the Levi omponent P of a paraboli sub-group. Moreover, there is also a sense in whih this realization is unique: althoughP is not unique, its Levi fator M and the representation V are determined up toisomorphism. More preisely, we haveTheorem 3.7. Let V and V 0 be uspidal representations of the Levi fators Mand M 0 of standard paraboli subgroups P and P 0 respetively of G. Then eitherIM;G(V ) and IM 0;G(V 0) have no omposition fator in ommon, or there is a Weylgroup element w in G suh that wMw�1 = M 0, and a vetor spae isomorphism� : V ! V 0 suh that(3.3) �(mv) = wmw�1 �(v) for m 2M , v 2 V .In the latter ase, the modules IM;G(V ) and IM 0;G(V 0) have the same ompositionfators.Remark. The signi�ane of (3.3) is that if wMw�1 = M 0, then M and M 0 areisomorphi, and so V 0 may be regarded as an M -module. Thus (3.3) shows that� is an isomorphism of V and V 0 as M -modules. In other words, for the induedrepresentations to have a ommon omposition fator, not only do M and M 0 haveto be onjugate, but V and V 0 must be isomorphi as M -modules.We will defer the proof of this Theorem until the next setion. Of ourse theomplete reduibility of representations of a �nite group G implies that two G-modules have the same omposition fators if and only if they are isomorphi. Wehave stated the theorem this way beause this is the orret formulation over aloal �eld. Over a loal �eld, one enounters indued representations whih mayhave the same omposition fators, but still fail to be isomorphi.There are two problems to be solved aording to the Philosophy of Cusp forms:�rstly, the onstrution of the uspidal representations; and seondly, the deom-position of the representations obtained by paraboli indution from the uspidalones. We will examine the seond problem in the following setions.It follows from transitivity of indution that it is suÆient for a given irreduiblerepresentation to be uspidal that the representation does not our in IM;G(V )for any maximal paraboli subgroup P . Indeed, suppose that the representation isnot uspidal. Then it ours in IM0;G(V ) for some proper paraboli subgroup P0of G, and some representation V of the Levi fator M0 of P0. If P is a maximalparaboli subgroup ontaining P0, and ifM is the Levi fator of P , then by (3.2) italso ours in IM;G(IM0;M (V )). Thus if an irreduible representation ours in a



8 BY DANIEL BUMPrepresentation indued from a proper paraboli subgroup, it may be assumed thatthe paraboli is maximal.It follows from Proposition 3.3 that a a neessary and suÆient ondition for therepresentation U to be uspidal is that JG;M (U) = 0 for every Levi fator M of amaximal paraboli subgroup.4. Intertwining operators for indued representations. In this setion weshall analyze the intertwining operators between two indued representations. Weshall also prove Theorem 3.3. First let us establishProposition 4.1. Let J = fj1; � � � ; jkg, J 0 = fj01; � � � ; j0lg be two ordered partitionsof r, and let P = PJ , P 0 = PJ 0 . Let M �= GL(j1; F )� � � � � GL(jk; F ) and M 0 �=GL(j01; F )� � � � � GL(j0l; F ) be their respetive Levi fators. Let Vu, (resp. V 0u) begiven uspidal GL(ju; F )-modules (resp. GL(j0u; F )-modules). Let V = V1
� � �
Vk,V 0 = V 01 
 � � � 
