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Foreword

1. I wrote these notes to learn the material covered in the book of Jacquet and Langlands [JL] titled
“Automorphic forms on GL(2).” The book contains a great deal of information, but I found it to be
somewhat disorganized. The point of these notes is simply to reorganize the material in that book to
make it easier for me (and possibly others) to understand.

2. Most of the statements and proofs of propositions in these notes are taken directly from other
sources. I have tried to be good at referencing exactly from where and from which source everything I
took originally comes, but I may have missed a few things.

3. Broadly speaking, these notes cover the following material:

1. Most of chapter one of Jacquet-Langlands: all of the theory of GL(2) over a non-archimedean field
and most of the theory over archimedean fields.

2. Some of the first three sections of chapter two of Jacquet-Langlands.
3. None of the last section of chapter two or any of chapter 3 of Jacquet-Langlands.
4. Most of the first three chapters of Shimura’s book [Sh] (and none of the rest of the book).

The notes therefore cover a large part of Bump’s book [Bu] since most of the material in that book is
contained in the above list. I hope to expand on these notes over time to include more.
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Chapter 1

Complements

1.1 The representation theory of compact groups

1. In this section we very briefly go over some facts and definitions about representations of compact
topological groups.

2. Let K be a compact topological group. We let K denote the set of isomorphism classes of finite
dimensional irreducible representations of K. An element of K is called a K-type. We say a finite
dimensional representation V' of K has type o € K is V has isomorphism type o.

3. Let V be a representation of K and let o be a K-type. We define the o-isotypic component of V',
denoted V' (o), to be the sum of all finite dimensional stable subspaces of V' which are irreducible and of
isomorphism type o. We say that o is a type of V if V(o) is nonzero.

4 Proposition (K-V Prop 1.18). LetV be a representation of K and let o be a K-type. Then V(o)
18 isomorphic to a direct sum of representations of type o; in any such decomposition, the cardinality
of terms in the direct sum is equal. Thus the multiplicity of o in 'V is a well defined (possibly infinite)
cardinal.

Note that in Knapp-Vogan the proposition is stated only for compact Lie groups, but their proof
works for any compact group.

5. Let V be a representation of K and let v be an element of V. We say that v is K-finite if the
following two conditions hold:

1. v lies in a finite dimensional stable subspace W of V.
2. The map K — GL(W) is continuous (and thus, if K is a Lie group, smooth).

Following Knapp-Vogan, we say V' is locally K -finite if all of its elements are K-finite.

6. Let C(K) be the space of measurable complex valued functions on K. It is an algebra with respect
to convolution (using the unique bi-invariant normalized Haar measure).

7. Let 0 be a K-type. We define an element £ = £, of C'(K) as follows: if (7, V) is any representation
of type o then

&(9) = (dego)trm(g).

The function ¢ is easily verified to be an idempotent of C(K). If o/ # o then &, and £, are orthogonal
idempotents. Thus if oq,...,0, are distinct K-types then { = Y. &,, is an idempotent; we call such
idempotents elementary. More precsiely, we say that £ is the elementary idempotent corresponding to
O1y...y0p.



8 Proposition (K-V Prop. 1.18, 1.20). Let (mw, V) be a locally finite representation of K.

1. Let f be an element of C(K), v an element of V and W a finite dimensional stable subspace in
which V' lies. Define

(o = /K F(g)n(g)udg

where dg is the unique normalized Haar measure on K (note that the integral is well-defined since
the integrand takes values in the finite dimensional space W ). Then f +— w(f) gives a representation
of the algebra C(K) on V.

2. If £ =&, then w(€) is a projection operator onto V(o).
3. V decomposes into a direct sum of the V(o).
9. Let W be a finite dimensional representation of K with types o1,...,0.. Let £ be the elementary

idempotent corresponding to o1, ..., o,; we also say £ is the elementary idempotent of W. The proposition
implies 7(§) =1 on W.

1.2 Distributions on smooth manifolds

10. This section is loosely based on the discussion of distributions in Knapp-Vogan. See appendix B in
particular. We omit proofs.

11. Throughout this section the word “manifold” will mean a smooth real manifold with a countable
base.

1.2.1 The topological vector spaces C*°(X)

12. If X is a manifold we let C°°(X) denote the space of smooth complex valued functions on X; in
this section we discuss the topology on this vector space.

13. We let VF*°(X) denote the Lie algebra of smooth vector fields on X (recall that a smooth vector
field is a smooth section of the tangent bundle TX) and we let VES°(X) denote the Lie subalgebra
consisting of those vector fields with compact support. The action of a smooth vector field on a smooth
function gives a Lie algebra representation of VF*(X) on C*°(X).

14. We let % °°(X) denote the universal enveloping algebra of VF*(X) and we let %.>°(X) denote the
universal enveloping algebra of VF.°(X) (recall that the universal enveloping algebra of a Lie algebra
g is the quotient of the tensor algebra of g by the relations XY — YX = [X,Y]). The Lie algebra
representation of VF*(X) on C*°(X) mentioned in the previous article implies that C°*°(X) is naturally
a module over the algebra % *°(X).

15. An element D of %,°(X) defines a semi-norm on C*°(X) by
[fllp = max|Df|

(note that D f is a smooth function with compact support on X, so it makes sense to take its maximum).

16. We define the topology on C*°(X) to be the weakest topology for which all of the semi-norms || - || p
(with D in %°(X)) are continuous.

17. There is a slight variant of the above definition which is sometimes useful. If D is an element of
%> (X) and K is a compact subset of X define a semi-norm on C*°(X) by
I7llp.5 = max |Df|.

It is easily seen that the topology given by this family of semi-norms is the same as the topology defined
above.



18 Proposition (K-V Prop. B.7). Let X be a manifold. Then a countable collection of the semi-
norms || - ||p suffices to define the topology on C*°(X). Thus C°(X) is a Frechet space and therefore
metrizable.

19 Proposition. Let X be a manifold. Then the map
C®(X) x C*(X) - C*(X)

given by pointwise multiplication of functions is continuous .

If D is a vector field on X and f and g are elements of C°°(X) then D(fg) = fDg+ ¢gDf. From this
one sees that there is a Leibnitz formula for more general elements D of 7 °°(X). It is then easy to see
that if f and ¢ are small in a seminorm || - |p then so is fg.

1.2.2 Distributions on manifolds

20. We let /(X)) denote the dual of the topological vector space C*°(X), that is, &’(X) is the vector
space of all continuous linear functionals on C*°(X). For reasons that will be explained momentarily,
elements of &'(X) are called distributions of compact support on X.

21. If T is an element of &’(X) and f an element of C*°(X) we write
(T, )

or, when variable names need emphasis,

[ f@ar

to indicate the value of the functional T" at f.

22. Let T be an element of &’(X). We define the support of T, denoted supp T, to be the following
subset of X: a point z is not in supp 7T if there exists an open neighborhood U of x and a function ¢ in
C*°(X) with support contained in U such that (T, ¢) # 0. Clearly, the complement of supp T is an open
set and so supp T is closed.

23 Proposition (K-V Prop. B.15). FElements of &'(X) have compact support.

24. Proposition 23 partially explains the name “distributions of compact support.” To fully explain
the name, we must introduce the space C2°(X): it is, of course, the space of functions in C*°(X) with
compact support. This space has a topology which we do not define; suffice it to say that it is not the
subspace topology inherited from C*°(X). It is in fact stronger (or at least, no weaker). In other words,
the inclusion map

i:0X(X)— C>®(X)
is continuous but not a homeomorphism onto its image.
Let &(X) be the dual of the topological vector space C2°(X). Elements of &(X) are called distri-
butions on X. One may define the support of a distribution in much the same way that we defined the
support of an element of &”(X). Since ¢ is continuous there is a pullback map

it &N(X) - E(X).

The point of all of this is: the image of i* is precisely the space of distributions on X which have compact
support. This explains why elements of &'(X) are called “distributions of compact support.”

25. Note that distributions of compact support push forward: if f : X — Y is a map of smooth
manifolds and T is a distribution of compact support on X then we obtain a distribution of compact
support f,T on Y via the formula

(T, ¢) = (T, f )
where ¢ is an element of C*°(Y) and f*¢ is its pullback, i.e., the composition ¢ f. Thus, by definition,
f« and f* are adjoint.

10



26. Let f be an element of C°°(X). It follows from proposition 19 that the endomorphism of C°°(X)
given by multiplication by f is continuous. If T is a distribution on X of compact support we may
pullback T by this endomorphism to get a distribution of compact support on X which we denoted by
fT. If ¢ is an element of C°°(X) then we have

(fT,9) = (T, f9).
Thus &’(X) is a module over C*(X).

1.2.3 Examples of distributions

27. Let X be a smooth manifold and let dx be a Borel measure on X which assigns finite volume to
compact sets. Let D be an element of %>°(X). For ¢ in C*°(X) define

1.6) = [ (Do)(a)da

X

Then T is a distribution of compact support on X. Note that, in fact, suppT = supp D N supp(dz).
Most distributions that we will encounter are of this form. We give two special cases.

1. If D is a smooth function f and dx is given by a volume form then (T, ¢) is given by integrating ¢
against f over X. This construction yields a map

02 (X) — &'(X).

If T is an element of the image of this map, we will sometimes simply refer to 7" as a smooth
function with compact support.

2. If dx is the point-mass measure supported at = then T is the evaluation of D¢ at x. Thus, for
instance, if D =1 then (T, ¢) = ¢(z) and T is the famous Dirac distribution supported at x.

1.2.4 Distributions on product spaces
28 Proposition (K-V Thm B.20). Let X and Y be smooth manifolds and let T be a distribution
of compact support on X.

1. Given an element f of C*(X xY) the function f' on'Y given by

'w:/QWWMNw

is an element of C*(Y).

2. The map
C®(X xY)—C>™(Y)

given by f — [’ is continuous.
29 Proposition (K-V Thm. B.20). Let X and Y be smooth manifolds and let S and T be
distributions of compact support on X and Y .

1. There exists a unique distribution of compact support S x T on X XY such that if ¢ is an element
of C*(X) and ¢ is an element of C°(Y) and ¢ X 1 is the function on X XY whose value at (x,y)

is ¢(x)Y(y) then
(S X T, ¢ x ) =(S,0)(T, ).

2. (Fubini’s theorem.) For all f in C*(X X Y') we have

/Xxyﬂ”) (S x T)(z,y) = //f:cydT )dS(z //f:cde )dT (y).

1.2.5 Distributions supported on submanifolds

11



30. Let X be a manifold and Y a closed submanifold. We let &’(X,Y) denote the space of distributions
of compact support on X with support contained in Y.

31. Let C*(X,Y) denote the space of germs of functions smooth functions on X near Y, that is,
C*>(X,Y) is the quotient of C*°(X) obtained by identifying f and g if there exists an open set U
containing Y such that the restrictions of f and g to U are equal. There is a natural map

C®(X) - C®(X,Y).
If T is an element of &'(X,Y") and f is an element of C*°(X) then (T, f) only depends on the class of f
in C=(X,Y).

32. Again let X be a manifold and Y a closed submanifold. Let ¢ : ¥ — X be the inclusion. Let
7w : NY — Y be the normal bundle of 7, that is the quotient of i*(TX) by TY. Let ¢t : NY — X be a
tubular neighborhood of Y in X. Note that this allows us to write i*(TX) = TY @& NY, i.e., the tubular
neighborhood tells us how to split the exact sequence

0——=TY —i*(TX) —= NY —=0.

Let D be a smooth section of NY. We can pullback D via 7 to obtain a section NY — 7*(NY'). Note
that 7* (NY") is canonically a sub-bundle of ¢*(T'X). Thus, from D we get a section 7*D : NY — t*(TX).
Now let x be a bump function which is 1 on Y and has support contained in NY. Then D’ = y7* D may
be regarded as a smooth section of TX. Note that if Dy and Dy are two sections of NY then D] and D)
are commuting vector fields on X. Thus, letting 7 *°(X,Y’) denote the smooth sections of Sym(NY),
the above construction yields a map

U=(X,Y) — U (X).

One should think of elements of Z *°(X,Y) as differential operators in a neighborhood of Y which act
in the direction normal to Y.

33. If T is a distribution of compact support on X and D is an element of Z > (X,Y) we let D x T be
the distribution of compact support on X given by

(D xT,¢) =(T,Dg).

34 Proposition (due to Schwartz, K-V Thm. B.28). Let X be a manifold andi:Y — X a
closed submanifold. Then the map

UC(X,Y)@&(Y)— &(X;Y)
given by (D,T) — D x i, T is an isomorphism (the tensor product is over C*(Y)).

35. Intuitively, proposition 34 says that a distribution of compact support on X with support contained
in Y is made up of distributions of compact support on Y together with derivatives in the normal
direction to Y.

1.2.6 Distributions on Lie groups

36. We now assume that the manifold in question, which we now denoted by G, is a Lie group. This
gives us two maps

w:GxG— G, t:G— G

the multiplication and inversion in the group. Using these maps we get several operations on distributions,
which we now discuss.

12



37. Let g be an element of G and let T be a distribution of compact support on G. Let L(g) and
R(g) be the left and right multiplication by g maps on X (i.e., L(g)(h) = gh and R(g)(h) = hg). We
define A\(¢g)T to be the pushforward of T under L(g); we define p(¢g)T to be the pushforward of T under
R(g™!) (note the inverse). Since L(g192) = L(g91)L(g2) and R(g1g2) = R(g2)R(g1), it follows that A and
p are representations of X on the space §'(G); we call these the left reqular representation and the right
regular representation.

38. We also define left and right regular representations of G on C*°(G). In this case, if f is an element
of C*°(G) then A(g)f is the pullback of f under A(g~!) while p(g)f is the pullback of f under R(g).
Note that

M) N)(h) = flg™ h), (p(9)f)(h) = f(hg).
Clearly, we have

AT, ¢) = (T, X9~ "), (p(g)T,d) = (T, plg~")9).

39. Let T be a distribution of compact support on G. We define the transpose of T', denoted T, to be
the pushforward of T' under ¢. If f is an element of C°°(G) then we define the transpose of f, denoted
1V, to be the pullback of f under ¢. Note that fV(x) = f(x~!). By the adjointness of ¢, and ¢* we see
that

<Tv’f> = <T7 fv>

40. Let S and T be distributions of compact support on G. We define the convolution of S and T,
denoted S * T, to be the pushforward of S x T under the multiplication map, that is,

ST = p.(SxT).
Some comments:

1. If ¢ belongs to C*°(X) then

w*mwzwxmwwz/ b(ay)dS (2)dT(y).

GxG

2. If S and T are given by integrating smooth functions f and g of compact support against the left
Haar measure, then

s:7.0)= [ [ stans@atidzds = [ o) [ seata sy
aJla G G
so that S % T is given by integrating f * g against the left Haar measure. Thus convolution of

distributions naturally extends convolution of functions.

3. Since p is associative it follows that convolution of distributions is as well. Thus &”(G) forms an
associative algebra under convolution. The Dirac distribution supported at the identity element of
X is an identity element under convolution. The algebra &’(G) is not commutative unless G is.

4. We have
supp(S * T') C (supp S)(supp T)

where the product on the right is pointwise product of sets.

41. We can also define the convolution of a distribution of compact support 7" with an element f of
C2°(@G); the result is an element of C'°(G). This can be done directly by defining

(f*T)g) = (T Mg Nf),  (Txf)@)=(T",p(9)])-
Some comments:
1. f+T and T * f are smooth functions by proposition 28; it is clear that they have compact support.

2. It is easily verified that if S is the distribution of compact support given by integrating f against
the left Haar measure then S * T and T % .S are the distributions of compact support given by
integrating f « T and T * f against the left Haar measure.

13



3. The following two identities are easily verified
<T*S,f> - <va*5v> - <SaT\/*f>'

42. The following easily verified formula relate the right and left regaulr representations to convolution
with the Dirac distribution d, supported at g:

Frdg=plg™)f by f=\o)S
T 6, =p(g~ T, 0y xT = Ng)T

43. Let g be the Lie algebra of G, gc¢ its complexification and % the universal enveloping algebra of
gco. Elements of 7 may be treated as distributions supported at the origin (in fact, by a theorem of
Schwartz, all distributions with supported at the origin are of this form). For the sake of clarity, we will
sometimes write 6(X) for the distribution corresponding to X.

We define the transpose map on % to be the unique anti-involution which is equal to multiplication
by —1 on g. The identites

SX)Y = 3(XY), 8y #0(X) * 3,1 = p(g)M9)d(X) = 6((Ad g)X)
follow easily.

44. Note that, since everything is smooth, the regular representations of G on C*(G) and &'(G)
can be differentiated to yield representations of the Lie algebra g of G on these spaces. We thus get
representations of gc and % as well. Some comments:

1. We have
AX)T,¢) = (T NXY)d),  (p(X)T,¢) = (T, p(X)9).

2. If X is an element of % and f is an element of C°°(X) then p(X)f is the unique left invariant
differential operator whose evaluation at the identity is §(X)f. Similarly, A(X)f is the unique right
invariant operator equal to §(X")f at the identity. The identities

(P(X)F)lg) = (6(X), M7 f),  (MX)f)(g) = (8(X). plg) f)
follow easily from this description.
3. For fin C*(G), T in &’'(G) and X in % we have
fro(X)=p(X)f,  6(X)x f=NX)f
T x6(X) = p(XY)T, O(X)*«T =XX)T

4. Tt is now easy to see that the map ¢ :  — &’(X) is in fact an algebra homomorphism, that is
§(X)*6(Y)=0(XY).

45 Proposition (K-V Prop. 1.68). Let G be a Lie group and i : H — G a closed subgroup. Then

the map
U(9) @z ) 6'(H) — &'(G, H)

sending X @ T to §(X) * (i.T) is an isomorphism.
46 Proposition (K-V Prop. 1.26, 1.31). Let K be a compact Lie group.
1. The smooth functions on K which are K-finite under both \ and p form a two sided ideal of &' (K).

2. Any element of &' (K) which is K-finite under either A or p is in fact a smooth function and
K-finite under both A and p.
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The first assertion is clear; we prove the second. Let T be a distribution which is K-finite under
A contained in the finite dimensional A-stable subspace W. Let £ be the elementary idempotent of W.
Note that & is a smooth on K which is K-finite under both A and p. Now, if ¢ is any element of C*°(K)
then we have

T, ¢) = /K £(9)(\(g)T. 8)dg = /K £(9)(T. Mg ™")d)dg
- /K £(9) (6 TV)(g)dg = (. 6+ TV) = (6% T, )

Thus T = A§)T = &« T is smooth and K-finite under both A and p by the first statement.

1.3 Basic algebraic and topological constructs
1.3.1 Limits of topological spaces

47 Lemma. LetY be a space and (X4)aer a direct system of spaces. Then the natural map
h : colim (Xa X Y) — (colimXa) xY

is a homeomorphism.
Let A be the colimit of the X, x Y as sets. Let m; be the natural projection map

7r1:H(Xa><Y)—>A

to be the natural projection map. Recall that colim (Xa X Y) is the set A with the the strongest topology
such that 7 is continuous.
Let B be the colimit of the X, as sets. Let my be the natural projection map

WQ:HX(X—>B

Once again, colim X, is the set B with the the strongest topology such that o is continuous. One easily
checks that (colim Xa) x Y is the set B x Y with the strongest topology such that 7y X id is continuous.
Now, we have the following commutative diagram:

[I(XaxY)— (I[Xa) XY

ﬂ'll J{ﬂ'zxid
h

A BxY

The upper horizontal map is the canonical isomorphism. Note that h is a bijection of sets, so to prove
the lemma it suffcies to show h is an open map. However, this follows immediately from the definition
of the topologies and the commutativity of the diagram.

48 Lemma. Let (Xo)aer and (Yg)ges be two direct systems of spaces. Then the natural maps

(af:ﬂ%lérlnxj (Xa X Yg) — cgleign cgleign (Xa X Yg) — (colim Xa) X (colim Yg)
are homeomorphisms.

First map: this is true in any category; apply Hom(—, Z) and check that the two inverse limits of
sets agree. Alternatively, it is easy to see that the map is a bijection; to check it is a homeomorphism it
suffices to show that it is an open map. A set U is open on the left hand side if and only if UN (X4, x Y3)
is open for all (o, 5) € I x J; U is open on the right hand side if and only if U N colimge 7(X4 % Yp) is
open for all o, which amounts to saying U N (X, x Y3) is open for all « and 3. Thus the map is open.

Second map: apply lemma 47 twice.
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49 Lemma. Let (X,)aer and (Yo )aer be two direct systems of spaces over a cofiltered index set I.
Then the natural map
colim (Xa X Ya) — (colimXa) X (colimYa)

is a homeomorphism.
We have

cgleign (Xa X Ya) — (ag‘ol%iel?“ (Xa X Yo/) — (colimXa) X (ColimYa).

Since [ is cofiltered, the diagonal embedding of I in I x I is cofinal; hence the first map is a homeomor-
phism. The second map is a homeomorphism by lemma 48.

1.3.2 Restricted direct products: a categorical approach

50. Let C be a fixed category. We shall make several assumptions about C:
1. C has arbitrary products;
2. C has finite fibre products;
3. C has arbitrary filtered colimits;

4. filtered colimits commute with finite products, that is, the natural map
colim(X, xY) — (colim X,,) x Y
is an isomorphism.

Note that the category of topological spaces satisfies these axioms, and in fact, this is the archetype of
the construction.

51. Let X be a set of indices and for each v € X let 4, : Y, — X, be a morphism of C. We write P for
the product of the X,, and 7, for the natural projection map P — X,. For a subset .S of ¥ we write

PS:HXUXHYU.

veES vgS

If S is a subset of S’ then we get a natural morphism isg: : Pg — Pss. In particular, (since P = Py) for
all S there is a morphism ig : Pg — P.

52. Let C’ be the following category: the objects are tuples (Z, f,,) where Z is an object in C and for
each v in X, f, is a morphism Z — X,; a morphism ¢ : (Z, f,,) — (Z’, f/) in C’ is given by a morphism
¢:Z — 7' in A such that the diagram

®

Z—7

k lf’l}

Xy

commutes for each v.

53. Note that P is a final object in C’, and that this fact is exactly equivalent to the universal property
for the product.

54. We now define a functor * : ¢’ — C’ together with a natural transformation @ : * — id.

Let (Z, f,) be an object in C’. Taking the product of the f, gives a map f: Z — P. Let Zg be the
fibre product of Z with Ps (think of this as the inverse image of Pg under f). Clearly if S is a subset
of S’ then there is a natural map Zg — Zg/. Let Z = colimg Zg, where the direct limit is over finite
subsets S of . The maps f, induce maps fv : Z — X,. The functor * thus assigns to (Z, fv) the object
(Z, fo)-

Clearly, if ¢ : (Z, f,) — (Z', f)) then ¢ induces morphisms Zg — Z% for each S and thus induces a
map on the direct limits, gzg : Z — Z'. This is what * does to morphisms.
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For each S we have the projection map Zg — Z, and so we get a natural map Z — Z. It is clear
that the diagram

7—=Z

\ fo
f

Xy

is commutative, and so we have a morphism ®(X, f,) : (Z, f») — (Z, f,). This is the natural transfor-
mation @ : * — id.

55. Note that there are now two definitions of Pg, the one in article 51 and the one obtained from the
object (P, m,) of C" as described in article 54, but that they agree.

56 Proposition. The functor® is idempotent in the sense that for any object (Z, f,) the natural map

&(Z, f): (Z, fo) — (Z, fy) is an isomorphism.
We have

(Z)s = Z xp Pg = colim Zg: x Ps = colim(Z xp Ps) xp Ps = colim Z x p (Ps' xp Ps).

Now, if S’ contains S then Ps: X p Pg is equal to Ps. Thus, in this case, the S’ term of the colimit is
just Zg. Therefore the natural map (Z)s — Zg is an isomorphism. This proves the proposition.

57. An object (Z, f,) of C' is admissible if the map ®(Z, f,) : (Z, f,) — (Z, f,) is an isomorphism.

58. Let €’ be the full subcategory of C’ consisting of the admissible objects. We may think of the functor
* as a projection operator C' — C’.

59 Proposition. The object (]S,frv) is a final object in C'.
Let (Z, f,) be admissible. As (P, ,) is final in C’ we get a map (Z, f,) — (P, m,). Applying *, and
the fact that (Z, f,) is admissible, gives a map (Z, f,) — (P, #,). The uniqueness of such a map is clear.

60. The restricted direct product of the X, with respect to the Y;, (and the 4,), denoted

[T :v)

vED

is defined to be the object P together with the maps 7, : P X,. According to proposition 59 it has
the following universal property: given any space Z and an admissible family of maps f, : Z — X, there
exists a unique map Z — P making the obvious diagram commute.

1.3.3 Restricted direct products of topological spaces

61. We now consider the case when the category C is the category of topological spaces, Y, is a subspace
of X, and i, is the inclusion map. Note that, in spite of all the abstract language of the previous section,
the restricted direct product of the X, with respect to the Y,, is simply the direct limit of the spaces Pg
where S ranges over the finite subsets of X.

62 Proposition. Let X, be a family of spaces and 'Y, a family of subspaces, and let a point x,, be given
in each Y,. Let vg € . The embedding of X,, into P (which sets the vth corrdinate to x, if v # vg) is
continuous.

Define f, : X,, — X, to be the identity map if v = vy and otherwise to be the map sending everything
to x,. If S is a finite set of indices containing v then we clearly have (X,,)s = X,,; therefore XUO = Xy,
and (X,,, fy) is admissible. The resulting map X,, — P is that of the statement of the proposition.
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63 Proposition.  Let X, be a family of spaces and Y, a family subspaces. For each v let a map
v Xy X X, — X, be given such that (1, (Y, xY,) CY,. Then there exists a map u: P X P — P making
the diagram

pxp———>p

X
commute for each v.
Let S, 5" C ¥ be two finite subsets, and let S” be a finite subset containing both S and S’. We have

PSXPS/HPS”XPS”HPS”HP.

The first map is just the product of inclusions. The second map is the product of the product maps; the
fact that it maps into Ps~ uses the property that p, takes Y, x Y, into Y,. If we now take the direct
limit in S’ and then in S, and use lemma 47 we get a map u : P x P — P with the requisite properties.

64 Corollary. Let X, be a family of topological groups (resp. rings) and Y, a family of topological
subgroups (resp. subrings). Then the restricted direct product of the X, with respect to the Y, is again a
topological group (resp. ring).

65 Proposition. Let X, be a family of spaces and Y, a family of open subspaces. Then Pg is an
open subspace of P.
Aset U C Pis open if and only if U N Pg/ is open in Ps: for all finite subsets S’ C ¥. By the
definition of the product topology and the fact that Y, is open in X, it follows that Ps N Pg/ is open in
Ps/, and so Pg is open in P.

66 Proposition. Let X, be a family of locally compact spaces and Y, a family of compact open
subspaces. Then the restricted direct product of the X, with respect to the Y, is locally compact.
This follows at once since the Pg are compact and open.

1.3.4 Restricted tensor products

67. Let X be an index set and for each v € X let V,, be a given vector space. Furthermore, let an element
x, of V,, be given for all v such that x, is nonzero if v is outside a finite set X.

68. For a finite subset S C ¥ let Vs denote the tensor product of the V,, over v € S. If S C S’ then
there is a natural map Vs — Vs given by tensoring with x, for v € S\ S. (Note that if Xy C S then
this map is injective.) We thus have a direct system of vector spaces. The colimt of this system is the
restricted tensor product of the V,, with respect to the z,. We write

®(Vy D Zy)
vEX
for the restricted tensor product.

69 Proposition. Let V, be a family of vector spaces and let x,, and vy, be familes of elements which
differ on a finite set. Then we have a natural isomorphism

QVo s 2) = R (Va : 1)

Let Sy be the finite set of indices where x, # y,. Then if Sy C S C S’ the two maps Vg — Vs given

by tensoring with the x, and tensoring with the y, are the same. Since the the direct system consisting
of the Vg with S D Sp is cofinal in the direct system Vg (with no restriction on .S), the result follows.
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70. Let ¥ be an index set. For each v € X let be given a vector space V,,, an element xz, of V,, a
topological group G,, a subgroup K, and a representation m, : G, — GL(V,) such that z, is nonzero
outside a finite set and for all but finitely many v the vector x, is fixed by K,. Then, in the obvious
way, we get a representation

o [1(Gs 1) - 61 @V 20)

v v

which we call the restricted tensor product of the representations m,,.

1.3.5 Strong topologies on the points of schemes

71. Let X = spec A be an affine scheme over a commutative ring k£ and let R be a commutative
topological k-algebra. We wish to give the set X (R) of R-valued points of X a topology. If we pick a
presentation for A, i.e., write A = k[(x;):icr]/(f;);jes, then we may identify X (R) with the subspace of
RIIT satifying the equations fj =0for j € J. We may thus give X (R) the topology of this subspace. It
is easily verified that this is independent of the presentation.

72. If X is a general scheme over k one may still give a natural topology to the set X (R); however, the
construction is a bit more involved and we will not need it, so we refrain from describing it here.

73 Proposition. Let X be an affine scheme of finite type over k and let R be a compact Hausdorff
topological k-algebra. Then X(R) is a compact Hausdorff space.
Let X = spec A and write A = k[z1,...,2,]/(f1,..., fm). The space R" is compact Hausdorff. Since
R is Hausdorff the subspace define by f; = 0 is closed, and therefore their intersection is closed. Thus
X (R), being a closed subset of a compact Hausdorff space, is compact Hausdorft.

74 Proposition. Let X be an affine scheme of finite type over k, let R be a topological k-algebra and
let T be an open (resp. closed) subalgebra of R. Then X (T') is an open (resp. closed) subset of X(R).

We have X (R) as a closed subset of R™; similarly X (7') is a closed subset of T™. The result follows
from two facts: 1) T™ is open (resp. closed) in R™, and 2) X(T) = X(R)NT™.

75 Proposition. Let X be an affine scheme of finite type over k and let R,, be a filtered direct system
of topological rings. Then
X (colim R,) = colim X (R,,).

In other words, for schemes of finite type, “formation of R-valued points commutes with filtered colimts

in R.”
76 Proposition. Let X be an affine scheme over k and let R, be an inverse system of rings. Then
X(lim Ry,) = lim X (R,).

In other words, “formation of R-valued points commutes with limits in R.” Note in particular the case
when the index category is discrete so that the result takes the form

X(HRQ> =[x (R).

77 Proposition. Let X be an affine scheme of finite type over k. Let R, be a family of topological
rings and T, a family of subrings for v € 3. Then

x (It 7)) = [Ix() X0,

In other words, for schemes of finite type, “formation of R-valued points commutes with restricted direct
products.”

This follows immediately from propositions 75 and 76 since the restricted direct product is a direct
limit (i.e., filtered colimit) of products.
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1.3.6 The adeles and related groups

78. Let F be a global field (i.e., a number field or a function field) and let ¥ be its set of places. Let
F, be the completion of F' at v, and let O, be the ring of integers in F,,. The restricted direct product

A=T[F, :0y)
vEX

is the adele ring of F'. As F), is locally compact and O, is compact open, the adele ring is locally compact
(¢f. proposition 66).

We write Xt for the set of finite places and Ay for the corresponding restricted direct product. This
is the ring of finite adeles of F. We also write F,, for the product of the F, over the infinite places.
(These constructs only comes into play when F' is a number field).

If S is a finite set of places, we write

‘AS = II PL X II C%;
veES v€S

this is called the ring of S-adeles. It is locally compact and open in A.

79. Again let F' be a global field and X its set of places. If F' is a number field then let £k = O be the
ring of integers; if F' is a function field then let k& be the constant subfield. If G is an (affine) algebraic
group over k then G(A) is naturally a topological group (where A is the adele ring of F).

80 Proposition. Let G be an affine group scheme of finite type over k. Then we have

G(4) = [[(G(F,) - G(0)).

The group G(O,) is a compact open subgroup of G(F,). The group G(A) is locally compact.

The expression of G(A) as a direct product follows immediately from proposition 77. That G(O,)
is compact follows from proposition 73 and the fact that O, is compact; that G(O,) is open in G(F,)
follows from proposition 74. The local compactness of G(A) now follows from proposition 66.

81. The group A* = GL(1, A) is called the idele group of F. Algebraically it is the group of units of A,
but it does not have the subspace topology (it is homeomorphic to the closed subspace of A? defined by

xy =1).

1.4 Idempotented algebras and their modules

1.4.1 Idempotented algebras

82. Note that much of the discussion of this section is taken from Bump chapter 3, section 4.

83. In the context of idempotented algebras, the word “ring” (resp. “algebra”) will always mean by
default a possibly noncommutative ring (resp. algebra) with or without unit.

84. Recall that an element e of a ring R is an idempotent if e? = e. The idempotents form a partially
ordered set by defining f < e if ef = fe = f. Two idempotents ¢ and ¢’ are orthogonal if ee’ = e¢’e = 0.
Not that if f > e then f = e+ ¢’ where €’ = f — e is orthogonal to e.

85. An idempotented algebra over a field k is a k-algebra H together with a collection E of idempotents
of H satisfying the conditions:

1. For all e1,es € E there exists f € E with e1,es < f (in other words, E is cofiltered as a partially
ordered set).

2. For all x € H there exists e € E with ex = ze = x.

When we speak of an idempotent of an idempotented algebra (H, E'), we will by default mean an element
of E (as opposed to a generic idempotent of the ring H).
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86. If H is a ring and e an idempotent, we write H|[e|] for the ring eHe. In this ring e is a unit. Note
that if e < f then Hle] is a subring of H[f].

87. If (Hy, F) and (Hs, E5) are idempotented algebras over k then their tensor product (over k) H is
again an idempotented algebra over k: the set F is taken to be Fy ® Fs, that is, all elements of the form
e1 ® ey with eq in By and es in Fs.

88. More generally, let ¥ be some index set and for each v in ¥ let be given an idempotented algebra
(Hy, E,) and a distinguished idempotent e € Ey . Then the restricted tensor product H of the H, with
respect to the e is again an idempotented algebra: for the set £ we take all tensors ®e, where e, = e,
for almost all v. We write

H=)(H, : )

to indicate that H is the restricted tensor product of the H, with respect to the e;.

1.4.2 Modules over idempotented algebras

89. If M is a (left) module over the idempotented algebra H, we write M[e] for the H[e]-module eM.
Note that if e < f then M]e] is an H|[e]-submodule of M|f].

90. Let H be an idempotented algebra and M an H-module. We say M is smooth if the canonical map
colim Me] - M
eclE

is an isomorphism (this can be taken in the category of H-modules). This is equivalent to the condition
that for all x € M there exists e € E with ex = z.

91. We say that an H-module M is admissible if it is smooth and M e] is finite dimensionsal as a vector
space over k for all e € F.

92. Note that H is always smooth as a module over itself (by the definition of an idempotented algebra)
but may or may not be admissible.

93. Note that the properties “smooth” and “admissible” are preserved by taking submodules and
quotients.

94. If M; and Ms are modules over H; and Hs then M = M; ® M, is naturally a module over
H = H,® Hs. It is clear that H is smooth (resp. admissible) if and only if both M; and Ms are smooth
(resp. admissible).

95. More generally, let 3 be some index set and let

H=)(H, : )

be the tensor product of idempotented algebras index by ¥ (c¢f. article 88). For each v in ¥ let be given
data (M,, m?) where M, is a module over H, and mg is a nonzero element of M, which (for almost all
v) is fixed by €S. Then the restricted tensor product M of the M, with respect to the m¢ is naturally a
module over H. It is clear that M is smooth if and only if each M, is smooth. If e = ®e, is an element
of E then

Mle] = ®(Mley) : epxms).

From this expression it is easy to see that M is admissible if and only if each M, is admissible and for
almost all v the module M[e?] is one dimensional.
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96. Again, let ¥ be an index set and let H = Q(H, : €5). We say that a family of modules (M,)

is admissible if each M, is an admissible H,-module and for almost all v the module M,[eJ] is one

dimensional. Given an admissible family of modules (M, ), we define its tensor product M = ) M, to
be the restricted tensor product
M =@M, : m)

where (for almost all v) m? is any nonzero vector in M, [eS]. Tt is easy to see that the isomorphism class
of M does not depend on the choice of the mg. By the previous article the module M is an admissible
H-module.

97. Before ending this section, we would like to point out explicitly the following important fact, the
proof of which is trivial.

98 Lemma (Bump Prop. 3.4.7). Let H be an idempotented algebra, let M be a module over H,
let e and €' are orthogonal idempotents and let f = e+ ¢€’. Then

M([f] = Mle] & M[€].

1.4.3 The contragrediant module

99. Throughout this section H will denote a fixed idempotented algebra and ¢ will denote a fixed
anti-involution of H. We assume that FE is closed under .

100. Let M be a module over H. We define the dual of M, denoted M*, to be the module consisting
of all linear maps M — k and where the action of H is given by

(x,rz*y = (r‘x,z").

101. Let M be an H-module. We say an element z* of the dual module M™* is smooth if there exists
an idempotent in E stabilizing z*. Note that for such an idempotent e we have

(z,2%) = (', ")
for all  in M. Thus if M is admissible then z* may safely be regarded as an element of M|e*]*.
102. Let M be an H-module. We define the contragrediant of M, denoted M , to be the submodule of
M* consisting of all the smooth linear functionals on M. Note that M = HM*.
If f: M — N is a map of modules there is an induced map on duals f*: N* — M*. Since this is a

map of H-modules, the image of N under f* is contained in M. We thus get a map f : N — M called
the contragrediant of f. In this way, the contagrediant is a functor.

103 Proposition. We have the following:
1. The contragrediant of any module is smooth.
2. If M is any module then M[e] is naturally isomorphic to M[e']*.
8. The contragrediant of an admissible module is again admissible.

1) By definition, a smooth element of M* is stabilized by an element of F; thus every element of M
is stabilized by an element of E, and so M is smooth.
2) First note that we have a decomposition of M as M[e‘]& M’ where M’ is the submodule consisting

of elements of M which are stabilized by idempotents orthogonal to e*. We now define maps between
MTe] and M[e‘]* in both directions.

A. An element of M[e] is a linear form on M; it can be restricted to a linear form on M|e*]. This is
the map M[e] — Mle']*.
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B. Thanks to the decomposition M = M[e*]® M’ a linear form on M|e'] may be extended to a linear
form on M by defining it to be zero on M’. Note that a form obtained in this way will be fixed by
e and will thus be an element of M[e]. We have thus given a map M[e']* — M]e].

It is clear that these two maps are mutual inverses of each other, whence the proposition.
3) This follows immediately from parts 1 and 2.

104 Proposition. If M is an admissible module then the natural map M — M* induces an isomor-
phism of M with its double contragrediant.
Let e be an element of E. Two applications of proposition 103 yield

Mle] = Mle']*, Mle] = Me]*.

By admissibility, M]e] is finite dimensional and thus naturally isomorphic to its double dual. Thus we
have a natrual isomorphism

As a consequence of natruality, this isomorphism commutes with the canonical inclusion maps Me] —
M|f] for e < f. Taking the direct limit over E gives a canonicall isomorphism of M with its double
contragrediant.

105 Proposition. The contragrediant functor is an exact functor on the category of admissible
H-modules.

It is clear that the contragrediant is left exact. We must show that if N is a submodule of M then
the map M — N is surjective. Thus let * be an element of N. Let e be an idempotent stabilizing x*
and write N = N[e] ® N, M = M[e] ® M’, as before. Note that N[e] C M[e] and N’ C M’. Since z*
is fixed by e it annihiliates N’. Thus we can extend z* to a smooth form on M which annihilates M’.
This proves the proposition.

106 Proposition. Let M be an admissible H-module. Then M is simple if and only zf]\7 is.
Let M; be a submodule of M and let My = M/M;. Since the contragrediant is exact (proposition
105) it follows that M1 M/M2 Thus if M; is a nonzero proper submodule of M then Mg is a nonzero

proper subomdule of M. Therefore if M is simple then M is simple. Applying the same reasoning to
the contragrediant of M and identifying the double contragrediant of M with M (proposition 104), we
deduce the result.

107 Proposition. Let M and N be two admissible H-modules and let 3 be a nonzero bilinear form
on M x N which satisfies f(m,rn) = B(r‘n,m) for allm in M, n in N and r in H.

1. The natural map M — N* induced by B has its image contained in N.
2. If M or N is simpe then 3 is nondegenerate.
3. If B is nondegenerate then M is isomorphic to the contragrediant of N.

The first two assertions are clear. As to the third, if 8 is nondegenerate then the maps f; : M — N
and fo : N — M are injective. It follows from proposition 105 that f; and f2 are surjective. However,
if we identify the double contragrediant of M with M and do the same for N then f; = f; and f2 f1-
Thus f; and fy are both isomorphisms.

1.4.4 Review of standard module theory

108 Lemma. Let R be a k-algebra with unit, let M be a semisimple R-module, let K = Endgr(M)
and let f belong to Endg (M). For every x in M there exists a in R such that f(x) = ax.
Note that since M is semisimple the submodule Rx is a direct summand; thus there is a R-linear
projection map w : M — Rx. It is clear that 7 belongs to K. Therefore f commutes with 7 and so we
see that f(z) = f(mx) = wf(x) belongs to Rx. This completes the proof.
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109 Proposition (due to Burnside; Bump Thm. 3.4.1). Let k be an algebraically closed field, let
R be a k-algebra with unit and let M be a finite dimensional simple R-module. Then the homomorphism
R — Endi (M) is surjective.

Let n be the dimension of M over k. Since k is algebraically closed and M is simple we have
Endgr(M) = k. Furthermore M®™ is semisimple as an R-module and K = Endg(M®") is isomorphic
to M, (k). Let f be a given element of Endy(M). The endomorphism f®" of M®" is clearly K-linear
and so by lemma 108 for any x in M®™ there exists a in R such that f®"(z) = az. Let ey,...,e, be a
basis of M over k, let = (e1,...,e,) and let o be such that f®*(x) = ax. Then f(e;) = ae; and so
the image of o under R — Endy (M) is f. This completes the proof.

110 Proposition (Bump Prop. 3.4.1). Let A and B be k-algebras with units, let R be their tensor
product and let P be a finite dimensional simple R-module. Then there exists a simple A-module M and
a simple B-module N, both unique up to isomorphism, such that P is isomorphic to a quotient of M @ N .

Identify A and B with subalgebras of R in the standard way. Assume P # 0; since P is finite
dimensional it contains a nonzero simple A-submodule M’ (take an A-stable subspace of minimal nonzero
dimension). Note that for any b in B the subspace bM’ of P is stable under the action of A (since ab = ba)
and furthermore bM' is isomorphic to M’ as an A-module. Since bM' and V' M’ are simple A-modules
they must either be equal or disjoint (since their intersection is stable under A). We thus find that as an
A-module P is equal to the direct sum of bM’ as b ranges over some finite subset of B; thus, abstractly,
P is isomorphic to A®? for some d. It follows from Schur’s lemma that the module M in the statement
of the proposition must be isomorphic to M’ and thus its isomorphism class is uniquely determined. We
take M = M’. The same reasoning shows that the isomorphism class of N is uniquely determined, but
we will select IV in a different fashion.