 Vl, and let d = dimC HomG(IM;G(V ); IM 0;G(V 0)). Then d = 0unless k = l, in whih ase, d is equal to the number of permutations � of f1; � � � ; kgsuh that j�(u) = j0u; and suh that V�(u) �= V 0u as GL(j�(u); F )-modules for eahu = 1; � � � ; k.To prove Proposition 4.1, assume �rst that we are given nonzero intertwiningoperator in HomG(IM;G(V ); IM 0;G(V 0)), whih is supported on a single doubleoset of P 0nG=P . We will assoiate with this intertwining operator a bijetion� : f1; � � � ; kg ! f1; � � � ; lg whih has the required properties. Then we will showthat the orrespondene between double osets whih support intertwining oper-ators and suh � is a bijetion, and that no oset an support more than oneintertwining operator. This will show that the dimension d is equal to the numberof suh �.Given the intertwining operator, let � : G ! HomC(V; V 0) be the funtionassoiated in Theorem 3.1. Thus(4.1) �(p0gp):v = p0�(g) p:v for p 2 P , p0 2 P 0, v 2 V .Reall that we are assuming that � is supported on a single double oset P 0wP ,where by the Bruhat deomposition we may take the representative w 2 W . Let� = �(w) : V ! V 0.Now let us show that wMw�1 =M 0.First we show thatM 0 � wMw�1. Suppose on the ontrary thatM 0 6� wMw�1.Let NP be the unipotent radial of P . Then Q = M 0 \ wPw�1 is a proper (notneessarily standard) paraboli subgroup of M 0, whose unipotent radial NQ =M 0 \ wNPw�1 is ontained in the unipotent radial of wPw�1. Now let v 2 V ,and n 2 NQ. Applying (4.1) with g = w, p = w�1n�1w, p0 = n, we see thatn:�(w�1n�1w:v) = �(v). Now sine w�1n�1w is ontained in the unipotent radialof P , w�1n�1w:v = v, and so if n 2 NQ we have n:�(v) = �(v). Thus �(v) = 0,sine V 0 is uspidal. This shows that � is the zero map, whih is a ontradition.Therefore M 0 � wMw�1. The proof of the opposite inequality M 0 � wMw�1 issimilar.Now the isomorphism m! wmw�1 of M onto M 0 makes V 0 into an M -module.(4.1) implies that if m 2M , v 2 V , then(4.2) wmw�1 �(v) = �(mv):



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 9This implies that if V , V 0 are regarded as M -modules, they are isomorphi, sine� is an isomorphism. By Shur's Lemma, there an be only one isomorphism(up to onstant multiple) between irreduible M -modules, and sine by (4.1) � isdetermined by �, it follows that there an be at most one intertwining operatorsupported on eah double oset. On the other hand, if w is given suh that M 0 =wMw�1, and if the induedM -module struture on V 0 makes V and V 0 isomorphi,then denoting by � suh an isomorphism, so that (4.2) is satis�ed, it is lear that(4.1) is also satis�ed, sine the unipotent matries in both P and P 0 at triviallyon V and V 0.Thus by Proposition 2.1, the dimension d of the spae HomG(IM;G(V ); IM 0;G(V 0))of intertwining operators is exatly equal to the number of w 2WM 0nW=WM suhthat wMw�1 = M 0, and suh that the indued M -module struture on V 0 makesV �= V 0. It is lear that this is equal to the number of permutations � of f1; � � � ; kgsuh that j�(i) = j0i; and suh that V�(i) �= V 0i as GL(j�(i); F )-modules for eahi = 1; � � � ; k.Corollary 4.2. Let P � G be the standard paraboli subgroup PJ where J is theordered partition fj1; � � � ; jkg of r. Let M �= GL(j1; F )�� � ��GL(jk; F ) be the Levifator of P , and let Vu be given uspidal GL(ju; F )-modules. Let V = V1
� � �
Vk.Then I(V ) is reduible if and only there exist distint u, v suh that ju = jv, andVu �= Vv as GL(ju; F )-modules.This follows from Proposition 4.1 by taking P 0 = P .We now give the proof of Theorem 3.7. The only part whih is not ontained inProposition 4.1 is the �nal assertion that if there exists a Weyl group element w inG suh that wMw�1, and � suh that (3.3) is satis�ed, then the indued moduleshave the same omposition fators.The problemmay be stated as follows. Let J = fj1; � � � ; jkg and J 0 = fj01; � � � ; j0kgbe two sets of positive integers whose sum is r, and assume that J 0 is obtainedfrom J by permuting the indies j1. Thus there exists a bijetion � : f1; � � � ; kg !f1; � � � ; kg suh that j�(i) = j0i: Let Vi be a uspidal GL(ji; F )-module for i =1; � � � ; k, and let V 0i = V�(i). Let P = PJ , P 0 = PJ 0 , M = MP , and M 0 = MP 0 .Then V = V1
� � �
Vk and V 0 = V 01
� � �
V 0k areM - andM 0-modules respetively.What is to be shown is that IM;G(V ) and IM 0;G(V 0) have the same ompositionfators. Clearly it is suÆient to show this when � simply interhanges two adja-ent omponents. Moreover in that ase, by transitivity and exatness of paraboliindution (Propositions 3.4 and 3.5) it is suÆient to show this when k = 2. Nowif V �= V 0 this is obvious. On the other hand, if V 6�= V 0 then by Corollary 4.2,IM 0;G(V 0) is irreduible, and a nonzero intertwining map IM;G(V ) ! IM 0;G(V 0)exists by Proposition 4.1. Consequently IM;G(V ) �= IM 0;G(V 0). This ompletes theproof of Theorem 3.7.5. The Kirillov Representation. Let G = Gr = GL(r; F ) as before, and letPr be the subspae onsisting of elements having bottom row (0; : : : ; 0; 1). LetN = Nr be the subgroup of unipotent upper triangular matries, and let Ur be thesubgroup onsisting of matries whih have only zeros above the diagonal, exeptfor the entries in the last olumn. Thus Ur �= F r�1. If k � r, we will denote by Gkthe subgroup of G, isomorphi to GL(k; F ), onsisting of matries of the form� � 00 Ir�k � ;



10 BY DANIEL BUMPwhere `�' denotes an arbitrary k � k blok, and Ir�k denotes the r � k � r � kidentity matrix. Identifying GL(k; F ) with this subgroup of Gr, the subgroups Pk,Nk and Uk are then ontained as subgroups of Gr. Thus Pk = Gk�1:Uk (semidiretprodut).Let  =  F be a �xed nontrivial harater of the additive group of F . For k � r,let �k : Nk ! C� be the harater of Nk de�ned by�k0BBBBB�0BBBBB� 1 x12 x13 � � � x1k1 x23 � � � x2k1 . . . .... . . 1
1CCCCCA1CCCCCA =  (x12 + x23 + � � �+ xk�1;k):We will denote �r as simply �. Then let K = Kr be the module of Pr indued fromthe harater � of Nr. By de�nition K is a spae of funtions Pr ! C. However,eah funtion in K is determined by its value on Gr�1, and it is most onvenientto regard K as a spae of funtions on Gr�1. Spei�ally,K = ff : Gr�1 ! Cjf(ng) = �r�1(ng) f(g) for n 2 Nr�1g;and the group ation is de�ned by��h u1� f� (g) = �(gu) f(gh) for g, h 2 Gr�1, u 2 Ur, f 2 K.K is alled the Kirillov representation of the group Pr.Theorem 5.1. The Kirillov representation of Pr is irreduible.To prove this, it is suÆient to show that HomPr (K;K) is one dimensional. Letthere be given a double oset in NrnPr=Nr whih supports an intertwining operatorK ! K. Let � : Pr ! C be the funtion assoiated with the given intertwiningoperator. We may take a oset representative h whih lies in Gr�1. We will provethat h = Ir�1. Theorem 5.1 will then follow from Corollary 1.2.Suppose by indution that we have shown that h 2 Gk, where 1 � k � r�1. Wewill show then that h 2 Gk�1. (If k = 1, this is to be interpreted as the assertionthat h = 1.) Let � Ik�1 u1� 2 Uk;where u is a olumn vetor in F k�1. We have�h Ir�k � = 0� Ik�1 h:u1 Ir�k+11A�h Ir�k �0� Ir�1 u1 Ir�k+11A�1 ;and the bi-invariane property (1.4) of � implies that�k0�0� Ik�1 h:u1 Ir�k1A1A = �k0�0� Ik�1 u1 Ir�k1A1A :Sine this is true for all u, it follows that h 2 Gk�1.