Let Ny = Homu4 (M, P) and regard N as a B-module via the B-module structure on P. Define a
map A : M ® Ny — P by A(n ® m) = n(m). This is obviously a k-linear map. We now verify that it is
in fact an R-module map. We have

AMa®@b)(m®@n)) = Aam @ bn) = (bn)(am) = ba - n(m) = (a ® b)A(m @ n).

Now, N; has a simple submodule N. It follows from the previous paragraph (which gives the structure
of N1) that M ® N is not annihilated by A. Thus its image in P is nonzero and therefore is all of P since
P is simple. Thus P is a quotient of M ® N.

111 Proposition (Bump Prop. 3.4.2). Let k be an algebraically field, let A and B be k-algebras
with unit and let R = A® B.

1. If M and N are finite dimensional simple modules over A and B then M ® N is a simple R-module.

2. Every finite dimensional simple R-module is of the form M ® N where M and N are uniquely
determined (up to isomorphism) finite dimensional simple module over A and B.

1) The maps A — Endi(M) and B — Endg(M) are surjective by proposition 109. It thus suf-
fices to show that M ® N is simple as an Endg(M) ® Endg(N) module. However, the natural map
Endg (M) ® Endg(N) — Endg (M ® N) is an isomorphism; since any module is simple over its (vector
space) endomorphism ring the first statement follows.

2) This follows at once from the first statement and proposition 110.

112 Proposition. Let R be an algebra with unit over the algebraically closed field k and let M and
N be finite dimensional simple R-modules. Then M is not isomorphic to N if and only if there exists
an element of R which acts neutrally on M and annihilates N .

Clearly there can exist no such element if M and N are isomorphic. Thus assume M is not isomorphic
to N. First note that R/ ann M canonically isomorphic to End, M by proposition 109; similarly for N.
This observation has two consequences: 1) both ann M and ann N are maximal two sided ideal of R

(since Endg (M) is a ring of matrices, which is simple); and 2) ann M is not equal to ann N (if they were
equal then Endg (M) would equal Endy(N); but this ring has only one finite dimensional simple module
up to isomorphism, and so M and N would be isomorphic). It thus follows that ann M + ann N = R
and so we can find x and y in ann M and ann N such that  +y = 1. Therefore 1 —x = y acts neutrally
on M while it annihlates N.

24



1.4.5 First properties of modules over idempotented algebras

113 Proposition. Let H be an idempotented algebra over the closed field k. Let T be a k-linear
endomorphism of the simple admissible H-module M which commutes with T'. Then T is a scalar.
Since T commutes with H it maps Me] into itself. Since this is a finite dimensional vector space over
an algebraically closed field, T has an eigenvector, say with eigenvalue A. Thus 7'— )\ is an endomorphism
of M commuting with H which has nonzero kernel; since the kernel is a nonzero H-submodule of M it
is all of M. Therefore T' = .

114 Proposition (Bump Prop. 3.4.5, 4.2.3). Let M be a smooth module over the idempotented
algebra H. Then M is simple if and only if Mle] is a simple Hle]-module for all e in E (note that 0
counts as a simple module).

Let N be a proper nonzero submodule of M. Since both N and M are admissible we have

M=\ )M, N=[JN[

and thus for some e we have that N|e] is a proper nonzero H [e]-submodule of M|e]. Therefore if M|e] is
simple for all e then M is simple.

Now suppose that N is a proper nonzero H[e]-submodule of M|e]. Let n be an element of HNNM]e].
By the definition of HN, there exist elements n; in N and elements r; in H such that

n = Z Tin;.
i
Since e acts as the identity on elements of M[e] we have

n=en= Z(erie)m.

%

But er;e belongs to Hle]; since N is stable under Hle] it thus follows that n belongs to N. Thus
HNNMl[e] C N and it follows that HN is a proper nonzero submodule of M. Therefore, if M is simple
then M]e] is simple for all e.

115 Proposition (Bump Prop. 3.4.6, 4.2.7). Let H be an idempotented algebra over the closed
field k. Let M and N be simple admissible modules over H. Then M is isomorphic to N if and only
Mle] is isomorphic to Ne] for all e in E.

If M or N is zero the proposition is trivial. Thus let M and N be nonzero and fix an element ey of
E so that Mleo] and N[eg] are nonzero. Let fo be the given isomorphism M[eg] — Nlep]. Note that
since MJeg] and Nleg] are simple (cf. proposition 114) the isomorphism fy is unique up to scalar (cf.
proposition 113). In particular, if e > eg and f is the given isomorphism M [e] — N{e] then the restriction
of f to Mleg] is a scalar multiple of fy. Thus, by rescaling if necessary, we can assume that for each
e > ey we are given an isomorphism M[e] — Nle] and that these morphisms are compatible with the
inclusion maps M[e] — M|e] and Ne] — N[e'] for ¢’ > e. In other words, we are given isomorphisms of
the directed systems (Mle])cer and (Ne])eer. Since the limits of these systems are M and N (by the
definition of smooth), it follows that M and N are isomorphic.

116 Proposition. Let H be an idempotented algebra over the closed field k and let M and N be
nonzero simple admissible modules over H. Then M is isomorphic to N if and only if there exists an
idempotent e such that Mle] and Nle| are nonzero and isomorphic.

Let the stated condition be satisfied. Let f > e be a second idempotent. If M[f] and N|[f] are not
isomorphic then by proposition 112 we can find r in H[f] acting neutrally on M|[f] and annihilating
N[f]. However, then ere is an element of H[e] which acts neutrally on MJe] and annilihilates Nle],
contradicting the hypothesis that they are isomorphic. Thus M|[f] is isomorphic to N[f] for all f > e;
proposition 115 therefore implies that M is isomorphic to N. (Note that proposition 115 actually states
that we must establish that MJe] and Ne] are isomorphic for all e; it is clear that a cofinite set of e
suffices.)
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117 Proposition (Bump Thm. 3.4.2). Let H; and Hy be idempotented algebras over the closed
field k and let H be their tensor product.

1. If My and Ms are simple admissible modules over Hy and Hy then M = M; ® Ms is a simple
admissible module over H.

2. If M is a simple admissible module over H then there exist unique (up to isomorphism) simple
modules My and My over Hy and Hy such that M is isomorphic to My ® Ms.

We will use proposition 114 without note.
1) We have
M[61 (Y 62] = M1 [61} X MQ[@Q].

The modules M [e1] and Ms[es] are simple. Thus M|e] is simple for all e and so M is simple. Admissibility
is clear (and has already been discussed).

2) Assume that M is nonzero. Thus there exists an idempotent e ® €5 of H such that Me ® e3]
is nonzero. We say that an idempotent e; of E; is large enough if e; > e7; similarly an idempotent
e =e1 ®ey of E is large enough if both of its parts are. If e is large enough then M]e] is nonzero.

Sublemma A. Let e = e; ® eg be an idempotent of H. Note that H[e] = Hi[e;] ® Ha[es]. The Hle]-
module M]e] is simple and therefore (by proposition 111) there exists a unique simple Hj[eq]-module
M (e1, e3) and a unique simple H[es]-module Ma(eq, e2) such that

Mle] = My (e, e2) @ Ma(eq, e2).

If e is large enough then M;(e1, e3) is nonzero.

Sublemma B. We now show that if e = e; ® ey is large enough then M (e, e2) only depends on e;
(up to isomorphism), and similarly for Ma.

Let fo > e, let e, = fo—ea, let f = €1 ® fo and let ¢/ = e; ® €},. Note that f is large enough, though
€/ may not be. We have (using lemma 98)

Mi(eq, f2) ® Ma(er, fo) = M[f] = Mle] & M[e'] = (Mi(e1,e2) ® Ma(e1,e2)) ® (My(e1, ey) @ Ma(eq, €5)).

Thus M(f], regarded as an Hi[e;]-module is semisimple; using the leftmost side of the above identity we
see that its only simple constituent is Mj(e1, f2), while using the rightmost side we see that its simple
constituents are M (eq, e2) and (if nonzero) M (eq, e}). We have therefore shown that whenever fa > ey
we have M (e, es) = Mi(e1, f2). Since the set Es is cofiltered (i.e., given es and ef there exists fo with
fa > ea,¢eh) it follows that if e; and ey are large enough then M (e, e2) does not depend on es (up to
isomorphism). We select some module M;(e;) in this isomorphism class. Similarly for Ms(ez). We thus

have
M[e] = Ml(el) ® Mg(eg).

Sublemma C. Let e = e; ® e3 be large enough and let f = f; ® ex with fi; > e;. There is a canonical
inclusion of H [e]-modules M[e] — M|[f]. Note that as Hj[e1]-modules M |e] is isomorphic to a direct sum
of p copies of Mj(e;) while M[f] is isomorphic to a direct sum of g copies of M;(f;) (for some positive
integers p and ¢). Thus

1 < dim Homgp, ) (M e], M[f]) = pgdim Homg, [¢,1(Mi(e1), Mi(f1))

and therefore
dim Hom g, [¢,1(M1(e1), M1(f1)) > 1.

Sublemma D. Let e and e’ be orthogonal idempotents and let f = e + €’. Since H|[e] acts as zero on
M]e'] the only H[e]-module map M[e] — M[e'] is the zero map. Therefore (using lemma 98 and the fact
that Mle] is simple) we see that

dim Hom (¢ (M [e], M [f]) = dim Hom g (Me], M[e]) = 1.

Sublemma E. Let e = e; ® ea be large enough and let f = f; ® eo with f; > e;. We have a canonical
injection
Homp, (e, (Mi(e1), M1(f1)) ® Homp, e, (Ma(e2), Ma(e2))
— Hompe)(Mi(e1) ® Ma(e2), Mi(f1) ® Ma(e2))
= HomH[e] (M[e]v M[f])
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Now since My (e2) is a simple Hy[ep]-module the dimension of Hom g, e, (M2 (e2), Ma(e2)) is one. Sub-
lemma D states that the dimension of the right side is equal to one. Therefore, we deduce

dim Homyy, ¢,1(Ma(e1), M1(f1)) < 1.
Combining this result with sublemma C, we see that in fact
dimHomHl[el](M1(€1)7Ml(fl)) =1

Sublemma F. For all e; large enough select an arbitrary nonzero element A(e{,e;) of the one di-
mensional space Homy, co)(Mi(e]), Mi(e1)). If fi > e1 defined A(ei, f1) to be the unique element of
HomHl[el](Ml (61), Ml(fl)) such that

Ale?, f1) = Ale, fi)A(e,e1).

With such choices made, the modules M (e1) together with the maps A form a direct system. Their
direct limit is a simple module M; which clearly satisfies M;[e1] & M;(e1) for e large enough. We apply
the same construction to obtain a module Ms.

Completion of proof. If e = e; ® es is large enough then

Mle] 22 My(e1) ® My(es) = (My @ My)[e]

and so by proposition 115 (together with the first part of the present proposition, which implies that
M; ® My is simple), we have
M = M; ® M.

This proves the existence aspect of the second statement.
We must still show that M; and My are unique up to isomorphism. Assume M| and M} are two
simple modules satisfying M = M| ® MJj. Then we have

Mle] = Mi[er] @ Mjes]
and so, by the uniquessness of M;(e1) and Ms(ez), we have
Mi(ey) = Miler],  Ma(ea) = Mjles].
Thus Ml/[el] >~ Mj[e1] and Mses] =2 Mjles] and therefore, by proposition 115, we have M; & M/ and
M, = M),

1.4.6 The tensor product theorem

118 Lemma. Let R, be a family of rings with unit and let R be their restricted tensor product
(with respect to their identity elements). Let v : R — k be a ring homomorphism. Then there exist ring
homomorphisms 7, : R, — k such that yv(®r,) = [[ Y (rv). (Note that ring homomorphisms must carry
the identity element to 1.)

The ring R, may be identified in an obvious way with a subring of R. Under this identification, ®r,
is identified with []r,. Now, v may be restricted to obtain a homomorphism +, : R, — k and since v is
a ring homomorphism, we have

y(@ry) =y([1rv) = TT7(re) = [T (re)

and the proposition is proved.

119 Theorem (Bump Thm. 3.4.4). Let ¥ be an index set and for each v in X let be given an
idempotented algebra (H,, E,) over a fized algebraically closed field k and an idempotent e of E,. Let
H be the restricted tensor product of the H, with respect to the e;.

1. The tensor product of an admissible family (M,) of simple H,-modules is a simple H-module.

2. Every simple H-module is the tensor product of a unique admissible family of simple modules.
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1) Let M = @ M, be the tensor product of the admissible family of simple modules (M, ). Let
e = ®e, be an idempotent of H and let S be the finite set of v for which e, # eJ. Then

Mle] = X) Me,),

veS

the isomorphism being given by tensoring an element of the right side with ®,gsm;. By proposition
114 each of the factors M]e,] is simple and so, by proposition 117, MJe| is simple. Thus, by another
application of proposition 114 we deduce that M is simple.

2) First some notation. If S is a subset of ¥ we denote by Hg the restricted tensor product of the
H, with v in S. If S’ is the complement of S we write Hg in place of Hg,. Note that if S is any subset
of ¥ then H = Hg ® H,.

Now let M be an admissible simple H-module. Let S be a subset of X and let S’ its complement. By
proposition 117 there exists a unique simple Hg-module M (S) and a unique simple Hg-module M’(.S)
such that M is isomorphic to M (S)® M’'(S). Note that if S is the disjoint union of S; and Sy then M (S)
is isomorphic to M(S1) @ M(S2). If S = {v} we write M (v) and M'(v) in place of M(S) and M'(S).
We will show that M (v) is an admissible family of simple modules, the tensor product of which is M.

Let e = ®e, be an idempotent for which M]Je] is nonzero. Note that M(S)[es] = Mle](S), where
the notation has the obvious meaning. By the definition of the restricted tensor product, Mle] is the
colimit over the cofiltered system of finite subsets S of 3 of the spaces M|[e](S). Since the result of such
a limit can have dimension greater than 1 if and only if it does at some finite stage, it follows that if
MTe] has dimension greater than 1 then so does M (v)[e,] for some v. Thus if the dimension of M[e] is
greater than 1 we can write Me] = M(v)[e,] ® M'(v)[e]] where the dimension of M (v)[e,] is greater

than one and the dimension of M’(v)[e]] is strictly smaller than that of Mle]. By continuing in this
manner, we see that (regardless of the dimension of M|e]) there exists a finite subset Sy of 3 such that
Mle] = M(S1)[es,] ® M'(S1)[e’s, ] where the dimension of M’(S1)[e,] is one.

Let S be the finite set of v for which e, # e and let S be the union of S; and Ss; it is a finite set.
For v not in S the module M (v)[eJ] is one dimensional; thus the family (M (v)) is admissible. It suffices

to verify that its tensor product is isomorphic to M. Proposition 117 shows

M (®M(v)) ® M'(S)

veS

Thus it suffices to show that the tensor product of the admissible family (M (v))ygs is isomorphic to
M’(S). To ease notation we now assume that S is empty. Thus e = ®e, and M]e] is one dimensional.

Let m denote a nonzero element of M[e]. Since M|e] is ne dimensional, there is a ring homomorphism
v : Hle] — k such that hm = y(h)m. By lemma 118 there exist homomorphisms =, : H,[eS] — k which
factor «. It is clear from the decomposition M[e] = M (v)[eS] ® M'(v)[(e3)’] that H,[e,] acts on M (v)[e7]
via v,.

Now let N be the tensor product of the admissible family (M (v)). If r = ®r, is an element of Hle]
and n = ®n,, is an element of Nle] then

™M = QTryNy = QY (Tu)nv = H’Yv(rv) @ n, = ")/(T)’Il.

Thus Nle] and M [e] are isomorphic and nonzero. Therefore, proposition 116 implies that M is isomorphic
to N. This completes the proof of the theorem.

1.5 Two results on Gaussian sums

1.5.1 The first result

120. The following proposition is a fairly standard result on Gaussian sums. We use the following
notations: F' is a non-archimedean local field, O is its ring of integers, Up is the unit group of Op, p is
the maximal ideal of O and w is a generator for p.
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121 Proposition. Let ¢ be a nontrivial additive character of F with conductor p~™. Let u be a
character of Ug. Let

N z) = /U p(e)y(ex)de

where de is the normalized Haar measure on Up.

1. If p is nontrivial with conductor 1 4 p™ then
-1
cu”Ha) p=-n-m
n(p, w’a) = {

where a is in Up and ¢ is a nonzero constant.

2. If u is the trivial character then

1 p>-m-—1
n(p,wPa) = § —l@|(1 - |=w)™" p=-m—1
0 p<—m-—1

where, again, a is an element of Up.

1) Let ¢ be the function on F' whose value at z is zero if z is not in U and is p(z) if  is in Up. Let
¢ be its Fourier transform:

da) = /F ()b (zy)dy = /U w)b(ey)dy = i, 7).

F

It is clear that .
plex) = p~H(€)¢(x) (1)

for all z € F' and € € Up.
We now examine ¢(w?). We have

HwP) = /U w(y)(@Py)dy = /+ (e p(Pye)de.
) .

yeUr/(1+p™)

We now use the fact that p(ye) = p(y) since p has conductor 1 + p™. Also we change the integral over
1+ p” to an integral over p”; the Haar measure does not change. We thus have

o= Y ) / byl +de= S ply)v(="y) / b(@Pye)de.
) P P"

yeUF/(1+p™ yeUF/(1+p™)

Now, € — ¥ (wPye) is a nontrivial character of p™ if and only if p < —n — m. We thus have

0 —n—
T
pm cg p=>-—n—m

where ¢ is the volume of p”. Thus q@(wp) vanishes for p < —n — m while it equals

co Y. py)v(=y)

yeUR/(1+p™)

for p > —n — m. Now say that p > —n — m. Then ¥ (yw?) is well defined modulo 1 + p”~! and

CIEEIED DI TP I SR

yeUr/(1+p~1) y'e(l+pm1)/(1+p™)

because 3’ +— u(yy') is a nontrivial character of (1 + p™~1)/(1 + p).
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We have thus shown that qg(wp) vanishes except for p = —n — m. It cannot vanish for p = n 4+ m for
then ¢ would be zero by (1). Thus we have

~ —1 —

where a is an element of Ur and ¢ = ¢(wP) is a nonzero constant. This proves the first part.
2) Let

Ak:/ Y(@)de  ap= [ p(we)de.
pk

Ur

On the one hand we have

oo * ~
A, = Lim Fzom
0 k< -—m

since 4 is trivial if and only if & > —m. The quantity ||¥/(1 — |=|) is the volume assigned to p* by the
Haar measure on F' which assigns volume 1 to Up. On the other hand we have

oo

Ak:Z/

r=k /@ UF

Y(a)de =Y |@|a,.
r=k

We thus have

1 k>-m-—1
ar = |w| F (A — Apy1) = —|w|(1 = @)™t k=-m—1
0 k<—-m-—1

It is clear that n(1,eww®) = ay, if € is in Up; this proves the proposition.

1.5.2 The second result

122. We keep the same definitions as the previous section, and add some more: K will denote a
quaternion division algebra over F', Ok its ring of integers, q its prime ideal, 3 a generator of q and | - |k
the norm on K given by |a|x = d(az)/dz. Thus |8|x = |w|%. We let Ux denote the group of elements
x in K™ with |z|x = 1.

123 Proposition. Let ¢ be a nontrivial additive character of K with conductor q—™. Let (,U) be a
finite dimensional representation of Uk . Let

n(x) = [ b(ex)Q(e)de
Uk
where de is the normalized Haar measure on Uk .
1. If Q is nontrivial with conductor 1+ q™ then
AQ Ya) p=-n—-m
0 p#-—-n—m

n(Q, af”) = {

where a belongs to Uk and A is a nonzero endomorphism of U.

2. If Q is the trivial representation then

1 p>-m-—1
n(Q,af”) = ~1Blk(1 = [Blk)™" p=-m—1
0 p<—m-—1

where, again, a belongs to Uk .
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3. If Q is nontrivial and is the restriction of an irreducible representation of K* and the character v
is symmetric (i.e., ¥(zy) = V¥ (yx)) then the matriz A of part 1 is a scalar multiple of Q(B3"T™).
In other words, there exists a nonzero scalar no(;1) such that for any x in 37" "™Uk we have

n(€,z) = no( )2 (2).

The first two assertions can be proved using exactly the same methods used to prove proposition 121.
We now prove the third statement. If x and y are arbitrary elements of K * then

Qy)n(,2)Q " (y) = ; P(ex)Qyey ' )de = ; Py~ eywy ™ y)Q(e)de = n(Q, yzy ).

If we now write n(£2,a8~""™) = AQ~1(a) for a in Uk (per part 1 of the proposition) and take z = 3="~™
in the above calculation, we find
Qy)AQ~ (y) = n(Qyzy™") = n(Qyay~ e z) = AQ™ (yay'aT)

1

since the commutator yzy~'z~! belongs to Ux. A little manipulation now gives

Qy) AQ(x) = AQ(2)Qy).

Thus AQ(B~"""™) commutes with Q(y) for all y in K* and therefore, by Schur’s lemma, is a con-
stant (which is necessarily nonzero because A is nonzero and Q(3~"~") is invertible). This proves the
proposition.

1.6 Finite functions on certain locally compact groups

124. A complex valued continuous function on a locally compact abelian group will be called finite if
the space spanned by its translates are finite dimensional. The space of finite functions forms a complex
vector space (an algebra in fact). We write #(H) for the space of finite functions on the group H.

125. We are interested in the space of finite functions on groups of the form
H=HyxZ"xR" (2)

where Hj is a compact abelian group. We think of Z as a subgroup of R. There are a number of obvious
finite functions: 1) quasi-characters of H; 2) the projection functions &; given by

Ei(hOaxlv sy xn—&-m) = Ty4;

and 3) any polynomial expression in these functions. The point of this section is to prove the following
proposition:

126 Proposition (J-L Lemma 8.1). Let H be a group of the form (2). Then the functions of the
form XH?:Jrlm &P where the p; are nonnegative integers form a basis for the space of finite functions.

127 Proposition (J-L Lemma 8.1.1, 8.1.2). Let Hy and Hy be two locally compact abelian groups.
Then the natural map
y(Hl) Qc f(Hg) — fi(Hl X HQ)

which takes f1 ® fa to the function whose value at (hy,hs2) is f1(h1)fa(he) is an isomorphism.
Injective: Let f; be a basis for s#and g; a basis for /£ We must show that the images of the f; ® g;
are linearly independent. Thus let

> aijfi(h1)gj(ha) =0
be a linear relationship. This may be rewritten as

> <Z:aijfi(h1)>gj(h2) =0.

J
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For each h; this is a linear dependence amongst the g;, which are linearly independent; it follows that
the coefficients must vanish, i.e., for each j we have

Zaijfi =0.

But the f; are linearly independent, and so a;; = 0. This proves the the map is injective.

Surjective: Let f be a given finite function on Hy x Hy and let V' be a finite dimensional space of
finite functions on Hi X Hy containing f and stable under translation. Note that for any function ¢ in
V the function h; — g¢(hq,0) is a finite function on H; (and similarly hs — ¢(0, he) is a finite function
on Hg)

For any element £ of Hy; x Hy we obtain a linear functional on V' by g — ¢(£). Since the zero function
is the only function annihilated by all these functionals, we may pick &i,...,&, so that the resulting
functionals are a basis for the dual space of V. Let f1,..., f, be the corresponding dual basis of V.

The function h — f(h+ h'), for b’ fixed, is an element of V. We may thus write

Fh41) = Ni(W) fi(h)

where (by the definition of the basis f;) we have \;(h') = f(h' +¢&;). Note therefore that )\; is an element
of V. If we now let ¢; be the finite function on Hy given by ¢;(h1) = A;(h1,0) and ¢; the finite function
on Hjy given by ¢;(hs) = f;(0, ha) then we have

f(ha,ho) = ¢i(ha)i(ha)

which proves the surjectivity.

128. According to proposition 127, to prove proposition 126 we need only establish the special cases
where H is compact, H =Z and H = R.

129 Proof of proposition 126 for H compact (J-L pg. 280). We must show that the characters
of H form a basis for the space of finite functions on H.

We first show that the characters of H are linearly independent (this is a standard result, but we
include a proof). Assume we had a nontrivial linear dependence. Let

i=1

be a linear dependence such that all the a; are nonzero and r is minimal. Changing h to h+ g, we obtain
the relation

Z a;xi(g)xi(h) = 0.

Take g so that x1(g) # x2(g). Multiplying the first relation by x1(g) and subtracting the second gives

> bixi(h) =0
i—2

where b; = (x1(9) — xi(g))a;. Since ba # 0 this is a nontrivial dependence with fewer terms than
the original dependence. This is a contradiction since the original dependence was assumed minimal;
therefore the characters are linearly independent.

We now prove that the characters span % (H). Let V be an arbitrary finite dimensional subspace of
Z (H). Tt suffices to show that V' is spanned by the characters it contains. As in the proof of proposition
127, let &; be elements of H which yield a basis for the dual of V' and let f; be a dual basis. We have

p(9)fi = Z Aij(9)f;

where p(g)f is the translate of f by g. From the expression A;;(g) = fi(g + ;) we see that \;; is
continuous. This shows that the representation of H on V by p is continuous (since the matrix of p(g)
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with respect to the basis f; is A;;(g)). We therefore have a continuous representation of the compact
abelian group H on V. Since representations of compact groups are completely reducible, and the only
irreducible representations of an abelian group are one dimensional, it follows that V breaks up into a
direct sum of one dimensional subspaces which are stable under translation. However, it is clear that
any such space is spanned by a character. It follows that V' has a basis consisting of characters. This
completes the proof.

130 Proof of proposition 126 for H = Z. The quasi-characters of Z have the form n — e*” where
a is a complex number. It is clear that the functions n +— e®*nP are linearly independent; we must prove
they span the space of finite functions on Z.

Thus let f be a finite function on Z and let V be a finite dimensional space containing f and stable
under translation. Let p be the dimension of V. Since the p + 1 functions f(n), f(n +1),..., f(n+p)
all belong to V' there must be a dependence relation, i.e., f must satisfy a difference equation

Zaif(n-f'i) =0.
i=0

It is easy to see that a function satisfying such an equation has the requisite form (for instance, the
generating function Y-, f(n)z" is obviously a rational function).

131 Proof of proposition 126 for H = R. The quasi-characters of R have the form x — e%* where
a is a complex number. Again, it is clear that the functions x +— e®®xP are linearly independent; we
must prove they span the space of finite functions on R.

Thus let f be a finite function and let V' be a finite dimensional space containing f and stable under
translation. As we have done twice before, pick & in R which give a basis of V* and let f; in V' be the

dual basis. We thus have
pla)fi =) Nij(x)f;

where \;;(z) = fi(x +&;). It therefore follows that the \;; are continuous and so p is continuous as well
(as a map R — GL(V)). Since any continuous map R — GL(V) is automatically smooth, it follows that
p is smooth; therefore the A;; are smooth and so the f; are smooth and so all elements of V' are smooth.
Furthermore, V' is closed under differentiation because

g = tm POEER 50

x—0 X

Let p be the dimension of V. Since the p + 1 functions f, (), ..., f®) all belong to V' (where f() is
the ith derivative of f), it follows that there must be a linear dependence, i.e., f must satisfy a differential

equation
p .
S0 f® =0,
i=0

It is easy to see that any solution of this equation has the requisite form, which completes the proof.

1.7 Simple constituents of composite modules

132. Let H be an algebra. Recall that a constituent of an H-module A is a subquotient of A, that is, a
constituent of A is of the form V/U where U C V C A are submodules. In this section we prove several
results of the following general form: if A is an H-module which is “composed” of other H-modules A,
(e.g., A could be the direct sum of the A,) then any simple module which is a constituent of A is a
constituent of A, for some a.
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133 Proposition. Let H be an algebra.
1. Let A — B be a surjection of H-modules. Then any constituent of B is a constituent of A.

2. Let A — B be an injection of H-modules. Then any constituent of A is a constituent of B.

3. Let

A-top o0

be an exact sequence of H-modules. Then any simple constituent of B is a constituent of either A
or C.

The first two statements are trivial. We prove the third. By the first two statements, we may assume
that f is injective and g is surjective, so that A may identified with a submodule of B and C may be
identified with the quotient B/C. Now, let U C V C B be submodules such that V/U is simple. We
separate two cases:

Case 1: VN A C U. The kernels of the projections U,V — C are both equal to VN A. We thus have

V/iU=(V/(VNA)/(U/(VNA)).

Since V/(V N A) and U/(V N A) are isomorphic to the images of V and U in C, we find that V/U is a
constituent of C'
Case 2: VN A ¢ U. Since V/U is simple there are no intermediate submodules to U and V. Thus
V =U+ (VN A) and we have
V/U=(VNA/UnNA)

which shows that V/U is a constituent of A.

134 Proposition. Let H be an algebra and let A be an H-module which is the union of submodules
A, (as a ranges in some index set). Then any simple consistuent of A is a constituent of A, for some
a.

Let U C V C A be submodules so that V/U is a simple module. We may find « so that V' N A, is
not contained in U; since V/U is simple, it follows that V =U + (V N A,) and so

V/U = (VN Aa)/(U N Ay).

Thus V/U is a constituent of A,.

135 Proposition. Let H be an algebra and let A be an H-module which is the direct sum of submodules
A, as a ranges over an index set I. Then any simple constituent of A is a constituent of A, for some
Q.

Since A is the union of spaces which are direct sums of finitely many of the A,, we may assume, by
proposition 134, that I is finite. Furthermore, by induction, we may assume that I has two elements.
Thus A = A1 & A> and we must show that a simple constituent of A is either a constituent of A; or of
As. This follows from proposition 133.

136 Proposition. Let H, be an idempotented algebra, for each v in some index set X. Let (A,) be
an admissible family of simple modules and let (B,) be an admissible family of modules. If ®A, is a
constituent of ® B, then A, is a constituent of B, for each v.
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Chapter 2

Review of GL(1) theory

2.1 The basic local theory
2.1.1 Notation and definitions

1. The following notations will be in use in this section:
1. F will denote a local field.
2. We write | - | for the canonical “analytic” norm on the locally compact topological ring F'. To be
explicit:
(a) If F is non-archimedean and w is a generator for the maximal ideal of F' then |w|p = ¢!
where ¢ is the cardinality of the residue class field of F.
(b) If Fis R then | -| is the standard absolute value.

(¢c) If F is C then |z| equals zZ.
3. We let ¥r be a nontrivial additive character of F.
4. We let G be the group GL(1) and write G for its F-valued points (i.e., the group F'*).
2. If F is non-archimedean we say that ¢ is unramified if the largest ideal of F' on which it is trivial (i.e.,

its conductor) is the ring of integers of F. Likewise, if F' is non-archimedean and w is a quasi-character
of F* then w is unramified if the largest subgroup on which it is trivial is Ur (the norm 1 group).

3. By definition, an irreducible admissible representation of Gp is a quasi-character of F'* (i.e., a
continuous homomorphism F* — C*).

2.1.2 The functions L(s,w) and Z(s, ¢,w)

4. We now define the local L-function of an irreducible admissible representation w of Gp.

1. If F' is non-archimedean then

1

L(s,w) =4 1 —w(@)g~*
1 w ramified

w unramified

where ¢ = |w|;" is the cardinality of the residue field. Note that if w is unramified then w(w) is
independent of the generator w.

2. If F' is the real field and w(x) = (sgnx)™|z|}% where m is 0 or 1 then

1
L(s,w) = 7 26D L (s 41 4-m)).
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3. If F is the complex field and w(z) = |z|¢2"2"™ then
L(s,w) = 2(2r) 5t D (s 4 r 4 m +n).

5. If ¢ is an element of .(F') we define the zeta function
Z5.6.9) = [ wl@ol@lada
FX

6 Proposition. Let w be an admissible representation of Gp.

1. For all ¢ in S (F) the integral defining Z(s,¢,w) is absolutely convergent in some half plane
Rs > sq.

2. For all ¢ in S (F) the ratio

Z(s, ¢,w)
L(s,w) (1)

can be analytically continued to an entire function.
3. There exists ¢ such that the quotient (1) is equal to 1.

4. L(s,w) is the unique Euler factor satisfying these properties. (Recall that an Euler factor is a
function of the form 1/P(q~*) where P is a polynomial with constant term 1.)
We have
25.6,0) = Y [lfo@)* [ w(@olet)de.

keZ Ur

Since ¢ belongs to .#(F) the quantity ¢(ew”) is equal to 0 for k¥ < 0 and is equal to ¢(0) for k > 0.
Thus we have

Ni—1

S w:OO wkwwk w(€)de wkwwk wl € EWkE
Z(s,6,w) k§1| oo >¢<o>/UF (0)d +k§2\ () /U (Od(eat)d
ol w(@)™ P
= TS0 [ (et Pl

where P is a Laurent polynomial. Thus Z(s, ¢,w) is a rational function in ¢® and so the integral defining
it converges for s sufficiently large. Furthermore, we see that if w is ramified the integral above vanishes
and so Z(s, ¢,w) is just a Laurent polynomial in ¢~%; if w is unramified then

Z(s,¢,w) = ¢(0)|w|} w(w)L(s,w) + Pq~*).

In either case, it is clear that Z(s, ¢,w)/L(s,w) is an entire funciton. Thus statements 1 and 2 are proved.

As to statement 3, if w is unramified then taking ¢ equal to the characteristic function of Up works;
otherwise take ¢ equal to the characteristic function of Up multiplied by w™?!.

We now prove statement 4. Assume L'(s) were another Euler factor satisfying statements 2 and 3.
Take ¢ such that Z(s,¢,w) = L(s,w); since Z(s,¢,w)/L'(s) is entire we see that L(s,w)/L'(s) is entire.
Similarly, L'(s)/L(s,w) is entire. Thus the rational function (of ¢~%) L(s,w)/L’(s) and its reciprocal are
entire; therefore it is a constant. The condition on the constant term of an Euler factor implies that
L' = L, proving uniqueness.

2.1.3 The local functional equation
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7 Theorem. Letw be an admissible representation of Gp.

1. There exist factors e(s,w,yr) such that for all ¢ in S (F) we have

Z(l - S, évw_l)
L(1-s,w™1)

= €(s, w, wF)Zi‘sz) (2)

where ngS is the Fourier transform of ¢ with respect to V.
2. The factor e(s,w,v¥r) is of the form ab®.

8. If F is non-archimedean and both w and p are unramified then
e(s,w,¥p) = 1.

4. If F is the real field and w(z) = (sgnx)™|z|f where m is 0 or 1 and Yr(z) = e*™*® then

e(s,w, Yr) = (isgn a)m|a\ﬁ1+r_1/2.

5. If F is the complez field and w(z) = |2|nz"2™ and c(z) = ™ REY) then

e(s,w,c) = im+"w(w)|w|f{1/2.

8. The identity (2) is called the local functional equation for GL(1).

9. The factors €(s,w, ) are called e-factors. Sometimes it is more convenient to use ~-factors, defined

by

L(1—s,w™t
L(s,w)

With the ~-factors, the local functional equation takes the form

Z(l - S,QA57(,{}_1) = ’Y(S,w7¢F)Z(S,¢),W).

7(37w7¢F) = E(S7w7¢F)'

2.2 The local theory associated to a quaternion algebra

2.2.1 Representations of quaternion algebras

10. We retain the notation from the previous section and add some more. In this section K will
denote the unique quaternion division algebra over F'. We let v be the “algebraic” norm on K given by
v(z) = xzz* (where ¢ is conjugation on K). We denote by K7 and by Uk the inverse images under v of 1
and Ur respectively. There is a short exact sequence

v

1 K Uk

Ur 1.

The groups K; and Uy are compact.

We let || i be the canonical “analytic” norm on the locally compact ring K given by |a|x = d(az)/dz
where dz is any additive Haar measure. If § is a local uniformizer for K (i.e., a generator of the prime
ideal of K) and w is the corresponding local uniformizer for F' (i.e., is equal to v(3)) then

2 4
Blx =l@lp, @k =|=lp.
Note that the powers of 8 form a set of coset representatives for K* modulo Ug.

11. If x is a character of F'* and v is the norm on K we denote the one dimensional representation
g — x(v(g)) by x also. We say this representation is ramified or unramified according to whether
X is ramified or unramified. If Q is a representation of K* we denote by x ® £ the representation

g — x(9)(g)-
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12. Schur’s lemma holds for finite dimensional irreducible representations  of K*, that is, for such
representation any operator commuting with K> is in fact a scalar. In particular, since F'* lies in the
center of K™, there is a quasi-character w of F'* such that

Qa) =w(a)I

for a in F*. We call w the central quasi-character of €.
Note that if w is the central quasi-character of € then x?w is the central quasi-character of y ® Q

13. We say that Q is unitary if there is an invariant hermitian form on the space of the representation.
Since K*/F* is compact, an irreducible finite dimensional representation is unitary if and only if its
central quasi-character is a character.

14. Note that if Q is a finite dimensional irreducible representation of K* of degree greater than 1 then
there is no nonzero vector fixed by all of K (this follows since K* /K7 is abelian).

15. Let Q) be a finite dimensional representation of K* on the space U.

1. We let Z(K,U) be the space of all locally constant compactly supported functions on K with
values in U.

2. We let (K, Q) be the subspace consisting of functions ® which satisfy ®(zh) = Q~1(h)®(z) for
h in Kl.

3. We let .7V (K, ) be the subspace consisting of functions ® which satisfy ®(xh) = Q=1 (h)®(x) for
h in UK.

Note that .#Y (K, Q) C .7(K, Q). Note also that if € is irreducible of degree greater than 1 or is degree
1 and ramified then any function ® in .(K, ) vanishes at 0 (since ®(0) is fixed by all of Kj).

16 Lemma (J-L Lemma 4.1). The commutator subgroup of K* is the norm one subgroup Kj.
It is clear that K contains the commutator subgroup. Suppose that = belongs to K;. If x = z* then
2? = xx* = 1 so that © = +1. If # # 2* then F(z) is a quadratic separable extension of F. Thus in

all cases there is a separable quadratic extension L of F' contained in K and containing z. By Hilbert’s

theorem 90 there is a y in L such that # = y/y*. Also, there is an element o of K such that oczo~! = 2*

for all z in L. Thus # = yoy~'c~! is in the commutator subgroup.

17. Lemma 16 implies that any one dimensional representation of K> is the representation associated
to a quasi-character of F'*.

2.2.2 The functions L(s,2) and Z(s, ®,Q)

18. In this section we basically carry out the GL(1) theory with F* replaced by K*. Thus we
consider irreducible finite dimensional representations of K* in place of irreducible finite dimensional
representations of F'* (i.e., quasi-characters).

19. Let (22,U) be a finite dimensional irreducible representation of K*. For ® in .(K), u in U and u
in U we define the zeta function

265,007 = [ ol 0(0) @), 7).
For ® in .(K,U) we also define the zeta functions
2(5.9.9) = [ 1l 0090

and

Z(s,cp,srl):/ a2/ 401 () D (a)d" a.
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Of couse these two types of zeta functions are almost the same: we have

and B
Z(s,®,Q;0,u) = (Z(s, ®u, Q1) 0).

We shall sometimes find one type of zeta function more convenient than the other.

20. We now define an L-funciton L(s, ):

1. If © is the one dimensional representation corresponding to the quasi-character y of F'* we define
L(s,) = L(s, a;/Qx), where the L-function on the right is the GL(1) L-function of §2.1.2.

2. If Q has degree greater than one then we define L(s,7) = 1.

21 Proposition (J-L Lemma 4.2.5, Thm. 4.3). Let (Q,U) be a finite dimensional irreducible
representation of K*.
1. The integrals defining Z(s, ®,Q;u,u) converge in some half plane Rs > sq.
2. The ratio -
Z(s,®,Q;u,u)
L(s,Q)
can be analytically continued to an entire function.

3. The variables ®, u and u can be selected so that the quotient 3 is equal to 1.

4. L(s,Q) is the unique Euler factor satifying 2 and 3.
22. We first give a lemma. We let Ug denote the group of elements x in K*

23 Lemma. Given ® in /(K,U) put
Dy (z) = Q(h)®(xzh)dh
Uk

where dh is the normalized Haar measure on Uk . The Fourier transform of ®1 is given by
' (z) = / QL (h)® (har)dh.
Uk

The functions ®; and z — &) (z*) belong to SV (K,Q). We have

Z(s,®,9Q) = Z(s,®1,0), Z(5,®', Q7 = Z(s,0],Q7h).

This is a simple computation and is left to the reader.

24 Proof of proposition 21. We prove the statements for Z(s, ®,2); these imply the statements as
given in the proposition.

1, 2) By lemma 23 it suffices to these statements when ® belongs to .Y (K,Q). If degQ > 1 or
deg ) =1 and Q is ramified they are obvious when one notes that functions in .%(K, Q) have compact
support contained in K.

Now consider the case when (2 is the one dimensional representation corresponding to the unramified
quasi-character y of F'*. Let 8 be a generator for the prime ideal of K. Then

Z(s,®,9) = /

Ll @e@d e =3 18T (B) (87,
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Since ® has compact support in K the terms of the sum are 0 for n sufficiently large and negative. Since
® is locally constant we have ®(5") = ®(0) for n sufficiently large. Thus

Z(s,@,0) =2(0) Y =i @)+ Y |=lE T (@) (5"

n>ns ni<n<ng

= o(0)|w| P x(@) 2 L(s, Q)+ Y el (@) (8"

ni<n<ns

and the first two statements follow.
3) Let @, be the function which is 0 outside of Uk (the unit group of Ok) and on Uk is given by
®,(r) = Q1 (x)u. Then
Z(5,9,,90) =cu

where ¢ is the volume of Ux with respect to d*a.

4) This is clear.

2.2.3 The local functional equation

25 Theorem (J-L Lemma 4.2.5, Thm 4.3). Let (Q,U) be a finite dimensional irreducible
representation of K*.

1. There exist e-factors such that for any ® in (K,U), any u in U and any U in U we have

Z(1— 5,9 Q;7,u)
L(1—s,9Q)

Z(s,®,Q;u,u)
L(s,9)

= e(s,92,9)

where O’ is the Fourier transform of ®.
2. The factors €(s,2,v) are of the form ab®.
3. If the degree of () is one and ) is unramified then
| —m(8+1/2)x(w)m

F
1 |wfi

€(s,Q,¢) =

m

where q~™ 1is the conductor of Vi .