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 116. Generi representations. Now let G be the representation of G indued fromthe representation � of N whih was introdued in Setion 5. Our objetive is toprove the following famous theorem of Gelfand and Graev [GG℄. The orrespondingtheorems over loal �elds and adele groups are due to Shalika [Sh℄. These resultsare often referred to as \multipliity one" theorems.Theorem 6.1. The representation G of G is multipliity-free.Let(6.1) w0 = w0(r) = 0� 1. . .1 1A :be the \longest" element of the Weyl group. If J = fj1; � � � ; jkg is a orderedpartition of r, we will also denotew(J) = 0B�w0(j1) . . . w0(jk)1CA ;where w0(j) is de�ned by (6.1).We will need some elementary fats about the ation of the Weyl group on theroot system. Let � be the set of all roots of G relative to the Cartan subgroup A,and let 
 be the set of all simple positive roots. If � 2 
, s� 2 W will denote thesimple reetion suh that s�(�) = ��. If S is any subset of 
, there is a orderedpartition J = fj1; � � � ; jkg of r suh that the subgroup of W generated by the s�suh that � 2 S isWM , whereM =MJ . Thus there is a bijetion between the set ofsubsets of 
 and the ordered partitions of r. The root system 
(M) of M relativeto A (whih is the disjoint union of the root systems for GL(j1); � � � ; GL(jk)) isnaturally inluded in 
.Lemma 6.2. Let M be the Levi fator of a standard paraboli subgroup of G. If�, �1; � � � ; �l 2 
 suh that � =2 
(M), �1; � � ��l 2 
(M), and if �+ �1 + : : :+ �lis a root, then �+ �1 + : : :+ �l > 0 if and only if � > 0.Lemma 6.3. Let S be a subset of 
, and let J be the ordered partition of r suhthat the subgroup ofW generated by the s� suh that � 2 S isWM , whereM =MJ .Then if � 2 S, w(J)(�) < 0, and �w(J)(�) 2 S. On the other hand, if � 2 
 but� =2 S, then w(J)(�) = � + �, where � is the sum of roots in 
(M), and in thisase w(J)(�) > 0.We omit the proofs of Lemmas 6.2 and 6.3, whih are not hard to hek.Lemma 6.4. If w 2 W and a 2 A suh that �(n) = �(wan (wa)�1) whenever nand wan (wa)�1 are both in N , then there exists a ordered partition J of r suhthat w = w0w(J), and a is in the enter of MJ .To prove this, we apply Lemma 6.3 with S be the set of � 2 
 suh that w� isa positive root. Let us show �rst that if � 2 S, then w� is a simple root. Letx� : F ! G be the standard one-parameter subgroup of G, so that if a 2 A, � 2 F ,then ax�(�)a�1 = x�(�(a)�). Let X� be the image of x�. Let � 2 F , and let



12 BY DANIEL BUMPn = x�(�) 2 X�. Then n and (wa)n (wa)�1 are both in N , sine (wa)n (wa)�1 =xw�(�(a) �). Sine �jX� is nontrivial, the hypothesis of the Lemma implies that�jXw� is also nontrivial. Thus w� is a simple root.Furthermore, the hypothesis of the Lemma implies that  (�(a) �) =  (�), andonsequently �(a) = 1 for all � 2 S. This implies that a is in the enter of WJ .Let us show now that wMw�1 is the Levi fator of a standard paraboli sub-group. Indeed, M is generated by the set of one parameter subgroupsfX�j� 2 � is a linear ombination of roots in Sg;so wMw�1 is generated by the set of one parameter subgroupsfX�j� 2 � is a linear ombination of roots in wSg:As we have just shown that wS is a subset of 
, this wMw�1 is the Levi fator ofa standard paraboli subgroup.Now we show that if � 2 
, then (ww(J))(�) < 0. Firstly, if � =2 S, then byLemma 6.3, (ww(J))(�) = w(�)+w(�), where � is the sum of roots in 
(M). Nowwe apply Lemma 6.2. Note that w(�) =2 
(wMw�1), while w(�) is the sum of rootsin 