4. If the degree of Q) is greater than 1 then
€(5,Q,) = no(Q ;) || T —3/2)

where q~™ is the conductor of Yx, 1+ q™ is the conductor of the restriction of Q to Ky (which is
necessarily nontrivial) and no(Q~1;4) is as in §1.5.2, proposition 123.

26. Note that the functional equation of theorem 25 is equivalent to the functional equation

Z(1—s,® Q1)
L(1—s,Q)

Z(s,9,9Q)
L(s,Q)

= €(s,,9)

for all ® in .7(K,U). This is the form in which we will prove it.

27. It is sometimes more convenient to use y-factors in place of e-factors. They are defined by

L(1—s,Q)

v(s,Q,9) = 5.9

(s, Q, 7).
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28 Proof of theorem 25. We let 3 be a generator for the maximal ideal of O .
Sublemma. Let ® be an element of /Y (K, ). Then

ky — kD () d — ¢ k-, eV de — ¢ K+ )01 (¢ )\ de
>—/Kw<ﬁ b()d ;WK/Klmw JB(5'e)d §|ﬁ|f</mw<ﬁ+ )2 ()D(5)d

and so

= I1Blen(@7", BFH2(8°). (4)
l

We now prove the proposition, in two cases. Note that by lemma 23 it suffices to take ® in .7V (K, Q).
Case 1: degQ > 1 or degQ =1 and Q ramified. By §1.5.2, proposition 123, the terms of the sum (4)
are zero except the term with k + ¢ = —n — m which is equal to 79(Q2~1;4)Q(87""™). We thus have

() = |8l (T )BT MR(BTTTR).
Therefore

Z(1 -5, 07 = Z |ﬁ|g—s)k/2+k/49(6,k)©,(ﬂk)
k
= T]O(Q_l; ,(/)) Z |ﬁ|;{Sk/Q*k/‘l*n*mQ(ﬁ—k—n—m)q)(ﬁ—n—m—k)
k

= 10(Q )| BTN g 2o s o (67)
k

= €(s,Q2,9)2(s,2,Q)

and this case is proved.

Case 2: degQ =1 and Q unramified. Let  be the one dimensional representation corresponding
to the unramified quasi-character y of F* and identify U with C. Without loss of generality we may
assume X to be unitary and thus the trivial character. Let ® and ¥ be arbitrary elements of .7 (K). We

first prove
Z(1—5,® Q NZ(s,0,Q) = Z(5,0,Q)Z(1 — 5, V', Q7). (5)
If f% < s < % then both terms on the left side are given by definite integrals, and we have

Z(1-5,9,97)2(s, ¥,9) / [l Pl )W (y)d <

where the each integral is over K*. Expressing ® as an integral, the right hand side becomes

][ el v ) dzaraary

where all the integrals are over K* (the Fourier transform is actually integrated over K, but throwing
out zero does not change anything). If we now change x to zz~! and write dz = |z|xd* 2, we obtain

Z(1— 58,0 2Z(s,,Q) ///| |3IA712 B2 52 () (2) W () d 2d* 2d * .

Since this is symmetric in ® and ¥ we can conclude the identity (5).
Now let ¥ be the the characteristic function of Ug. Let d*a be the Haar measure which gives Uy
volume 1. Since 2 is trivial on Ux we find

Z(s,0,Q) =

Applying §1.5.2, proposition 123 we find

1 k>-m-—1

V(ap)=3¢ k=-m—-1

0 k<—m-—1
where ¢ = —|8|x (1 — |B]x)~!. An easy computation now gives
X(B)" "2 L(s,Q)

1- |w|? L(1-5,Q)

Z(s, 0 Q71 =

Inserting this into (5) we deduce the stated functional equation.
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29 Note. The proof given here when deg () > 1 is different than the proof given in J-L Lemma 4.2.4;
I could not understand why the distribution § in the proof given in J-L is a smooth function.
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Chapter 3

The classical theory of automorphic
forms on GL(2)

3.1 Preliminaries on topological groups

3.1.1 Generalities

1 Lemma (Shimura Lemma 1.2). Let S be a non-empty locally compact Hausdorff space and let
{Vi}i>1 be a countable collection of closed subspaces, the union of which is S. Then at least one of the
Vi contains an interior point.

Assume no V; has an interior point; we will derive a contradiction. Let W7 be a non-empty open subset
of S with compact closure. Having defined W1, ..., W;, define W;;1 to be an open set whose closure is
contained in W; — V;. The W, then form a decreasing chain of compact sets and so it follows that their
intersection is nonempty. However, their intersection is disjoint from any V;, which is a contradiction.

2 Proposition (Shimura Thm. 1.1). Let G be a locally compact Hausdorff group with a countable
base of open sets acting transitively on the locally compact Huasdorff space S. Let s be any point in S
and let K be its isotropy group. Then the natural map G/K — S is a homeomorphism.

It is clear that G/K — S is a continuous bijection; it thus suffices to show that it is an open map. It
therefore suffices to show that if U is any open set in G and g an element of U then gs is an interior point
of Us. Let V be a compact neighborhood of the identity such that V = V~! and gV? C U. Since Vs is
a continuous image of the compact set V' it is compact, and therefore closed in S. By our assumption, S
is the union of sets g;V's for some countable collection {g;} of elements of G. By lemma 1 it follows that
some ¢;V's contains an interior point; hence Vs contains an interior point. Thus we can find an element
v of V and an open set W of S such that vs € W C Vs. Let W be the inverse image of W in G thus
W is an open subset of G’ contained in V and such that W = Ws. Now, we have

gs=gv tus € gW ' Ws C gV%s C Us
Since gW ~'Ws = gW W is open in S, it follows that gs is an interior point of Us.

3 Proposition (Shimura Prop. 1.3). Let G be a Hausdorff group acting on a locally compact
Hausdorff space S. Then G\S is compact if and only if there exists a compact subset C of S such that
S =GC.

Let 7 denote the projection map S — G\S. If S = GC then G\S = n(C) and so is compact. To
prove the converse, cover S by open sets U; with compact closures. The sets 7 (U;) are open and cover
the compact space G\ S; thus there exists a finite index set I such that the w(U;) with 4 in I cover G\S.
We may then take C' to be the union of the closures of the U; with ¢ in 1.

4 Proposition (Shimura Prop. 1.4). Let G be a Hausdorff group and T' a subgroup which is locally

compact in the subspace topology. Then I is closed in G. In particular, if T' is discrete then it has no
limit point in G.
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Let C be a compact neighborhood of the identity in I". Let U be an open neighborhood of the identity
in G such that UNT C C. Let x be an element of the closure of ' in G. We must show that x belongs
to I

Let V be a neighborhood of z in G such that V=1V C U. Then (VNIT)"Y(V NT) C C. Let y be an
element of V NI (such a y necessarily exists). Then

y (VD) c(VvnTh) " {(VnT)cC

and so VNI C yC. It is clear that x belongs to the closure of V NT and thus to the closure of yC.
However, yC' is already closed (since it is compact); thus = belongs to yC and therefore to T'.

5 Proposition (Shimura Prop. 1.5). Let G be a locally compact Hausdorff group and let K be a
compact subgroup of G. Let S be the quotient space G/K and let h: G — S be the natural map. If A is
a compact subset of S then its inverse image A under h is compact in G.

The group K acts on the locally compact space A; the quotient, A, is compact. Therefore, by
proposition 49, there exists a compact set C in A such that A = CK. Thus A is the continuous image
(under the multiplication map) of the compact set C' x K and is therefore compact.

6 Proposition (Shimura Prop. 1.6). Let G, K, S and h be as in proposition 5 and let T be a
subgroup of G. Then the following two statements are equivalent:

1. T is a discrete subgroup of G;

2. For any two compact subsets A and B of S there are only finitely many elements v of I' such that
~vA meets B.

(1 = 2) Let A and B be compact subsets of S and let A and B be their inverse images under
h (they are compact by proposition 5). If 7 is an element of I' and yA meets B then 7 belongs to
I'N(BA™1) (and conversely). Since I' N (BA™!) is a discrete subset of the compact space BA™1! it is
finite.

(2 = 1) Let V be a compact neighborhood of the identity in G and let s be the image of the
identity in S. Let A = {s} and let B = h(V); they are compact subsets of S. If v belongs to 'V then
clearly vt € h(V), that is to say ¥A and B meet. Thus ' NV is a finite set and so I is discrete.

3.1.2 Discrete Subgroups

7. For this section we make the following assumptions:
1. G is a locally compact Hausdorff group;
2. K is a compact subgroup of G;
3. S = G/K is the quotient space;
4. h: G — S is the projection map;

5. I is a discrete subgroup of G.

8 Proposition (Shimura Prop. 1.7). FEwvery z in S has an open neighborhood U such that for any
~v in I the set YU meets U if and only if v stabilizes z.

Let V be a compact neighborhood of z. By proposition 6 there are only finitely many elements ~ of I'
such that vV meets V. Enumerate these elements as 71, ...,7, such that for 1 <7 < s we have v,z = z
and for s < i < r we have v;z # z. For i > s let V; and W; be disjoint neighborhoods of z and g;z. We
may now take U to be any neighborhood of z contained in V N (N> (V; N g; ' W3)).
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9 Proposition (Shimura Prop. 1.8). If two points z and z' of S do not lie in the same orbit under
I’ then there exist neighborhoods U of z and U’ of 2’ such that for all v in T the sets yU and U’ are

disjoint.
Let V and V' be compact neighborhoods of z and 2’. The set of « in I for which vV and V' meet is
a finite set (¢f. proposition 6). Enumerate the elements of this set as v1,...,7,. Since z and 2’ are not

equivalent we have «;z # 2’ and therefore we can find neighborhoods U; of v;z1 and U/ of 2’ which are
disjoint. We may now take U to be any neighborhood of z contained in V N (ﬁgzlgflUi) and we may
take U’ to be any neighborhood of 2’ contained in V' N (NI_,U/).

10 Corollary. The quotient space I'\S is Hausdorff.

11 Proposition (Shimura Prop. 1.9). The space T'\S is compact if and only if T\G is compact.
If T'\S is compact then there exists a compact set C' of S such that S = T'C (¢f. proposition 3). Thus
G =Th71(C). Since h=1(C) is compact (cf. proposition 5) it follows that I'\G is compact as well. To
prove the converse simple note that T'\\S' is a continuous image of I'\G.

3.1.3 Miscellany

12 Proposition (Shimura Prop 1.10). Let G1 be a locally compact Hausdorff group, Go a compact
Hausdorff group, I' a closed subgroup of G1 x G5 and 'y the projection of I' to Gy.

1. T'1 is closed in G1.
2. T\(G1 x Ga) is compact if and only if T1\G1 is compact.
8. If T is discrete in G1 X Go then I'y is discrete in G;.

Let V be a compact neighborhood of the identity in Gy. Then (V' x G3) NT is compact; its image
under the projection map G; x Go — Gy is VNI'y. Thus VNI is compact and so I'y is locally compact.
By proposition 4 it follows that I'; is closed. If T is discrete then (V' x G2) NT is finite and so V NI’ is
finite as well; thus I'y is discrete.

We now prove the second assertion. If I'y\G; is compact then there exists a compact subset C of Gy
such that G; = I'C (¢f. proposition 3). It then follows that the quotient map C x Gy — T'\(G1 x Gs)
is surjective; since C' x Gq is compact it follows that I'\(G; x G3) is compact. To prove the converse
simply note that I';\G; is a continuous image of T'\(G1 x Ga).

13. Recall that two subgroups I' and IV of a group G are said to be commensurable if I NT” is of finite
index in both I" and I"”.

14 Proposition. We have the following:
1. Commensurability is an equivalence relation.

2. IfT" and I are commensurable subgroups of a topological group G then T is discrete if and only if
T is discrete.

3. If T and T” are commensurable closed subgroups of a locally compact Huasdorff group G then T\G
is compact if and only if T'\G is compact.

These statements are all easily proved and therefore left to the reader.

3.2 The action of PSL(2,R) on $

3.2.1 Definitions
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15. Let $ denote the upper half plane in C, i.e.,
H={z€C|Sz>0}.

It is a complex manifold. It also carries the structure of a Riemannian metric. We do not give a precise
definition of the metric; suffice it to say that the geodesics in ) are semi-circles centered somewhere on
the real axis.

16. The group GL*(2,R) of 2 x 2 matrices with real coefficients and positive determinant acts on CP'
via linear fractional transformations, that is, if
b
d

|

is a typical element of GL'(2,R) and z is a typical element of CP' then

o 2

az+b
cz+d’

oz =

It is clear that RP! is taken into itself under this action; it thus follows (since  and GLT(2,R) are both
connected) that $) is also taken into itself under the action.

17. The action of GL*(2,RR) on $ is both both holomorphic and isometrical. The action is not faithful,
for it is clear that scalar matrices act trivially. The quotient group

PSL(2,R) = GL*(2,R)/R* = SL(2,R)/{+1}

however, does act faithfully. In fact, PSL(2,R) is both the group of holomorphic automorphisms of 9
and the group of orientation preserving isometries of £).

18. The action of SL(2,R) on § is easily seen to be transitive. We thus obtain a surjection
SL(2,R) — 9, o ol

where ¢ = /=1 (of course, we could have selected any point in $*; ¢ is just particularly convenient). It
is easily verified that the stabilzer of 4 is SO(2,R); we thus obtain a diffeomorphism

SL(2,R)/SO(2,R) — §.

19. For an element o of GL(2,R) we write

and put
jlo,2) =coz+do.

A useful identity is
S(oz) = (det o) |j(0, 2)| 2 3z. (1)

20. Finally, we mention that the measure y~2dzdy on the upper half plane is invariant under the action
of GLT(2,R). This can be directly verified.

3.2.2 Classification of linear fractional transformations
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21 Proposition (Shimura Prop. 1.12, 1.13). Let o be an element of SL(2,R) which is not equal
to 1. There are three possibilities:

1. o is parabolic: o stabilizes exactly one point in RP' and no points in ), the trace of o is +2 and

o is conjugate (in SL(2,C)) to a matriz of the form [ g\ i\ ];

2. o is ellitpic: o stabilizes exactly one point in $ and no points in RP!, the tace of o is less than 2

in absolute value and o is conjugate to a matriz of the form 6\ with A and p distinct values

of unit modulus;

3. o is hyperbolic: o stabilizes exactly two points in RP' and no points in $), the trace of o is greater

than 2 in absolute value and o is conjugate to a matriz of the form [ 6\ 2 ] with || # |pl.

-2 8)

The statements concerning conjugates of o follows from the other statements and the theory of Jordan
canonical form. We break the proof into two cases.

Case 1: ¢ =0. We have d = a~!. The trace of ¢ is a + 1/a; this is equal to 4-2 if and only if @ = +1
and is otherwise greater than 2 in absolute value. For an element z of C we have gz = a?z + ba. It is
thus clear that if |tro| = 2 (i.e., a = £1) then o stabilizes only oo, while if | tro| > 2 (i.e., a # £1) then
o stabilizes exactly two points in RP', namely oo and ba/(1 — a?).

Case 2: ¢ # 0. First note that oo will never be stabilized. An element z of C is stabilized by o if and
only if it satisfies the equation

Write o as

>+ (a—d)z+b=0.

The solutions to this equation are
a—d+ VA
2c

where
A= (tro)? — 4.

Thus according to |tro| = 2, |trg| < 2 and | tr o| > 2 there is exactly one solution (and it is real), exactly
two solutions (one in the upper half plane and one in the lower half plane) and exactly two solutions
(both of which are real). This proves the proposition.

22 Proposition (Shimura Prop. 1.14). Let o be an element of SL(2,R) such that o™ is not +1.
Then o and o™ are of the same type (i.e., both are parabolic, both are elliptic or both are hyperbolic).
This follows immediately from the characterization of the types by their Jordan form.

3.3 The space I'\H* for discrete subgroups I'

23. Throughout this section I' denotes a discrete subgroup of SL(2,R). If ¢ is an element of SL(2,R)
then we write 7 for its image in PSL(2,R); similarly I" denotes the image of " in SL(2, R).

3.3.1 Elliptic points, cuspidal points and the space $H*

24. The group I acts on both £ and RP'. We define special points in these spaces with respect to the
action of I':

1. We say an element of §) is elliptic if it is stabilized by an elliptic element of T’
2. We say an element of RP' is a cusp if it is stabilized by a parabolic element of I.

Tt is clear that the action of T" preserves the property of being an elliptic point or cusp (i.e., if z is a cusp
so is yz for all v in T").
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25 Proposition (Shimura Prop. 1.16). The stabilizer in T of an elliptic point is a finite cyclic
group.
Let z be an elliptic point and let 7 be an element of SL(2,R) such that 7(i) = z. Since the stabilizer
of i in SL(2,R) is SO(2, R) it follows that the stabilizer of z in I" is 7SO(2, R)7~ 1 NT. As this is a discrete
subgroup of SO(2,R), the circle group, it is finite and cyclic.

26. We define the order of an elliptic point to be the order of its stabilizer sn PSL(2,R). This may or
may not be equal to the order of the stabilizer in SL(2,R) (the two numbers may differ by a factor of 2);
precisely, we have the following:

27 Proposition (Shimura Prop. 1.20). If o is an elliptic element of T' of order 2h then o = —1
and the elliptic point stabilized by o has order h.
This follows immediately from the Jordan form of o.

28 Proposition (Shimura Prop. 1.17). Let s be a cusp and let Ty be its stabilizer in T'. Then T
1s infinite cyclic. Moreover, other than £1, 'y consists entirely of parabolic elements.
By conjugating we may assume s = oo. The stabilizer of s in SL(2,R) is the Borel subgroup

b

Thus the parabolic elements of SL(2,R) which stabilize s form the group of unipotent matrices

+1 b

0 =+1 |
The image of this group in PSL(2,R) is isomorphic to R; its nontrivial discrete subgroups are infinite
cyclic.

It therefore follows that the parabolic elements of T's, together with I' N {£1}, form a group, whose
image in PSL(2,R) is infinite cyclic. Let
{ +1 A ]
g =

0 =+£1

be a generator of this group. It is clear that I'y does not contain any elliptic elements (since elliptic
elements cannot stabilize points in RIP’l); we must show that it does not contain any hyperbolic elements.
Thus assume that the hyperbolic element
S b
10 at

, we may assume that |a| < 1. But then

-1 _ +1 &2h
TOT = O +1

belongs to I'y. Replacing 7 by 77!

is a parabolic element with |a*h| < |h|. It follows that T7o7—! cannot be of the form @". Since this
contradicts the fact that & generates the group of parabolic elements in 'y it follows that no such 7 can
exist.

29 Proposition (Shimura Prop. 1.18). The elements of finite order in T’ consist exactly of TN{£1}
and the elliptic elements of T.

It follows from the characterization of types by their Jordan form that an element of finite order is
necessarily elliptic or £1; conversely, such elements have finite order by proposition 25.

30 Proposition (Shimura Prop 1.19). The set of elliptic points of T' has no limit point in 9.

Assume that z, is a sequence of elliptic points converging to z. Let U be a neighborhood of z such
that yU meets U only if v stabilizes z (cf. proposition 8). For n > ng the point z, will belong to U.
Thus, if v is an elliptic element which stabilizes z,, then vU and U intersect, whence ~ stabilizes z. But
elliptic elements have only one fixed point and so we must have z,, = z for n > ng. Thus z is not a limit
point of the set of elliptic points.
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31 Proposition (Shimura Prop. 1.30). If T is a subgroup of SL(2,R) which is commensurable
with T (and therefore discrete, cf. proposition 14) then T' and T have the same cusps.
It suffices to consider the case where I is a subgroup of finite index in I". If s is a cusp of I then it
is clear a cusp of I'. If s is a cusp of I" then there exists a parabolic element ¢ in I" stabilizing s. Since I"
has finite index, there is a nonzero integer k such that o* belongs to I". Since o* is also parabolic (cf.
proposition 28) it follows that s is a cusp of I".

32. We let $* denote the union of ) with the cusps of I'. Since the action of ' on RP! takes cusps to
cusps, we may regard I' as acting on H*.

33. We now define a topology on $*. The subspace $ gets its usual topology. We must give a
fundamental system of neighborhoods at a cusp s. If s # co then we take a fundamental system to be
all sets of the form

{s} U {the interior of a circle in $) tangent to the real axis at s}.
If s = oo then we take a fundamental system to be all sets of the form
{s}U{z € 9|8z > ¢}

where ¢ is any positive real number. It is clear that this topology is Hausdorff and that ' acts by
homeomorphisms. The topology is not, however, locally compact, unless I' has no cusps (i.e., unless

9" =9).
3.3.2 The space I'\$H* is Hausdorff
34 Proposition (Shimura Thm. 1.28). The space T\$H* is Hausdorff.

35. The proof of proposition 34 will take the rest of this section. We may assume that I' has a cusp,
for otherwise the proposition is trivial. By conjugating, we may assume that oo is a cusp. We let I', be
- . .- 1 h = .
the stabilizer of co in I'; by proposition 28 we can find a generator £+ [ 0 1 ] of I'o. Note that I' is
precisely the set of ¢ for which ¢, = 0.

36 Lemma (Shimura Lemma 1.23). The quantity |c,| depends only on the double coset T'oooT .
This is a simple calculation.

37 Lemma (Shimura Lemma 1.24).  Given M > 0 there are only finitely many double cosets
IN'wol'o with ¢, < M.

We are going to show that there exists a compact set K = K(M) in $ such that for every o in
SL(2,R) there exists a ¢’ in I'no,oT' such that o” (i) belongs to K.

Write
|l a b
o=, 4l

Let

be the generator of T',. We can choose an integer n such that 1 < d 4+ nhc < 1+ |hc| (note that
1+ |he] <1+ |h|M). Put ¢’ = o7™. We have

;L a b 1 nh | a b+nha
U_i[c d}{o 1}_:':{0 d—ﬁ—nhc}

and so dyr = £(d 4+ nhe). By (1) we have
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so that
1

M2+ (1+ |h|M)?

Pick an integer m such that 0 < R(¢’(¢)) +mh < |h| and put ¢” = 7"¢’. Then the real part of o” (i) lies
in [0, |h|] and the imaginary part of ¢” () is the same as the imaginary part of o’(¢). Thus we may take

<S3(0'(7) < 1.

K(M) ={z € 9|Rz € [0,|h] and (M?*+ (1 + |n|M)?)"! <3z < 1}

To recap, we have shown that any double coset I'oooT'o, with ¢, < M has a representative ¢” with
0" (i) in the compact set K(M). However, by proposition 6 there are only finitely many ¢” in I' such
that o”(4) lies in K (M). This proves the proposition.

38 Lemma (Shimura Lemma 1.25). There exists a positive number r such that for all o in T — T
we have |c,| > r. Furthermore, for all z in $ and o in T' — T's, we have ($2)(S(02)) < r~2.
The existence of r follows immediately from lemma 37. If o belongs to I' — ', then

I(02) = |coz +do| 7232 < |eo 2| 7232 < r23(Jz) L

39 Lemma (Shimura Lemma 1.26). FEvery cusp s of T' has a neighborhood U in $H* such that for
all o in T the sets cU and U meet if and only if o stabilizes s.

It suffices (by conjugation) to consider s = co. Let 7 be as in lemma 38 and put U = {z € 9(Sz >
r~1}. Then U is a neighborhood of z. If o is any element of I' — I'y, and z is an element of U then
S(oz) < 1/r, d.e., U and oU do not meet.

40. Let s be a cusp of I and let U be a neighborhood as in lemma 39. Then two points in U are in the
same I' orbit if and only if they are in the same I'y orbit. Thus I's\U may be regarded as a subset of
\$9H*. Also, note that U cannot contain any elliptic points.

41 Lemma (Shimura Lemma 1.27). Let s be a cusp of I'. For every compact subset K of §) there
ezists a neighborhood U of s in H* such that U and vK are disjoint, for every v in .

Agian, it suffice to consider s = co. We can find two positive real numbers A and B such that all
elements of K have imaginary part in the interval (A4, B). Let r be as in lemma 38. Put

U ={oo} U{z € 93z > Max(B,1/(Ar?))}.

Let z belong to K. If o is in I' — 'y, then J(0z) < 1/(Ar?) while if o is in ', then S(02) = Sz < B.
Thus U has the requisite property.

42 Lemma. Let s andt be two ' inequivalent cusps. Then there exist neighborhoods U and V' of s in
t in H* such that vU and V are disjoint for all v in T'.
1

We may assume that ¢ = co. Let & [ 0 1

} be a generator for I'so. Let u be a positive real number

and define sets

L= {z € 9ISz = u}
K= {zeLl0<Rz<|h|}
V= {oo}U{z € n|qz>u}.

Since K is compact, we can find, by lemma 41, a neighborhood U of s so that K and yU are disjoint,
for all v in T'. In fact, we may assume that the boundary of U is a circle which is tangent to the real axis
at s. We now show that these choices of U and V satisfy the statement of the lemma.

Assume to the contrary that there exists an element v of I' such that yU meets V. Since vs # oo
it follows that the boundary of yU is a circle tangent to the real axis. Thus if U meets V then it also
meets L, and therefore some §K for 6 in I's,. But then 6 ~'yU meets K, which contradicts the definition
of K. Thus no such ~ exists and the proposition is proved.
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43 Proof of proposition 34. We call points in I'\$* cusps or non-cusps in the obvious manner. We
must prove three things:

1. Two non-cusps can be separated.
2. Two cusps can be separated.
3. A cusp and a non-cusp can be separated.

Since we know that T'\$ is Hausdorff (¢f. proposition 9) it follows that we can separate two non-cusps.
Lemma 42 is precisely the statement that two cusps can be separated. Lemma 41 implies that a cusp
and a non-cusp can be separated.

3.3.3 The space I'\H* is locally compact

44 Proposition (Shimura Prop. 1.29). The space I'\$H* is locally compact.

Since we know that T'\$) is locally compact it follows that all non-cusps in I'\$)* have compact
neighborhoods. Thus we must show that each cusp in I'\$)* has a compact neighborhood. Let 7 : §* —
'\ $H* be the quotient map. It suffices to assume that oo is a cusp of I' and show that 7(c0) has a compact
neighborhood.

By lemma 39, and the remark which follows, there exists a neighborhood V = {co} U{z € H|Sz > ¢}
of oo (where ¢ is a positive number) such that I'oo\V is identified with 7(V). If + (1) ]11 is a generator
of T, then we see that (V') coincides with the image of the compact set {z € V|z = 0o or 0 < Rz < |hl}.
Thus 7(V) is a compact neighborhood of 7(c0).

3.3.4 The complex structure on I'\$H*

45. We will now put a complex structure on the quotient space T'\$*. We do this by specifying for each
point v in T\H* an open neighborhood U, in T'\$* together with a homeomorphism ¢, from U, to an
open subset of C in such a way that the transition functions ¢,¢,' are holomorphic.

We let 7 : $* — T'\H™* be the quotient map.

46 (Shimura pg. 18). Let v be a given point in $*. Let U be an open neighborhood of v in $* such
that for any « in I" the sets yU and U meet if and only if v belongs to I, the stabilizer of v (¢f. lemma
39). Then we have a natural injection I',\U — I'\* the image U, of which is an open neighborhood of
7(v). We must give a homeomorphism ¢, of U, to open set of C. We now separate three cases:

Case 1: v is neither an elliptic point nor a cusp. In this case I, consists only of 1 and possibly —1;
thus 7 : U — U, is a homeomorphism. We let ¢, be the inverse of 7 restricted to U.

Case 2: v is an elliptic point. Let A be a holomorphic isomorphism of $) with the unit disc taking
v to 0, e.g., N(z) = (2 —v)/(z +v). If T, is of order n then A\I',A~! consists of the transformations
w i CFw for k=0,...,n — 1, where ¢ = €27/, We thus define ¢, : T,\U — C by ¢, (7(2)) = A(v)". Tt
is clear that ¢, is a homeomorphism to an open subset of C.

Case 3: v is a cusp. Let p be an element of SL(2,R) which takes v to co. Then

pLyp~ L {£1} = {i { (1) ”lh } ’n c Z}

where we take h to be positive. We define a homeomorphism ¢, of I's\U to an open subset of C by
bo(m(2)) = exp(2mip(z)/h).

47. Having defined (U,, ¢,,) for each point v in T'\$* one must now check that ¢,¢
We leave this routine verification to the reader.

—1 is holomorphic.

w

48 Proposition. Let 7 be a subgroup of finite index in T'. Then the natural map T'\H* to T\H* is a

holomorphic ramified cover of degree [T : f/].
Left to the reader.
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3.3.5 Fuchsian groups of the first kind

49. A discrete subgroup I" of SL(2,R) is a Fuchsian group of the first kind if the space I'\$* is compact.
Note that if I' is such a group then I'\$* is a compact Riemann surface and thus an algebraic curve.

50 Proposition (Shimura Prop. 1.31). LetT and I be commensurable subgroups of SL(2,R).
Then T is a Fuchsian group of the first kind if and only if T is.
It suffices to consider the case when I is a finite index subgroup of I'. We thus have a map [ :
I"\$* — I'\H*. The map [ is a holomorphic ramified cover (c¢f. proposition 48), and therefore proper.
There is nothing more that needs to be said.

51 Proposition (Shimura Prop. 1.32). IfT is a Fuchsian group of the first kind then the number
of cusps and elliptic points in T\9H* is finite.

Let C (resp. E) denote the set of cusps (resp. elliptic points) of T in $*. For each z in $ we may
take a neighborhood U, such that U, contains no elliptic points, with the possible excpetion of z itself
(¢f. lemma 30). For each s in C' we can find a neighborhood Uy of s containing no elliptic points (cf.
lemma 39 and following comment). Now, let 7 : H* — I'\H* be the quotient map. Then the number of
points in 7(C) (resp. w(E)) is at most the number of 7(Us) (resp. m(U,)) which are needed to cover the
compact space I'\H*.

52. Let T" be a Fuchsian group of the first kind and let IV be a subgroup of finite index. We have a

commutative diagram
H 5"

where the top map is the identity map and the other maps are the natural porjection maps. We have
— =/

already said (cf. proposition 48) that f is a (ramified) covering map of degree [I' : I']. We now briefly

give some more properties relating f, I" and I".

53 Proposition (Hurwitz Formula). Let q,...,q, be the points in T'\$H* at which f ramifies and
let e; be the ramification index of [ at q;. If g is the genus of T\$* and ¢’ is the genus of T'\$H* then

29 —2=n(2g-2)+» e —1
=1

where n = [T : fl] is the degree of f.
This is a standard fact which we do not prove.

54 Proposition (Shimura Prop. 1.37). Let z € 9, let p = w(2) and let f~*(p) = {q1,---,qn}-
Choose points w; in $H* such that 7 (w;) = q;.

1. The ramification index e; of f at q; is [T, f;]] In particular, f only ramifies at elliptic points
and cusps.

2. If w; = 0;(2) with o; in T then e; = [T, : Ui_lfloi NT,] and T = H?Zl To,T..
3. If T’ is a normal subgroup of T then ey =---=e, =€ and [ : f/] = eh.

Left to the reader.

3.4 The group SL(2,Z) and its congruence subgroups
3.4.1 Group theory of SL(2,Z)
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55 Proposition (Shimura pg. 16). The group SL(2,Z) is generated by the two matrices

0 1 11
S{—10]’ T{o1]'
Let G be the subgroup generated by S and T inside SL(2,Z). Observe that —1 = S? belongs to G,

that all upper triangular matrices in SL(2,Z) belongs to G and that if { Ccl Z ] belongs to G then so

does [ B _bd ] =S5 [ Z Z . Assume that G is not all of SL(2,Z) and take an element ¢ Z }

of SL(2,Z) — G with Min(|al, |c|) as small as possible. We may assume 0 < |¢| < |a]. We can then find
d c *

does not belong to G but r» = Min(r, |¢|) < |¢| = Min(]al,|c|). This is a contradiction, so G must be all
of SL(2,Z).

integers ¢ and r such that a = ¢q + r with 0 < r < |¢|. We then have that T—¢ [ LCZ b } = [ roE }

56 Proposition. Let G; denote the set of matrices in SL(2,Z) of trace t. Then for t # £2 every
matriz in Gy is conjugate to a matrix o which satisfies

|CU‘§%H|+17 |a0_do|g|ca|-

First note that if ¢ = 0 then ¢t = +2, so that if ¢t # £2 then ¢ # 0. Now, we have the formula
1 -1 a b 1 1] |a—c a+b—c—d
0 1 ¢ d 0 1| c c+d ’
Tterating this identity shows that any matrix o is conjugate to a matirx ¢’ such that ¢, = ¢, and
|asr — dor| < |cor|. We also have the formula

ORI A

which shows that any o is conjugate to a ¢’ with ¢, = —b,. Thus, in effect, we can “switch” the b and
c entries of a matrix.

The idea now is the following: given a matrix, use conjugation by T to bring a and d within ¢ of each
other. Then, if b is smaller than ¢ switch b and ¢. We need to determine under which conditions b will
be smaller than c.

So, we have a matrix { z z } satisfying

la —d| <|¢, at+d=t (2)
and we want to know when
6] < |e| (3)
holds. To begin with, since the determinant is equal to 1, we have
e lad| + 1.
=
Thus if
> > |ad| + 1

then (3) holds. Using equation (2), we find that |a| and |d| are bounded above by (|c| 4 t)/2. Thus we
see that if
lc]* > (Je| +t)?/4+ 1
then (3) holds. Using a bit of algebra, it follows that if
le| > Ht+1

then (3) holds. Thus so long as |c| is strictly greater than %+ 1 then we can conjugate by S and make
|c| smaller. It follows that we can make |c| less than or equal to -t + 1.
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57 Proposition. An elliptic element of SL(2,7) is conjugate to precisely one of the following matrices:
0 1 1 -1 1 1
SRR ]

This is reduced to a short computation after applying proposition 56 with ¢ = 0, 1.

58 Proposition. A parabolic element of SL(2,Z) is conjugate to a matriz of the form

1 h
<[a 1]
where h is an integer.
This follows from our computation of the cusps of SL(2,7Z) given in the next section in proposition
61.

3.4.2 The action of SL(2,Z) on $

59. Let I' be a subgroup of SL(2,R). We say a set F' in §) is a fundamental domain for T if:
1. F is a connect open subset of $;
2. no two points of F' are equivalent under T;
3. every point of §) is equivalent to some point in the closure of F.

It is known that every discrete subgroup I' has a fundamental domain, but we will not need this result.

60 Proposition (Shimura pg. 16). Let F be the subset of $ consisting of those elements z such
that |z| > 1 and |Rz| < 1/2. Then F is a fundamental domain for SL(2,Z).

It is clear that F' is a connected open subset of $). Let us now verify that no two points in F' are
equivalent. Assume that z and 2’ are two distinct points in F' which are equivalent. We may assume

Sz < §2'. Say 2/ = 0z with 0 = { (Cl 2 } € SL(2,Z). Then we have Sz < 32’ = (32)/|cz + d|?. Thus

we conclude
[e|Sz < ez +d| < 1. (4)

If c = 0 then a = d = 1 and 2’ = 2z + b, which is impossible; therefore ¢ # 0. Since Iz > 1/3/2 for all z
in F it follows from (4) that |¢| = 1. Thus, again from (4), we find |z = d| < 1. But for any z in F' and
integer d we have |z = d| > 1. This contradiction proves that no two distinct points of F' are equivalent
under T.

We must now show that every point in §) is equivalent to a point in the closure of F'. Let z be a point

in§. Ifo= [ CCL is an element of SL(2,Z) then Soz = (32)/|cz + d|?. Now, the quantity |cz + d

b
d
has a minimum as ¢ and d vary over all the integers with (¢,d) # (0,0). It thus follows that there is
a point in the SL(2,Z)-orbit of z with maximum imaginary part; let z’ be such a point. Consider the

0 1 ] in SL(2,Z). Writing 2’ = 2’ + iy’ we have

matrix v = { 1 0

' =Q(=1/2) =y /IZ]P < ¢

1

0 1
2" =2 +n. Thus |7"2'| > 1 since 72’ still has maximal imaginary part in its SL(2, Z)-orbit. We can
choose n so that |R7™2| < 1/2. This shows that every point is equivalent to a point in the closure of F'.

and so it follows that |2’| > 1. Now consider the matrix 7 = [ which is also in SL(2,Z). We have
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61 Proposition. The cusps of SL(2,Z) consist exactly of the points QP'. They are all equivalent.
Let p/q be a non-infinite element of QP! with (p,q) = 1. We can find r and s such that rp + sq = 1.

The matrix [ ; } is then an element of SL(2,Z) which takes z to co. This shows that all elements

1

in QP! are equivalent. The matrix { 0 1

] belongs to SL(2,Z), is parabolic and stabilizes oo. Thus all

elements of QP! are cusps.
We must now show that a cusp belongs to QP'. Let s be a cusp, considered as an element of R, and

a

let 0 = { . be a parabolic element of SL(2,Z) which stabilizes s. Then s satisfies the equation

b
d
cs? + (d — a)s — b = 0. Since the discriminant of this equation is 0 it follows that s belongs to Q.

62 Proposition. The points i and e*™/3 are elliptic points for SL(2,7) of orders 2 and 3. All elliptic
points are equivalent to one of these two.

This follows immediately from our classification of the elliptic elements in SL(2,Z) (c¢f. proposition
57).

63 Proposition. The quotient SL(2,Z)\$* is isomorphic (as a complex manifold) to the Riemann
sphere CP'.
Let I be the fundamental domain for SL(2,Z) of proposition 60 and let F' = F U {co}. Then by
proposition 61 and the definition of a fundamental domain, every point in H* is equivalent to a point in
F’. Tt is clear that when the correct points are identified F’ looks like a sphere.

64 Corollary. Any subgroup of SL(2,R) which is commensurable with SL(2,Z) is a Fuchsian group
of the first kind.
This follows from propositions 50 and 63.

3.4.3 The genus of I'\H* for subgroups I' of SL(2,Z)

65 Proposition (Shimura Prop. 1.40). Let T be a finite index subgroup of SL(2,Z). Let p be the
index of T in PSL(2,7Z), let vy be the number of I' inequivalent elliptic points of order 2, let v be the
number of I' inequivalent elliptic points of order 3, and let vo, be the number of I' inequivalent cusps. If
g 1s the genus of T\$* then we have

Let m: $* — SL(2,Z2)\9* and [ : [\H* — SL(2,Z)\H* be the natural projection maps. The map f
is of degree p (cf. proposition 48).

Let eq,..., e, be the ramification indices of the points lying above 7T(e2”/3). The numbers e; are
either 1 or 3, the number of e; which are equal to 1 being v5. Thus if we write ¢t = v3+v4 then u = v5+31/4
(since the sum of the e; is equal to ). We then have

t
Zei—lzu—t:2ué:2(,u—1/3)/3.

i=1
Similar reasoning gives
S oer—1 = (u—m)/2
F(P)=m(i)
Z ep—1 =p—rv.
f(P)=m(c0)

Since SL(2,Z)\$H* has genus 0 (¢f. proposition 63) our result follows by the Hurwitz genus formula (cf.
proposition 53).
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66. Proposition 65 shows that when given a subgroup of SL(2, Z) the first thing one should do is compute
its index, the number of its elliptic points, and the number of its cusps. We will follow this plan in the
last part of this section.

3.4.4 Congruence subgroups

67. Let N be a positive integer. Define the following subgroups of SL(2,Z):

(V) {gGSL(Q,Z)‘g:é (1) modN}
To(N) :{geSL(Q,Z)‘gE:; I modN}
I'y(N) {geSL(Z Z)’ _(1) 1‘ (modN)}

The group T'(N) is called the principal congruence subgroup of level N. In general, a subgroup I' of
SL(2,Z) is called a congruence subgroup of level N if it contains I'(N). Thus both T'g(N) and I'1 (V)
are congruence subgroups of level N. Note that I'(1) is nothing other than SL(2,Z); we shall often
interchange the two names.

68 Proposition (Shimura Lemma 1.38). The sequence
1—T(N)—SL(2,Z) — SL(2,Z/NZ) — 1

s exact.

The only nontrivial assertion is that reduction modulo N from SL(2,Z) to SL(2,Z/NZ) is surjective.
Let A be an element of SL(2,Z/NZ). By the elementary divisor theorem we can find matrices X and
Y in SL(2,Z) such that X AY is a diagonal matrix. Thus it suffices to show that a matrix of the form

{ g xgl ] with 2 in (Z/NZ)* comes from a matric in SL(2,Z). We can find integers a = x (mod N)

and b = 7! (mod N) such that ab = 1 (mod N?). Write ab = 1 + ¢N?. Then the matrix [ cCZLV JZ }

0 qu } modulo N.

lies in SL(2,Z) and is equivalent to [ a:

69 Proposition (Shimura Lemma 1.41). Let z, y, ' and y' be integers such that (z,y) = 1 and
!/
(2',y') = 1. Then [ ; } = { ch, ] (mod N) if and only if there exists o in T'(N) such that [ ; } =

¥
o
yl
/
First consider the case when ;, = { (1) } Take integers r and s so that sx —ry = 1. Let o be
/
the matrix [ i Z } Then o belongs to I'(IV) and takes { gyc/ ] to { z }
/
Now consider the general case. Take integers r and s so that sz’ —ry’ = 1 and let 7 = ;5, "
1 | | = x| _]1

belong to I'(1). Then 7 o=y =]y (mod N) so that 7 s 1= 10 (mod N). By the
first case, we can find o in I'(N) such that o (1) =71 z . Then the matrix 707! belongs to

/
['(N) and takes [ x, ] to { x }
Y Y

70 Proposition. Let T be a congruence subgroup of level N. Let s = x/y and s’ = 2’ /y’ be two cusps
of T, taken so that (z,y) =1 and (¢',y') = 1. Then s and s’ are T'-equivalent if and only if there exists

o in I' such that ,
T T
0‘|:y:|=i|:y, } (mod N).
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/ /
If 0s = s’ then it isclearthato{;c} :l:[;c, } Now, ifo{ } :I:[Zj, } (mod N) then by

, |. It then follows that 7os = s’ so

e ]

proposition 69 there exists 7 in I'(N) such that (7o) [ f/ } =4 { ch
that s and s" are I'-equivalent.

71 Proposition. Let T' be a congruence subgroup of level N and let X be set set of pairs (z,y) €
(Z/NZ)? such that ged(z,y, N) = 1 (where we use the convention ged(0,z) = x). Then the equivalence

classes of cusps of T' may be identified with the orbits of {1} -T/T(N) on X.
This is just a restatement of proposition 70

3.4.5 Genus calculations for certain congruence subgroups

72 Proposition (Shimura pg. 22). Let I' be the group I'(N) and let other notation be as in
proposition 65. We have

. {§N3 [Tv1-p72) N>2

6 N =2
Voo =it/ N
1] =0
V3 =0
N -6
g:1+u( )

Index: If p is a prime number then the cardinality of SL(2,Z/p¢Z) is p3¢(1 — p~—2). It follows that the
cardinality of SL(2,Z/NZ), and thus the index of I'(V) in I'(1), is given by N* ] (1 —p~?). Now, the
group I'(N) for N > 2 does not contain —1; thus the index of I'(V) in I'(1) is half that of I'(N) in I'(1).
The group I'(2) does contain —1, so the two indices are equal in this case.