(wMw�1), so by Lemma 6.2, (ww(J))(�) is negative sine w(�) is negative bythe de�nition of S. On the other hand, if � 2 S, then by Lemma 6.2 �w(J)(�) 2 S,and so w(�w(J)(�)) > 0 by the de�nition of S. Thus (ww(J))(�) < 0 in this asealso.Sine ww(J) takes every simple positive root to a negative root, ww(J) = w0,and so w = w0w(J). This ompletes the proof of Lemma 6.2.We turn now to the proof of Theorem 6.1. The strategy is to prove that the alge-bra of endomorphisms of G is abelian. This implies that G is multipliity free, sineif G ontains k opies of some irreduible representation, then the endomorphismring of G ontains a opy of the ring of k � k matries over C.The proof depends on the existene of the anti-automorphism �(g) = w0 tg w0 ofG. Evidently �(gg0) = �(g) �(g0). Furthermore, � stabilizes N , and its harater �.By Corollary 1.4, the endomorphism ring of G is isomorphi to the onvolutionalgebra of funtions � satisfying(6.2) �(n1 g n2) = �(n1)�(g) �(n2)for n1, n2 2 N , g 2 G. Evidently � indues an anti-involution on this ring. We willargue that any suh funtion � is stabilized by �. This will prove that the ring isabelian, sine then �1 ��2 = �(�1 ��2) = ��2 � ��1 = �2 ��1.Let us therefore onsider a funtion � satisfying (6.2), whih is supported ona single double oset in NnG=N . It follows from the Bruhat deomposition thatwe may hoose a oset representative in the form wa where w 2 W , a 2 A. Then(6.2) amounts to the assertion that the hypotheses of Lemma 6.2 are satis�ed. Wemay therefore �nd J suh that w = w0w(J), and a is in the enter of MJ . Thus�(wa) = w0 t(w0 w(J) a)w0 = w0 aw(J)w0w0 = w0 w(J)a = wa. This shows that� stabilizes every double oset of NnG=N whih supports a funtion � satisfying(6.2). Therefore the onvolution algebra is �-stable, as required.



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 13Let V be an irreduible G-module. If there exists a nonzero G-homomorphismV ! G, then we all V generi. In this ase, the image of V in G is alled theWhittaker model of V . By Theorem 6.1, it is the unique spae WV of funtionsf on G with the property that f(ng) = �(n) f(g) for n 2 N , stable under righttranslation by G suh that the G-module ation by right translation onWV a�ordsa representation isomorphi to V .LetC� denote a one-dimensionalN -module a�ording the harater �, so that G =CG� . By Frobenius reiproity (1.1), the existene of a G-module homomorphismV ! G is equivalent to the existene of an N -module homomorphism V ! C�.Thus V is generi if and only if there exists a linear funtional T on V suh thatT (n:v) = �(n)T (v) for all n 2 N , and v 2 V . If suh a funtional exists, it isunique up to salar multiple, sine by (1.1) and Theorem 6.1, the dimension of thespae of suh funtionals isdimHomN (V;C�) = dimHomG(V;G) � 1:Let C� denote a one-dimensional N -module a�ording the harater �, so thatG = CG� . Whether or not V is irreduible, we will all a linear funtional T onV suh that T (n:v) = �(n)T (v) for all n 2 N , and v 2 V Whittaker funtional.Thus a Whittaker funtional is essentially an N -module homomorphism G ! C�.By Frobenius reiproity, the existene of a G-module homomorphism V ! G isequivalent to the existene of a Whittaker funtional. Thus V admits a Whittakerfuntional if and only if it has an irreduible omponent whih is generi. If V isirreduible, then by (1.1) and Theorem 6.1, the dimension of suh funtionals isdimHomN (V;C�) = dimHomG(V;G) � 1:7. Cuspidal representations are generi. We will proveProposition 7.1. Let V be a uspidal G-module, T0 be a nonzero funtional onV . Then there exists a nonzero Whittaker funtional T in the linear span of thefuntionals v 7! T0(pv) (p 2 Pr). Moreover, if v0 2 V suh that T0(v0) 6= 0, thenthere exists g 2 Gr�1 suh that T (gv0) 6= 0.We will follow the notations introdued in Setion 5. Furthermore, if 1 � k � r, letNk = Uk+1 � Uk+2 � : : : � Ur, so that N = NkNk. Let