Cusps: This follows immediatel from proposition 71 and an easy count of the cardinality of X.

Elliptic Points: This follows immediately from proposition 57 and the fact that I'(N) is normal.

Genus: This follows immediately from proposition 65 and the above computations.

73. Here is a table of genera for I'(N)\$H*.

Nlg||N|g|Nlg
ool 61 12]25
10 7| 31 13|50
2101 8|5 14149
310 9110|1573
4 10110131 16 | 81
5

0| 11| 26
This table contains exactly those N for which g < 100.

74 Proposition (Shimura Prop. 1.43). Let I be the group I'o(N) (with N > 1) and let other
notation be as in proposition 65. We have

p=NIla+»™)
p|N
Voo = Y _ &((d, N/d))
d|N

0 4N
"2 {HPN (1 + (_71)) otherwise

0 9|N
v I~ (1 + (%)) otherwise
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Index: The group 'y (V) /T'(N) is isomorphic to the group of upper triangular matrices in SL(2, Z/NZ);
the order of this group is easily seen to be N? [T, ~(1 —p~1). We thus have (using results from the proof
of proposition 72)

T :T(N)] =N TJ[(1=p7?),  [To(N):T(N)]=N>JJ(1-p");
p|N p|N

the stated result easily follows.

Cusps: By proposition 70 this is reduced to counting the orbits of the Borel subgroup of SL(2,Z/NZ)
in the space X; this is an easy exercise which is left to the reader.

Elliptic points: Do this.

75. Here is a table of genera for I'o(IN)\H*.

Nlig|N|g|N|g| N |g|N|g|Nly
1 [of[30 3505 8 |9 11711 146 | 17
2 1031260 | 7| 8 | 7 | 118 |14 | 147 | 11
31032161 4 90 |11 119 | 11| 148 | 17
4 10133362 | 7| 91| 7 || 120] 17| 149 | 12
5 10343635 | 9210/ 121] 6 | 150 | 19
6 [035(3]64] 3| 93 ]9 | 12214 151 |12
71036 |1]65] 5 || 94 |11 | 123 |13 | 152 |17
8 03721669 | 95| 9 | 12414 153 | 15
9 0384 67| 5| 96| 9 | 125] 8 | 154 | 21
10(0(39(3]68] 7| 97 | 7 | 12617 155 | 15
11140 (31] 69| 7 || 98 | 7 | 127 | 10 | 156 | 23
12(0(41 (3] 70] 9| 99 | 9 || 128 | 9 | 157 | 12
13(042(5| 71] 6 ||100| 7 | 129 | 13 | 158 | 19
1414331 72| 5| 101 | 8 | 130 |17 | 159 | 17
151|444 73| 5 ||102]| 15| 131 | 11| 160 | 17
16 (045|331 74| 8 || 103 ] 8 | 132 |19 | 161 | 15
171146 | 5|75 5 || 104 | 11 || 133 | 11 | 162 | 16
180|474 76| 8 || 105 | 13 | 134 | 16 | 163 | 13
191|483 77| 7| 106 |12 135 |13 164 | 19
20| 1|49 | 1|78 | 11 ][ 107 | 9 || 136 | 15 || 165 | 21
21 [ 1 ][50 | 2| 79| 6 || 108 | 10 || 137 | 11 || 166 | 20
22 1251 |58 | 7 || 109 | 8 || 138 | 21 || 167 | 14
23| 2|52 |58 | 4 || 110|151 139 | 11 || 168 | 25
24 1] 53|48 | 9 || 111 | 11 | 140 | 19 || 169 | 8
25| 0| 54|41 8| 7 || 112 ] 11 || 141 | 15 || 170 | 23
26| 2|55 |5 8 | 11| 113 | 9 || 142 | 17 || 171 | 17
27 | 1]/ 56 | 5|8 | 7 || 114 | 17 || 143 | 13 || 172 | 20
28 | 2 || 57 |51 8 | 10 || 115 | 11 || 144 | 13 || 173 | 14
20 | 2|58 |6 || 87| 9 || 116 | 13 | 145 | 13 || 174 | 27

This table contains all N for which g < 13 (the only value of N for which g = 14, other than those listed
above, is 181).

76 Proposition. Let ' be the group T'1(N) (with N > 1) and let other notation be as in proposition
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65. We have

3 N =2
L _ BTl dlecd(iN)) N £4
* )3 N =4
0 N#2
Vo =
1 N=2
0 N#3
vy =
1 N=

Indez: The group I'1(N)/T'(N) is isomorphic to the group of upper triangular unipotent matrics in
SL(2,Z/NZ) which is itself isomorphic to Z/NZ. We thus have

() : TV =N J[(1=p), [(N):T(N)] =N
pIN

and so it follows that

(1) Ty(N)] = N2 [ - 7).

p|N

Since —1 belongs to I'; (IV) if and only if N = 2, we obtain the stated result.
Cusps: Again, in light of proposition 71 this is a simple counting exercise.
Elliptic points: Do this.

77. Here is a table of genera for I'1 (N)\$H*.

Nlig|N| g | N|g|N|g|N| g | |N|gyg

1 (ofl13] 225123740 49| 69 || 61 | 126
2 (0141 1]26|10] 38[28| 50/ 48 | 62| 91
3 (o151 |[27|13]39[33| 51| 65 |63 97
4 10|16 2| 28[10 40| 25| 52| 55 | 64| 93
5 (017 5 ([ 20|22 41|51 53] 92 | 65 121
6 |0 18| 2 |[30]| 9| 42|25 54| 52 | 66| 81
7100 19| 7 ||31|261 43|57 55| 8 | 67| 155
8 |020] 3 |[32|171 44|36 56| 61 | 68 | 105
9 |0l21| 5 |[33 |21 45|41 | 57| 8 | 69 | 133
100 22| 6 || 34|21 46|45 | 58| 78 | 70 | 97
111231235251 47|70 59 | 117 | 71 | 176
1210 24| 5 || 36|17 48|37 60| 57 | 72| 97

This table contains all N for which g < 100.

3.5 Abstact Hecke algebras

3.5.1 The general construction

78. Let G be a group. If I' and IV are two subgroups of G then we write I' ~ IV if ' and I” are
commensurable. For a subgroup I' of G we put

I'={acGlalTa~' ~T}.

Since commensurability is an equivalence relation, [isa group, called the commensurator of T' (inside
of G). Note that if TV is commensurable with T' then their commensurators agree; in particular, I is
contained in I'.
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79. For the following discussion we will fix a group G, a subgroup I' and a family {T"y} indexed by A in
A of subgroups of G commensurable with T'.

80. Let Ry, be the free Z-module on the double cosets of I'yal',, as « varies in fo, that is to say,
Ry = Z[DA\T/T,).

If z is an element of Ry, which is just equal to a double coset with a coefficient of 1 then we call = a
double coset of Ry,

For a double coset X of R, we define the degree of X, denoted deg X, to be the cardinality of I'y\\ X,
i.e., the number of right cosets of I'y contained in X. We extended deg by linearity to all of R),,.

81. We now define a sort of dual module. Let R} u be the Z-module consisting of compactly supported
functions f : I‘,\\I:/ ')y — Z, i.e., integer valued functions f on the double cosets which are zero on all
but finitely many double cosets. We will alternatively think of elements of R} 88 functions on the set of

double cosets or as functions on I' which are left invariant under T’ » and right invariant under I',,; this
should not cause confusion.
For an element f of R, we define the degree of f by

degf= > [f(y)

yel \T

Note this sum is actually finite.

82 Proposition.  For a double coset X of Ry, let 6x be the point mass at X (either the function
on the double cosets TA\I'/T',, whose value on the double cosetY is 1 if X =Y and 0 if X #Y or the
function on T whose value at « is 1 if « € X and 0 if a« ¢ X ). Extend § linearly to a map

0: Ry — RL.

Then § is a degree preserving isomorphism of Z-modules.

It is clear that 0 is injective. To prove that it is surjective, simply note that if f is any element of
R}, then f(y) = >« f(X)dx(y), the sum being taken over all double cosets X. We now show that for
a double coset X we have deg X = degdx; this will show that § preserves degree. Write X as a disjoint
union [['_; I'ye;. By definition, the degree of X is . On the other hand, if y belongs to I\I' then
0x (y) is either 1 or 0 according to whether y is one of the I'yc; or not. Thus degdx = r as well.

83. We now define a multiplication map
RM/, & Ruu — Ry,

It suffices to define the map on double cosets; if X is a double coset of Ry, and Y is a double coset of
R,,, then we define the product of X and Y as

XYy => m(X,Y;2)Z
Z

where the sum is over the cosets Z of Ry, and m(X,Y; Z) is an integer, which we now define.

Let X and Y be as above and let Z be a double coset of R),. For an element z of I'y\Z (that is, a
right coset of Ty inside Z) let A(z) be the set of y in I',\Y such that z belongs to '\ Xy. If 2’ is another
element of I'y\Z then there exists v in T', such that 2’ = z7; right multiplication by + then induces an
isomorphism A(z) — A(z’). It follows that the cardinality of A(z) is independent of z and depends only
upon the double cosets X, Y and Z. We define m(X,Y; Z) to be the common value of #A(z).
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84. We also define a product
R}, ® R, — R},.

This is nothing other than convolution. To be precise, for f in R, and g in R}, we define the product

of f and g as
(fx9)2)= > fley g

yEFu\F

Note that f x g is again bi-invariant and compactly supported.

85 Proposition. The map ¢ preserves products, that is, for x in Ry, and y in R,, we have

Onv(y) = (Oau) * (dupny)-

Of course if suffices to consider the case when # = X and y = Y are both double cosets. We then
have, for any z in I,

Oxy(2) =m(X,Y;T\2l) = #{y € T, \Y |Txz € T)\ Xy}
On the other hand,
(0x *dy)(z Z Sx(zy oy (y) =#{y €T, \Y |2y~ C X}.
yEFH\F

Since the two conditions z € T\\ Xy and zy~! C X are clearly equivalent, the proposition is proved.

86. We thus see that there is really no difference between R, and Ry, and, for a given task, we can
use whichever is more convenient. Often times, R} ., 18 easier to prove things with while Ry, tends to be
a little more concrete.

87 Proposition (Shimura Prop. 3.3).  The degree is multiplicative under products, that is if
belongs to Ry, and let y belongs to R, then

deg(zy) = deg(z) deg(y);

alternatively, if f belongs to R}, and g belongs to Ry, then

deg(f x g) = deg(f) deg(g).

The two phrasings of the statement are, of course, equivalent. We shall nonetheless prove each to
demonstrate the flexibility of R* over R.

We first prove the statement for R. It suffices to prove consider the case where v = X and y =V
are double cosets. Let Z belong to I'\\I'g/I',. Let 8 : I',\Y — Y be a section, i.e., choose coset
representatives for I', in Y. Given y in I',\Y put

B(y,Z) = {x e T\\X |z8(y)T, = Z}.

Let A(z,Z) be as above. We have

[T A 2) ={(zy) € C\\2) x ([,\Y) |2 € [\ Xy}

z€l\\Z
= [ B®.2) ={(z,y) € "\X) x T,\Y)|2B(y)T, = Z}
yel \Y
We have maps
A(Z) = B(Z),  (zy) = (zB(y)",y)
B(Z) — A(Z),  (z,y) — (6(y),y)



It is clear that these two maps are inverse to each other and so A(Z) and B(Z) are in bijective corre-
spondence.

Now, the cardinality of A(Z) is clearly m(X,Y; Z) deg Z; thus this is the cardinality of B(Z) as well.
It follows that the cardinality of [[,, B(Z) is deg(XY"). However,

HB ) ={(z,y.2) € (T:\X) x ([,\Y) x ([\\To/T,) | 28(y)T, = Z}

= (IH\X) x (T,\Y)

since for each z in I'y\ X and each y in I',,\ Y there exists a unique double coset Z such that z3(y)I', = Z.
Thus the cardinality of [[, B(Z) is equal to deg(X) deg(Y') as well, proving the proposition.
We now prove the statement for R*. Let f belong to RKM and let g belong to Rj,. Then

deg(f+g)= Y. (fx9)x)= > > flzy™

zel—‘)\\l—‘ zef‘)\\l—‘ yel—‘“\l—‘

YooY fey e = >, Y. (=)

y€L A\ 2zeD5\T y€D A\ zeD\\T

:< 3 f(z))( 3 g<y>):deg(f>deg<g>

zEFA\f yel"u\f

and the statement is proved.

88 Proposition (Shimura Prop. 3.4). The multiplication defined above is associative in the sense
that if w belongs to Ry, x belongs to Ry, andy belongs to R, then (wz)y = w(zy).

This statement is much easier to prove for R* than for R. Thus let f belong to Ry, g belong to R},
and h belong to Rj,,. We have

(frg)*xh)(z)= D (fxa)zy Hh)= > > fley 'z )g(x)h(y)

yel, \T yel, \T zel\\T

while on the other hand

(frlgxh))(z)= Y fla DNgxh)(@)= Y Y flza  glay ().

zel\\T el \T yel \T

The two expressions are easily seen to be equivalent after a change of variables.

89. We now define the Hecke ring R(I') (of I relative to G). Taken I', =T'y =T and put R(I') = Rqa,
as above. Similarly put R*(T') = R’ ,. It is clear that R(I') and R*(I") are associative rings.

Now let A be a monoid contained in I' and containing I'. We let R(T, A) be the submodule of R(T)
spanned by the double cosets I'al' with o in A. We let R*(T", A) be the corresponding submodule of
R*(I'); it consists of those functions f in R*(I") whose support is contained in A. Since A is closed under
multiplication, it follows that both R(T'; A) and R*(T', A) form associative subrings of R(T") and R*(T").

90 Proposition. If G has an anti-automorphism o« — o such that T'* =T and X* = X for every
double coset X in T\A/I then the Hecke ring R(I', A) is commutative.

For an element f of R*(T',A) define f* to be the element of R*(T', A) whose value at z is equal to
f(z*). We then have

(fx9)"(2)= > fy g = > ()29 W) = >, FFly'2)g" W)

yel\T yem\T yel'/T
=Y ey =Y ey ) = (" * 1))
yEf/F yEF\f

and so (f x¢g)* = g* » f*. On the other hand, it is clear that for a double coset X we have 0% = Jx;
since the functions of the form dx span R*(T', A) it follows that f* = f. Thus the identity map f — f*
is an anti-automorphism and so R*(I'; A) is commutative.
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3.5.2 The Hecke algebra for SL(2,Z)

91. Let G = GLJ (Q) be the subgroup of GL3(Q) consisting of those matrices which have positive
determinant. Let I' be the subgroup SL(2,Z) of G. Let A be the sub-monoid of G consisting of those
matrices which have integer entries; thus A is the monoid of all 2 x 2 integer matrices with positive
determinant.

92 Lemma (Shimura Lemma 2.9). Let § belong to Ma(Z) be of nonzero determinant b. Then
T(Nb) ¢ B~'T(N)3 N BL(N)F.

Let 8’ = b3~ 1; note that 3 has integer entries. If v belongs to I'(Nb) then 3'y3 = '3 = b (mod Nb);
this shows that 3713 has integer entries and also that 371y = 1 (mod N). We have therefore shown
that 37193 belongs to I'(N), or in other words, v belongs to ST'(N)3~t. A similar argument shows that
7 belongs to S~T'(N)3~1. This completes the proof.

93 Lemma (Shimura Lemma 2.10). We have T = G; thus A is contained in T and contains T.

Let o belong to G and write a = ¢3 with ¢ € Q and 3 € A. We have al'a~! = I8!, If the
determinant of 3 is b then by lemma 92 the group BT'3~! contains I'(b). It follows that [[': I' N al'a™!]
is finite; conjugating by a and changing o to a1 shows that [al'a™! : TNal'a™!] is finite as well. Thus
« belongs to f, which proves the proposition.

94. Lemma 93 allows us to consider the Hecke algebra R(T", A), which we call the Hecke algebra of

‘ ) | and let T(a.b)
denote the corresponding double coset, considered as an element of the Hecke algebra. Note that T'(1,1)
is the identity element of R(I', A). The main goal of this section is to prove the following theorem:

SL(2,Z). For positive integers a and b let [a,b] denote the diagonal matrix [

95 Theorem. The Hecke algebra R(T',A) for SL(2, Z) is the commutative algebra freely generated by
the elements T'(1,p) and T (p,p) with p prime.

96 Proposition (Shimura pg. 56). We have the following:
1. Every double coset in T\A/T has a representative of the form [a,b] with b dividing a.
2. The elements T(a,b) with b dividing a form a basis for the Z-module R(T, A).
3. The ring R(T',A) is commutative.

The first statement follows from the theory of elementary divisors. The second follows immediately
from the first. The third follows from proposition 90 using transposition as the anti-automorphism.

97 Proposition (Shimura prop 3.17). For any integers a, b and ¢ we have T'(c,c)T (a,b) = T(ca, cb).
We have

(5T(c,c) * 5T(a,b))<z) = Z 5T(a,b)(zy71)5T(c,c) (y) = Z 5T(a,b)(zy71)'

yeMa yeM\T(c,c)

Now, T'(¢c,c) =T'[e, ]I =T, ¢] since [c, ¢] is in the center of G. Thus the above sum has only one term,
which we may take to be y = [¢, ¢]. Thus

(07(c.e) * 07 (a,0)) (2) = 67 (a,p) (€71 2) = 67(caret) (2)

and the proposition is proved.

98. Let Q? be the two dimensional space of row vectors with rational entries. For our purposes, a lattice
in Q? is a free abelian subgroup of rank 2. We let L denote the standard lattice Z2. Note that if M is
any lattice and a belongs to G then M« is also a lattice.
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99 Proposition (Shimura Lemma 3.11). Let M and N be two lattices in Q*. Then there exists a
basis (u,v) of M and positive rational numbers a and b with b dividing a (i.e., a € bZ) such that (au,bv)
s a basis of N.

This is just the elementary divisors theorem, which can be proved in this case as follows. There exists
an integer cg such that ¢o/N C M. The abelian group M/coN is finite and has two generators; by the
structure theorem for finite abelian groups we can therefore find a basis (@, ) of M/coN such that @ has
order ag and ¥ has order by, with by dividing ag. Lift (@, ) to a basis (u,v) of M. Then (au,bv) is a
basis for N, where a = ag/cop and b = by/cp.

100. If M and N are two lattices we put {M : N} = (a,b) as in the proposition. Note that N C M if
and only if @ and b are integers and in this case we have [M : N] = ab. Note that if o = [a,b] with b
dividing a then {M : Ma} = (a,b).

101 Lemma (Shimura Lemma 3.12). Let M and N be two lattices in Q*>. Then {L : M} = {L: N}
if and only if there exists an element « in T' such that M = Na.

If M = Na with o in T then it is clear that we have {L : M} = {L : N}. We now prove the converse.
Let {L: M} ={L: N} = (a,b). We have bases (u1,us) and (v1,vs) of L such that (auj,bus) is a basis
for M and (avy,bvs) is a basis for N. Define an element « of G' by v;a = u; (or use —u4 in place of vy to
ensure that a has positive determinant). Then La = L, so that « belongs to I', and we have M = Na.

102 Lemma (Shimura Lemma 3.13). The map I'{ — L& gives a bijective correspondence between
the cosets T'¢ of T'(a,b) and the lattices M such that {L : M} = (a,b).

First note that for v in I" we have Ly = L so that the map I'¢ — L¢ is well-defined. Now, if T'¢ is
a coset of T'(a,b) then L& clearly satisfies {L : L&} = (a,b). On the other hand, if M is a lattice such
that {L : M} = (a,b) then, if « = [a,b], we have {L : M} = {L : La} so that, by lemma 101, there
exists an element 7 of I' such that M = Lay. Thus M comes from the cosets 'y of T'(a,b). Finally we
note that, because I'a = I'3 if and only if La = L3 our correspondence is injective. Thus it is bijective,
which establishes the proposition.

103 Proposition (Shimura Prop. 3.14). The degree of T'(a,b) is equal to the number of lattices
M for which {L : M} = (a,b).
This follows immedaitely from lemma 102.

104 Lemma (Shimura Prop. 3.15). Let

(Pal)(IBL) = ) ce(TEN).

Then c¢ is the number of lattices M for which {L : M} = {L : L3} and {M : L{} = {L : La}.
Let Tal’ = [[Te; and let TST = [[T'3;. Then

Ce = #{(Z’]) | Faiﬂj = Ff} = #{(Z,]) | Laiﬁj = Lg}

Note that ¢ is determined uniquely by j and £. Let S be the set of (¢, ) for which Lo, = € and let
T be the set of lattices M for which {L : M} = {L : LS} and {M : L&} = {L : La}. We establish a
bijection between S and T'.

Given (4,7) in S put M = LB;. Then {L : M} = {L: LB} and {M : L{} = {LB; : La;f;} = {L :
La;} ={L : La}. Thus M belongs to T.

Now let a lattice M in T be given. Since {L : M} = {L : LA} lemma 102 implies that there
exists a unique j such that M = LgF;. Since {M : L&} = {L : La} and M = L{; we see that
{L: LEB; ' = {L : La}. Thus another application of lemma 102 implies that there exists a unique i
such that Lf,@;l = Loy;. Therefore L = Loy 85 and (4, j) belongs to S.

The two maps are easily seen to be inverses of each other.

105 Proposition (Shimura Prop. 3.16). If a and B belong to A and det«v is coprime to det 3
then (Dal')(T'ATY) = T'afl (in the Hecke ring). In other words, we have

T(a,b)T(a’,b') = T(ad',b)

if a and @’ are coprime (and b is taken to divide a and b’ is taken to divide o).
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Write
(Cal')(TAL) = > ce(TET).

Note that by the original definition of multiplication in the Hecke algebra we know that c¢ is nonzero
if and only if £ belongs to 'al'SI". Thus assume that £ belongs to I'al'8T"; we will use lemma 104 to
determine the integers c¢.

Let M and M’ be lattices such that {L: M} ={L: M’} ={L: LB} and {M : L} = {M': L&} =
{L : La}. We have

[M + M’ M] = [M': MM (5)

Since M + M’ C L, the left side of (5) divides [L : M], which is equal to det 8. Since L¢ is contained in
both M and M’, the right side of (5) divides [M’ : L¢], which is equal to [L : La], which is equal to det a.
Thus both terms in (5) divide both det a and det 3; since these numbers are coprime, it follows that
both sides of (5) are equal to 1. Therefore we have M + M’ = M and M N M’ = M’ and so M = M’.
It now follows by lemma 104 that c¢ = 1.

Now let M satisfy {L : M} = {L : LB} and {M : L{} = {L : La} (note that such an M exists by
lemma 104, since we know ¢g = 1). Since {L : M} and {M : L&} are tuples of integers, it follows that
L& C M C L. We have an exact sequence

11— M/L¢ L/L¢ L/M 1

which splits since the orders of M/L and L/M are coprime (they are det @ and det 8 respectively).
Thus L/L¢ is isomorphic to M/LE® L/M which, in turn, is isomorphic to L/La @ L/L{3. Therefore the
elementary divisors of L&, relative to L, are completely determined by « and .

Let T¢I and T¢'T be two double cosets contained in I'al'ST". By the previous paragraph, we have
{L: L&} = {L : L&'}. Thus, by lemma 101, we have L = L&'y for some v in T" and so £ = v/¢’y for
some ' in T'; it thus follows that T¢I’ = I'¢'T". Therefore T'al'ST" contains only one double coset which
clearly must be I'aST". It follows that c¢ is equal to 1 or 0 according to whether £ belongs to I'a5T" or
not.

106. Let R, denote the subalgebra of R(I', A) generated by the T'(p’, p’) where i and j are arbitrary
nonnegative integers (and p is a prime number). Proposition 105 implies that R(T', A) is generated by
the R,. In fact, it is easy to see that R(I', A) is the restricted tensor product of the R, (with respect
to the identity elements in R,,), that is to say, every element of R(I', A) can be written in an essentially
unique way as a sum of terms of the form ajas - - - a,, where a; is an element of R,,; and the p; are prime
numbers. Thus to determine the structure of R(I', A) it suffices to determine the structure of the R,,.

107 Proposition. Let p be a prime number.

1. Ifi>j then T(p', )T(p?, 1) = T(p*, 1) + p'T (", p’).

2. We have T(p*,1)? = T(p?, 1) + p*(1 + 1/p)T(p*, p*).

Let i and j be integers such that i > j. Let a = [p’,1] and 3 = [p?, 1] so that T'(p’,1) = I'al’ and
T(p?,1) = 'BL. Write

T(p', )T(p,1) =Y ce(TET).

We will use lemma 104 to determine the integers ce.

Let M be a lattice such that {L : M} = {L : L3} = (p’,1) and {M : LE} = {L : La} = (p’,1). As
in the proof of proposition 105 we have an exact sequence

11— M/L¢ L/L¢ L/M 1

although it is no longer split. Since M/L¢ is isomorphic to Z/p‘Z and L/M is isomorphic to Z/p’Z it
follows that L/L¢ must be isomorphic to either Z/p*tZ or Z/p'Z & Z/p’Z. Thus {L : L&} is equal to
either (p**7,1) or (p’,p?); thus & belongs to either I'[p**™7 1]T" or T'[p¢, p?|T.

First consider £ = [p'*7, 1]. The integer c¢ is the number of lattices M containing L such that M/LE
is isomorphic to Z/p‘Z and L/M is isomorphic to Z/p’Z. Clearly, this is the number of subgroups of
L/L¢ =2 Z/p*tIZ which are isomorphic to Z/p‘Z. Since there is only one such subgroup we have ce = 1.

Now let £ = [p’,p’]. As above, the integer ¢, may be identified with the number of subgroups of
Z)p'7 & 7./ p 7 which are isomorphic to Z/p'Z. This simple counting exercise is left to the reader.
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108 Proposition. The ring R, is generated by T'(p, 1) and T'(p,p) and these elements are algebraically
independent.
First note that by proposition 97 we have, for ¢ > j,

(', p’) =T(p,pYT(p'7,1)
and so R, is generated by T'(p,p) and the T'(p’, 1).

We now introduce a filtratation on R,. Let Rl(f) be the submodule of R, generated by the T(p7,p")
with |j — k| < 4. Essentially, T'(p,p) is given filtration level 0 and T(p%, 1) is given filtration level i.

Proposition 105 implies that R, with this filtration, is a filtered ring, i.e., that we have RI(,i)R,()j) - R,(;Hj).
In fact, for any ¢ and j we have
T(p', )T, 1) =T(p™7, 1) (mod R,
and so, in the associated graded ring gr R,,, we have
T(p,1)" =T(p',1).

This shows that gr R,, and thus R, itself, is generated by T'(p, 1) and T'(p, p).

Assume now that T'(p, 1) and T'(p, p) satisfy a relation in Ry, i.e., assume that there exists a polyno-
mial F(X,Y) with integer coefficients such that F(T(p,1),T(p,p)) = 0. Write F(X,Y) => 1, F;(Y)X"
with F,, # 0. In the associated graded ring gr R, we then have F,(T(p,p))T(p,1)" = 0 so that
F.(T(p,p))T(p",1) = 0. However, this implies that F, (T (p,p))T(p",1) (as an element of R,) belongs

to R,()nfl) which is impossible: if we write F,(Y) = >~ ;Y then
Fo(T(p,p)T(p",1) = > aT(p™", p")
i=0

and the sum on the right clearly does not belong to Rz(j"_l). This proves the proposition.
109. Proposition 108 together with the comments in article 106 prove theorem 95.

110. For a positive integer m we let T'(m) denote the sum of all double cosets of determinant m; more
precisely, we define

T(m)= > T(a,d).
ad=m
dla

It is clear that if m and n are coprime then T'(mn) = T'(m)T(n).

111 Proposition (Shimura Thm. 3.24). We have the following:
1. degT(p',1) = p'(1+ 1/p);
2. degT(p,p) = 1;
3. The degree of T(m) is equal to the sum of the divisors of m.

1) By proposition 103 the degree of T'(p, 1) is equal to the number of lattices M such that {L : M} =
(p%,1). This is easily seen to be equal to the number of subgroups of Z/p'Z @ Z/p'Z which are isomorphic
to Z/p'Z. This counting exercise has already been left to the reader.

2) We have T'(p,p) = I'[p,p]I’ = I'[p, p| since [p, p] belongs to the center of I'. Thus T'(p,p) contains
only one right coset and is therefore of degree 1.

3) Since T'(mn) = T(m)T(n) if n and m are coprime and the same is true for the sum of the divisors
function, it suffices to consider the case where m is a power of a prime, say p”. We then have

Tp") = Y, TE" )= >, Tp) 'TE"*1)
0<i<n/2 0<i<n/2

and so

degT(p") — Z (deg T(p,p))i(degT(pn_Qi, 1)) =€, + Z pn—2i _|_pn—2i—1
0<i<n/2 0<i<n/2

where €, is 0 if n is odd and 1 if n is even. This sum is clearly equal to the sum of the divisors of p™ and
the proposition is proved.
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3.5.3 The Hecke algebra of certain congruence subgroups

112. Again let G = GL"(2,Q). Let N be a fixed positive integer. Some definitions:

1. Let A(N) denote the sub-monoid of G consisting of those matrices with integer entries and with
determinant coprime to N. Thus A(1) is the monoid A of the previous section.

2. Let A*(N) denote the sub-monoid of A(N) consisting of those matrices which are congruent to

[ (1) 2 } modulo N, for some element = of (Z/NZ)*.
3. If T is a group intermediate to I'(NV) and I'(1) then let & = ®(I', N) denote the sub-monoid

of A(N) consisting of those matrices which normalize I' modulo N, i.e., matrices « for which
al’ =Ta (mod N).

113. For the purposes of this section, a congruence datum is a triple (N,t¢,h) where N is a positive
integer, t is a positive divisor of N and b is a subgroup of (Z/NZ)*. We usually denote a congruence
datum by the letter ©. Given a congruence datum © = (N, ¢, ), define

Ca b a€bh, b:()(m dt)
A(@)z{_ ¢ d| € A1) ¢=0(mod N), (d,N) :01 }
A/(@):{ . Z € A1) Zi?)’(mod N) - flmed? }
"o b CLEU, b:O(mOdt)
F(@){ ¢ d | er() ¢=0(mod N), (d,N)=1 }

Some comments:
1. The condition (d, N) =1 in the definition of I'(©) is superfluous: it is implied by ¢ = 0 (mod N).

2. We have
I'(N)cI'(®) cI'(1).
The group I'(©) is thus commensurable with I'(1) and its commensurator is therefore G (c¢f. lemma
93).

3. The groups I'(IV), I'o(N) and I'; (N) are all of the form I'(0) for an appropriate choice of ©. There
are, however, groups intermediate to I'(IN) and I'(1) which are not conjugate to any I'(©).

4. We have
I'(©) c A(®) c A'(©) C A1)
It therefore makes sense to speak of the Hecke rings R(T'(0),A(0)) and R(I'(0), A’(0)). These
will be our primary objects of study for this section.

5. We have
A(O) = A*(N)I'(©) =T(©)A*(N).
It thus follows that R(I'(©), A(O)) is generated by the I'(©)al'(©) with a in A*(N).

6. Note that there is some notational discrepancy between us and Shimura. Where we write A(©) he
writes Ay and where we write A’(©) he writes A'.

114. The purpose of this section is to determine the structure of the rings R(T'(©),A(©)) and
R(I'(©),A’(©)). We cannot state the full result in a meaningful way at the moment, so we delay
the precise statements til later in the section; suffice it to say that boh rings are polynomial rings in an
infinite number of variables and subquotients of R(I'(1), A(1)).
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115 Lemma (Shimura Lemma 3.28). Let a and b be positive integers with greatest common divisor
c. Then T(c) =T'(a)T'(b).

The inclusion I'(a)T'(b) C I'(c) is immediate; we prove the other inclusion. Thus let o be a given
element of I'(¢). By the Chinese remainder theorem, there exists an element 5 of Ms(Z) such that
8 = 1(mod a) and § = a(mod b). We have det 8 = 1 (mod ab/c). We can thus find an element - of
['(1) such that v = 3 (mod ab/c) (cf. proposition 68). Then « belongs to I'(a) and v~ ta belongs to I'(b)
so that & =« - y~ta belongs to I'(a)T'(b).

116 Lemma (Shimura Lemma 3.29). Let ' =T(1), let N be a positive integer, let T” be a group
intermediate to T'(N) and I'(1) and let ® = ®(I', N). Then we have the following:

1. If « belongs to A(N) then Tal’ = Tal” =T"al.
If o belongs to ® then I'al” =Tal' N{€ € A(1) | € IVa(mod N)}.
If a belongs to @ then I"al” =TVal'(N) =T'(N)al”.

e

If a and B belong to A(N) then I'(N)aI'(N) = I'(N)BL(N) if and only if Tal' = TSI and
a =3 (mod N).

5. If a belongs to ® then the canonical map
MIVal" — T'\lal'

is a bijection. In other words, if «; are representatives for the right cosets of I' in IVal” then they
are also representatives for the right cosets of T' in T'al .

1) Let a be the determinant of a. By lemma 115 we have I' = I'(a)['(N) and so a T'al' =
a~'Tal'(a)['(N). However, by lemma 92, the group I'(a) is contained in a~'Ta so that a~!Tal is
contained in a™'Tal'(N). Thus

T'al € Tal(N) C Tal”.

The inclusion T'al” C T'al’ is immediate; the statement is thus proved.

2) Let & belong to T'al’ be such that £ € IVa (mod N). Thus £ = ya (mod N) with v in I. On the
other hand, the first part of the present proposition, applied with TV = T'(N), implies that ['al’ = Tal'(N)
so that we can write £ = dae with 6 in " and € in T'(IV). Since e = 1 (mod N) and « is invertible modulo
N it follows that v = § (mod N). Since I contains I'(N) and « belongs to I it thus follows that &
belongs to I'. We have thus shown that ¢ belongs to IVal'(N), which, of course, is contained in I"aI”
(we shall use the stronger statement that ¢ belongs to IVaI'(N) below).

We now prove converse. Let £ belong to I"aI”. Clearly £ belongs to I'al’ and, by the definition of ®,
we see immediatley that £ € IVa (mod N). We have thus proved the second statement.

3) In the course of proving the second statement, we showed that I"aI” is contained in IVaI'(N).
The opposite inclusion is obvious.

4) This follows from the second assertion upon taking IV = T'(V) (note then that ® = A(N)).

5) Let « belong to ® and let I'al” = [[[Va;. Then T'al' = Tal” = Ul'qy; it thus suffices to show
that this is a disjoint union. Assume I'a; = I'e; so that o; = yo; with «y in I'. Since «; and a; belong
to the same I" double coset we have an expression a; = 102 with 61 and d2 in I'; reducing this
equation modulo N and using the fact that a; belongs to ®, and thus normalizes I'" modulo N we get
an expression «; = da; (mod N). It follows that § = v (mod NN) and so, since I contains I'(N), we find
that v belongs to I'". Thus I'ey; = T'rj. This proves the proposition.

117 Proposition (Shimura Prop. 3.30). Keep the same notation as in lemma 116. Then the
map R(IV,®) — R(T, A) which takes I"al” to Tal' (and is extended additively) is a ring homomorphism
(here we have written A = A(1)).

Let o and (3 belong to @, let IVal" = [[T" oy, let TVATY = [[I”3; and let IVaI” AT = [T TVE,I7. We
have

(Mal)(AT) = S AGaT), = {(i)) I Taif; = T'&}.
By part 5 of lemma 116 we have that I'al' = [[T'a; and I'ST = [[T'8;. Using lemma 116 again, we have

Tal'fT = Tal BT’ = Tal’pT" =T - T'al"BI" =T - [[T'&I" = | JT&I.
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We now show that the final union above is in fact disjoint. Since & belongs to IaISI” and « and
0 belong to ® we have &, € I"af (mod N). Thus, using lemma 116 once again, we have

gl ={neT&n el (mod N)} = {n € &I |n e MaB (mod N)}.

It follows that if T'§,I" = T'E,I" then IVE T = IVE, I so that k = £. We thus have shown that the union
is disjoint, i.e., that we have

Lal'AT = Hrgk,r.

From the above paragraph, it follows that we can write
(Cal)(TAT) = D er(T€L),  ep = {(i.§) |Tasff; = T€}.

To prove the proposition we must show ¢, = ¢),. Clearly it suffices to show that I"a;3; = I'¢, if and
only if T'e; 3; = T'éy; to do this it suffices to show that T'e; 5; = I'¢;, implies that IV 3; = T'éy, the other
implication being immediate. Thus let I'o;; 3; = I'€;,. Then &, = ya;3; with v in I'. On the other hand,
& € oy B (mod N) so that & = da;8; (mod N) with ¢ in I'. It follows that v = § (mod N), and thus,
since I contains I'(IV), we see that v belongs to IV. Therefore IVa;8; = I''§, and the proposition is
proved.

118 Proposition (Shimura Prop. 3.31). Let T =T(1) and let T" =T(O) where © = (N, t,h) is a
congruence datum. Then the map R(I", A(©)) — R(T', A(N)) of proposition 117 is an isomorphism.
We must show the map is injective and surjective. We begin with surjective. Let 1 belong to A(N).
It suffices to find an element 1’ of A(©) such that I'nI' = T'n'T". Thus let b = detn, let ¢ be an integer
10

0 . Then detna = 1(mod N) so that there exists an

such that bc = 1(mod N), and let o = [

element v of " such that na = v (mod N) (cf. proposition 68). We have y~1n = [ 1o } (mod N) so

0 b
that v~ 1n € A*(N). Furthermore, T'y~'nI' = I'nl', which proves the surjectivity (since A(©) contains

A*(N)).

We now prove injectivity. Let o and S belong to A*(N) and let a = { 1

0
0 q ] (mod N) and let

B = {(1) 2} (mod N). If T'al' = T'AT then a = deta = det 8 = b so that « = §(mod N). It then

follows from lemma 116 that IVaI” = IVST”. This proves that the map is injective since R(IV, A(0)) is
generated by the IVaI" with « in A*(N).

119. Note that R(I', A(N)) is the subring of R(I", A(1)) generated by those double cosets I'aI" for which
the elementary divisors of v are coprime to N. Thus it is the polynomial ring on 7'(1,p) and T'(p, p) for
primes p not divising N.

120. Let G, denote the group GL(2,Z/pZ). For « in A(1) the double coset GpaG) is completely
determined by the p-part of the elementary divisors of o and conversely.

121. Following Shimura, for two positive integers m and N we write m | N°° if all the prime factors of
m divide N. Thus any integer can be written uniquely as mg with m | N°® and (¢, N) = 1.

122 Proposition (Shimura Prop. 3.32, 3.33). Let © be a congruence datum, let TV = T'(0) and
let A" = A'(©). Let « belong to A’ and write det a = mq with m| N and (¢, N) = 1. Then we have
the following:

1. We have I"al” = {3 € A’| det 8 = mq and GG, = G,aG), for all primes p|q}.

2. There ezists an element & of A*(N) such that det{ = ¢ and GLEG), = G,aG), for all prime factors
pofq.

3. If q=1 then

m—1
Tl = {8 € A'| det § = m) = HP’H ”]

m
r=0
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1

4. If € is as above and n = [ 0

0 } then

m
Pal” = (€M) (I'gT) = () (T'€r)
holds in R(I, A").

Let X(«a) be the set on the right hand side of the first statement. Let Y («) be the set elements
as in the second statement of the proposition, i.e., the set of & in A*(IN) such that det{ = ¢ and

GGy = GpaG), for all primes p dividing g. Throughout n will denote the matrix { L 7?1 } Here is

0
an outline of the proof:

1. For each 8 in X («) we will produce an element £ of Y («) such that 3 belongs to IV¢nIY. This, of
course, is a stronger statement than the second part of the proposition which merely asserts that
Y («) is not empty.

2. We show that for any choice of ¢ in Y («) the resulting double coset TV{nIY is the same.

3. We show that this common coset is IVaI", i.e., we show that for and £ in Y (a) we have IVaI” =
[VénT”. From this we conclude the first part of the proposition.

4. We prove the third part of the proposition.
5. We prove the fourth part of the proposition.

Step 1. Let B be an element of X(«). Let a be the top left entry of 8. Since a belongs to b it is
coprime to mN and we can find an integer e such that ae = 1(mod mN). We can therefore find an

0 2 } (mod mN) (cf. proposition 68). Since e is the inverse of @ modulo

element « of I" such that v = [ ¢

N it also belongs to h so that v belongs to I'V. We have v = [ fi\]
1 0

—fN 1

. } (mod mN) for some integers

1

bandf.Put(S:[ 0

} this is an element of IV. We have 675 = { tgb } (mod N) for some

integer g. Taking determinants gives mg = g (mod mN) so that dy8 = [ (1) ;qu ] (mod mN). Put
1 th 11 . . 10
=10 1 and £ = éyBe”"n~". Then & has integer entries, det{ = g and £ = 0 ¢ (mod N) so

that & belongs to A*(N). Furthermore, it is clear that 5 belongs to IVénI". If p is a prime dividing g,
so that 7 belongs to G, then we have G,£G, = G,0G, = G,aG,. Therefore £ belongs to Y (). This
completes the first step.

Step 2. Let € and £ be two elements of Y («). Since £ and £’ have determinant ¢ and GG, = Gp¢'G,
for all p dividing ¢, it follows that £ and &’ have the same elementary divisors and so T'éT' = T'¢'T". Since
& = ¢ (mod N) it follows from lemma 116 that I'(N)ED(N) = T'(N)E'T(N) and so we can write &' = ¢&y
with ¢ and ¢ in I'(N).

By the Chinese remainder theorem we can find a matrix 6’ with coefficients taken modulo mgN such
that

¢’ = 1 (mod mN), 0 =n~* "1y (mod q).

Such a matrix necessarily has determinant 1 and so belongs to SL(2,Z/mgqNZ). We can therefore lift 6’
to an element 6§ of SL(2,7Z); in fact, 6 will belong to I'(N). Put w = &ynfn~1¢~1. We then have

w=1(mod N), w = 1(mod g).

Since &, ¥, n and € are all integer matrices, the entries of w are rational; the denominators of its entries
must divide det(én) = mgq. However, any prime dividing mgq divides either N or ¢ and thus, by the
above, cannot occur in the denominator of any entry of w. Thus w is an integer matrix and belongs to
[(N). Since £yn = wénh~* we have

F/é—/nrl — Flgwnrl _ Flfnrl

This completes the second step.
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Step 3. Let £ be a fixed element of Y («). Given any 8 in X («) we can, by step 1, find an element
& of Y(a) such that 3 is contained in IV¢'nIY. However, by step 2 we have IV¢'nI = IVénIY. Tt follows
that 8 is contained in IV¢nIY for any choicde of 3. We have therefore shown the second inclusion below
(the first inclusion is immediate)
Mol € X(a) C TVénIY.

The leftmost and rightmost terms are double cosets which intersect; they must therefore be equal. Thus
all three terms above are in fact equal. Note that this proves the first part of the proposition. This
completes the third step.

Step 4. Under the hypothesis ¢ = 1 we must prove

m—1
F’aF’:{ﬁeA’|detﬁ:m}:HF’[I ”’] (6)

0 m
r=0

The first equality follows immediately from the first part of the proposition. It is furthermore clear that
the third set is contained in the second one. We now show that the second is contained in the third.

Thus let 8 be a given element of A’ of determinant m. Let £ be the element of Y (a) constructed
from f3 in step 1; recall that ¢ is defined as dyBe~'n~! where § and ~ belong to I'” and ¢ = [ (1) tlb }
1 tb

0 . Note that since ¢ = 1 we have that £ belongs to

for some integer b. It follows that év3 = & [

1
0

om)=lo Lo m]

As the first matrix on the right hand side belongs to IV we see that § belongs to I

I'(N). We have therefore shown that § belongs to I [ ff; ] Now, we can write b = mh + r with

0 < r < m; we then have

tr
0 m ]’
now 7 is in the correct range. This proves that the second set in (6) is contained in the third set.
We must now prove that the union in (6) is disjoint. Assume the union is not disjoint, i.e., we can

where

a th|. -, . 1 tr 1 ts
= < < — = .
find ~y 4 | I and integers 0 < r < s < m — 1 such that [ 0 m ] ¥ { 0 m } ‘We then
have { (1) f:; } = { ch tﬁ?j_ts%) so that v = 1. This completes the proof of the third part of the
proposition.

Step 5. Fix an element £ of Y («). It follows immediately from the definition of X («) that both of
the sets IVET'nI" and IVnI"ET are contained in X (o). We therefore have

Ial’ =TVED'nIY = I/l €17
and so it follows that
(T )(T'nT’) = n(T"al), (T'nl")(T7ET) = /(I al) (7)

for two positive integers n and n’. We must show n =n' = 1.
(1) 2 } (mod tN*)
such that IV¢IY = T'CT’. Consider the congruence datum © = (M, 1,(Z/tN*)*). Note that every
double coset I'(©)al'(f) with a in A(©) has a representative in A*(tN*). Proposition 118 asserts that
the map R(['(0),A(0)) — R(T', A(N)) is an isomorphism (since A(tN*) = A(N)). It thus follows
that every double coset T'al' with o in A(NNV) has a representative from A*(¢tN¥). In particular, we
can find ¢ in A*(tN*) such that T¢I' = T'(T". Note that det( = det{ = ¢ and so it follows that ¢ =
[ (1) 2 } (mod tN*). In particular, ¢ = ¢ (mod N). It thus follows from lemma 116 that T'(N)¢T(N) =
['(N)ET(N). From this we conclude T¢I = TVETY.

We now show n = 1. Write I'¢(T" = [[I"(e; with ¢; in IV, taken so that ¢ = 1. Write I'nl" =

]_[;7;)1 I'n;, where n; = { 1 f)i ], according to part 4 of this proposition. Since IVaI” = I'¢I'nI" =

Let k be large enough so that m | N*. We first show that we can find ( = {

0
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IV¢nT"’ it follows that n is the multiplicity of I'¢{nI"” in the product (I"¢(T)(I'nI”). Thus, by definition,
we have

n=#{(i,5) | T'¢n =T"Cein;}.
Assume we have ¢ and j such that I'(n = I'(e;n; so that v(n = (en; for some v in I, Write
v = [ * ] and €; = [ v t: } We then have

* * *

2 2[4 808 ][ e

con=[2 2102 13 2] [1 T i

Comparing the top right entries gives thgm = t(uj +vm) (mod tN*), whence bgm = uj +vm (mod N¥),

whence uj = 0 (mod m) since m | N*. Since ¢; belogns to I the integer u is coprime to m; since j is

taken so that 0 < 7 < m — 1 we therefore must have j = 0. Note that this forces i = 1. Therefore n = 1.
We now show that n’ = 1. Taking dgerees in equation 7 gives

ndeg(I"al”) = deg(I"¢T) deg(T'nl) = n' deg(I”al”).
We thus conclude n’ is equal to n, which we already know to be 1. This completes the proof.

123. Keep the same notation as in the statement of proposition 122. We make two definitions:

1. For each positive integer n we define T'(n) (or Te(n) when the context is not clear) to be the sum
of all double cosets I"aI¥ with a in A’ of determinant n.

2. For two integers a and d coprime to N we let T"(a, d) (or To(a,d)) be the element of R(T', A(0)) C
R(T, A") which is mapped to T'(a,d) in R(T'; A(N)) under the isomorphism of proposition 118.

Let m| N°°. Then by part 3 of proposition 122 we see that:

1. WehaveT’(m):F’{ L0 }F’.
0 m

2. The degree of T'(m) is equal to m.

124 Theorem (Shimura Thm. 3.34, 3.35). Let notation be as in proposition 122.

1. Every double coset of R(I',A’) can be expressed uniquely as a product T'(m)T'(a,d) =
T (a,d)T'(m) with m|N*°, d|a and (a,N) = 1.

2. If m and n divide N*° then T'(mn) = T'(m)T"(n).
3. If (m,n) | N> then T"(mn) = T"(m)T"(n).
4. The ring R(I", A") is a polynomial ring over Z in the variables

T'(p) for all primes p dividing N
T'(1,p), T'(p,p) for all primes p not dividing N.

5. The ring R(I”, A’) is the image of R(T', A(1)) under the ring homomorphism defined by

T(n) — T'(n) for alln
T(p,p) — T'(p,p) for all primes p not dividing N
T(p,p) — 0 for all primes p dividing N .

6. The elements T'(n) generate R(I", A’) ®7 Q.
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1) The existence of such a factorization follows from part 4 of proposition 122. To prove uniqueness,
simply note that if X is any double coset in R(I”, A’) then T"(m)X = X (mod p) if p is any prime which
does not divide N. Thus, given T"(m)X, one can recover the prime-to-N part of the elementary divisors
of X.

2) Let m and n divide N*°. Using part 3 of proposition 122 we obtain

n—1 n—1lm—1
1 0 |11 0| 1 0 || 1 ts | s 1 tr 1 ts
AP R U R L P R VIVE R I P
n—1m—1 mn—1
_ 1 ts+rn) | 1 tr
_UUF[O mn _UF 0 mn
s=0 r=0 r=0
w10
_r{Omn}r.

It thus follows that T"(n)T"(m) = ¢I”’(nm) for some integer c. Taking degrees gives nm = cnm, whence
c=1

3) Let m and n be integers such that (m,n) | N°°. Write m = mims and n = nijng with ny,my | N
and mg, ng coprime to N. We have T"(m) = T"(m1)T"(m2) and T'(n) = T’ (n1)T'(n2) by part 1 so that

T (m)T'(n) = T (m1)T' (m2)T' (n1)T" (n2)
=T'(m1)T (n1)T" (m2)T" (n2) by part 1
— T ()T (ma) T () by part 2
=T'(myny)T (mansz) by propositions 118 and 105
=T'(mn) by part 1.

4) Given a double coset in R(I, A’) we can factor it in the form T"(m)T"(a,d) according to part 1 of
the proposition. By proposition 118 and theorem 95 we know that 7”(a, d) is expressible as a polynomial
in the T7"(1,p) and T’(p,p) with p not dividing N. By part 2 of the present proposition we know that
T'(m) is expressible as a product of 7"(p) with p dividing N. This shows that the stated elements
generate the ring. It is not difficult to then prove that they are algebraically independent.

5) This follows easily from what we know about the two rings involved.

6) By propositions 118 and 107 it follows that if p does not divide N then we have

pT’ (p,p) =T (p)* — T'(p°).

This, together with the fourth part of the proposition, proves the sixth part.

3.6 Automorphic forms
3.6.1 Definitions and first properties

125. For an integer k, an element o of GL(2,R) and a complex valued function f on $) we define another
complex valued function on $, denoted f | [o]g, by

(f[0]k)(2) = (det 0)*/%j(a,2) " f(02)
where, recall, we have defined
jlo,2) = coz + dy.

The identity
fllotle = (folk) [Tk

is easily verified. Note that o and —c induce the same action on $ but that if k is odd then f|[—0c]x =

—f o]k
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126. Let T" be a discrete subgroup of SL(2,R) and let f be a meromorphic function on $) invariant
under the operators |[o] for o in T' (for a fixed value of k). Note that if k is odd and T' contains —1
then f = 0 is the only such function; thus, if £ is odd, we assume that I" does not contain —1. Note that
this implies that the stabilizers of cusps are infinite cyclic groups.

We now define the Fourier expansion of f at a cusp s. Let p be an element of SL(2,R) such that
p(s) = oo. The function f |[p~!]x is then invariant under pI'p~!. There are three cases:

Case 1: k is even. Let (1) ill } be a generator of pI'yp~?
is invariant under z — z 4 h there exists a meromorphic function ¢ defined on a punctured disc about
the origin such that (f|[p~!]x)(2) = ¢(q) where ¢ = exp(27iz/h). The Fourier expansion of f at s is
then defined to be the Laurent expansion of ¢ at 0.

Case 2: k odd and pT'sp~" generated by { (1) 1
This case is handled exactly like the case when k is even.

modulo +1 with h positive. Since f|[p™4]x

] with h > 0. In this case we call s a regular cusp.

Case 3: k odd and pI'sp™! generated by — [ L with h > 0. In this case we call s an wrregular

0 1
cusp. We have (f | [ ]i) (= + h) = —(f | [~ 1Jx) (=) and thus (f|[o~1e) (= + 2h) = (f| [~ ]i)(2). We
can therefore find a meromorphic function ¢ defined on a punctured disc about the origin such that
(f 1o~ Y%)(2) = ¢(q) where now q = exp(wiz/h); note that ¢ is necessarily an odd function. The Fourier
expansion of f at s is then defined to be the Laurent expansion of ¢ at 0.

Note that by our hypotheses we necessarily land in one of these cases. It is easily verified that in all
cases the defintion of the Laurent expansion of f at s does not depend on the choice of p.

127. Let f be a meromorphic function on $ invariant under the operators |[o] for o in a discrete
group I'. We then say that f is meromorphic (resp. holomorphic) at a cusp s if the Fourier expansion
of f at s has only finitely many terms of negative degree (resp. no terms of negative). Similarly, we say
that f vanishes at s if its Fourier expansion at s has only positive degree terms.

128 Definition. A meromorphic (resp. holomorphic) automorphic form of weight k for the discrete
subgroup I of SL(2,R) is a complex valued function f on $) satisfying:

1. fllo]x = f for all o in T
2. f is meromorphic (resp. holomorphic) on $;
3. f is meromorphic (resp. holomorphic) at the cusps of T.

An automorphic form is called cuspidal (or a cusp form) if it vanishes at all the cusps of T

129. For a discrete subgroup I' of SL(2,R) and an integer k we define

Ay (T') = space of meromorphic automorphic forms for I" of weight &
G (T") = space of holomorphic automorphic forms for T' of weight &
Sk(T) = space of holomorphic cusps forms for I" of weight k

130. If ' = T'(V) is the principal congruence subgroup of level N then an automorphic form for T is
usually called a modular form of level N.

131 Proposition (Shimura Prop 2.4). Let T' and TV be discrete subgroups of SL(2,R) and let
a be an element of GLT(2,R) such that aT'a™' is a subgroup of finite index in T'. Then f — f|[ax
gives an injection of Ag(I'") (resp. Gi(I'"), Si(I")) into Ar(T) (resp. Gi(T'), Sk(T)) which is bijective if
I'"=ala™t.

Let C (resp. C’) denote the set of cusps of ' (resp. I”). Then C’ = aC; the proposition thus follows
immediately from the definitions.

132 Proposition (Shimura Prop 2.6). Let I’ be a discrete subgroup of SL(2,R) and let T be a
subgroup of finite index in I'. Then A(T') (resp. Gi(I'), Sk(I')) is the set of all f in Ar(I") (resp.
Gr(T), Sk(T")) which are invariant under [y]y for all v in T.

The only nontrivial point that must be verified is the condition at the cusps. This is straightforward
and left to the reader.

74



3.6.2 The dimensions of certain spaces of automorphic forms

133 Proposition (Shimura Thm. 2.23, 2.24). Let I' be a Fuchsian group of the first kind, let g
be the genus of T\$H*, let m be the number of inequivalent cusps of T' and let ey, ..., e, be the orders of
the inequivalent elliptic points of I'. Then, for an even integer k, we have

(k—1)(g—1)+3mk+>_ tk(1—¢") (k>2)

g+m-—1 k=2,m>0
dimGrT)=4g k=2m=0

1 k=0

0 E<0

and
(k—D(g—-1D+imk—-2)+>_ k(1 —¢") k>2
k=2

g

dim S (T) =< 0 k=0,m>0
1 k=0,m=0
0 k<0

134 Proposition (Shimura Thm. 2.25). Let T' be a Fuchsian group of the first kind which does
not contain —1, let g be the genus of T\$H*, let u (resp. u') be the number of inequivalent reqular (resp.
irregular) cusps of T' and let ey, ..., e, be the orders of the inequivalent elliptic points for T'. Then, for
an odd integer k, we have

— _ 1 1o — ro1 _ -1 N
dimGk(F){(k Dig =1+ quk + qu'(k =1+ 3, 3k(1—¢;7) k>3

0 k<0
and
— — 1 — Lok — Tl _ -1 S
k<0
Furthermore,

dim G1(T") > u/2.
If u > 2g — 2 then we have equality in the above and also dim S;(T") = 0.

3.6.3 The Petersson inner product

135. Let I' be a discrete group and let f and g be complex valued functions on $) which are invariant
under the operators | [o]; for all o in T’ (and a fixed integer k). Note that z — f(2)g(2)y"* is a well defined
function on I'\$) (where y = y(z) is the imaginary part of z). Note also that y~2dzdy is a well-defined

2-form on I'\$. We may therefore define
(9) = [ £GIgGIt Pdudy.
I'\$
The integral may or may not converge. Note that, when it is defined, (, ) is positive definite and hermitian.

136 Lemma. IfT is a Fuchsian group of the first kind, f and g belong to G (T') and at least one of
f and g is a cusp form then the integral defining (f,g) converges.

We assume that f is a cusp form. Since the space T'\$* is compact, it is sufficient to show that the
function f(z)g(z)y* on I'\$H* is continuous at the cusps (since we know it is continuous away from the
cusps). Thus let s be a cusp of T', let p be an element of SL(2,R) such that p(s) = oo and let I'y be the
stabilizer of s in I". We have

{#£1}-plp~ ' = {i { (1) ’1‘ r‘mez}
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for some positive real number h. By the definition of “holomorphic automorphic form” there exist
holomorphic functions ®(¢) and ¥(q), defined on a disc centered at the origin, such that

fllo Te=2), gl =%(q)

where ¢ = ¢/™*/". Furthermore, since f is a cusp form, we have that ®(0) = 0. Now, letting w = p~*(2)
we have

Flw)g(w)S(w)* = f(p™(2)g(p~1(2))3(p ™" (2))* = 2(0) ¥(g)3(2)".

Now, for z very large (i.e., close to icc) the function ®(q) is approximately equal to ce!™/" and the
function ¥(q) is approximately constant. Since e™*/"S(z)F — 0 as z — ico we see that f(z)g(z)y" is
indeed continuous at s.

137. Let T be a Fuchsian group of the first kind. Lemma 136 implies that (,) gives a positive definite
hermitian inner product on the space Si(I'). This inner product is called the Petersson inner product.

3.6.4 The action of Hecke algebras on automorphic forms

138. In this section we explain how the double coset algebras we constructed in the previous section
act on various spaces of automorphic forms.

139. To start off with fix a family {T'y} ea of mutually commensurable Fuchsian groups of the first
kind. We let I' be the commensurator of 'y inside of G = GLT(2,R) (it obviously does not depend on
which A one chooses). Recall (¢f. §3.5.1) that we have defined Z-modules Ry, and multiplication maps
Ry, ® Ry — R

140. Let X be a double coset in Ry, and let f be an element of A(I';). Write X =T';al'; with « in
G and write
I‘laFg = HFlai.

We then define f | [X] by the formula

FIXTk = (det )70 7 f el

The definition clearly does not depend on the choices made. We extend the definition of f|[X]x to
general elements X of Ry, by linearity.

141 Proposition (Shimura Prop 3.37). If X belongs to Ry, then f — f|[X], takes the spaces
Ak(Ty), Gg(T'x) and Sk(T'y) into the spaces Ag(T,), Gk(T,) and Sk(T),) respectively.
Let f belong to Ax(T'y), let X =T'1al's be a double coset in Ry, and let g = f|[X]s. Let v be an
arbitrary element of I's. Write I'1al's = [[T'1cy. Then the two sets {I'y;} and {I'1a;7y} correspond.
We therefore have

g1k = (det @)*/271 3 " F | ainle = (det )*>7 1> " f o]k = g
so that ¢ is invariant under I';. On the other hand, each term f|[c;]x belongs to Ak(ai_lFAal-) by

proposition 131. Thus, putting
I'=T,N (ﬂa;lF,\ai)

we see that I is a subgroup of T, of finite index such that g belongs to A (I). By proposition 132 it
then follows that g belongs to Ax(I',). The arguments are exactly the same for G and Sy.
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142 Proposition (Shimura Prop 3.38). If X belongs to Ry, and Y belongs to Ry, so that XY
belongs to Ry,, then [ XY, = [X|k[Y]x as linear maps from A(Ty) to Ap(T,).

It is sufficient to consider the case when X and Y are double cosets; thus let X = I'yal',, and
Y =T,00, with o and B in T. Let XY = ¥, cx(Tx&T,). Write

Taaly, = [[Taci,  TuBTy =[[TuBi,  Ta&lw =] Taéee

By the definition of multiplication, we have
> TaciBi =Y alabks
i, k.

(taken as formal sums). Thus if f belongs to Ax(Ty) then
(F11XT) | Tk = det(a)*271 Y7 f oaByle = det(aB)** 71 Y enf | nd]
ij kit

=Y cerf[[Mr&T] = fI[XY],
k
(note that det &, = det(a3) for all k). This proves the proposition.

143 Corollary. Let T' be a Fuchsian group of the first kind and let T be its commensurator in
GLT(2,R). Then (f,X) +— f|[X]x is a representation of the ring R(T,T) on the vector spaces Ay (T),
Gi(T) and Sg(T).

This follows immediately from propositions 142 and 142.

144 Proposition (Shimura Prop 3.39). Let « be an element of L. Let f belong to Gi(T'y), let g
belong to Gi(I',) and assume at least one of f and g is a cusp form. Then

(fIT1al2]k, 9)p = (f, g | T2 T1]g)x.

Here ¢ is the “main anti-involution” of My(R), given by

!

In particular, the adjoint of the map [T1al's] : Sg(Tx) — Sk(T,) is given by [Daa™1T].

First note that if ¢ is a positive real number then [I'ycal',] = ¢*/27}"'yal',]. Therefore, it suffices
to consider the case when det a = 1; note that then we have a* = a~!. Second, note that if A is any
measurable set in $ then we have

fy* 2 dedy = / (f | [o]e) (g T [0y~ 2dady.
aA A

Now, let P be a fundamental domain for that action of I', on . Put
I'=T,Na 'Tha, TI"=al,a"'NT,

and let €; be right coset representatives for I'' in 'y, i.e., 'y, = []I¢;. Note three things: 1) we have
I'xal'y = [[Taae; 2) the set @ = []€P is a fundamental domain for I'; and 3) the set aQ is a
fundamental domain for I'”/. Now, we have

1ty 2dedy = 3 [ (71 locl)ast sy =3 [ (71lohgy* Pdody
— [ Gllalgy2dady = [ fgTla Tt 2dedy
Q a

or in other words, denoting by (,)" (resp. (,)”) the Petersson inner product for I'V (resp. I'”), we have

(fICraluk, ) = (f | [k, 9) = (Fo 9] [ k)"
Interchanging (), f) and (u, g) and taking a~! in place of o we obtain

(f.91[Lua™"Ta] = (f.g]la™"]0)".

This proves the proposition.
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Chapter 4

Welil Representations

4.1 Notations

1. In this section F’ will be a local field, either archimedean or not, and K will be an algebra over F' of
one of the following types:

1. The direct sum F & F'.

2. A separable quadratic extension of F'.
3. A quaternion division algebra over F.
4. The matrix algebra M (2, F).

Note that in all cases F' is a subfield of the center of K.

2. The algebra K has a natural anti-involution ¢:
1. f K = F @& F then (z,y)" = (y, ).
2. If K is a seperable quadratic extension then ¢ is the nontrivial galois automorphism.

3. If K is a quaternion division algebra then ¢ is conjugation.

I

3. The involution ¢ has the following properties:

4. If K is a M(2, F) then

1. Tt is a F-linear map of K and it satisfies (zy)* = y‘z* and (2 = 1.
2. If = belongs to F then z* = z.
3. Both 7(z) = x 4+ «* and v(z) = zz* belong to F.

We call 7 and v the trace and norm on K.

4. If ¥ is a nontrivial additive character of F' then ¢ = ¥ 7 is a nontrivial additive character of K.
By means of the pairing
(z,y) = VK (zy)

we may identify K with its Pontrjagin dual.

5. We let f =¢pv. We have
fla+y) f~H @) y) = (,9").
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6. We denote by .7 (K) the space of Schwartz functions on K. If F' is archimedean these are the infinitely

differentiable functions which fall off at infinity faster than any polynomial. If F' is non-archimedean
these are the locally constant compactly supported functions. In the archimedean case we give . (K)
the Schwartz topology; in the non-archimedean case . (K) is given the discrete topology.

7. There is a unique Haar measure dz on K such that if ® belongs to .(K) and @’ is its Fourier
transform with respect to ¥ i and dz, i.e.,

then

8. If F is non-archimedean and K is a separable quadratic extension of F' we let w be the quadratic
character of F'* associated to K by local class field theory. In all other cases we take w to be the trivial
character of F'*.

4.2 The basic Weil representation

9 Proposition. There is a constant vy, which depends on ¢p and K, such that for every ® in & (K)
the identity

/K (@ % ) () orc (ey)dy = v/~ () ()

holds. Here x denotes convolution.

10 Proposition. We have the following values for the constant v of proposition 9:
1.IfK=F®F or K=M(2,F) then v=1.
If K is a quaternion division algebra then v = —1.

If F =R and K = C and ¥p(x) = > then v = isgna.

BN

Let F be non-archimedean and K be a separable quadratic extension of F. Let 1+ p™ be the

conductor of w and let p~™ be the conductor of p. Then

ner) n(w717w7nfm)
In(w=1, w=n=m)|

v =w(w
where w is a generator of p and n is as in proposition 121.

11 Proposition. There is a unique representation r of SL(2, F') on .7 (K) such that:

1. We have the following formulae:

w (r|

(]

" | @) @ = wt@lalria)

i } q>> () = ¢Yr(zv(z))P(x)

@ (-] 5 5]e) @@=,
2. The representation r is continuous.
3. The representation r can be extended to a unitary representation of SL(2, F) on L*(K).

4. If F is archimedean and ® belongs to #(K) then the function g — r(g)® is an infinitely differen-
tiable function on SL(2, F') with values in .7 (K).
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4.3 Weil representations for quadratic extensions and quater-
nion algebras

12. In this section we specialize and assume that K is either a separable quadratic extension of F
or a quaternion division algebra over F. We let K’ denote the compact subgroup of K* consisting of

all z with v(x) = 1. We let G4 denote the subgroup of GL(2, F') consisting of those matrices whose
determinant belongs to v(K ™).

13 Proposition.  Let (Q,U) be a finite dimensional irreducible representation of K*. Let r still
denote the representation of SL(2, F) on #(K,U) (where SL(2, F) acts trivially on U ).

1. Let S(K,Q) be the space of functions ® in 7 (K,U) which satisfy
®(zh) = Q1 (h)®(x)
forallz € K and h € K'. Then .#(K, ) is stable under r(g) for g in SL(2, F).

2. The representation r of SL(2, F) on #(K,Q) can be extended to a representation rq of Gy satis-
fying

(ra] 5 0 |®) @ = miamaen
where a = v(h).
8. If n is the central-quasicharacter of Q) then wn is the central-quasicharacter of rq.
4. The representation rq is continuous and all elements of .7 (K,€Q) are smooth.

5. If U is a Hilbert space and Q) is unitary then rq can be extended to a unitary representation of G4

on the closure L*(K,Q) of /(K,Q) inside of L*(K,U).

4.4 Weil representations for ' ¢ F

14. We now assume that K = F & F. We regard K as a right module over M (2, F) via matrix
multiplication. If g is an element of M (2, F) and ® an element of .7 (K) we let p(g)® be the element of
Z(K) whose value at x is ®(zg).

15 Proposition. The representation r can be extended to a representation of GL(2, F') so that:

SRR

2. If @~ denotes the partial Fourier transform of ®, i.e.,

q’”(avb)Z/F‘P(my)wF(by)dy

then
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Chapter 5

Representations of GL(2, F') in the
non-archimedean case

5.1 Preliminaries: representation theory of TDLC groups

[narch-tdlc]

5.1.1 Introduction

[narch-tdlc-intro]
1. All topological spaces in §5.1 are assumed to be Hausdorff unless otherwise explicitly mentioned.

2. In this section we give some basic representation theory for totally disconnected (TD) locally compact

Hausdorff (LC) groups. All TDLC groups that we are interested in are of the form G(R) where G is an
algebraic group and R is a non-archimedean local field or its ring of integers; of course, GL(2, F') where
F' is a non-archimedean local field is such a group.

5.1.2 The topology of totally disconnected groups

[narch-tdlc-top]

3. Let X be a topological space.

1. Define an equivalence relation on X by x ~ y if there exists a connected subset of X containing both
z and y. The equivalence classes under this relation are called the components of X. Equivalently,
components are maximal connected subsets of X.

2. Define a different equivalence relation on X by x ~ y if every clopen (i.e., closed and open) set
containing z also contains y. The equivalence classes under this relation are called the quasi-
components of X.

3. Every component of X is contained in a unique quasi-component; in fact, if A is a component of
X then the intersection of all clopen sets containing A is the said quasi-component.

4. Every quasi-component of X is the union of the components which it contains.

5. The space X is totally disconnected if its components are sets consisting of a single point. This
does not imply, in general, that the quasi-components of X consist of a single point.

In what follows, we will take some basic propositions concerning components for granted. They can all
be found in elementary point set topology books.
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4 Lemma. [narch-tdlc-top-20] Let X be a compact Hausdorff space, let F be a family of closed
subsets of X closed under finite intersections, let A be the intersection over all sets in F (which we
assume to be non-empty) and let U be an open set containing A. Then there exists an element F of F
which contains A and which is contained in U.

Assume that the proposition is false. Then for each set F' in F the closed set FN(X\U) is nonempty. It
thus follows that the family of closed sets 7/ = {F'N(X\U) | F € F} has the finite intersection property.
Since X is compact, the intersection of all the sets in F’ is non-empty. However, this intersection is
precisely AN (X \ U), which is, by hypothesis, empty. This is a contradiction.

5 Proposition ([Po] §15, F). [narch-tdlc-top-30] In a compact Hausdorff space the components
and quasi-components coincide.

Let X be a compact Hausdorff space, let K be a component of X and let L be the unique quasi-
component containing K, i.e., the intersection of the clopen sets containing K. It suffices to show that
L is connected, for then K = L.

Assume that L is not connected; we can then write L = A[] B where A and B are closed subsets
of L (and thus closed in X since L is closed). Since K is connected it is contained in either A or B;
assume K C A. Since X is compact Hausdorff it is therefore normal and we can separate A and B by
disjoint open sets, i.e., there exist disjoint open sets U and V in X such that A C U and B C V. Thus
L Cc UUYV. By lemma 4 there exists a clopen set P of X containing L and contained in U U V. Put
U =PnNUand V' =PNV. Then P = U'[[V’; it follows that U’ and V' are clopen in P and thus
clopen in X. Therefore U’ is a clopen set of X containing K but not containing L. This contradicts the
definition of L.

6 Proposition ([Po] §15, 9G). [narch-tdlc-top-40] Let X be a locally compact Hausdorff space,
let K be a compact component of X and let U be an open set in X containing K. Then there exists a
compact open set P of X containing K and contained in U.

For each z in K pick a neighborhood V,, such that V is compact and contained in U. The V,, clearly
form a cover of K and since K is compact there exists a finite subcover; let V' be the union of the sets
in this finite subcover. Then V is a compact set containing K and contained in U. Note that K is a
component of the compact Hausdorff space V. By proposition 6 it follows that K is the intersection of
the clopen sets of V containing K; by lemma 5 we may therefore pick a clopen set P of V containing K
and contained in U. Then P is compact (since it is a closed subset of the compact space V) and open in
X (since it is open in the open subset U of X). This completes the proof.

7 Proposition ([Po] §22, Thm. 16). [narch-tdlc-top-50] A TDLC group has a neighborhood
basis of the identity consisting of compact open subgroups.

Let G be a TDLC group and let U be a neighborhood of 1. We must produce a compact open subgroup
of G contained in U. Since G is totally disconnected the set {1} is a component. By proposition 6 there
exists a compact open set P of X which contains 1 and is contained in U. Let @ be the set of g in G for
which Pg C P and put H = Q N Q. We now show that H is the sought after group.

H is a group. It is clear that if h belongs to H then h~! belongs to H. Now, if h; and ho are two
elements of @ then it is clear that hqho is again an element of Q). Thus if hy and hy are two elements of
H then hihy belongs to @ (since h; and hs belong to @) and hz_lhl—1 belongs to @ (since h2_1 and hl_1
belong to Q). It thus follows that hiho and (hihe)~! belong to Q. Therefore hihs belongs to H.

H is open in G. Fix an element g € H. For each x in P we have that zg belongs to P. Since P
is open there exist neighborhoods U, of x and V, of g such that U,V, C P. The sets U, cover P; let
Usys ..., Uy, be afinite subcover. Let V' be the intersection V,, N---NV,, . Then it is clear that PV C P
so that V' C H. We have thus produced an open neighborhood of the element g which is contained in H.

H s closed in G. Let g belong to G\ Q. Thus Pg ¢ P; pick p in P such that pg does not belong
to P. Since G \ P is open there exists an open neighborhood U of ¢ such that pU C G\ P. It follows
that U is contained in G \ Q. We have thus produced an open neighborhood of the element g which is
contained in G\ Q. The set G\ Q is therefore open, from which it follows that @ is closed, from which
it follows that H is closed.

H is compact. Since P contains 1 it follows that @ is contained in P and so H is contained in P.
Thus H is a closed subset of the compact space P and is therefore itself compact.
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8 Proposition. [narch-tdlc-top-60] Let G be a Hausdorff topological group and let U be an open
subgroup. Then the coset space G/U is discrete.

By the definition of the quotient topology, a subset of G/U is open if and only if its inverse image
is open. Since the inverse image of a set in G/U is the union of cosets of U it is open. Thus all sets in
G /U are open and therefore G/U has the discrete topology.

9 Proposition ([Po] §22, Thm. 17). [narch-tdlc-top-70] A compact totally disconnected group
has a neighborhood basis of the identity consisting of compact open normal subgroups.

Let GG be a compact totally disconnected group and let U be an open neighborhood of 1. We must
produce a compact open normal subgroup contained in U. By proposition 7 the set U contains a compact
open subgroup H of G. Let N be the intersection of all the subgroups tHx ! as z varies over all of G.
Tt is clear that N is a closed subgroup of G (and therefore compact). We must prove that N is open.

Since z1lz~! € H and H is open it follows that there exist open neighborhoods U, of 1 and V,, of z
such that V_{lUmVX is contained in H. The sets V,, cover G; let V,,,...,V,,  be a finite subcover. Let U
be the intersection Uy, N---NU,,. Then U is an open set and 2~ Ux is contained in H for all x in G.
It follows that for any n in N the set Un is contained in N and therefore N is open.

10 Proposition. [narch-tdlc-top-80] A topological group is a profinite group (i.e., an inverse limit
of finite groups with the discrete topology) if and only if it is compact Hausdorff and totally disconnected.

Say G is a profinite group; let G be the inverse limit of the system (G;);c; where each G; is finite
and I is some index set. Then G is a closed subspace of the product space P = [[,.; G;. Since P is
compact and totally disconnected it follows that G is as well.

Now say that G is compact Hausdorff and totally disconnected. Let N be a compact open subgroup
of G. The space G/N is compact (as it is a continuous image of the compact space G) and discrete (by
proposition 8). Thus G/N is a finite group with the discrete topology. Let G’ be the inverse limit of the
G/N and let 7 be the canonical map G — G’. We know that 7 is a continuos homomorphism. We now
show that it is in fact a homeomorphism.

First note that if G has only finitely many compact open normal subgroups then it has a unique
minimal such subgroup (the intersection) N. By proposition 9 we must have N = 1 and so it follows
that G = G’. We assume hereafter that G has an infinite number of compact open normal subgroups.

7 injective. Let g belong to the kernel of w. Then g belongs to every compact open subgroup N.
Since these form a neighborhood basis of the identity by proposition 9 and G is Hausdorff, it follows that
g must equal the identity. Thus 7 is injective.

m surjective. Let g’ be an element of G'. By definition, for each compact open normal subgroup N
of G we are given an element gy of G/N such that if Ny C Ny then gy, = g, (mod Ns). For each N
pick an element gy of G such that gy = g)y (mod N). By definition the sequence (m(gn)) converges to
g'. Now, since G is compact there exists a convergent subsequence of (gn), say (¢n)ner, where F is
some infinite family of compact open normal subgroups; let g be the limit of this subsequence. Since 7 is
continuous, 7(g) is the limit of the sequence (7(gn))nver, which we already know converges to ¢’. Thus
7m(g) = ¢’ and so 7 is surjective.

m is a homeomorphism. Since 7 is a continuous bijection between compact Hausdorff spaces it is
automatically a homeomorphism.

icl

5.1.3 Smooth and admissible representations

[narch-tdlc-sa]

11. [narch-tdlc-sa-10] Let (7, V') be a representation of the TDLC group G.
1. The representation 7 is smooth if the stabilizer of every vector in V' is an open subgroup of G.

2. The representation 7 is admissible if it is smooth and if for any open subgroup U of G the space
VU of all vectors fixed by U is finite dimensional.

12 Proposition. [narch-tdlc-sa-20| Let (m, V') be a finite dimensional representation of the TDLC
group G. Then the following are equivalent:

1. The representation 7 is admissible.
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2. The representation m is smooth.
3. The kernel of m is an open subgroup of G.
4. The map w is continuous (as a map G — GL(V)).

(1 < 2) This is immediate from the definitions.

(2 <= 3) If the kernel of 7 is open then the stabilizer of any element of V' is open (since it contains
the kernel) and so 7 is smooth. On the other hand, since the kernel of 7 is the intersection of the
stabilizers of a basis of V, it follows that smooth implies open kernel.

(3 < 4) If the kernel of 7 is open then the inverse image of any element of GL(V') is open and so
the inverse image of any subset of GL(V') is an open subset of G. Thus 7 is continuous.

Now say that 7 is continuous. Let U be an open neighborhood of the identity in GL(V') which contains
no nontrivial subgroups. Its inverse image under 7 is an open neighborhood of 1 in G and therefore, by
proposition 7, contains an open subgroup V. The image of V under 7 is a subgroup of GL(V') contained
in U and is therefore equal to {1}. Thus V is contained in the kernel of 7 and thus the kernel of 7 is
open.

5.1.4 The Hecke algebra

[narch-tdlc-hecke]

13. Let G be a TDLC group. We define the Hecke algebra of G, denoted 7, to be the vector space
of locally constant compactly supported complex valued functions on G with multiplication given by
convolution, i.e., if f; and fy belong to % then

m*hwwzéﬁ@mw*mw

where dg is a fixed Haar measure on G. For a compact open subgroup U of G let xy be the function
which is eqaul to 1/(VolU) on U and 0 outside of U. The function xy is an idempotent of J#; we
call idempotents of this form elementary. The algebra J#; together with its elementary idempotents
forms an idempotented algebra; thus the notions of smooth representation, admissible representations,
contragredients, etc. are all defined for J¢7.

14. Note that G acts on J7; via right and left translation. To be precise, if g belongs to G and f
belongs to ¢ then we put

(p(9))(h) = f(gh),  (M@)f)(h) = f(g~"h).
The identities

(Ag)f1) * f2 = Mg) (f1 * f2), f1x(p(9) f2) = p(9)(f1 * f2), fix (Mg)f2) = (p(g)f1) * fa

are readily verified.

15 Theorem ([JL] pg. 25). Let G be a TDLC group.

1. Let (m, V) be a smooth representation of G. For an element f of ¢ define an operator w(f) on
V by

w0 = [ oo
Then f — w(f) is a smooth representation of & on'V.

2. The above construction gives a bijective correspondence between smooth representations of G and
smooth representations of He.

3. This correspondence takes admissible representations to admissible representations and irreducible
representations to irreducible representations (in both directions).

4. Let (m, V) be a smooth representation of G or Hg and let U be a subspace of V. Then U is stable
under G if and only if it is stable under J¢.
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1) First note that the integral is well-defined; in fact, since f is locally constant and compactly
supported and the map g — m(g)v is locally constant (since the stabilizer of v is open) it follows that the
function f(g)m(g)v is a locally constant compactly supported function with values in a finite dimensional
vector space. The integral therefore reduces to a finite sum.

We now check that f+— m(f) is a representation of 7. It is clearly a linear map. We have

(o * fo)o = ]2(1&=*1§)(9)W(9)vd9== /QLK;jﬁ(h)jé(h‘lg)ﬂ(g)vdgdh
:[;Lhmwxwﬂmwmhzﬂﬁwuau

Thus 7 is an algebra homomorphism.

Finally we must check that 7 is a smooth representation of J7%, i.e., given v in V there exists an
elementary idempotent £ of % such that 7(§)v = v. Let U’ be the stabilizer of v; it is an open
subgroup of G. Since G is totally disconnecte and locally compact it follows that U’ contains a compact
open subgroup U. The elementary idempotent xy will then stabilize v.

2) We now give an inverse construction, i.e., associate to every smooth representation of .#¢ a smooth
representation of G in a manner inverse to the above. Thus let V' be a smooth representation of .
Given a vector v in V' we can write (by smoothness)

n

v= Zﬁ(fi)vi

=1

where f; belongs to J#; and v; belongs to V' (in fact, we can accomplish this with n = 1 and taking f;
to be an elementary idempotent). If g belongs to G we then define

n

m(g)v = 3 7(A(g) fo)oi-

i=1

We must check that this is well defined, i.e., we must show that if >  7(f;)v; = 0 then w =
St m(A(g)fi)vi is also zero. Since w belongs to V' we can find an elementary idempotent ¢ which
stabilizes w. We then have

w=m(@w="Y & \Ng)fi))vi =D w((p(9)) * fi)vi = w(p(9)€) Y w(fi)vi = 0.

i=1 =1 =1

Thus the action of G is well-defined and we obtain a representation w of G on V.
We now show that the representation of G thus obtained is smooth. Let v be an element of V' and
let xu be an elementary idempotent of % which stabilizes v. If g belongs to U then A(g)€ = & so that

m(g)v = m(A(g)§)v = m({v = v.

Thus the stabilizer of v contains the open subgroup U and is therefore open. Thus 7 is smooth.

It is clear that this construction is inverse to the previous construction in both directions. Thus the
second statement is established.

3) We now prove that admissible representations correspond to admissible representations. Thus let
(m,V) be a representation of G and J# which is smooth. If U’ is an open subgroup of G then it contains
an open compact subgroup U of G. The space stabilized by U’ is contained in the space stabilized by
U. Furthermore, the space stabilized by U is equal to the image of m(xy). Therefore if V' is admissible
for % (so that the image of w(xy) is finite dimensional) then V' is admissible for G. Similarly, if V' is
admissible for G (so that the stabilizer of U is finite dimensional) then V is admissible for s#. This
proves that admissible representations correspond. That irreducible representations correspond follows
from the fourth statement of the proposition.

4) This follows immediately from the formulae expressing the representations of G and %% in terms
of each other.

5.1.5 The Hecke algebra of a compact open subgroup

[narch-tdlc-hecke2]
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16. Let G be a TDLC group and let K be a compact open subgroup of G. Let .7 k be the subalgebra
of J#; consisting of those functions which are K-bi-invariant. The algebra .72z k is nothing other than
the algebra J#;[xk] in the notation of §1.4.1. In particular, yx is the multiplicative identity element of
the algebra ¢ k.

17. Note that if (,V) is a representation of G then the subspace VX of V stabilized by K is stable
under the action of 54 k. In fact, in the notation of §1.4.1 the space VX is nothing other than V[yx].

18 Proposition ([Bu] Prop. 4.2.3). [narch-tdlc-hecke2-30] Let (m, V') be a smooth representation
of the TDLC group G. Then 7 is irreducible if and only for all compact open subgroups K of G the space
VE s irreducible for the aciton of 4 k.

This is nothing other than §1.4.5, proposition 113 rephrased into the present language.

5.1.6 Schur’s lemma and the central quasi-character

[narch-tdlc-schur]

19 Proposition. [narch-tdlc-schur-10] Let G be a TDLC group and let (w, V') be an irreducible
admissible representation of G. Then any endomorphism of V. commuting with the action of G is a
scalar.

Let A be an endomorphism of V' commuting with the action of G. Let U be an open subgroup of G
which stabilizes a nonzero subspace of V' (such a U exists, e.g., take the stabilizer of an element of V).
The space V'V is finite dimensional (by admissibility) and taken to itself by A. Thus A has an eigenvector
in VY; say Av = Av. The endomorphism A — X of V also commutes with the action of G; its kernel is a
nonzero stable subspace and therefore all of V. Thus A = A.

20. Let G be a TDLC group, let Z be the center of G and let 7 be a representation of G. We say that
7 admits a central quasi-character if there exists a quasi-character x of Z such that 7w(g) = x(g) for all g
in Z. Proposition 19 implies that irreducible admissible representations admit central quasi-characters.

5.2 First notions and results for GL(2, F)

[narch-first]

5.2.1 Notation

[narch-first-not]
21. In the present section we give notation that will be in effect for the remainder of chapter 5.