us assume by indution thatThere exists a nonzero funtional Tk in the linear span of the funtionals v 7! T0(pv)(p 2 Pr) suh that Tk(nv) = �(n)Tk(v) for n 2 Nr�k. Moreover, there existsgk 2 Gr�1 suh that Tk(gkv0) 6= 0.Sine Nr is redued to the identity, the indution hypothesis is satis�ed when k = 0.We will show that if it is satis�ed for k < r � 1, then it is satis�ed for k + 1.Let Sk be the spae of all linear funtionals T in the linear span of the funtionalsv 7! Tk(p v) (p 2 Pr�k). Observe that if T 2 Sk, then T (nv) = �(n)T (v) for alln 2 Nr�k, beause if p 2 Pr�k and n 2 Nr�k, then pnp�1 2 Nr�k, and �(pnp�1) =�(n). Thus we have a (right) ation of Pr�k on Sk, de�ned by T p(v) = T (pv).The subgroup Ur�k of Pr�k is abelian, and so its ation on Sk may be deom-posed into one-dimensional eigenspaes. Let T be an nonzero element of Sk be suhthat T (nv) = �(n)T (v) for n 2 Ur�k, where � is a harater of Ur�k. Sine Tk isa linear ombination of suh eigenfuntions, we may assume that T (gkv0) 6= 0.



14 BY DANIEL BUMPNote that � annot be the trivial harater beause V is uspidal: for if J isthe ordered partition fr � k � 1; k + 1g of r, and if � is zero, then if � = 1 wehave T (nv) = T (v) for all n in the unipotent radial of PJ , beause suh n an befatored as n1 n2 where n1 2 Ur�k and n2 2 Nr�k, and n2 satis�es �(n2) = 1. ByProposition 3.2, this ontradits the uspidality of V .Now sine � 6= 1, there exists g 2 Gr�k�1 suh that �(n) = �(gng�1) for alln 2 Ur�k. Then Tk+1 = T g satis�es T g(nv) = �(n)T g(v) for all n 2 Ur�k, andindeed for all n 2 Ur�k�1 = Ur�k Ur�k. Also, we may take gk+1 = g�1gk, so thatTk+1(gk+1v0) = T (gkv0) 6= 0. This ompletes the indution.Now Tr�1 is learly a nonzero Whittaker funtional, and Tr�1(gr�1v0) 6= 0.Theorem 7.2. Cuspidal representations are generi.This is an immediate onsequene of Proposition 7.1.Theorem 7.3. Let V be a uspidal G-module. Then as a Pr-module, V is isomor-phi to the Kirillov representation.To see this, observe �rst by Theorems 6.1 and 7.2, HomG(V;G) is one-dimensional.Thus Frobenius reiproity (1.1),dimHomPr (VPr ;K) = dimHomG(V;G) = 1:Thus there exists a unique nontrivial Pr-homomorphism � : V ! K, and by Theo-rem 5.1, this is surjetive. We must show that it is injetive. Let V0 be the kernelof �, whih is a Pr-module. Then K does not our in V0 as a omposition fator.If V0 is not redued to the identity, let v0 be a nonzero vetor. It follows fromProposition 7.1 that there exists a Whittaker funtional T on V and g 2 Gr�1 suhthat T (gv0) 6= 0. Sine g 2 Pr, and sine V0 is a Pr-module, gv0 2 V0, and so therestrition of T to V0 is not identially zero. Thus if C� denotes a one dimensionalN -module a�ording the harater �, dimHomN (V0;C�) > 0. By Frobenius rei-proity, this is equal to the dimension of HomPr (V0;K). This is a ontradition,sine V0 does have K as a omposition fator.Thus a uspidal representation V has a unique Pr-embedding in K, whih is anisomorphism. This realization of V as a spae of funtions on Gr�1 is alled theKirillov model of V . Kirillov models were introdued on GL(2) by Kirillov [K℄, andused extensively by Jaquet and Langlands [JL℄. For r > 2, Kirillov models wereintrodued by Gelfand and Kazhdan [GK℄.Corollary 7.4. If V is a uspidal G-module, thendim(V ) = (qr�1 � 1)(qr�2 � 1) � : : : � (q � 1):Indeed, this is the dimension of K.8. A further \Multipliity One" Theorem. The theorem in this setionomplements Theorem 6.1.Theorem 8.1. Let P be a standard paraboli subgroup of G, and let V0 be a uspidalrepresentation of the Levi fator M of G, and let V = IM;G(V0). Then V has aunique Whittaker model.Thus V has a unique generi omposition fator, and if V is irreduible, V is itselfgeneri.