22. We denote by F' a fixed local field. We use the following notations:
1. OF is ring of integers in F;
2. p is the maximal ideal of OF;

w is a generator for p;

Uy is the group of units in Op;

| - | is the absolute value on F'; and

A A T o

1 is a fixed nontrivial additive character of F' — this is used to identify F' with its Pontrjagin dual.
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23. We let GF denote the topological group GL(2, F'). We also name several subgroups of Gp:
1. Zp is the center of G, consisting of scalar matrices;
2. Ap is the group of diagonal matrices;
3. K is the compact open subgroup GL(2, OF);
4

. Bp or Pp is the group of upper triangular matrices in G g;

. . L . . 1
5. Np is the group of unipotent matrices in Bp, i.e., matrices of the form { 0 >1k } .

6. D is the group of matrices of the form { 3 ¥ } .
The word “representation” will typically mean a representation of Gr on a complex vector space.

24. [narch-first-not-20] If X is a topological space and V' a complex vector space we let C(X,V)
denote the functions on X taking values in V'; we let C*°(X, V') denote the smooth (i.e., locally constant)
functions; and we let C°(X,V) denote the smooth compactly supported functions on X. The space
C(X,V) is also denoted .(X, V) and is called the Schwartz space. For V = C we simply write C(X),
C>®(X) and S (X).

25. [narch-first-not-30] We define representations p and A of G on C(GF) by

(0(9))(h) = f(hg) — (N@))(h) = Flg™ D).

These are called the right reqular representation and left reqular representation respectively. It is clear
that both C*°(GF) and . (Gp) are stable under both p and A.

5.2.2 The Hecke algebra

[narch-first-hecke]

26. We denote by % the Hecke algebra of the TDLC group G, as discussed in §5.1.4. Moreover, if K
is a compact subgroup of G then we denote by % i the Hecke algebra ¢z, k as discussed in §5.1.5.
In the special case where K = K is the standard maximal compact subgroup of Gr we denote by 777
the Hecke algebra J¢, k,; it is called the spherical Hecke algebra.

27. For an element o of K, i.e., a finite dimensional irreducible representation o of K, define a
function ¢ = &, on Kr by £(g) = (dego)!tr(og). We extend & by zero outside of Kz to obtain a
function on all of G, still denoted £. It is clear that & belongs to the Hecke algebra 7% and that in this
algebra it is an idempotent. We call £ the idempotent corresponding to the representation o.

If o and o are distinct elements of K then it is easily seen that £ and £’ are orthogonal idempotents.
Thus, given n distinct elements o1, . . ., 0, of Kp the function £ = & 4 - - - + &, is an idempotent of 7.

It is not hard to see that the set of idempotents constructed in the previous paragraph is cofinal with
the elementary idempotents of %. For this reason, we will also call the idempotents of the previous
paragraph “elementary.”

5.2.3 The central quasi-character

[narch-first-cqc]

28. Note that the center Zr of G can be identified with F'*. In particular, the central quasi-character
of a representation of Gr may be identified with a quasi-character of F'*.

5.2.4 Twisting by quasi-characters

[narch-first-twist]
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29. Let x be a quasi-character of G and let (m, V) be a representation of Gp.

1. We denote again by x the one dimensional representation of G given by g — x(detg). It is an
admissible representation of Gp.

2. We define a representation Y ® m of G on the space V by the formula

(x @ m)(g) = x(det g)m(g).

We say that the representation (x ® m, V) is the twist of the representation (m, V') by the quasi-
character w. The twisted representation is smooth (resp. admissible, irreducible) if and only if the
original representation is.

3. If the representation 7 admits a central quasi-character w then so does the twist x ® m and its
central quasi-character is y2w.

4. The contradgrediant of x ® 7 is given by x~' ® 7. In particular, the contragrediant of the one

dimensional representation afforded by y is the one dimensional representation afforded by x*.

5.2.5 The contragredient representation

[narch-first-contra]

30 Proposition. [narch-first-contra-10] Let (71, V1) and (w2, Va) be two admissible representations
of G and let B be a nonzero Gg-invariant bilinear form on Vi x V.

1. The natural map Vi — V5 induced by B has its image contained in Va.
2. If V1 or Vs is irreducible then 3 is nondegenerate.
8. If B is nondegenerate then w1 is equivalent to the contragrediant of ms.

This is nothing more than a rephrasing of §1.4.3, proposition 107 into the present language.

5.2.6 Finite dimensional irreducible admissible representations

[narch-first-£d]

31 Proposition ([JL] Prop. 2.7). [narch-first-£d-10] Let (7, V) be a finite dimensional irreducible
admissible representation of Gp. Then V is one dimensional and there is a quasi-character x of F*
such that 7(g) = x(det g).

Let H be the kernel of 7; since V is finite dimensional it is an open subgroup of Gg. Thus there
exists € > 0 such that the matrix
1 =z
0 1

belongs to H whenever |z| < e. If x is any element of F' there exists an element a of F* such that

lax| < e. Thus
a”l 0 1 ax a 0] |1 =z
0 1 0 1 0 1| 1

belongs to H for all x € F. Similarly,
10
z 1

belongs to H for all x € F. These two types of matrices generate SL(2, F') and so H contains SL(2, F).
Thus 7 factors through the determinant, and so 7(g) = x(det g) for some homomorphism of F* into C.
To see that y is continuous observe that

w{g ?]:X(G)I.

Since 7 is irreducible it follows that V' is one dimensional.
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32. Becuase of proposition 31, the finite dimensional irreducible admissible representations of G are
not very interesting. We may thus confine ourselves to the infinite dimensional ones.

5.2.7 The Jacquet functor

narch-first-jac
J

33. Let ¢y be an additive character of F', possibly trivial. Define a character of Ng, also written g, by

o([& 1) =

By means of vy, we can regard C as an Np-module; for clarity, we write Cy, to indicate that C is thus
regarded.

34. The Jacquet functor (with respect to 1) is the functor from the category of Np-modules to the
category of complex vector spaces given by Jy, (V) =V @n, Cy,. The space Jy,V is called the Jacquet
module of V' (with respect to ).

35. If 9 is the trivial character then we write J in place of Jy,. Note that J is simply the covariants
functor.

36. [narch-first-jacq-30] Let (m, V') be a representation of Np. There is a natural surjection A :
V — Jy,V given by v — v ® 1. It is clear that the kernel V' of A is the submodule of V' generated by
7(g)v — o(g)v for v € V and g € Np.

37 Lemma ([Bu] Prop. 4.4.1). [narch-first-jacq-40] Let (m, V) be a smooth representation of
Npg. Then v is in the kernel of A if and only if

[narch-first-jacq-40-1] / Yo(—x)m(ng)vde =0 (1)
p—n

for n sufficiently large.
If v/ = m(neg)v — o(§)v is a typical element of ker A and n is taken so that £ € p~™ then

—z)m(ng )V dx = — )T (Npae vde — —x w(ng)vde.
[ s = [ oz = [ o+ i)

The two integrals are seen to be equal after a change of variables. Thus v’ satisfies (1).

Now assume that v is given satisfying (1) for some n. Take m > —n sufficiently large so that 1) v is
fixed by n, when = € p™, and 2) 1)y is trivial on p™. Thus the expression 1(—z)m(n,)v is constant on
the cosets of p™ and so (1) may be written as

Z o(—z)m(ng)v = 0.
TEPTT /P
Therefore, if ¢ is the reciprocal of the cardinality of p~™/p™, we have
v=v-—c Z Yo(—x)m(ng)v =c¢ Z Yo(—2x) (1/10(50)1) — W(nx)v)
zep—vn/pn xepfm/pn

which shows that v is an element of ker A. This completes the proof.

38 Proposition. [narch-first-jacq-60] The functor Jy, from the category of smooth Np-modules
to the category of vector spaces is exact.

Since Jy,, is defined as a tensor product it is automatically right exact. Thus we need to show that
if Vi — V4 is an injection of smooth N(F')-modules then Jy, Vi — Jy, V2 is an injection. However, if we
regard V7 as a submodule of V5 then it is clear from lemma 36 that ker A; = ker Ao NV7, and this implies
that Jy, Vi — Jy, V2 is injective.
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39. If (7, V) is a representation of some group containing Ny (e.g., Gg or Dp), we write Jy,V for the
Jacquet module of (7|Ng, V).

40 Theorem. [narch-first-jacq-80] Let (m, V') be an irreducible admissible representation of Gp.
Then:

1. The space JyV is at most one dimensional (where 1 is a nontrivial character).

2. The space JV is at most two dimensional.

41. We will not prove theorem 40 in this section. It is a fairly difficult theorem to prove; indeed, for an
infinite dimensional irreducible admissible representation (m, V') the three statements

1. JyV is one dimensional
2. m admits a unique Kirillov model
3. m admits a unique Whittaker model

are essentially equivalent.

42. Note that if (7, V) is a representation of G then J,V is a module over the center of Gp and JV
is a module over Np for which Np acts trivially.

43 Proposition. If (m, V) is an admissible representation of Gp then JV is an admissible represen-
tation of the mazimal torus of Gp.
Proof omitted; see Bump Theorem 4.4.4.

5.3 The Kirillov and Whittaker models

[narch-kiri]

5.3.1 The representation ¢, of Dy on certain Schwartz spaces

[narch-kiri-swz|

44. [narch-kiri-swz-10] Let X be a complex vector space. Define a representation & of D on the
space C(F, X) and C(F*, X))

(] 5 7]¢) 0= w60

Both C*(F, X) and . (F, X) are stable subspaces of C(F, X); also, both C*(F*,X) and . (F*, X)
are stable subspaces of C(F'*, X).

45. The rest of this section consists of miscellaneous results which we will use later.

46 Proposition ([JL] Lemma 2.9.1). [narch-kiri-swz-20] The representation (&, (F*)) of
Dpg is irreducible.

If 4 is a character of Up let ¢, be the element of .(F*) which is equal to x on Ur and equal
to 0 away from Up. The space . (F*) is spanned by the ¢, and their translates. Thus to prove the
proposition it suffices to show that any stable subspace contains all of the ¢,,.

Let V be a stable subspace and let ¢y be a nonzero element of V. Let v be a character of Ur and

consider the function .

0
o=ouwin= [ o] Yy ]| ondn
F><
The integral may be rewritten as a finite sum and so ¢ lies in V. Clearly,

¢(ea) = v(e)d(a) (2)
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for all a € F* and € € Up. We now show that v can be chosen so that ¢ # 0. For a € F* we have

pla) = [ dolay™Hv(y)dy

Ur

and so ¢(a) may be regarded as the value of the Fourier transform of the function y +— ¢o(ay=t) on Up
at the character v. Since there exists a such that this function is not identically zero on Uy it follows that
there exists v such that ¢(a) # 0. Thus v can be chosen so that ¢ # 0. We have therefore shown that
V contains a nonzero function ¢ satisfying (2). In fact, we may scale and translate ¢ so that ¢(1) = 1;
note that (2) then implies ¢(e) = v(e) for € € Up.

We are now going to show that for p # v the space V' contains the function ¢,. This will establish
the proposition because we then replace ¢ by ¢, with u # v (Ur has at least two characters) and run
the same argument to conclude that ¢, is in V.

Set 0 .
— -1 € T d
o= [ s 5 Ve g 7o

where z is to be determined. Since this integral is really a finite sum, the function ¢’ lies in V. Unravelling
the definition of £, gives

S0 = [ wiOsleay(canide = ota) [ n7 (Ov(eblean)de.
Ur Ur

If we now take x = w™""™ we find that, by §1.5.1, proposition 121, the integral is equal to c¢,,—

(where ¢ is a nonzero constant) and so

d), = C¢¢pl/*1 = C¢/L-

This proves the proposition.

47 Lemma ([JL] Lemma 2.13.3). [narch-kiri-swz-30] Let ¢ be an element of #(F*). Then
there exists a finite subset S of F*, complex numbers A, fory € S, and an element ¢ in .7 (F*) such

that
¢ = Z Ay&y (ny) do-

yeS

The numbers A\, satisfy

D=0 Y Nuy) = o).

yeS yeS

Extend ¢ to a function on all of F' by setting ¢(0) = 0; thus ¢ is a locally constant compactly
supported function on F, i.e., an element of the Schwartz space (F). Let ¢ be the Fourier transform
of ¢; it too lies in the Schwartz space. Let € be an open compact set of F'* containing 1 and the support
of ¢. There is an ideal a so that for all z € §2 the function of y given by ¢'(—y)w(xy) is constant on the
cosets of a in F. Let b be an ideal containing a and the support of ¢’. We then have

b(z) = /F S —pandy=c 3 ¢ (—y)biay)

yeb/a

where ¢ is the measure of a. If ¢g is the characteristic function of © (and thus an element of .7 (F*)),
the above relation may be written as

¢ = A&u(ny)oo

yeSs

where A\, = c¢’(—y) and S is a set of representatives for b/a. We have

0=00)=> % o) =D Au().

yeS yeSs

The lemma is proved.
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48 Lemma ([JL] Lemma 2.13.3). [narch-kiri-swz-40] Let L be a linear functional on the Schwartz
space S (F*) such that

L(§y(na2)9) = (x)L(¢)
for all ¢ in L (F*) and all © in F. Then there is a scalar A such that L(¢) = Ap(1).

It is sufficient to show ¢(1) = 0 implies L(¢) = 0. Thus let ¢ be a function which vanishes at 1. Let
S, Ay and ¢o be as in lemma 47. Since 3 ¢ Aytp(y) = 0 it follows that

¢ = Z Ay (fw(ny)(% - ¢(y)¢0)
yeS
and so L(¢) = 0.
49 Lemma ([JL] Lemma 2.15.2). [narch-kiri-swz-50] The functions of the form {(ny)¢ — ¢ with

¢ in L (F*) span L (F*). In other words, J.%(F*) = 0.
Let ¢ be an element of ./(F). Let S, Ay and ¢o be as in lemma 47. Since }_ g Ay = 0, we have

6= Ay (€ulny)do — 60)
yeSs

and the result is proved.

50 Lemma ([JL] Lemma 2.21.1). [narch-kiri-swz-60] Let T be a linear operator on #(F*)
commuting with Dp. Then T is a scalar.
Since (&, S (F*)) is irreducible (c¢f. proposition 46), it suffices to show that T" has an eigenvector.
Sublemma A. Let u be a nontrivial character on Up with conductor 1 + p™. Let S be the operator

on . (F*) defined by
= B <[6 0][1 mnDd
_ ©&Alo 1]lo 1 ¢

where p~™ is the conductor of ©. Clearly T" commutes with S.
Sublemma B. Let V' be the subsapce of .(F'*) consisting of all functions invariant under Up. Thus
¢ lies in V if and only if

¢=§w{8 (1)]¢

holds for all € in Up. From this characterization, it is clear that 7" maps V into itself.
Sublemma C. If ¢ lies in V' then

(56)(a) = /U 5 (€ plaem ™) blea)de = (", aw ™) p(a)

where 7 is the Gaussian sum of §1.5.1, proposition 121. From the evaluation of this sum, it follows that
(S¢)(a) =0if a is not in Up. If € is in Up then

(Sp)(e) =n(p™ " em ™ ™)d(e) = ple)n(p™ " @ " "™)p(1).

Therefore, S¢ is a multiple of the function ¢,,, which is defined to be zero outside of Ur and equal to u
on Up. In fact, if ¢(1) # 0 then S¢ is a nonzero multiple of ¢,,. We have thus shown that SV = C¢,,.
We are now essentially finished. We have

T(C¢,) =TSV =8TV =SV =Co¢,
and therefore ¢, is an eigenvector of T'.
5.3.2 The Kirillov model: overview

[narch-kiri-over]|

51. Let (m, V) be a representation of Gp. A Kirillov model of 7 is a submodule of (£, C(F*)) (cf.
article 44) which is isomorphic to the restriction of 7 to Dg on V.
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52 Theorem. [narch-kiri-over-20] Let (w,V) be an irreducible admissibile infinite dimensional
representation of Gg. Then m has a unique Kirillov model.

53. We first prove the existence of a Kirillov model and then we prove its uniqueness.

The first major step is proposition 56, in which a vector space X is defined in terms of the given
representation (m, V) such that V may be realized as a subspace of C*°(F*, X) with the restriction of
m to Dp acting as §y. We call this the pre-Kirillov model. The remainder of the section is devoted to
proving that X is one dimensional, so that the pre-Kirillov model is in fact the Kirillov model.

There are three important classes of matrices in Gp for us: the matrices in D, the scalar matrices,
and the matrix

W [ 0 1 }
-1 0|’

These three sorts of matrices generate the group Ggr. For a representation in the pre-Kirillov form,
we know how Dp acts. The aciton of the diagonal matrices is known as well (it acts by the central
quasi-character). The only mystery is how the matrix w acts.

Before really starting into the action of w we give proposition 59, which states 1) that V' contains the
Schwartz space Vp = . (F*, X), and 2) that V is spanned by Vj and m(w)Vj. This gives us much better
control on what the space V' looks like, although it further underscores the necessity to determine what
w does.

To really study w, we introduce a formal Mellin transform in article 60. In proposition 61 we determine
how the three classes of matrices interact with the Mellin transform. For the scalar matrices and elements
of D, this is pretty straightforward. For w the result is a little more complex: there are linear operators
Cn(v) acting on X (where n is an integer and v is a character of Ur) such that for elements ¢ of V;
the Mellin transform of 7(w)¢ can be expressed in terms of the operators Cy,(v) acting on the Mellin
transform of ¢. This is the tool that really lets us get at w.

Finally in proposition 64 we show that X is one dimensional by proving that X is irreducible under
the action of the C,,(v) but that these operators in fact act as scalars. This then completes the proof of
the existence of the Kirillov model.

To prove uniqueness, we prove that the space of Whittaker functionals is one dimensional. To do this,
we use the Kirillov model we have already constructed (but not, of course, the fact that it is unique).
We then deduce the uniqueness of the Kirillov model from the uniqueness of the Whittaker functional.

5.3.3 The Kirillov model: proof of existence
[narch-kiri-ex]
54 Lemma ([JL] Prop. 2.7). [narch-kiri-ex-10] Let (m,V) be an infinite dimensional irreducible

admissible representation of Gr. Then there is no nonzero element of V' stabilized by all of Np.
Assume there exists such a vector v. Let H be the stabilizer of v. As H is an open subgroup it

. . b . .
contains a matrix [ CCL d ] with ¢ # 0. It therefore also contains

B H e R R

Given any y € F, let x = boy/c. Then

1 0] 1 2]
y 1|7 o 1 |%

is also in H. It now follows that H contains SL(2, F') (since it contains generators of this group).

The stabilizer of the subspace Cv contains F*H and so contains F*SL(2, F). Since this group is
of finite index in G it follows that v is contained in a finite dimensional stable subspace. This is a
contradiction and so no such v can exist.
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55 Lemma ([JL] Lemma 2.8.1). [narch-kiri-ex-20] Let p~™ be the conductor of ¥ is trivial and
let f be a locally constant function on p~* with values in some finite dimensional complex vector space.
For any integer n < £ the following two conditions are equivalent:

1. f is constant on the cosets of p~" in p~t
2. The integral
| pan) s
.

is zero for all a outside of p~™*™.

(1 = 2) Let a be an element of F* which is not in p~™%". Then z — t(—az) is a nontrivial
character of p~". Therefore

/pé Y(—az)f(x)dx = Z w(—ay)f(y)/ W(—az)dz = 0.

yEp—t/pn o

(2 = 1) We may think of f as a locally constant function on F with support in p~¢. The second
condition is essentially the statement that the Fourier transform f’ of f has its support in p~™%". By
the Fourier inversion formula, we thus have

flx) = / L vy ()dy.
p*"n n
For y € p~™*" the function x — ¥ (—ay) is constant on the cosets of p~"; the proposition follows.

56 Proposition. [narch-kiri-ex-30] Let (m,V) be an infinite dimensional irreducible admissible
representation of Gg. Let A be the projection of V' onto its Jacquet module JuV (cf. article 36). Then

1. Forv eV let ¢, : F* — JyV be the function defined by

a 0
¢v(a)A<7r[ 0 1 }v)
The map v — ¢, is an injection of V into C°(F*, J,V).
2. The map v +— ¢, is a map of Dp-modules; in other words ¢r(ay, = &y(d)py for all d € Dy and

veV.

Let V' be the kernel of A. We will use lemma 37 without note.
1) Assume ¢, = 0 identically; we must show that v = 0. Let f(z) = 7(n,)v and let

Fy(a) = /p e f(x)ds.

By lemma 54 it suffices to show that f is constant. We know that f is constant on the cosets of p~"°

for some integer ng. We will now prove by induction that if f is constant on the cosets of p~" then it is

constant on the cosets of p~"~!, which will prove the statement. First we establish three sublemmas.
Sublemma A. For n < m we have

Fn(a)= | w(-ax)f(z)de= Y w(-ay)n(ny) | o(-az)f(z)dz
= Z V(—ay)m(ny)Fn(a).
yeEP~™/pTn
Thus if Fy,(a) = 0 then F,,,(a) = 0 for all m > n.

Sublemma B. Note that (since ¢, = 0) given any a € F* the vector ™ [ g v belongs to V'. This

_= O
—_

means that there exists n such that

:pnw—xw(l)lﬂo(l)vdm:pnw(—xﬂ()lﬂ'o_11 vdz
o= [t ][ 8 frem [Lvean 5] 5 7]
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In other words, for all a € F'* there exists n such that Fj,(a) = 0.
?]vzvforbGUl. For

Sublemma C. There exists an open subgroup U; of Ugr such that w [ 8

such b we have

w[g H/“zp(—ax)f(x)dxz/pzzp(—am)w{é b }w{g (l)]vdx:/pzz/z(—(a/b)x)f(x)dx.

Thus if Fy(a) = 0 then Fy(ba) = 0 for any b in Uj.

We now prove the induction. Assume f is constant on the cosets of p~™. Let p~"™ be the largest ideal
on which 1 is trivial. Let aq,...,a, be representatives for the classes of generators of p~™+" modulo U,
(so that any generator of p~™%" lies in Uja; for some 7). By sublemma B, for each i there exists ¢; such
that Fy,(a;) = 0. Let £ be the maximum of the ¢; and n + 1. By sublemma A we have that Fy(a;) =0
for any ¢ > ¢'. By sublemma C it follows that Fy(a) = 0 if a is a generator of p~™*" and £ > ¢'.

Let £ > ¢'. Since f is constant on the cosets of p~™ inside the ideal p~* and the restriction of f to
p~¢ takes values in a finite dimensional vector space, lemma 55 implies that Fy(a) = 0 if a is outside of
p~ ™", However, we just proved above that Fy(a) = 0 if a is a generator of p~™%"; thus Fy(a) = 0 for
any a outside of p~™*+"*+1 Applying lemma 55 again shows that f is constant on the cosets of p~" !
insides of p’. Since this holds for all £ > ¢ it follows that f is constant on the cosets of p~"~! in all of
F. This proves the first part of the proposition.

2) To prove the second assertion, it is sufficient to show that

A(w[é H) — Y()A)

for all v € V and y € F. This is equivalent to showing that m(n,)v — ¢ (y)v lies in V', which is true
(almost) by definition of Jy (cf. article 36).

57. Because of proposition 56 we may identify v with ¢,. When we do this, we say that 7 is in pre-
Kirillov form. In this case, the map A takes the form ¢ — ¢(1). For d € D, we know that 7(d) = &, (d).
Because of this, the representation is determined entirely by its central quasicharacter and 7(w) where

o 1
w=1_7 ol
58 Lemma. [narch-kiri-ex-50] Let (m, V) be an infinite dimensional irreducible admissible repre-
sentation in pre-Kirillov form. Then
1. For all ¢ in V we have ¢(a) =0 for |a| sufficiently large.

2. For all ¢ in'V and g € Np the function ¢ — w(g)¢ lies in the Schwartz space S/ (F*, J,V).

1) Let ¢ € V. There exists n so that

w[g f]¢=¢

if x and @ — 1 belong to p™. In particular, for x € p™ we have

(1 —9(az))p(a) = 0.

If p~™ is the conductor of ¢ and x is a generator for p” then ¢ (ax) = 1 only if a is in p~™ ™. Thus
¢(a) =0 unless a is in p~™ "

2) Let ¢ € V and let ¢/ = ¢ — w(ny)¢. Observe that ¢'(a) = (1 — ¢¥(ax))¢(a) is identically zero for
x = 0 and otherwise vanishes at least on z~'p~™ (where p~™ is the conductor of ¢). Combining this
with part 1 of the lemma proves part 2.
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59 Proposition ([JL] Prop. 2.9). [narch-kiri-ex-60] Let (w,V) be an infinite dimensional
admissible irreducible representation in pre-Kirillov form. Then

1. V contains Vo = S (F*, J,V)
2. V is spanned by Vy and 7(w)Vj.

1) Let V; be the space of ¢ in V' such that ¢(a) vanishes for |a| sufficiently small. By lemma 58 it
follows that Vo C .7(F*, J,V). We prove the other containment in a series of sublemmas:

Sublemma A. Given u € JyV there exists ¢ in V such that ¢(1) = u (since the projection map A
is by definition surjective). If we now take x € F' such that () # 0 then ¢’ = ¢ — w(n,)¢ belongs to
Vo by lemma 58 and ¢'(1) = (1 — ¢(z))u is a nonzero multiple of w. Thus for all u € J,V there exists
¢ € Vp such that ¢(1) = u.

Sublemma B. If p is a character of Up let Vo (1) be the space of functions ¢ in Vg such that

p(ea) = u(e)¢(a)

for all a € F* and € € Up. By using the Fourier transform, one easily sees that V; is the direct sum of the
Vo(p). Therefore (applying sublemma A) every vector in u can be written as a finite sum u = ) ¢;(1)
where ¢, belongs to Vo(u;).

Sublemma C. Let ¢ belong to V(v) and let u = ¢(1). Let p be different from v and let 1+ p™ be the
conductor of p~1v. Define

w*’ﬂfm

o= [ wree| g Vels Ty e

Ur

The function ¢’ belongs to V. We have

@ = [ i @ateavleam e = o) [t eple)pteam e

F

Applying §1.5.1, proposition 121, we find
(;5’(&) = C(b(a)qﬁuu*l

where c is a nonzero constant and ¢,,,-1 is the function which is zero outside of Ur and equal to uv~
on Ug. From this expression, we see that ¢’ belongs to V; and that it takes values in the space Cu. We
have therefore shown that if u € JyV is of the form ¢(1) where ¢ € V(v) then there exists  in & (F*)
such that nu belongs to V.

Sublemma D. Proposition 46 can be applied to immediately stengther sublemma C: if u is of the form
@(1) where ¢ € V(v) then Vj contains all functions of the form nu where 7 is in 7 (F*).

Sublemma E. Let u be an element of J,V and let n be in ./(F*). By sublemma B we can write
u = Y u; where each u; lies in V' (y;) for some ;. By sublemma D V{ contains all the functions nu;.
Therefore we see that Vj contains nu. This implies that Vy D S (F*, JyV).

Thus the first statement is proved.

2) Let Pr be the group of upper triangular matrices in Gr. Since A) V} is stable under Pp; B) V
is irreducible under Gr; and C) G is the union of Pr and NpwPp, it follows that V is spanned by V;
and the vectors

1

<z>’:7r[ oo ]w(ww
for ¢ € Vj. But
o= (v] 5 7| Fwe - ) + e

and the first term is in Vj by sublemma B. Thus ¢’ belongs to Vi + m(w)Vy. This proves the second
statement.
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60. [narch-kiri-ex-70] Let ¢ be a locally constant function on F* with values in X. For a character
v of Ug, put

(;Aﬁn(y) = o(ew™)v(e)de

Ur

where de is the normalized Haar measure on Ur Note that € — ¢(ew™) is a locally constant function on
the compact space Up. This implies 1) that it takes values in a finite dimensional subspace of X and so
the above integral is well defined, and 2) for fixed n the function qgn(u) is nonzero for only finitely many
values of p. We let ¢(v,t) be the formal series

P(.t) = du(v).

nez

We call (v, t) the formal Mellin transform of ¢.
If (7, V) is a representation of G in pre-Kirillov form and ¢ is an element of V' we use the convention

m(9)d(,t) = (7(9)9) (. 1).

Note that ¢(a) always vanishes for |a| sufficiently large (cf. lemma 58). It follows that ¢(v,t) will have

only finitely many negative terms. If ¢ belongs to the Schwartz space Vy then ¢(v,t) is a Laurent
polynomial.

61 Proposition ([JL] Prop. 2.10). [narch-kiri-ex-80] Let (m, V) be an infinite dimensional

admissible irreducible representation of G in pre-Kirillov form. For a character p of Up and an element
x of F, recall that (cf. §1.5.1, proposition 121)

n(u,x):/U p(e)p(ex)de.

where de is the normalized Haar measure.

1. If 6 belongs to Up and ¢ is an integer then
¢ . R
|75 1w = @i,
2. If x is an element of F' then

m é 1o =3 [ (Yo nw v =" 2)dn(w))
o 1= (3 |

where the inner sum is over all characters p of Up.

3. Let wy be the central quasicharacter of w. Let vy be its restriction to Up and let zg = wo(w).
For each character v of Up there is a formal series C(v,t) with coefficients in the space of linear
operators on Jy X so that for every ¢ in Vi we have

w[ O }é(y,t) — Cln, (v ).

1) Let

Then

and the first part follows.
2) Let



Then

& = /U A" )o(e" e (3)

Now, the Fourier transform of the function € — v(e)i(ew”x) on Up at the character p is

[ mwe(emmoyde =y ="o)
Ur

and so by the Fourier inversion formula we have

U

vOw(em"s) = [ (el v " )d
Inserting this into (3), and chaning the order of integration, yields

b, = / 0 v, @"x) b (1) dp.

U

Note that this is really a finite sum since qgn(u) is nonzero for only finitely many p. This proves the
second part of the proposition.
3) We proceed by a series of sublemmas.
1

Sublemma A. Let v be a character of Ur and suppose ¢ € V| satisfies (ﬁ(u, t) =0 unless u = (vy)~t.
This condition is equivalent to the condition

¢(ea) = (vo)(€)¢(a)

for all e € Up and a € F'*, or to the condition

7o b o=

for all e € Up. Now let ¢' = w(w)¢. Then

Therefore ¢/ (11,t) = 0 unless p = v.
Sublemma B. This “sublemma” is not so much a lemma as a defintion: namely the definition of the
series C'(v,t). Let u be in JyV, let v be a character of Up, and let ¢ be the element of V; defined by

(4)

_Jv(@w(eu ecUr
oo = {rtmim ol

Let ¢’ = m(w)¢. The expression QAS’n (v) is a function of n, ¥ and u and depends linearly on u; we may
therefore write

9, (v) = Culv)u

where C),(v) is a linear operator on J, V. We define the formal series

Clv,t) = t"Cn(v).

n

Sublemma C. We now verify the third part of the proposition for functions ¢ of the form (4). We
have
Clv,thu pu=v

m(w)(.t) = {0 L
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The top case is by the definition given in sublemma B; the bottom case follows from sublemma A. On
the other hand, computing the Fourier transform of ¢ gives

" u = (viy)
7t =
o {0 p# (vo)
and so we obtain
C(M’t)dg(/ﬁill/o_l,tflzo_l) — {C(V7 t)u uw=v
0 pw# v

Thus we have shown . A
T(w)o(u,t) = Clp. ) gt 25")
for all characters p; this completes the verification.

Sublemma D. We now verify the third part of the proposition for translates of functions of the form
(4) by powers of tw; that is, we verify it for functions of the form

4
o= 1]e

where ¢ is of the form (4). By part 1 of this proposition, we have

Clu ) (g 17 ) = () x (Ol o v 17 ) (5)
On the other hand, we have
. ¢ . .
I R I O R R e
0

where we applied part 1 of this proposition in the last step. Sublemma C now implies that the last line
in the above equation is equal to the right hand side of (5). This completes the verification in this case.

Sublemma D in fact completes the proof of part 3: the equation which must be verified is linear in
¢ and the functions considered in sublemma D form a basis of the space V. Thus the proposition is
proved.

62. [narch-kiri-ex-90] Note that for a given u € J,V and a given character v of Up there exists a
function ¢ in Vg (in fact, it is the function given in sublemma B of proposition 61) such that J)(V, t) =
3, t"Cr(v)u. Since ¢(v,t) is a Laurent series, it follows that there exists ng (depending on u and v)
such that for n < ng we have Cy,(v)u = 0.

63 Proposition ([JL] Prop. 2.11). [narch-kiri-ex-100] Let (7,V) and other notations be as in
proposition 61. Let p~™ be the conductor of ¥». Let v and p be two characters of Up, let x = vpry and
let

S=Smvpp)= Y o v,@ )0 p,@")Cpin(0).
UEUF

1. If x is not trivial and has conductor 1 + p* then
S =2 X (=D @ ) Crem k() Cpm k()
for all integers n and p.

2. If x is trivial then

— 00

S = 20vo(=1)d0np — (1 - |w|)_lzgq+1cnfmfl(V)Cpfmfl(p) - Z 2y Crgr(V)Cpir(p)

r=—m-—2

for all integers n and p (here § is the Kronecker delta).
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Note that these are infinite sums of operators on J,, V', but when they are applied to any specific
element of J, V' all but finitely many terms vanish. This is the sense in which these equalities are to be
taken.

We begin with four sublemmas.

Sublemma A. The relation

B iEIE e R
O R e e L L e

for all ¢ in V. This may be rewritten as

implies that

ww) (x| g 1 |70 -t +aPo=n(-vx| o 3 |swr| g e ©

Note that the term in parentheses on the left lies in Vj (c¢f. lemma 58) and that 7(w)%¢ = vo(—1)¢.
Sublemma B. We compute the Mellin transform of the right side of (6). We shall use proposition 61
without stopping to say so. We have

W[é B }évt Z[Zﬂplv—w ¢(p)}t

and . { (1) —11 } dlv,t) = zﬂ: [Zn(ﬂlv1V0_1,—wP)zEPCp+n(V)¢27p(P)]tn

and so the Mellin transform is

Z[Z =@ (e o T g~ )2 Cpn (0) by )}

n p,p,0

Sublemma C. We now compute the Mellin transform of the left side of (6). We have

()3 Z[Zzo a0y

" wlo 1| - Z[Zzo o™ 05" Conl 9y~ 15|
so that

7lo 1| A0 - m(w)dnn
is equal to

> [Z (npvro, =) - 5<puuo>)cp+n<p1u01>¢3p<p>]t"

Here 6(x) is 1 if x is the trivial character and zero otherwise. The Mellin tranform of the left side is
therefore

3 [uo<—1>¢%n<u> + 35" (nlor =) 5<pu1>)o,b+,-<u>cp+,-<p1v0—1>ésp<p>]t".

n D,TP

Sublemma D. Note that if

Z Cnp,pt" (bp Z cnppt"(bp

n,p,p n,p,p
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holds for all ¢ € V; then ¢ = ¢/. We may therefore equate the coefficients of t"qu(p) in the results of
sublemmas B and C to obtain the identity

~1)Y n(e™ v, —@"m(p o gt — @) 2 PCpn(0)
=10(=1)0np0(pr™ JrZ( 0" Cntr(v )Cp+r(f771’/()_l)a

1

valid for all n, p, p and v. If we now replace p by p~ 1/0_1, and use the fact that n(u, —z) = p(—1)n(w, x),

we obtain the identity
X(=1)25 78 = vo(~1)8,0(x Z( = 300) 2" Cusr (1) (), 7)

again, valid for all n, p, p and v.
1) If y is nontrivial with conductor 1+ p* then the gaussian sum 7(x~
(¢f. §1.5.1, proposition 121). Thus the right side of (7) reduces to

Zo_p+m+k77(x_l’ w_m_k>cn,m7k(V)Cp7mfk(p)

L w") is zero unless r = —m—k

which establishes the first statement.
2) If x is trivial then, using the evaluation of n(x,@") given in §1.5.1, proposition 121, we find that
the right side of (7) is equal to

— 00

VO(_l)(Smp (1 - |w|) ! _p+m+10nfm71(1/>cnfmfl(p) - Z Z()_p_rcn+r(y)cn+r<p>

r=—m-—2

and the proposition is proved.

64 Proposition ([JL] Prop. 2.12). [narch-kiri-ex-110] Let (7,V) and other notations be as in
proposition 61.

1. For all integers n and p and all characters v and p of Ur the operators C,,(v) and Cp(p) commute.
2. There is no nontrivial subspace of Jy,V stable under all the operators Cy,(v).
3. The space Jy,V is one dimensional.

1) Let x = pvvg. There are two cases:
Case A: x nontrivial. Let 1+ p* be the conductor of . Since S(n,v,p,p) (cf. proposition 63) is
symmetric in (n,v) and (p, p) it follows from proposition 63 that

n(X; w_m_k)cnfmfk(V)Cpfmfk(m

is symmetric as well. Since the 7 coefficient does not vanish, we conclude that the expression C, (v)Cy(p)
is symmetric, i.e., that C,(v) and Cp(p) commute.
Case B: x trivial. Fix a vector u in Jy V. Consider the expression

Crigr (V) Cpir (P)u = Cpir () Criger (V) (8)

By the comments in article 62, it follows that both sides are equal to 0 if r is large and negative. Using
the second part of proposiiton 63 we then conclude, by induction, that (8) holds for all r. Since u was
arbitrary, it follows that (8) holds for all u and therefore C,,(v) and Cy(p) commute.

2) Let X7 be a nontrivial subspace of J,V stable under all the operator C,,(v). Let V; be the space
of all functions in V; which take values in X; and let V{ be the stable subspace generated by V;. Note
that V1, and therefore V] are nonempty.

Consider following three facts: A) the subspace of V taking values in X; is stable under Pg; B) if ¢
is a function in V| taking values in X; then part 3 of proposition 61 and the present assumptions imply
that m(w)¢ takes values in X7; C) the Bruhat decomposition: Gg = PrIl PrwPpr. The three statements
together imply that all elements of V; take values in X;. Thus V; is a proper nontrivial stable subspace
of V. This contradicts the fact that V is irreducible and therefore no such space X; exists.

101



3) To prove this statement we will show that the C,,(v) all act as scalars; the result will then follow
from part 2. We will actually show that any operator commuting with all the C,,(v) is a scalar; since
the C,,(v) are themselves such operators by part 1, the result will follow. Thus let T be an operator on
X commuting with all the Cy, (v).

If ¢ is an element of V' let T'¢ be the element of C(F*, J,V) defined by (T'¢)(a) = T'(¢(a)). Clearly,
T takes the space Vj (which, recall, is simply the Schwartz space) to itself. If ¢ is in V we find

Tr(w)do = m(w)T o

by examining the Mellin transforms of both sides. Since V' =V, + 7(w)Vy (¢f. proposition 59) it follows
that T maps V into itself.

We now show that 7" commutes with the action of G on V. Once this is accomplished it will follow
that T is a scalar (cf. proposition 19) and we will be finished. It is clear that 7' commutes with the action
of Pr. Therefore, we need only show that 7" commutes with the action of w, i.e., for all ¢ in V' that

Tr(w)p = 7(w)T¢.

We have already done this when ¢ lies in Vj; thus it suffices to check it when ¢ = 7w(w)dp and ¢ lies in
Vo. In this case, the left hand side equals

Tr(w)?¢o = vo(—1)T¢o,
while the right hand side equals
m(w)T7(w)po = m(w)*Tho = vo(—1)To.
Thus the proposition is proved.

65. Note that proposition 64 (together with our knowledge of finite dimensional irreducible admissible
representations, cf. proposition 31) proves part 1 of theorem 40.

66. Proposition 64 allows us to identify J,V with C. Thus the pre-Kirillov model is really a Kirillov
model; the existence part of theorem 52 is thus established.

5.3.4 Uniqueness of the Whittaker functional

[narch-kiri-unwfn]

67. Let (7, V) be a representation of Gp. A Whittaker functional on V is a linear form L on V' which

satisfies
L <7r[ (1) . } U> — (2) L(v)

for all z in F and v in V. The set of all Whittaker functionals forms a vector space.

68 Proposition. [narch-kiri-unwfn-20] Let (7, V') be an infinite dimensional irreducible admissible
representation. Then the space of Whittaker functionals is precisely one dimensional.

69 Corollary. [narch-kiri-unwfn-30] Let (m,V) be an infinite dimensional irreducible admissible
representation taken in Kirillov form. Then the Whittaker functionals on V are precisely the functions
of the form

L(¢) = Ao(1)

where X is a scalar.
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70 Proof of proposition 68 and its corollary. Take V in the Kirillov form which was established
in the previous seciton. It is easily seen that ¢ — A¢p(1) is a Whittaker functional on V. We show that
there are no others.

Let L be a Whittaker functional on V. We know by lemma 48 that the restriction of L to Vy = . (F*)
is of the desired form, i.e., there exists a scalar A such that for all ¢ in Vp we have L(¢) = Ap(1).
Now let ¢ be an arbitrary element of V' and take x so that ¥ (z) # 1. Then

wor=a(o-e[ 4 1194 19

1 =z
belongs to Vp (¢f. lemma 62) the right hand side of (9) is equal to

AL = (2)o(1) + ¢(x) L(9)

Since

and so (9) may be rewritten as

(1= (@) L(¢) = AL = ¢ (2))¢(1).
Since ¥ (z) # 1 it follows that L(¢) = A¢(1) and the proposition is proved.

5.3.5 The Kirillov model: proof of uniqueness
[narch-kiri-un]
71 Proposition. Let (w, V) be as in proposition 61. Then its Kirillov model is unique.
Let (7', V') be a representation equivalent to (m, V) such that V' C C(F*) and the restriction of 7’
to Dp agrees with &;. Let A be an intertwining operator from V to V', i.e., a linear map V' — V' such

that Am(g) = n'(g)A for all g € Gp.
Let L be the linear functional on V' defined by

L(¢) = (Ad)(1).

t(nlo T]o)=(7]0 §]@a)w=vwre

and so by article 68 it follows that L(¢) = A¢(1) for some scalar A\. But

Observe that

o@=c (x| ]e)=re@

and so
Ad = .
Therefore V =V’ and 7(g) = 7’(g). This proves the proposition.

72. This completes the proof of theorem 52.

5.3.6 The Kirillov model of a twist

[narch-kiri-twist]
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73 Proposition ([JL] pg. 73). [narch-kiri-twist-10] Let (w,V) be an infinite dimensional
irreducible admissible representation taken in Kirillov form and let w be a quasi-character of F*. Then
the space of the Kirillov model of w ® m consists of all functions of the form w¢ with ¢ in V.

Let V' be the space consisting of all wg with ¢ in V. Let Gg act on V' via 7/, defined by

7' (9)(we) = w(det g)wr(g)o.

Then the map V' — V' given by ¢ — w¢ gives an equivalence of (w ® 7, V') with (7', V).

If
a
=[5 1)

and ¢’ = w¢ then
(7' (d)¢)(8) = w(a)w(B)(m(d)¢)(B) = w(a)w(B)(Bx)¢(Ba) = ¢ (Bx)d (Ba)
so that 7'(d) = &(d). Thus, by definition, V"’ is the space of the Kirillov model of w ® .

5.3.7 The Whittaker model

[narch-kiri-whit]

74. Let # (1)) be the subspace of C(Gr) (complex valued functions on Gg; c¢f. article 24) consisting of

all functions W satisfying
1 =z
w([y 7o) =vem

for all z € F and g € Gr. The space W (%)) is stable under the right regular representation p (¢f. article
25).

75. Let (m, V) be a representation of Gp. A Whittaker model of 7 is a submodule of # (1) which is
isomorphic to (m, V).

76 Theorem ([JL] Thm. 2.14). Let (w, V) be an infinite dimensional irreducible admissible
representation of Gg. Then m has a unique Whittaker model.
Ezistence. We take 7 in the Kirillov form. For an element ¢ of V' let Wy be the function on Gg
defined by

We have the following three facts:
L. It is clear that Wy (g4 = p(g)We.
2. Since
a O
wa([6 0]) -

the function Wy is zero if and only if ¢ is zero.

3. Since
1 =z 1 =z
oo 7]0)= (7] T]m@e) 0= s@e@a0 - v
the function Wy is contained in the space # ().

The three above facts imply that the map ¢ — Wy is an isomorphism of V' onto a submodule # (r, ¢)
of # (v). This establishes the existence.

Uniqueness. Suppose W is a submodule of # (¢) which is isomorphic to V. Let A: V — W be an
isomorhpism, so that

A(m(9)9) = p(9)(A9).
Let L be the linear functional on V' defined by L(¢) = (A¢)(1). We have

(nl s T]e)=wa (] 1)) =v@mam=swre.
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Thus by lemma 68 there exists a scalar A such that L(¢) = A¢(1). But then

(A9)(9) = (p(9)A¢)(1) = (Am(g)¢)(1) = L(m(g)9) = A(m(g)$)(1)
and so A¢p = AW,,. Therefore W = #'(m,%) and uniquness is proved.

5.3.8 The non-existence of Whittaker models for finite dimensional repre-
sentations

[narch-kiri-fd]
77 Proposition. If 7w is a finite dimensional irreducible admissible representation then w does not
have a Whittaker model.
Let 7 be the representation associated to the quasi-character x. Assume 7 has a Whittaker model

and let W be a nonzero member of it. We have p(g)W = x(det )W and so W(g) = x(det g)W (1). Since
W is nonzero we have W (1) # 0. For any = in I' we have

W) =X =W | ¢ T | v

Thus ¢(x) = 1 for all z and so ® is the trivial character; this is a contradiction. Thus 7 has no Whittaker
model.

5.4 Further results

[narch-fur]

5.4.1 The series C(v,t) determine 7

[narch-fur-x10]

78 Proposition ([JL] Prop. 2.15). [narch-fur-x10-10] Let (7,V) and (7', V') be two infinite
dimensional irreducible admissible representations. If the central quasi-characters of m and 7' agree and
C(v,t) = C'(v,t) for all v then ™ and ' are equivalent.

Take both 7 and 7’ in the Kirillov form. If ¢ belongs to .(F*) then, by hypothesis,

m(w)d(v,t) = 7' (w)(v, 1)
and so m(w)¢ = 7' (w)¢p. We therefore have
V=S (F*)+n(w)S(F*)=SL(F*)+r'(w)L(F*)=V'

and the two spaces are the same.

We now must show that 7 and 7’ agree. They automatically afree for elements of Dp, by the
definition of the Kirillov form. They also agree for scalar matrices, since the central quasi-characters
are assumed to be equal. Thus if suffices to show that 7(w)¢ = #'(w)¢ for all ¢. We have already
done this in the case where ¢ is an element of Schwartz space. It therefore suffices to verify this in
the case where ¢ = m(w)@g and ¢ lies in the Schwartz space. But then m(w)¢ = 7(w)?¢pg = w(—1)¢pg
and 7'(w)¢ = 7' (w)?pg = w(—1)¢o where w is the central quasi-character. Thus 7(w) = 7/(w) and the
proposition is proved.

5.4.2 Rationality of the series C(v,1t)

[narch-fur-ratl]

79 Proposition. [narch-fur-ratl-10] Let (7, V) be an infinite dimensional irreducible admissible
representation taken in Kirillov form. Let C(v,t) be the series of proposition 61.

1. The series C(v,t) is a rational function of t.

2. For all but finitely many v the series C(v,t) is a negative power of t.
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80. We break the proof of proposition 79 into two lemmas. If v is a character of Ur we say that the
order of v is the integer k such that the conductor of v is 1 + p¥.

81 Lemma ([JL] Lemma 2.16.2). For any character p of Up the formal Laurent series C(u,t) is a
rational function. Equivalently, there exists an integer ng and a family of constants A\;, 1 < i < k such
that

for n > ng.
Let p = v~1y; . Proposition 63 then states that

S=Snvpp)= Y o v,@ )0 p,@")Cpin(0).

UEUF

is equal to

B00(~1)np — (L= @) 2 ot () Cpoms(0) = S 25" Coer () Ciir ()

r=—m-—2
where, recall, p~™ is the conductor of ). We now separate two cases:
Case 1: v = p. Take p = —m and n > —m. Then
(e v, ™o v, @?) = b,

and so S = Cp,_(v). Since 0, = 0 we obtain

Cnfm(V) = _(]- - |w|)_1z(7)n+1cn7mfl(V)Cf2mfl(1/) - Z Z(;TCnJrT(V)Cferr(V)'

r=—m-—2

Since almost all of the C_,, 4 (v) are zero in the sum, this yields the required relationship.
Case 2: v # p. There exists i so that C;(p) # 0. Take p strictly greater than —m — 1 and m + i.
Take n strictly greater than p. Then

so that S = 0. Since d,,, = 0 as well, we find

— 00

_<1 - |w|)_126n+10n—m—1(V)Cp—m—l(p) - Z ZO_TCn-i-T(V)CP-i-T(p) =0.

r=—m-—2

This is really a finite sum. From the way we selected p it follows that one of the C,o(p) appearing in the
above identity is nonzero. Therefore, this identity can be rearranged to yield a recurrence of the required
form.

82 Lemma ([JL] Lemma 2.16.6). Let ko be the order of vy and let k1 be an integer greater than
mg. Write vy in any manner as 1/1_11/2_1 where the orders of v1 and vy are strictly less than ky. If the

order k of p is sufficiently large then
C(p, t) _ Ct—2m—2k

where p~™ if the conductor of ¥ and

—1 —m—k
_ —m—k NV P )
c=(vy 1P)(_1)Zo kn(y21p_1 wm—kY’

Choose n so that C,(v1) # 0. Assume that k is so large that k > k; and k& > —2m — n. Then

77(0'_1V1,wn+k+m) =4

o,V
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so that
Svi,n+k+m,p,p+k+m)= 77(Vf107 Wp+k+m)cp+n+2k+2m(V1)

for any integer p. Since y = privp = pry ' is nontrivial of order k, proposition 63 yields

n(vy o, Py psaipom (1) = 26T X (= 1)n(x T @) C (1) Cp(p)

again valid for all integers p. Note that the Gaussian sum 7(x~', @ *~™) is nonzero. Now, if p #

—2m — 2k then the Gaussian sum (v *p, w?t™1*) (note the vy 'p has order k) vanihses. On the order
hand, if p = —2m — 2k the terms C),(v1) in the above identity cancel and we find Cj,(p) = ¢. This proves
the proposition.

5.4.3 The dimension of the Jacquet module

[narch-fur-dimjacq]

83 Proposition. [narch-fur-dimjacq-10] Let (m, V) be an infinite dimensional irreducible admissible
representation. Write C(v,t) = tP» P(v,t)/Q(v,t) where P and Q are coprime polynomials and coprime
tot. Then

dim JV = Z deg Q(v, ).
In particular, JV is finite dimensional.

84 Corollary. If (m,V) is an admissible representation of finite length then JV is finite dimensional.
This follows from proposition 83 together with the exactness of J (proposition 38).

85 Corollary (J-L Lemma 2.16.1). [narch-fur-dimjacq-30] Let (7, V') be an infinite dimensional
irreducible admissible representation in Kirillov form. The Vo = L (F*) is of finite codimension in V.
This follows from proposition 83 and lemma 86, which immediately follows.

86 Lemma. [narch-fur-dimjacq-40] Let (w, V) be an infinite dimensional irreducible admissible
representation taken in Kirillov form. Then the kernel of the surjection V. — JV is precisely the Schwartz
space S (F*).

The kernel of the map V' — JV is generated by elements of the form & (n,)¢ — ¢. Since these vectors
lie in Schwartz space (c¢f. lemma 58) and span Schwartz space (c¢f. lemma 49) it follows that the kernel
of the surjection V' — JV is precisely Schwartz space.

87 Proof of proposition 83. Note that we can write C(v,t) in the stated form by proposition 79.
Also by proposition 79 the degree of Q(v,t) is 0 for almost all v, so the sum in the statement of the
proposition is indeed finite.

For a character u of Ur let ¢, be the function equal to u on Up and equal to zero away from Up.
We have

du(v,t) = 6(vuw).

w" 0
span Schwartz space. We thus see that (with the help of proposition 61) Schwartz space consists exactly

of those functions ¢ for which qAS(I/, t) is a Laurent polynomial for all v.
Let 1, = m(w)¢,. By proposition 61,

Au(v,t) = (5(V,u_1)C(1/7 t).

By proposition 79 and the above remarks, it follows that 7, lies in Schwartz space for all u outside a
finite set S. The functions of the form

The functions of the form

w” 0
nﬂvn:ﬂ-[ 0 1:|77u

with g in S together with V[ span V.
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Let V,, denote the subspace of V' spanned by the 7, ,, and the elements ¢ of Schwartz space satisfying

d(ex) = p(e)¢(z) for € € Up. The space V), consists precisely of those ¢ for which ¢(v,t) vanishes if
v#u. Let V, o=V, NVy. Then

V7=:€£)V% L@ ::€£9VLQ
I3 B

and so it follows from lemma 86 that

dim JV = " dim(V,,/V,.0).
"

Since an element ¢ of V), has ¢E(V, t) equal to zero for v # p, we may identify ¢ with qg(,m t). Under
this identification, elements of Schwartz space are identified with Laurent polynomials; the space V,, o
is identified with C[t,t7']. The function 1, , is identified with t?»*"P(u,t)/Q(u,t); the space V,, is
identified with the C[t,¢~!] module spanned by Q(u,t)~" inside C(t). Thus the dimension of V,,/V,, ¢ is
the degree of Q(u,t).

5.4.4 The contragrediant of 7 is w™ ! ® 7

[narch-fur-contra]

88 Theorem (J-L Thm. 2.18). [narch-fur-contra-10] Let (m, V) be an infinite dimensional
irreducible admissible represention of Gp with central quasi-character w. Then the contragrediant repre-
sentation T is equivalent to w™ ' @ 7.

89. We need several lemmas before proving theorem 88. Throughout this section, (m, V) will be a
fixed infinite dimensional irreducible admissible representation with central quasi-character w, taken in
Kirillov form and (7, V') will be the twist of the representation 7 by the quasi-character w™!, also taken
in Kirillov form. By prosition 73, the elments of V’/ are of the form w¢ with ¢ an element of V', and

7' (9)(wg) = w(det g)wm(g).

We let Vj and Vjj denote the Schwartz spaces inside V and V’ (they are the same space, but have different
actions of Gr). Our strategy to prove theorem 88 is to construct an invariant bilinear form on V' x V'.

90. If ¢ and ¢’ are two elements of C(F*), put
(¢,0) = | ¢(a)¢'(—a)d”a
FX

where d*a is the Haar measure on the multiplicative group, normalized so that Up has volume 1. The
integral is not defined for all pairs ¢ and ¢’. It is defined when one lies in Schwartz space and the other
is locally constant, and this suffices for our purposes.

91 Lemma. [narch-contra2-40] Let ¢ and ¢’ be two locally constant functions on F*, one of which
belongs to Schwartz space. Then

(6,0)=>_ > v(=1)on()d,(v™")

n€l yclUy

where gi;n and g?)’n are as defined in article 60.
This follows immediately from the Plancherel formula for Ug.

92 Lemma. [narch-fur-contra-45] The bilinear form (,) is invariant under the action of Dp via &y ;

more precisely, if ¢ and ¢’ are two locally constant functions on F*, one of which belongs to Schwartz
space and d is an element of D then

(€u (d), &y (d)¢') = (o, ¢).
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If
b x
=10 7]

{6y (d) ¢, & (d)e') :/FX(df(flff)ﬁb(ab))(w(—afv)d(—ab))dxa= ¢(ab)¢'(—ab)d™ a

X

then

and the result follows.

93 Lemma (J-L Lemma 2.19.1). [narch-fur-contra-50] Let ¢ and ¢’ belong to Vy and V.

1. We have
(m(w)e, ¢') = ro(=1){(p, 7' (w)g').

where vy is the restriction of w to Up.

2. If either w(w)¢ belongs to Vo or ' (w)¢’ belongs to Vi then
(m(w)g, 7' (w)¢') = (4,¢").

1) The relation
m(w )‘5 v, t) Z |:Zzo ntp(V ¢p( ! 71) t"

(¢f. proposition 61) together with lemma 93 implies that
(m(w)p, @) = D v(=1)zg"Cosp()Sp (v~ 5 ), (7). (10)
n,p,v

If we perform the same computation on (¢, 7’(w)¢’) then w is replaced by w1, vy by Val, 2o by zal
and C(v,t) by C(viy ', 25 't). Thus

(67" (W)) = D v(=1)z " Coapvry ), (v 10) (v ).

n,p,v

If we replace v by vy and interchange n and p in the above sum and compare with (10), we obtain the
first statement of the proposition.

2) By symmetry it suffices to prove the second part when m(w)¢ belongs to Vy. In that case, using
the first part of the proposition, we obtain

(m(w)p, 7' (w)d') = wo(=1)(m(w)*¢, ¢') = (9, ')
since m(w)? = w(—1) = vo(—1).
94. We now define a bilinear form 3 on V xV’. Let ¢ is a typical element of V' and write ¢ = ¢1 +m(w)dp2
with with ¢; and ¢ in Vp. Similarly, let ¢’ be a typical element of V' and write ¢’ = ¢} + 7’'(w)¢} with
¢} and ¢4 in V. We then define

B¢, ') = (b1, 1) + (1,7 (w) ) + (w(w)da, ¢) + (P2, P)-

The second part of lemma 93 ensures that 3 is well defined.
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95 Lemma ([JL] pg. 82). [narch-fur-contra-60] The bilinear form (3 is G p-invariant.
We procede by sublemmas.
Sublemma A. It follows from lemma 93 that 3 is invariant under the action of w.
Sublemma B. If either ¢ is in Vj or ¢’ is in V{ then

B(¢,¢) = (¢,¢").

Thus lemma 92 implies that the restriction of 3 to Vo x V' or to V' x Vj is invariant under Pp.
Sublemma C.1If ¢ € Vy, ¢’ € Vj and p is a diagonal matrix then

B(r(p)m(w)¢, ' (p)r' (w)¢') = B(r(w)m(p1)d, 7' ()7’ (p1)¢')
where p; is also diagonal. By sublemmas A and B we this is equal to
B(r(p1)¢, 7' (p1)¢') = B(¢, ¢') = B(m(w)e, 7' (w)d').
Thus if ¢ and ¢’ belong to m(w)Vy and 7' (w)V{ then
B(r(p)¢, 7' (p)¢') = B(8,¢').

Together with sublemma B, it follows that 3 is invariant under all diagonal matrices.

Sublemma D. We now show that 3 is invariant under Ng. Let ¢;, 1 < i < r generate V modulo
let ¢, 1 <14 <7 generate V' modulo V. That this can be accomplished with a finite number r follows
from article 85.

There exists an ideal a of F' such that

m(ne)¢i = ¢ 7' (ng)d; =
for all ¢ and all z in a. We thus have
B(m(na)di, 7' (na)85) = B(di, ¢)) (11)
whenever x lies in a. Given any y in F, there exists z in a and a € F* such that
RN ERTIERY IR
0 1 0 1 0 1 0o 1]

Since f is invariant under diagonal matrices by sublemma C, it follows that (11) holds for all z in F'.
It now follows that [ is invariant under Np (since, by sublemma B, g is invariant under Nz when its
arguments lie in Schwartz space).

Sublemmas A, C and D prove the proposition.

96 Proof of theorem 88. By lemma 95 we have a nonzero invariant form 8 on V x V'. By proposition
30 it follows that (n’, V') is the contragrediant of (7, V). Thus theorem 88 is proved.

5.5 Absolutely cuspidal representations

[narch-acspi]

5.5.1 Definition
[narch-acspl-def]
97. A representation (m,V) of G is called absolutely cuspidal if it is infinite dimensional, irreducible,

admissible and has JV = 0. By lemma 86 the condition JV = 0 is equivalent to the space of the Kirillov
model being Schwartz space.

5.5.2 Absolutely cuspidal representations are (almost) unitary

[narch-acspl-un]
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98 Lemma ([JL] Prop. 2.20). [narch-acspl-un-10] Let (m,V) be an absolutely cuspidal repre-
sentation. Then for every matriz element ® of m there is a compact set Q) such that the support of ® is
contained in ZrS). B ~ _

Take m and 7 in Kirillov form and let ®(g) = (7(g)¢, $) where ¢ is in V and ¢ is in V. Since ¢ and
qg are invariant under finite index subgroups of Kr and Gp = KpApKp, it is enough to show that the
restriction of ® to Ap has the stated property. Since

<7r[ oY ]¢7¢> = w(a)(6,9)

it is enough to show that the function
a 0 ~
w01 ]ed
has compact support on F'*. However, this function is equal to

¢(ax)p(—x)d"z

X
and since both ¢ and 5 have compact support does the integral. This proves the result.
99 Proposition ([JL] Prop. 2.20). [narch-acspl-un-20| Let (w, V) be an absolutely cuspidal rep-

resentation whose central quasi-character is a character. Then 7 is unitary (and also square integrable).
Take 7 and 7 in Kirillov form. Take ¢g in V and define

(61, 62) = /Z o, [0)01,80) )02, G0y

By lemma 98 the integral is defined. The hermitian form (,) is clearly G p-invariant, and so the propo-
sition is proved.

100. Note that if 7 is any representation then there exists a quasi-character x of F'* such that the
central quasi-character of x ® 7 is a character. Thus proposition 99 implies that any absolutely cuspidal
representation is not far from being unitary.

101 Proposition ([JL] Prop. 2.21.2). [narch-acspl-un-30] Let (7,V) be an absolutely cuspidal
representation in Kirillov form whose central quasi-character is a character. Then the hermitian form

. o1(a)pa(a)d™a

1s G p-invariant. _
Take 7 in Kirillov form as well. Define a conjugate linear isomorphism A : V' — V by

(¢1,02) = (1, Ad2).

Define another conjugate linear isomorphism Ay : V — 1% by

(Aod)(a) = ¢(—a)

Both A and Ay commute with the action of £;. Therefore Ay 1A is a linear map of V onto itself which
commutes with &;. Since V is equal to &/(F*), lemma 50 implies that Ay 14 is equal to a scalar \. It
thus follows that

(¢17¢2) =A o ¢1((l)(l52(a)dxa.

The invariance of the left side implies the invariance of the right side.

5.5.3 The series C(v,t) for absolutely cuspidal representations

[narch-acspl-cnut]
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102 Proposition ([JL] Prop. 2.21.2, 2.23). [narch-acspl-cnut-10] Let (7,V) be an absolutely
cuspidal representation.

1. The series C(v,t) is equal to at™ for some complex number a and integer n.
2. If the central quasi-character w of w is a character then |a] = 1.
3. If the conductor of ¢ is O then n < —1.

1) Take 7 in Kirillov form. Let ¢ be in V and let ¢’ = m(w)¢$. Both ¢ and m(w)¢ are in Vp; we have
m(w)¢' = w(—1)¢. Two applications of proposition 61 yield

d(v,t) = Clv, ) ((wr) ™, 25 't

=C(v, t)C((wl/)_l, zalt_l)w(_l)(ﬁ(u, t);
therefore
Cv,t)C((wv) ™ 2511 = w(—1)

It thus follows that C(v,t) is a multiple of a power of t.
2) Define a function ¢ on F* by ¢(ew™) = &, mv(€)w(e). Let ¢/ = m(w)¢p. Writing C(v,t) = Co(v)t’,
proposition 61 gives
¢ (€w™) = 01—n.mCe(V)z5 " (e).

Using proposition 101 and the fact that |zg| = 1, we find
1= [ @Paa= [ |o@Pda=|Ci)
Fx Fx
and the proposition is proved.

3) Let v be a character of Up and let ny be the unique integer such that Cy,, (v) # 0. Let p = v~ 1y
where v is the restriction of the central quasi-character to Ur. We have seen above that

1

Ct)Clpt "2 ") = mo(=1);
therefore ny is also the unique integer so that Cy, (p) # 0. We also have
Cny (V)Cr, (p) = vo(=1)z"
Now apply proposition 63 with n = p = ny + 1 to obtain
Y onlo v @ (o™ o, @™ ) Conya(0) = (= 1)z — (1 = @ ]) " 20Cn, () Oy ()

||

- _ -1 ni+1
1/0( )ZO 1 |w|

Now assume that ny > —1. Then n(o~ 'y, ™ 1) is 0 unless 0 = v and n(c~tp, @™ 1) is 0 unlees o = p

(¢f. §1.5.1 proposition 121). Thus if v # p then the left side is 0, which is a contradiction. If v = p then
the left side equals Ca,, 12(v); since this cannot vanish we must have 2n; +2 = ny so that n; = —2, also
a contradiction. Thus it must be the case that n; < —1, proving the proposition.

5.6 The principal series and special representations
[narch-prin]

5.6.1 The representation p(fu, i2)

[narch-prin-rho]

103. In this section ar denotes the quasi-character |- | of F*.
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104. [narch-prin-rho-20] Let u; and ps be quasi-characters of F*. We define a representation
(p(p1, 2), B (11, 12)) as follows. The space B(u1, p2) consists of all locally constant functions f on Gp
which satisfy
a

A1 0 ]e) = m@me 2] s (12)

for all g in Gg. The action p(u1, u2) of G is simply p, right translation.

105. Note that, because of the decomposition Gg = PrKp, the elements of %(u1, us2) are determined
by their restriction to K, and that this restriction can be any function locally constant on K satisfying
(12) for ay,a9 € Up and x € Op.

5.6.2 The contragrediant of p(ju, o)

[narch-prin-contra]

106 Proposition ([Bu] Prop. 4.5.5; [JL] pg. 94). [narch-prin-contra-10] The contragrediant
of p(pa, p2) is equivalent to p(uy ", py ).

107. We need two lemmas before proving this.

108 Lemma ([Bu] Lemma 2.6.1). [narch-prin-contra-30] Let A : . (Gr) — C(Gp) be given by

(Ap)(g) = | o(pg)dp

Pr

where dp is the left Haar measure. Then A is a G p-equivariant map (under the action of p) whose image
is precisely 53(04};/27 a}lﬂ).
The G g-equivariance is clear.

Let d'p be the right Haar measure on Pp. If

then
dp = |ay| " d* a1 d* agdx d'p = |az| " d* a1d* azdx.

It thus follows that
(o)fs) = [ ora)dp= [ olrglaz/arlts = [ og)las/arlal /sl
Pr Pr Pr

= lay/as| [ d(pg)dp = |ay/as|(Ad)(g)-

Pr

Therefore the image of A is contained in %’(a}/a agl/z).

Let V be the space of all locally constant functions f on K which f(pk) = f(p) for p € Kr N Pp.

i /2 —1/2 . . . .
The restriction map Z(« F/ \ O / ) — V is, as was already mentioned, an isomorphism of vector spaces.

Thus if we can show that the composite
Ce(Gr) — B(ay® a1 =V

is surjective, then it will follow that A is surjective.
Let ¢ be an element of . (G ) whose integral is nonzero. Replacing ¢ by

/ Po(gk)dk
KrNPr

we may assume ¢g(gk) = ¢o(g) for k € Kr N Pr; we may also assume ¢ has total integral 1. Given f in
V let ¢(pk) = ¢o(p)f(k); notice that this is well defined. Clearly, the restriction of A(¢) to Kp if equal
to f. This proves that A is surjective.
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109 Lemma ([Bu] Lemma 2.6.1; [JL] pg. 93). [narch-prin-contra-40] The map I :
/2 —1/2 .
Blag ", ap ") — C given by
I(f)= | [f(k)dk
Kr

1s a Gg-invariant linear form.
Let A be as in lemma 108. For f € .(GF) we have

I(Af):‘l; [ syvar = [ fa)ds

Thus ITA is a Gp-invariant form on ¥ (Gg). Since A is surjective and Gp-invariant it follows that I is
G p-invariant.

110 Proof of proposition 106. Let I be as in lemma 109. If ¢ is in B(u1,pe) and ¢o is in
Bt pzt) then ¢gs is in Blajl’, ap'/?). Thus

(@1, P2) = I(P102)

is a nondegenerate G p-invariant bilinear form on % (1, u2) x B(u; ', py'). The result follows by propo-
sition 30.

5.6.3 The Weil representation for '@ F

[narch-prin-weil]

111. For a function ® in . (F?), let ®~ denote its partial Fourier transform:
() = [ 2ag)0ln)dy.
F

112. Define a representation r of G on the space .7 (F?) by

(r(9)®)" = p(g)®"~.

Here F? is thought of as row vectors and given a right G'r-module structure via matrix multiplication.
p(g) is then right translation by g. For quasi-characters p; and ps of F* we define another representation
Ty ue Of Gp on 7 (F?) by

Tus s (9) = pa(det g)| det g|*/2r(g).

The representations r and 7, ,, are both examples of Weil representations.

113 Proposition. Let ® be in ./ (F?).

1. For a in F* we have

<T[§§ 2 ]¢>(%b)|5|1©@uhﬂlm

2. For x in F we have

(r[ (1) ”1” } <I>> (a,b) = 1(abx)®(a, b).

3. We have
(r[ %o } q’) (a,) =/F2 By, 2)(ax + by)dady

1) We have
(/|6 5 ]2) o= [ eteanuma =1 [ saes e - e @
where ®;(a,b) = ®(aa, 371b). This first statement follows.
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2) We have

(” [ 0 } ‘I’>N (a,0) = /F‘I’(avy)w((aww)y)dy = /F<I>1(a,y)¢(by)dy — &7 (a,b)

where @4 (a,b) = ¥ (abx)®(a,b). The second statement follows.
3) We have

(r(w)®) (a,b) = /F (p(w)2™) (a, y)(~by)dy = /F ™ (—y, a)(—by)dy

- / B(—y, 2)op (az ) (—by)dady = / B(y, 2y (az + by)drdy
F?2 F2

which proves the third part.

5.6.4 The Whittaker and Kirillov models of p(u1, 12)
[narch-prin-kiri]
114. In this section we construct Whittaker and Kirillov models for the representations p(u1, pe) for

certain pq and ps. We construct the Whittaker model first and from it deduce the Kirillov model. We
obtain the Whittaker model by defining maps

WS (F?) W) [ S (F?) = B, )

and then proving that Wg — fg~ is an isomorphism. Unfortunately, W is not injective, so it takes a bit
of work to show that this map is well-defined.

115. For @ in .7 (F?) define

0(jir, 12 @) = /F Oz @
Define an element Wg of C*°(GF) by

Wa(g) = 0(p1s p2; Ty s (9)P)
and let # (u1, p2; 1) be the set of such functions.

116 Lemma. [narch-prin-kiri-30] We have
1. Wrul’HQ(g)CP = p(g>W<I>
2. The function Wg belongs to W ().

1) This is clear from the definition.
2) By proposition 113 we have 7, ,,, (n,)® = ®; where ®;(a,b) = ¢(abz)®(a,b). Since ®1(t,t71) =
P(x)®(¢,t71), it follows that

O(pe1, 23 7y o (ng) @) = ()0 (1, pio; P).

Therefore we have

Wa(n29) = 0001, 125 71 iz (027 0,102 (9) ) = ()0 (111, 123 700,102 (9) @) = P(2) W (9)

and the proposition is proved.
117. If w is a quasi-character of F* and w(w) = |w|® with s > 0 then the integral
z2(w, @) = / D(0,t)w(t)d™t
FX

is defined for any element ® of .%(F?). Thus if u; and up are quasi-characters of F* such that
|(p1pt5 V) (@)| = |@|® with s > —1 then we can define

fa(g) = pa(det g)| det g|*2(appips’, plg)®).
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118 Lemma ([JL] pg. 95). [narch-prin-kiri-50] Assume |(uip;")(@)| = |@|® with s > —1. We
have

1. p(9) fo = fouy (et g)l det g]1/2p(g) -
2. The function fo belongs to B(u1, p2).

1) This is immediate from the definition.
2) That fo is locally constant follows from the first part and the fact that the stabilizer of any ®
under the representation g +— p;(det g)| det g|*/2p(g) is an open subgroup. We have

a X _ a X
fao ([ 01 ay } 9) = Ml(alaz)\alaﬂl/zz (aFMLUQ lap [ 01 as } P(g)‘b)

= m(maz)loal? [ (w040 )0.000

= g1 (a1)p2(az)|ar /az]'? fo (g)

which proves the proposition.

119 Lemma ([JL] Lemma 3.2.1). [narch-prin-kiri-60] Assume |(u1py")(w)| = |@|® with s > —1.
For all ® in .7 (F?) the function q on F* given by

o) =iz @l | 0] |

1s integrable with respect to the additive Haar measure on F' and

/ g(@)p(az)da = fa~(—wny),
FX

[ 58] me[1]

We have (after applying proposition 113)

where, as always,

al0) = (@) (@) [ et s ()"
FX
(13)
= [t (o 0
F><
Now, note that
[ [ 1atar o @ d*tda= [ [ el da
Fx JF FxX JF
is finite since s > —1. Using this fact (to justify the change in order of integration) along with (13) gives
[ vtaatayto = [ wian) | [ atta o 0] o
F F Fx
— / pa (t) iy (1) U @(t,at—l)w(ax)da] d*t
X a
= [t @i | [ #(e.asteniaa] ae
X F

= [ et Ol
= fo~(—wny)

and the proposition is proved.
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120 Proposition ([JL] Prop. 3.2). [narch-prin-kiri-70] Assume |(u1p5 " )(@)| = |@|® with
s> —1.

1. There is a map A : W (p1, po;p) — B(u1, p2) which sends We to fo~.
2. The map A is an isomorphism of G p-modules.
3. W (1, pa; ) is a Whittaker model for B(u1, u2).

1) To ensure A is well defined, we must verify that Wy = 0 implies fo~ = 0. If Wg = 0 then by
lemma 119 (together with the fact that fo~ lies in %(uq, p2)) we conclude that fe~ vanishes on PrwNp.
Since this is a dense subsets of G and fg~ is locally constant, it follows that fe~ = 0. Thus A is well
defined.

2) It is clear that A is a map of Gp-modules. We thus need to show that it is a bijection.

Injective. Tt is enough to show Wg (1) = 0 if fe~ = 0. If fo~ = 0 then by lemma 119 it follows that

a 0
we [ 1]

is zero for almost all a. Since this is a locally constant function, it must therefore be zero. Thus A is
injective.

Surjective. We show every element f of %B(uq, us2) is of the form fg for some ®. Thus let f be given.
Define ®(z,y) to be 0 if (x,y) is not of the form (0,1)g for some g € Kp; if (z,y) is of this form put
®(z,y) = py ' (det g) f(g). Tt is easy to see that @ is a well defined function which belongs to . (F?). To
prove f = fg it suffices to show that their restrictions to Ky agree.

Thus let g be in Kp. Since ®((0,t)g) = 0 unless ¢ belongs to Ur we have

(o) = pm(detg) | B0 Dgs ()5 (O
F
Since
0 I DN 10
0 | 9) =it taerarr (| §

#((0.9) = ((0.1) | g | 9) =i Onatons et ) 100

we have

fa(g) = f(g)dt = f(g)

Ur

(at least up to a constant) and the result follows.
3) This follows from results we have already proved.

121 Proposition. [narch-prin-kiri-80] Assume |(uipy " )(w)| = |@|® with s > —1. For W in
W (1, ua; ) let dw be the function on F* given by

d’W(a)—W{g (1)]

Let V' be the space of all the ¢y .
1. We have ¢,qyw = §y(d)pw for d in Dp.
2. The map W +— ¢w is injective.
3. If ¢ is in V then ¢(a) vanishes for |a| sufficiently large.
4.V contains . (V>).
5. The space V is a Kirillov model for both # (u1, u2; ) and B(u1, pe).

[3 1]

1) Let
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We have

s =w ([0 V1o 7)) =w(]s A0 1]) - ewmeno.

This proves the first statement.

2) This was essentially proved in the course of proving proposition 120; we reproduce it here. We
have W = Wy for some ® in .7 (F?). If ¢y = 0 then by lemma 119 the function fg~ is zero. However,
the map Wg — fg~ is injective. Thus Wy = W = 0.

3) This follows from equation (13) in the proof of lemma 119 since the function ® has compact
support.

4) From part 3 of the proposition and the same argument as in lemma 58, for any n € Np and any
¢ € V the function ¢ — &y (n)¢ lies in #(F*). Thus the intersection of V' with .#(F*) is nonempty.
Since .7 (F*) is irreducible under the action of &, (proposition 46) it follows that V' contains . (F>).

5) This is clear from parts 1 and 2.

122 Proposition ([JL] Prop. 3.4). [narch-prin-kiri-90| For any quasi-characters py and ps we
have

W (p1, pi2; ) = W (g, pas ).

If ® is an element of .%(F?) let ® be the function defined by

q),(x7y) = (I)(y,l‘).

We prove the proposition by establishing the identity

pur (det g)| det g|'/20 (1, p2; 7(9)®') = po(det g)| det g|'/20(p2, pa; r(g) @) (14)

for all ® in .(F?). If g = 1 then (14) is clear by the definition of 6. If g belongs to SL(2, F') then by
proposition 113 it easily follows that

r(9)® = (r(9)®)’
and so (14) holds for all g in SL(2, F). Thus it suffices to prove that (14) holds for

| a O
9= 1o 1]
This reduces to the identity
(@) [ @ty (00"t = pafa) [ Blatt sl (a7
X

FX

which follows after a simple change of variables.

5.6.5 The representations 7(uy, uo) and o(uy, o)

[narch-prin-pi]

123 Theorem ([JL] Thm. 3.3). [narch-prin-pi-10] Let u1 and ps be two quasi-characters of F*.

1. If neither pypy * nor py py is ap then p(ua, ) and p(pg, p1) are equivalent and irreducible.

2. Let ulug_l = ap and write puy = xa}/z and py = on;l/Q.

(a) B(u1,12) contains a unique proper stable subspace PBs(1,p2) which is irreducible and of
codimension 1.

b) B(uso, 1) contains a unique proper stable subspace B (o, 1) which is one dimensional; it is
Moy 2,
the representation corresponding to x.

(c) The modules B (i1, p2) and B(pa, p1)/ By(pe, 1) are equivalent.
(d) The modules By (pa, 1) and B(p1, t2)/Bs(p1, p2) are equivalent.

118



124 Corollary. If puy and ps are quasi-characters of F* such that ,ulugl is not equal to a;l then

W (11, a; ) is equivalent to p(p1, pa).
This follows immediately from propositions 120 and 122 and theorem 123.

125. We need two lemmas before proving theorem 123. Before beginning the proof, we make the
following definitions.

126. Let p; and ps be quasi-characters of F'*.

L. If pypuy is not equal to ap or aj', we define m(u1, p2) to be the representation p(jg, pt2) on the
space B(u1, t2).

2. If pypy ' is equal to ap we define (1, pu2) to be the induced action of p(u,u2) on the one
dimensional quotient B (p1, 2)/Bs(p1, p2)

3. If ,ulugl is equal to a}l we define (1, 12) to be the restriction of p(ju1, u2) to the one dimensional
space By (p, pz)-

4. Tf pypy b is equal to oy we define o(pu1, po) to be the restriction of p(p1, ) to the space By (p, o).

5. If ,ulugl is equal to a;l we define o(u1, pu2) to be induced action of p(u1,u2) on the quotient
PB(p1s p2)/ By (pa, piz)-

The representations (1, ue) are called the principal series representations while the representations
o(u1, pe) are called the special representations. Some comments:

1. The representation (1, u2) is defined for all quasi-characters while o (u1, p2) is only defined when
,ulpgl is ap or a;l.

2. The representations m(u1, p2) and o (1, p2) are irreducible.

3. The representations 7(u1, p2) and 7(pe, 11) are equivalent, as are the representations o (p1, p12) and
o(pz, pi1).

4. Both w(p1, p2) and o(u1, p2) appear both as quotients and subrepresentations of p(u1, p2).

127 Lemma ([JL] Lemma 3.3.1). [narch-prin-pi-50] Suppose there is a nonzero function f in
B (1, p2) which is invariant under right translation by Ng. Then there is a quasi-character x such that
1 = Xa;1/2 and pg = Xa},/z and f is a multiple of x (i.e., g — x(det g)).

Let w = ufl,ugagl. Since for any ¢ in F'* we have

R R R IR (T

10 0 -1
e Ve Y3
Since f is locally constant, it follows that there exists an ideal a of F' such that w is constant on a — 0.
Thus w is the trivial character. This establishes the form of py and po.

Recall the Bruhat decomposition: G is the disjoint union of Pr and PrwNp. It is clear that f is a
multiple of x on each of the sets Pr and PrwNpg. Since f is continuous it must be the same multiple.

if follows that

128 Lemma ([JL] Lemma 3.3.2). [narch-prin-pi-60] Assume |(uip; ") (w)| = |@|® with s > —1.
There is a nonzero minimal stable subspace of PB(u1,ue). For any [ in B(ui,ue) and n in Np the
element f — p(n)f belongs to X.

Let V' be the Kirillov model of %(u1,u2) (cf. proposition 121) and let Vj be the Schwartz space
S (F*). For any n in Np and ¢ in V' the function f — &, (n)f belongs to Vy. Thus any stable subspace
of V meets Vj and therefore contains V. Therefore, the intersection of all nonzero stable subspaces of
V' is again a nonzero stable subspace.
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129 Proof of theorem 123. By taking contragrediants, it suffices to consider the case where
(p1pz ') ()] = |w|* with s > 1.
We have defined a nondegenerate invariant pairing between %(u1, po) and B(u;", puy ') (cf. proposi-
tion 106). Let X be the minimal stable subspace of % (u1, i2) of lemma 128. Then for v in B(uq, p2),
v’ in the orthogonal complement of X and n € Nr we have

(v, p(n)0’ — o) = (p(n)v — v,0') = 0

since p(n)v — v belongs to X. Thus v’ is stabilized under Np.

1) By lemma 127 any vector stabilized by N is zero. Thus the othogonal complement of X is zero
and so B(u1, u2) = X. It follows that B(u1, ua) is irreducible.

The central quasi-character of p(u1, u2) is w = p1ue. It follows (by proposition 106 and theorem 88)
that

(a3

p(pa, o) 2w @ p(uy 15 ') =2 plpsg, ).

This proves the first part of the theorem.

2) Write g = xoz},/Z and pug = xoz}l/z. In this case, lemma 127 shows that X is the space orthogonal
to the function x ' in B(u;*, puy ). We put B, (i1, p2) = X; since it has codimension one it is the
only proper stable subspace. Thus its orthogonal complement, i.e., the span of x ', which we name
Br(urt, 1y t), is the only proper stable subspace of B(uy ", 1y t).

Let o be the representation of Ggp on HBy(u1,ue); its central quasi-character is w = pijue. By
the exactness of the contragrediant (cf. §1.4.3, proposition 105) it follows that o is equivalent to the
representation of G on %(u; ", ,uz_l)/,%’f(ul_l, py ). Now, o is equivalent to w ® &, which is equivalent
to the representation of Gp on HB(ua, p1)/ B (12, 1)

It is clear that both B (us, n1) and AB(u1, p2)/ABs(p1, p2) are both equivalent to the representation
corresponding to x. This completes the proof.

5.6.6 The series C(v,t) for m(py, u2) and o(py, p2)

[narch-prin-cnut]
130 Note. This material does not seem to occur explicitly in either Jacquet-Langlands or in Bump.

131. We first fix some notation which will be in effect for the remainder of the section.

1. If v is a character of Up we write ¢, for the function which is equal to ¥ on Ur and 0 outside of
Upr. We will regard ¢, as a function on F' and on F* at different points.

2. We let 1 and ps be quasi-characters of F'*;
3. We let v for the character pjus of Up;
4. We let v be a fixed character of Ug;
5. We let x1 = vpp and xo = vus;
6. We let ® be the element of .7 (F?) given by ®(x,y) = x2(z)x1(y);
7. We let p~™ be the conductor of 1;
8. We let 1 + p™ be the conductor of x; when it is nontrivial;
9. We let ¢; the nontrivial Gaussian sum 7(x;, @w~"""") when y; is nontrivial;
10. We let k; be u;(w@);
11. We let o denote the constant |w];
12. We let 8 denote the constant —|w|(1 — |o|)~L.
13. For an integer £ and an element € of Ur we put

qz(Vvﬁ)W‘P({e?z (1)H—01 (1)]>
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132 Theorem. [narch-prin-cnut-30] For the representations m(juy, pt2) (with pips * equal to neither
ap noragp') and for the representations o (1, pi2) (with pipy ' equal to ap or ap') we have the following:

1. If v is neither uy* nor py ' then
C(v,t) = clcgaz/anm7"1n5m7"2t£
where £ = —(2m + ny + na).

2. If p1 # po on Up and v = ,ufl then

1—a 2kt
_ £/2, —m—1_—m—ng £ 1
C(v,t) = e “Kk1 ™ Ky 2t <1 i )
where { = —(2m 4+ ng + 1).
8. If 1 # pe on Up andV:,ugl then
1—a 12kt
_ /2 —m—mny —m—1,0 [ L — & 7 Rh2t
Clont) = cafen R < 1 — al/2kyt )

where £ = —(2m +ny + 1)

4. If i1 = po on Up and v = pi" then

1 (1= a7 2k11) (1 — a1 2k4t)
(1 — al/2k1t)(1 — al/2kat)

Cv,t) = BP(arikat®)”

133 Corollary. [narch-prin-cnut-40] We have the following:
1. w(p1, p2) is never equivalent to o(uf, ph).
2. The reresentations m(u1, p2) and w(ph, ph) are equivalent if and only if {1, ua}t = {ph, ph}.
3. The reresentations o(u1, p2) and o(ph, ph) are equivalent if and only if {1, ua} = {ph, ph}.