NOTES ON REPRESENTATIONS OF GL(r) OVER A FINITE FIELD 15Let C� denote the omplex numbers given the struture of a one-dimensional N -module a�ording the harater �. We must alulate the dimension of HomN (V; �),whih by Frobenius reiproity is the same as the dimension of HomG(V;G). ByTheorem 1.1, this equals the dimension of the spae of funtions � : G! HomC(V0;C�)whih satisfy �(ngp) = �C� (n) Æ�(g) Æ �V0(p) if n 2 N , p 2 P . Thus(8.1) �(ngp):v = �(n)�(g):p(v)for n 2 N , p 2 P , v 2 V0. We will show that the spae of suh funtions isone-dimensional.We will use the notations of Setion 6 for the root system.Let NwP be a double oset on whih � does not vanish. By Proposition 1.2, wemay hoose w 2W , and we may hoose w modulo right multipliation by elementsof WM . Let S be the set of all � 2 
 suh that w�1� 2 �(M). Then w�1S is aset of linearly independent roots in �(M), and so there exists w1 2WM suh that(ww1)�1� < 0 for all � 2 S. Sine NwP = Nww1P , we may replae w by ww1,i.e. we may hoose the oset representative w so that w�1� < 0 for all � 2 
 suhthat w�1� 2 �(M).We show now that this implies that w = w0. It is suÆient to show thatw�1� < 0 for all � 2 
. Sine we already know this when w�1� 2 �(M), we mayassume w�1� =2 �(M). Suppose on the ontrary that w�1� > 0. Let n 2 X� suhthat �(n) 6= 1. Suh n exists sine � is a simple root. Now w�1nw 2 Xw�1�. Sinew�1� is a positive root whih is not in �(M), w�1nw lies in the unipotent radialof P , and therefore w�1nw:v = v for all v 2 V0. Now by (8.1),�(w):v = �(w:w�1nw):v = �(nw):v = �(n)�(w):v;so �(w) is simply the zero map. This ontradition shows that w = w0.We have shown that the only double oset whih ould support an intertwiningoperator is Nw0P . Now let us show that this partiular double oset supportsexatly one suh intertwining operator. Let P = PJ , and let w(J) be as in Setion 6.Then w0w(J) lies in the oset Nw0P , and � is determined by the funtional T =�(w0w(J)) of V0, sine we must have(8.2) �(nw0p) = �(n)T Æ �V0(w(J)p):We will show that there is, up to onstant multiple, a unique funtional T on V0suh that we may de�ne � by (8.2). Indeed, for this de�nition to be onsistent, itis neessary and suÆient that(8.3) �(n)T Æ �V0(w(J)p) = T Æ �V0(w(J))whenever n 2 N , p 2 P suh that nw0p = w0. If nw0p = w0, then p = w�10 n�1w0is lower trianguler, hene is an element of w(J)�1NJw(J). Let us write p =w(J)�1n1w(J), where n1 2 NJ . Note that �(n1) = �(n)�1, so (8.3) is equiva-lent to T Æ �V0(n1) = �(n1)T:Thus T must be a Whittaker funtional on V0, and the spae of suh is one di-mensional by Theorems 7.2 and 6.1. We see that the spae HomN (V; �) is onedimensional.