We already know, from theorem 123, that m(u1, u2) = 7(pe, p1) and o (1, p2) = o(u, p1).

Now, it follows immediately from theorem 132 that the representations m(u1, p2) (when pqps Lis
neither ap nor az') and o(uy, u2) (when pyps ' is ap or ap') determine the datum {(u1|u,, 1),
(p2|lup,k2)}. This determines {p1,u2}. Thus the only possible equivalences, besides those already
mentioned, are between o (j1, pt2) and 7(uy1, p12) when pyps ' is ap or an'. However then m(u, po) is
one dimensional and o(p1, p2) is infinite dimensional.

134 Corollary. [narch-prin-cnut-50] We have the following:

1. If ulugl s not ap or a;l then the Jacquet module of (1, pe) is two dimensional.

2. 1If uluz_l = ap write 1 = Xa;/g and po = Xa;1/2. Then the Jacquet module of w(u1, p2) is one

dimensional if x is trivial and zero dimensional otherwise.
3. The Jacquet module of o(u1, p2) is one dimensional (necessarily puipiy ' is ap or az').
The second assertion is clear. Discounting the case when 7(u1, o) is one dimensional, it is clear from

theorem 132 and proposition 83 that the Jacuqet module is two dimensional except when p; = ps on

Ur and either k1 = aks or Ky = aky, i.e., except when ,uugl is ap or a;l.
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135 Lemma. [narch-prin-cnut-60] We have

a

Wo [ 0 (1) } = Py, (a).

Working directly from the definition of Wg, we have

Wl o )| =m@i [ oo (v Y o) e
= m(@lal [ (OB(at i

Now, ®(at,t~1) = 0 unless both t and a are in Up. If a is in Up then the above is equal to

pi1(a) /U i (t)py () xa (t 1) xe(at)dt = pa(a)x2(a) / (papy X7 x2) (E)dt

Ur

— (@) (a)pa(a) / 1t = (1) (a)

Ur
136 Lemma. [narch-prin-cnut-70] There exists complex numbers Q¢(v) such that
qe(v,€) = Qe(v)r~ (e).
The values of Qy are listed below.

1. If neither x1 nor xo s trivial then

Qul) = ci1co0 Kg {=—(2m+ ni + ng)
0 0 # —(2m+ny + ng)

—m—ni

£/2

2. If x1 is trivial and x2 is nontrivial then

1 0>-2m—ny—1
Qe(v) = Cgaeﬂ/{?_m"_mn;m_"z xB £=-2m—mng—1
0 /< —2m—n9—1
3. If x2 is trivial and x1 is nontrivial then
1 />-2m—ny—1
Qe(v) = claé/memfnlﬁngernl XB £=-2m—ng—1
0 f<—-2m—n;—1

4. If both x1 and xo are trivial then

Qi(v) =a'?(A+ B+ 0)

where
1 £>—2m —2 1 £>—2m —2
A= Brym T RS i3 (=-2m-2 B = Britm Tl m=t x i3 l=-2m-2
0 < —2m—2 0 < —2m—2
l+m+1,_—m _  —m L+m+1
il o2 f1 R £> —2m and K1 # Ko
C - K1 — K2
T ) @Cm L+ 1)k 0> —2m and K1 = K
0 { < —2m
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By proposition 113 we have
5 VTS o)) e) @ = rwoesten
= [ daptemtar + by)dady

/ / 1 (&)X (y (e az) (by) drdy
Up JUR

- 77 X1, €W a)n(XQa b)

Therefore,

([ 3] 3)
— (e 2 [ oo (r(| 5 V][] 3 ]) @) e

= ul(ewl)IW\“/z/Fx i (t)pg H (On(xa, e )n(xe, tH)d*t

1 (e )|/ Z/ mpg On(x e n(xe, A"t
k w UF
= ji(em) ]2 3 i (") a5 ) / w1 (113 (D0, e P e)n(xa, o)t
k Ur
() = s =) /U (g xr xe) (1)t

and so, with a bit more manipulation, we obtain

=a'/? Z KRy 00, @ )n(xe, w F). (15)
We now go case by case.
1) The 7 factors are zero unless £ + k = —m — ny and —k = —m — ny. Thus for Q(v) to be nonzero
we must have £ = —(ny 4+ ng + 2m). In this case, (15) reduces to

(V) = clcgo//Q/-@Hkm_k
1 Ko

which is the stated result.
2) Only the term with & = m + ngy is nonzero. The identity (15) reduces to

Qu(v) = ek RS Fn (1, wF)

and the result follows from the evaluation of (1, @?).
3) This follows from part 2 and symmetry.
4) The n factors vanish if k > m+1 or k < —¢ —m — 1. Thus

Qe(]/) = 0//2 Z l{[i—,—kﬁgkn(){la WHk)U(X% wik)'
—l—m—1<k<m+1

The sum is zero if £ < —2m — 2. We can peel off the first term to get

Qg(l/) = 0//2 A/ =+ Z é+kK/2 U(Xh E+k)77(X27w7k)
——m<k<m+1

where
1 > -2m-—2
=Bry ™ RT3 = —2m —2
0 /< —-2m-—2
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The sum is zero if £ < —2m — 1. We can peel off the last term to get
Qi) =a? | A+ B + Z KR Ry Fn(x1, @) n(xe, @ k)
—L—m<k<m

where
1 />-2m-—2

B/ _ H£+7n+1li—m—1 X
B ? 0 (< —2m—1

Notice two things: 1) all the 7 factors in the sum are now 1; and 2) A’ + B’ = A+ B. Thus
Qiv)=a? A+ B+ Z KRR R,
—Ll—m<k<m

The sum is zero if £ < —2m. If k; = Ky then each of the (2m + £ + 1) terms in the sum contributes .
If k1 # ko the sum if a geometric series.

137 Proof of theorem 132. Note that since the representations and stated values for the series are
symmetric in y; and pp we may interchange iy and pg, if necessary, and assume |(u1p5 ) (@)| = |@|®
with s > —1

Recall how the numbers Cy(v) are computed: First we take the representation in Kirillov form. Next
we take the function ¢,, which is an element of the Kirillov space. Then we have

Co(v) = /U (m(w)by) (e (€ de.

Now, in the present situation, we have demonstrated that

0
wh 1]

is equal to ¢,. This function belongs to the Kirillov model (even form the special representation). Thus,

o f([F 4[4 3]s

:/ qe(v, €)v(e)de
Ur
:Qg(l/).

Thus lemma 136 gives the values of Cy(v). The rest is just algebra.

5.7 Classification of irreducible representations

[narch-class]

138 Theorem. [narch-class-10] Let (m, V) be an irreducible admissible representation of Gg. Then
7 1s equivalent to one of the following:

1. A principal series representation (1, f2).
2. A special representation o (1, pi2).
3. An absolutely cuspidal representation.

Furthermore, these representations are pairwise inequivalent except w(uy, po) = 7(pe, p1) and o(uy, po) =
o(pz, pi1).
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139. Note that the representation ﬂ(xa;/ 2, Xagl/ 2) is the one dimensional representation corresponding

to x, so that the finite dimensional representations are not omitted in the above list.

140 Corollary. Let (m,V) be an infinite dimensional irreducible admissible representation.
1. The dimension of JV is zero if and only if w is absolutely cuspidal.
2. The dimension of JV is one if and only if 7 is a special representation o (1, p2).
3. The dimension of JV is two if and only if 7 is a principal series representation w(py, pi2).

This is just a restatement of already proved results.

141. By theorem 123 and article 133 it follows that to prove theorem 138, we need only show that
1) a representation which is not absolutely cuspidal is a subrepresentation of p(u1, p2) for some quasi-
characters p; and po; and 2) a representation which is absolutely cuspidal is not a subrepresentation of
p(u1, po) for any quasi-characters pq and pe. We prove 1 in lemma 143 below and 2 in lemma 145. In
fact, we have already proved 2 by our results on that Jacquet modules of the principal series and special
representations (c¢f. article 134); lemma 145 offers a different and more direct proof.

142. Note that once theorem 138 is proved we will have completed the proof of theorem 40. The proof
that JV is at most two dimensional is quite unsatisfactory: We first show that JV if finite dimensional.
We use this fact to prove theorem 138. Then, after we have the classification, we can conclude that
the dimension of JV is at most two since we know it to be true for each type of representation in the
classification.

143 Lemma ([JL] Prop. 2.17). [narch-class-20] Let (w,V) be an infinite dimensional irreducible
admissible representation which is not absolutely cuspidal. Then m is a subrepresentation of p(u1, ps2) for
quasi-characters py and po of F*.

We know that the contragrediant 7 is also not absolutely cuspidal. Thus by proposition 83, and our
assumptions, the Jacquet module JV is finite dimensional and nonzero. It is a module over Pr for which
Np acts trivially; let o be the representation of Pr on JV. _

Since Pr/Np is abelian and JV is finite dimensional, it follows that there exists L in JV and quasi-
characters p; and pg of F* such that

~ a X — _
A et

for all aj,as € F* and x € F'. By the definition of the contragrediant action, such an L satisfies

L <7r[ ‘3 v %) = p1(a1)pz(az) L(v).

az

The map A : V — C(Gr) given by (Av)(g) = L(w(g)v) is then an injection of V' into %AB(u1,pz2). This
completes the proof.

144. Let # be the subspace of C'(GF) stabilzed by A(Nf), i.e., the space of functions ¢ on G which

satisfy
o[} 2]0)=o

for allz € F and g € G. The space 4 is stable under the action of p and thus (p, ) is a representation of
Grp. Clearly #(u1, u2) is a subrepresentation of £ for any pair of quasi-characters, and so to show that a
representation is not a subrepresentation of % (u1, o) it suffices to show that it is not a subrepresentation
of #.
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145 Lemma ([JL] Prop. 2.16). [narch-class-40] Let (m, V) be an infinite dimensional irreducible
admissible representation. Then 7 is absolutely cuspidal if and only if V' is not isomorphic to a submodule
of A.

If V is isomorphic to a submodule of % then there is an injection A : V' — % such that An(g)¢ =
p(g)A¢. If L(¢p) = (A¢)(1) then L is a nonzero linear functional on V satistying

L(&p(na)9) = L(6). (16)

Conversely, let L be a nonzero linear form on V satisfying (16) and define a map A : V — C(GF) by
A(p) = L(n(g)¢). Clearly A satisfies Am(g) = p(g9)A and maps V into #. Since L is nonzero, A is
injective by the usual argument. Thus V is isomorphic to a submodule of #. We conclude that V is
isomorphic to a submodule of £ if and only if it admits a nonzero linear form L satisfying (16).

However, it is clear that a linear form L satisfying (16) annihilates vectors of the form &y (ng)¢ — ¢,
and therefore all of Schwartz space; conversely, a linear form L which annihilates Schwartz space will
annihilate the vectors £y (n,)¢ — ¢ and therefore satisfy (16). Thus a linear form L satisfies (16) if and
only if it annihilates Schwartz space. Therefore, there exists a nonzero linear functional satisfying (16)
if and only if Schwartz space does not exhaust V. This completes the proof.

5.8 Local L-functions

[narch-1fn]

5.8.1 The functions L(s,7) and Z(s, ¢,¢)

[narch-1fn-x10]

146. Throughout this section, (m, V') will be an infinite dimensional irreducible admissible representation
taken in Kirillov form.

147. In the present context, an Euler factor is a function of the form P(¢~*)~! where P is a polynomial
and ¢ = || ™! is the cardinality of the residue field of F.

148. We define the local L-function L(s,m) of m:
1. If 7 is absolutely cuspidal then L(s,7) = 1.

2. If m = w(p1, po) then L(s,m) = L(s, p1)L(s, p2) where L(s, p1;) is the local L-function for GL(1)
(cf. §2.1.2).

3. If 7 = (1, pt2) where pyuy ' = ap then L(s,m) = L(s, u1).

Note that although we have defined L(s,n) when = is a one dimensional representation many of the
theorems in this section do not apply in this case.

149. For ¢ in V and a quasi-character £ of F'* define the zeta function Z(s, ¢, &) by

2650, = [ @o@lal .

If W is an element of the Whittaker model of m and ¢y is the corresponding element of the Kirillov
model, we write Z(s, W, &) in place of Z(s, ¢w,§). If x is the tirival character we write Z(s, ¢) in place

of Z(s,¢,x)-
150 Proposition ([JL] Thm 2.18; [Bu] Prop. 4.7.5). [narch-1fn-140] We have:

1. Z(s,6,€) = 6(€,E(@)g"/*™).
2. For all ¢ in V, the integral defining Z(s,¢) converges absolutely for Rs sufficiently large.
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3. For all ¢ in V the ratio
Z(s, ¢)
L(s,m)

can be analytically extended to an entire function of s (in fact, it is a Laurent polynomial in q~*).

(17)

4. There exists ¢ such that the ratio (17) is equal to 1.
5. The function L(s,7) is the unique Euler factor which satisfies 3 and 4.
1) We have

Z(s,0,6) = | &(a)¢(a)lal*2d*a

=Y | «=*a)d(@Fa)|wal d%a

k JUF

=3 (@) [ otmtaeana

k

=3 (6@ >) nle)

k
= o(&, x(@)g"/*7)

2) Since ¢E(£ ,t) is a rational function of ¢, part 1 implies that Z(s, ¢, &) converges absolutely for Rs
sufficiently large.

3) If ¢ is in Schwartz space then ¢3(1, t) is a Laurent polynomial and so Z(s, ¢) is already a Laurent
polynomial in ¢~*%. If ¢ = w(w)po where ¢ is in Schwartz space, then

(;3(17t) = C(lvt)éo(w_17z(;1t_l)

by proposition 61, where w is the central quasi-character of 7 and zp = w(w). Since q@o(x, t) is a Laurent
polynomial for all x, it suffices to show that

C(qu/Q—s)
L(s,m)

has the stated properties. This is clear for absolutely cuspidal representations (since C'(1,t) is a Laurent
polynomial) and follows for the other representations by theorem 132.

4) If 7 is absolutely cuspidal then ¢ can be taken to be the characteristic function of Up.

We now prove statement 4 when © = w(u1, p2) and pg and po are unramified (and ,ulugl is not ap
or a;l); the other cases may be handled nearly identically. Let ¢ and ¢o be in Schwartz space and let
¢ = ¢1 + m(w)pa. Write t = ¢'/?=%. Using proposition 61 and theorem 132 we have

Z(s,¢) _1(1L,t) + C(Lt)pa(w ™!, 25"t 1)

L(s,m) L(s,)
=(1— ¢ Y2kit)(1 — ¢ V2Rat) 1 (1, )
+ Kt72m=2(1 - ql/zmt)(l — q1/252t)¢32(w*1, zofltfl)

(18)

where K is a nonzero constant, w is the central quasi-character, zyp = w(w) and the other notations are
as in theorem 132. Now, note two things: 1) given any Laurent polynomials A(t) and B(t) we can find
¢1 and ¢o in Schwartz space such that

dr1(1,t) = A(t)  do(w™t, zg ) = B(t);
and 2) the polynomials
(1—q 2rit)(1 = ¢ ?kat) and (1—q"2k1t)(1 = ¢/ kot)

are coprime. These two facts, together with (18), imply that ¢; and ¢2 may be chosen to make (17)
equal to 1.
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5) Assume L’(s, 7) were another such Euler factor. Take ¢ so that Z(s,®)/L(s, ) is equal to 1. Then

Z(5,6)  Lis,m) _ L(s,m)
2(5,0) ~ Us,m)

Since the product on the left is of two entire functions, it follows that L(s,7)/L’(s, ) is entire. Similarly
L'(s,m)/L(s,) is entire. Therefore L'(s,m) = L(s, 7).

5.8.2 The local functional equation

[narch-1fn-x20]

151 Theorem ([JL] Thm. 2.18; [Bu] Thm. 4.7.5). [narch-1fn-160] Let (7, V) be an infinite
dimensional irreducible admissible representation taken in Kirillov form with central quasi-character w.

1. There exist e-factors such that

Z(1 L?ffu;),(%w)lgb)) (s, 1) i((j g (19)
for all ¢ in'V and all quasi-characters &.
2. Define y-factors by
A (s, m ) = L(Ll(;f;f)e(s,w)-
Then for any quasi-character & we have
Vs, @m ) = O((w€) " (W) M (w)g*™'/?)

and (19) may be rewritten as

Z(1 = s, m(w)¢, (W€) ") = (s, E @ 71, 9) Z(s, 6, €). (20)

3. The factors e(s,m, 1) are of the form ab®.

4. If 7 is the representation w(u1, pa) (with ulugl neither agp nor a}l) then
6(53 T fa 1/}) = G(Sa K1, ¢)6(87 K2, 1/))
5. If w is the representation o (1, jiz) with pips = = ap then

_ L(l 7 Sa:u‘l_l)

e(s,m, &) L(s, p2)

6(37 M1, 1/})6(57 K2, d))

152. The identities (19) and (20) are called the local functional equation for GL(2).

153 Corollary ([JL] Cor. 2.19; [Bu] Prop. 4.7.6). [narch-1fn-170] Let (7,V) and (7', V') be
infinite dimensional irreducible admissible representations with the same central quasi-character. Then
m is equivalent to 7' if and only if

Vs, E@mY) =7(s,§ @7, ¢)
for all quasi-characters .

By part 2 of the theorem, if the factors v(s,& ® m,1) are known for all £ then the series C(v,t) are
known for all v. Thus the corollary follows from proposition 78.
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154 Proof of part 2 of theorem 151. We assume part 1 of the theorem has been proved. The
identity (20) follows from the definition of the ~-factors and what we know of the Kirillov model of a
twist (cf. proposition 73).

Now, let ¢ be in Schwartz space. On the one hand, by propositions 150 and 61 we have

Z(1 = s, w(w)e, (wE)™") =m(w)d((w) ", (W& H(@)g*?)
=C((w&) ™, (w&) " H(@)a")B(&, E(w)g" > 7).
On the other hand applying the local functional equation yields
Z(1—s,m(w)¢, (W) ™) = v(s5,§ @™, 9) Z(s, ¢,€)
(s, € @ m)(E E(w)g > 0).

We thus conclude
Vs, £ @ m ) = C((wE) ™ (&) (@) /?).
Part 2 of the theorem is thus proved.

155 Proof of theorem 151 for absolutely cuspidal representations. We have L(s,m) =
L(s,7) =1 and so by proposition 150 we must prove

m(w)d(w ™ w  (@)g"?) = (s, m)(1, 42 7).

Since all ¢ in V are in Schwartz space, the above identity follows immediately from proposition 61 if we
take

e(s,m ) = Clw™ w ! (w)g* /).

The third statement of the theorem follows immediately from the facts that C(v,t) is a multiple of a
power of t (cf. proposition 102).

156 Lemma. [narch-1fn-220] Let py and po be quasi-characters of F*. Let ®(x,y) = ¢1(x)p2(y)

be an element of /(F?) where ¢; is in /(F'). Let Wg be the corresponding element of # (u1, pa; ®).
Then

Z(5,We) = Z(s,¢1, 111)Z (s, P2, p12)
We have
We [ g (1) } =40 <H1,N2;7'u1,u2 { 8 (1) ]fl))
—m@lal [ (OBt
and so

(s, W) / / pa(t ()1 (a)®(at, t~1)|a|*d* ad*t
Fx Jpx

:/ / w1 (a t)®(a,t™Y)|a|*[t| " *d* ad*t
Fx Jpx

~ ([ m@a@iaraa) ([ mtoia)

= Z(s,¢1, 1) Z (s, P2, j12)

and the proposition is proved.
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157 Proof of theorem 151 for the principal series representations. Let ®(z,y) = ¢1(z)d2(y)
be as in lemma 156. Functions of this form span .7 (F?) so it suffices to prove the theorem for Weg.
Note that by proposition 113 we have

p(w)Wq) = Wr(w)@ = We

where ®'(x,y) = ¢1(y)d2(2) and ¢; is the Fourier transform of ¢;. Let w = 1o be the central quasi-
character of 7. We have (using lemma 156 and the local functional equation for GL(1), ¢f. §2.1.3, theorem
7)

Z(l - s,p(w)Wq,,w_l) Z(l - 8,@7)1,/11_1) % Z(l - 57&23“2_1)

L(1—s,7) L1 —s,upY) L(1—s,puy")
B Z(s,¢1, 1) Z(s, 92, pi2)
= 6(S,M1,¢)m x 6(57M27¢)m
Z(S, Wq>)

= E(S,Nlaw)e(S’MZ’d)) L(S TF) .

This proves parts 1 and 4 of the theorem. To prove part 3 note that
e(s,m ) = €(s, p1, P)e(s, p2, ¥)
and use the corresponding result for the GL(1) e-factors (¢f. §2.1.3, theorem 7).
158 Proof of theorem 151 for the special representations. Take ul,ugl = ar. Note that
L(s,m) = L(s, p1), L(s,7) = L(s, 3 ").

Again it suffices to prove the theorem for ®(x,y) = ¢1(x)d2(y). We have

Z(1— s, p(w)Wg,w™ 1) L1 — s, 1) Z(l—s,(ﬁl,ﬂfl) y Z(1—87¢§27M51)

L(1—s,7) L(1—s,pu; ") L(1—2,u5")
- Z(s,¢1, 1) Z (s, ¢2, p2)
=L(1—s,u;t) x e(s, p1, ) ——L22 x €(s, po, ) ———=222
( 251 ) ( M1 ’L/)) L(S;,Ufl) ( H2 ¢) L(S,/JQ)
_L(l_snu’l_l) Z(S7W‘I>)
- L(S,NZ) 6(5’M1a¢)6(57ﬂ27¢) L(S,ﬂ')
This proves parts 1 and 5 of the theorem. To prove part 3, first note that

_ L(l - S, Mfl)
L(s, p2)

The GL(1) e-factors are of the correct form. If 419 is ramified (and thus ps as well) then the L-functions
are both 1. If y1 is unramified (and thus ps as well) then, since p;(w) = ¢~ u2(w), we obtain

6(8,7’(’,'(!}) 6(&#171#)6(3»/12»1/})

LA-sp)  1-pu(@q®  1-m(w)g'™*
L(s, p2) 1—pyN(@)g=t 1= py H(w)ge !

1-s

= —p1(w)q

5.9 Absolutely cuspidal representations: examples from quater-
nion algebras

[narch-acsp?2]

5.9.1 The Weil representations for a quaternion algebra over F'

[narch-acsp2-weil]

159. ADD REFERENCE TO SECTION 2.

130



160. In this section we quickly review the Weil representation associated to a representation of the
multiplicative group of a quaternion algebra K over F. See §2.2.1 for notation regarding K.

161. Let (Q,U) be a finite dimensional irreducible representation of K*. The Weil representation rq
is a representation of Gr on the space .7 (K, Q).

162. Let @ belong to .77 (K, Q).

01
that this is well-defined).

2. <7"Q 0

1. (rQ a 0 } <I>) (z) = |h|%2Q(h)<I>(xh) where a = v(h) and h is an arbitrary element of K* (note

a

1 } <I>> () = |a|p®(azx) for all @ in F*.

o

3. <m 0 ] <1>> (@) = ¥ (20(2))B(z) for all = in F.
0 1 o . . .
4. (rq 10 ® | (x) = —9'(2*) where @’ is the Fourier transform of ® with respect to Uy

(where, recall, V¥ (z) = Y (z + ).
163. The central quasi-character of rq is equal to the central quasi-character of 2.
5.9.2 The representation rq is admissible
[narch-acsp2-ad]

164 Proposition ([JL] Thm. 4.2). [narch-acsp2-ad-10] If Q is a finite dimensional irreducible
representation of K> then the Weil representation rq is admissible.

165. The proof is broken into four lemmas. We let G,, denote the subgroup of GL(2, &) consisting of
matrices congruent to 1 modulo p™.

166 Lemma. The group G, is generated by matrices of the form

a 0 1 z a 0 1 1 z _1
01| o1 YooY Ylo1]¥
with a — 1 and x in p".

If

belongs to G, then
B 1 0 a v
9= cat 1 0 d

and both of the matrices on the right belong to G,,. The lemma follows at once.

167 Lemma. Given ® in (K, Q) there exists n > 0 such that

0
m[g 1}@:@»

if a — 1 belongs to p™.
If a = v(h) then

<m { oY ] cp) (@) = |B|2Q(h)B(ch).

Since ® is locally constant of compact support, there exists a neighborhood U of 1 in K* such that

B2 Q) ®(ah) = D(x)
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for all A in U and all 2 in K. The lemma now follows from the fact that v is an open mapping from K*
to F*.

168 Lemma. Given ® in .7 (K,Q) there exists n > 0 such that
1
ro [ 01 } =0

if x belongs to p™.
We have

(] o 7 ]2) @ =vtanee

Let q be the prime ideal of K and let p~™ be the conductor of 1. Since v(q*) = p*, the assertion of the
lemma will be true if we take n so that the support of ® is contained in g~ """,

169 Lemma. Given n > 0 the space of ® which satisfy

1 = . 1|1 = .
7'Q|:0 1]<I><I>, rg(w [O 1]11})@@

for all x in p™ is finite dimensional.

Let g be the ideal of K. Let p~" be the conductor of ¥ and let k be a natural number such that
Y (y) =1 for all y in ¢*.

Let V be the space of ® satisfying the conditions of the lemma. As in the previous lemma, ® belongs
to V if and only if the support of ® and of rq(w)® are contained q~"~". Since (rq(w)®)(z) = —d'(z*)
we see that @ belongs to V if and only if the support of ® and of ® are contained in q~"~™. Thus if ®
belogns to V' we have

Ba) = [ W x-andy

and therefore ® is constant on the cosets of q**™+". Thus V is contained in the space of functions
which have support in p~™~™ and which are constant on the cosets of g¥*™*". Since this space is finite
dimensional so is V' and the lemma follows.

170 Proof of proposition 164. We must show 1) that for all ® in (K, Q) there exists n such
that rq(g)® = ®; and 2) that for all n the space of ® for which rq(g)® = ® for all g in G,, is finite
dimensional. This is clearly implied by the four lemmas above.

5.9.3 The representation 7(f2)
[narch-acsp2-pi]
171 Proposition ([JL] Thm 4.2). [narch-acsp2-pi-10] Let Q be a finite dimensional irreducible

representation of K* of degree d.

1. The representation rq is a direct sum of d copies of an irreducible admissible representation which
we denote by w(€)).

2. If d = 1, so that Q) is the representation associated to a quasi-character x of F*, then w(Q) is

equivalent to a()(oziﬂ7 Xa;lﬂ).

3. If d > 1 then w(Q) is absolutely cuspidal.
4. The central quasi-characters of w(2) and Q agree.

5. We have 1(x @ Q) = x @ 7(Q).

172. We split the proof into two cases: d =1 and d > 1. The last two assertions of the proposition will
easily seen to be true and we do not give explicit proofs for them.
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173 Proof of proposition 171 for d = 1. The representation () is the representation associated to
the quasi-character x of F*. The space .#(K, ) is the space of ® in .(K) such that ®(xh) = ®(x) for
h in Kl.

For @ in (K, Q) we may define a function ¢¢ on F* by

9w (a) = B> QR) D (R);
note that this is well defined. The map ® — ¢4 is clearly injective and satisfies

ro(d)e = &y (d)da

for d in Dp. Thus if V is the space of all the ¢¢ then V is a Kirillov model of rq.
If ¢ belongs to .(F*) then the function ® on K defined by
—-1/2~-1
_ JIhlg QT (R)e(w(h)  h#0
®(h) =
0 h=0
belongs to (K, ). Clearly ¢ = ¢o. Let S (K, ) be the space of functions in Z(K, Q) obtained
in this way. It is precisely the space of functions which vanish at zero and is therefore of codimension
one. Note that .7, (K, Q) is the space corresponding to Schwartz space in the Kirillov model; since it has
codimension one, it follows that rq is not absolutely cuspidal (in fact, it follows that the Jacquet module

of ¢ is one dimensional).
If @ belongs to S (K, Q), is nonnegative and does not vanish identically then

P'(0) = /K O(x)dx # 0.

Thus ro(w)® does not belong to (K, Q) and therefore (K, Q) is not a stable subspace. Since it is
of codimension one there is no proper stable subspace containing it.
Let V4 be a nonzero stable subspace of V. If ¢ belongs to V; and is nonzero then

¢ —ra(ng)é

vanishes at 0 and thus belongs to Vj; it is clear that there exists x such that it is nonzero. It follows that
Vo N V4 is nontrivial. Since Vj is irreducible under the action of &, (proposition 46) it follows that V4
contains all of V and therefore is all of (K, Q). Thus . (K, ) has no proper nonzero stable subspace
and the representation rq is irreducible.

Define a linear functional L on . (K, Q) by

Note that
mlo o] =v@n (w5 T]e)0=ue@eo

and thus

L (m [ %1 52 ] ‘I’) = x(a1asz) Z‘L(@)~

It therefore follows that the map A from .7 (K,) to C*°(GF) given by (A®)(g9) = L(rq(g)®) is an

injection of (Gr-modules) into the space e%’(xa};/ 2 Xagl/ 2). It must therefore be an isomorphism onto

the subspace %s(xa;/z, ongl/Q) and thus rq is equivalent to U(Xa},/g, Xa;1/2).

174 Proof of proposition 171 for d > 1. Given ® in (K, ) define a function ¢¢ on F'* by
b (a) = [} 2Q(h) B (h)

where a = v(h). Note that ® automatically vanishes at the origin and so ® — ¢q gives a bijection of
(K, Q) with Z(F*,U). Tt is clear that

bro(dye = Eu(d)pa
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for all d in Dp.

Let Uy be a subspace of U. We now show that the space .7 (F*, Up) is a stable subspace of .Z(F*,U)
under the action of Gg. It is clearly stable under Zr and Dp so it suffices to show that it is stable under
w.

For a function ¢ in Z(F*,U) define a function g% on the space of quasi-characters of F'* by

600 = [ d@s@ia

Given ® in (K, Q) let ¢ = ¢p and let ¢’ = ¢, (w)s- An easy computation shows

o) =2(3.2,x09), J W) =-2(3x 00

where w is the central quasi-character of Q2 and Z(s, ®,(2) is the zeta function of §2.2.2. It thus follows
by the functional equation for Z (c¢f. §2.2.3, proposition 25) that if gi; takes its values in Uy then so does
@'. Thus if ¢ takes its values in Uy then so does ¢. Therefore .7 (F*,Uj) is a stable subspace.

If we take Uy to be one dimensional then we may identiy . (F*,Up) with #(F*). Since . (F*) is
already irreducible for the action of D (cf. proposition 46) the space 7 (F*, Up) is irreducible. It thus
follows that (K, Q) splits into a direct sum of d irreducible representations.

We must now show that the d irreducible representations are all equivalent. Let A be an arbitrary
endomorphism of U. Define an endomorphism A of .7 (K,Q) by (A®)(z) = Q7 1(2)AQ(z)®(x). It is
easily verified that ¢49 = Ape. Is is also easily verified that A commutes with the action of Nr and
Ap. We now verify that it commutes with the action of w. Let ® in (K, Q) be given and put

¢1 = A¢rg(w)®a P2 = (;brg (w)AP-
The we have
S2(x W) = —Z(1, (AD) X Tt @ Q7Y = —e(5,Q,9) Z(1, AR, x © Q)
= —Ae(5,09)Z(1,0,x @ Q) = —AZ(1,d x o0
=di(x w)
and so ¢1 = ¢ and A commutes with w.
We have thus shown that every endomorphism of U as a vector space gives rise to an endomorphism

of Z(K,Q) as a Gp-module. Therefore the dimension of the endomoprihsm ring of .7 (K, Q) is at least
d? and so the d irreducible representations must all be equivalent.

5.9.4 The L-function and e-factors of 7 ()
[narch-acsp2-1fnpi]

175 Proposition ([JL] Thm. 4.3). [narch-acsp2-1fnpi-10] Let (Q,U) be an irreducible finite
dimensional representation of K* and let m = w(2) be the associated representation of Gp. Then

L(s,m) = L(s,Q)  and  e(s,£ ®m0) = —e(s,£® Q)

for any quasi-character & of F* (for the definition of L(s,Q) and €(s,Q,), see §2.2.2 and §2.2.3).
For ® in .7 (K, Q) put
1/2
da(a) = |h|}>Q(n)®(h)
where a = v(h). Let Uy be a one dimensional subspace of U, which we will identify with C, and let V' be
the space consisting of the ¢¢ which take values in Uy. We have already seen that V' may be identified

with the Kirillov model of 7. We let w be the central quasi-character of .
Let & be a quasi-character of F’*. For ¢¢ in V we have

Z(s. ¢a,€) = /F lali e (a)da(a)d 0 = /K PP (R)Q(R)@(R)d*h = Z(s, @, © Q).
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Note that the zeta function on the left is the GL(2) zeta function of §5.8.1 while the zeta function on
the right is the GL(1) zeta function of §2.2.2. We also have

(s, m(w)dw, () ™) = Z(s,ra(w)®, ()T © Q) = - /K R o) T (mRn) @ () h
_ _/ B2 e ) ()@ (W) h = —Z(s, € o Q)
KX

(note that Q(hh') = w(h)).
Now, the functional equations read
Z(1 = s, m(w)da, (€w) ™) = (s, £ @ m, ) Z(s, $a, &)
Z(1_57¢),7§71®971) 7(8,§®Q,¢)Z(8,@7§®Q)

From the results of the previous paragraph it is clear that the gamma factors only differ by a sign. The
rest follows easily.

176 Corollary ([JL] Cor. 4.4). Ifw=m(Q) then T = w(Q).
This is clear if  is of degree one by the explicit description of m(Q2); thus assume degQ > 1. The
functional equations of theorem 151 and §2.2.3, theorem 25 give

e(5,6 @ N P)e(l — 5,61 @ Q) = w(—1)
(s, @mY)e(l — 5,6 @, Y) = w(—1)

for any quasi-character £ (here w is the central quasi-character). Two applications of proposition 175
now show that

(5,671 @) = (s, @) = €(s, 67T @ 1(Q), ).

Thus the e-factors of ™ and 7r(§~2) agree; since they are both absolutely cuspidal their v-factors agree as
well. They are therefore equivalent (cf. article 153).

5.10 Absolutely cuspidal representations: examples from quad-
ratic extensions

[narch-acsp3]

5.10.1 Definitions and notations

[narch-acsp3-def]

177. Throughout this section the following definitions and notations will be in effect.
1. We let K be a separable quadratic extension of F'.
2. We let ¢ be the nontrivial automorphism of K which fixes F'.

3. We let v be the “algebraic” norm given by v(z) = zz*.

4. We let | - |k be the canonical “analytic” norm of the topological ring K, given by |a|x = d(ax)/dx
where dz is any additive Haar measure on K. Note that for a in F we have |a|x = |a|%.

5. We let '™ be the image of K> under the norm map v; it is an index two subgroup of F'X.

6. We let G;C be the subgroup of G whose determinant lies in £ if H is a subgroup of Gr we let
H* be HNGF.

7. We let K; be the inverse image of 1 under v.

8. We let 1 denote the quadratic character of F'* associated to the extension K/F by local class field
theory. It is trivial on F}.
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5.10.2 The Weil representations for a quadratic extension of F

[narch-acsp3-weil]
178. ADD REFERENCE TO SECTION 2.
179. In this section we quickly review the Weil representaiton associated to a quasi-character of K *.

180. Let w be a quasi-character of F'*. The Weil representation r, associated to w is a repreantation
of G on the space .%(K,w) consisting of all functions ® in .(K) which satisfy ®(zh) = w=(h)®(z)
for all A in K.

181. Let @ be an element of .77 (K,w).

1. <rw 8 (1) ] <I>) (x) = \h|}(/2w(h)¢’(mh) where a = v(h) and h is an arbitrary element of K*.

2. <7"w 8 agl } <I>) (x) = n(a)\a|}(/2<l>(ax) for all @ in F'*.

3 (m - 0y } @) () = Wi (21(2)) D () for all = in F.

—01 (1) <I>> (x) = M(K/F,¥p)® (z") where ®’ is the Fourier transform of ® and A\(K/F, v r)

is the constant defined in SECTION 2 REFERENCE.

4. (ry,

182. The central quasi-character of 7, is nw (where, technically, by w we mean the restriction of w to
FX).

5.10.3 The representation 7(w)

[narch-acsp3-pi]

183. Let m(w) be the representation of G induced from the representation r,, of G.

184 Proposition ([JL] Thm. 4.6). [narch-acsp3-pi-20] We have the following.
1. The representation r,, is admissible and irreducible.

The representation 7(w) is admissible and irreducible.

The representation 7(w) does not depend on the character Vp.

e

If w factors as xv where x is a quasi-character of F* and v is the norm on K then w(w) is
equivalent to w(x,nx).

5. If w does not factor through the norm map then w(w) is absolutely cuspidal.

185. The proof that 7, is admissible goes much like the proof that rq is admissible (proposition 164)
and is omitted. We will prove proposition 184 after some discussion.

186. It is worth pointing out that if the characteristic of the residue class field of F' is not 2 then
every absolutely cuspidal representation is of the form m(w) for some quasi-character w of some separable

quadratic extension F, as proved by Tunnell in his disseration ([Bu] pg. 549).

187. Note that the group D}, acts on the space .#(F1) via the representation &y (cf. §5.3.1 for the
definition of ).
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188 Lemma. [narch-acsp3-pi-60] The representation of Dp obtained by induction from the represen-
tation &y, of D}t is equivalent to the representation &y, of D on 7 (F*). In particular, the representation
&y of D is irreducible.

Let V be the space of the induced representation. It consists of all functions q~5 on Dp with values in
S (F*) which satisfy
o(dtd) = Eu(dh)d

for all d* in D;C. The action of Dp is by right translation p.

Let L be the functional on .(F1) which associates to a funciton its value at 1. To a function ¢ in
V' associate the function ¢ on F'* defined by

ow=1(3]5 Y ]) = (o[ 1]%)

For d € Dp, a short computation shows that the function associated to p(d)g?ﬁ is £y (d)o, so that gg — ¢
is a map of Dp-modules. Another easy computation shows that for b in F+ we have

(16 1])®=veas00.

The preceeding observations, together with the fact that F*/F* is finite, show that 1) ¢ belongs to
S(F*); 2) ¢ can be any function in S(F*); and 3) ¢ is 0 if and only if 5 is 0. This proves the first
statement of the proposition.

The second statement follows from 1) the representation &, of Dp on S(F*) is irreducible (proposition
46); and 2) an induced representation can be irreducible only if the initial representation is irreducible.

189 Proof of proposition 184. To every function ® in (K,w) we associate the function ¢¢ on
F7, defined by

ds(a) = w(h) k| D(h)

where a = v(h). Tt is clear that ® — ¢g is injective. Let VT be the space of all the functions ¢g. If ¢
belongs to . (F*) then the function

o(h) = w (W)l 2 o(v(h))

satisfies ¢ = @o; thus VT contains the space . (F*).

1) If the restriction of w to K; is nontrivial then every element of .7 (K,w) vanishes at 0; thus
V+ = .(F7T) and the first statement of the proposition follows immediately from lemma 188.

If the restriction of w to K is trivial then .#(F*) has codimension 1 in V. By an argument we
have used a number of times it follows that any stable subspace of VT contains . (FT); thus to prove
that V' is irreducible it suffices to show that .#(F) is not stable. As before, if ® in . (K,w) = . (K)
taken to vanish at zero, be not identically zero and be non-negative then

(ro®)(0) = A(K/F, ) /K B(2)dz £ 0

and so ¢ belongs to .(F1) but ¢, ¢ does not.
2) The representation m(w) is the representation obtained by letting G act on the right on the space
of functions ¢ on G with values in VT which satisfy

d(gtg) =ru(9g)olg)

for g+ in G;C. Since Gp = G;D r such funcitons are determined by their restriction to Dp; the restriciton
is a function of the sort considered in lemma 188. By the construction used in that lemma, we can
associate to ¢ a function ¢ on F'*. Let V be the space of functions thus obtained; it is clearly a Kirillov
model for 7(w). Every function on F'* can be regarded as a function on F* by extension by zero. Since

(16 1)) o=
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the space V is the space generated by the translates of the functions in V. It follows immediately
that 7(w) is irreducible and admissible. Note also that the codimension of .(F*) in V is twice that of
L (FT)in VT,

3) If we replace the functions 5 by the functions

=33 1]

we obtain an equivalent representations, that induced from the representation

s[5 V] 1)

of G}.. This representation is equivalent to the representation r,, associated to the character x +— ¥ (az)
REFERENCE. Thus 7(w) is independent of ¢ 5.

4) We know that .(F*) has codimension 2 in the space of the Kirillov model V' and therefore 7(w)
is a principal series representation. We now determine which.

Since w is trivial on K there is a quasi-character x of F'* such that w = yv. Any function ¢ in V
can be written as

¢=m+w[§?}@

where ¢; and ¢, belong to V* and ¢ is a fixed element of F'* which does not belong to F'T. We define
a linear functional L on V by

L(¢) = ¢1(0) + x(€)92(0).

If we can now verify the identity
“ ap |! /2
L(”{J }¢>=memmn

— L) (21)

ag a9

then the fourth statement will follow. Since the central quasi-character of 7 is x?n (21) holds if a; = as.
Thus it suffices to prove (21) when ay = 1. If ¢ = ¢g belongs to VT and a belongs to '™ then

c(=lo Vo) = (|6 T ]2) @ =@tz

The identity (21) follows easily.
5) This follows immediately (we know the space of the Kirillov model V' is 7 (F*)).
190 Proposition ([JL] Thm. 4.7). [narch-acsp3-80] Let w be a quasi-character of K*.
1. The central quasi-character of m(w) is Nw.
2. We have (w) = w(w"), where w*(a) = w(a*).
3. If x is a quasi-character of F* then x ® m(w) = w(x'w), where X' = xv.
4. We have 7t(w) = m(w™1).

1) This is clear.

2) It is clear that x ® w(w) is the representation of G induced from the representation x ® r,, of GJI,C.
However, it is also clear that x ® r, is equivalent to ry,,.

3) Define a map ¥ (K,w) — ¥ (K,w") by associating to ® the function x — ®(z*). This is clearly
an isomorphism of G;E—modules and so r,, is equivalent to r,.. This equivalence is obviously preserved
under induction.

4) Since ' = nv is trivial and wr = ww" we have

(W) = ()~ @ 7(w) = m(w™) = r(w™).

5.10.4 The L-function and e-factors of 7(w)

[narch-acsp3-1fnpi]
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191 Proposition ([JL] Thm. 4.7). Let 7 = m(w). Then L(s,7) = L(s,w) and

e(s,mYr) = MK/F,Yr)e(s,w, VF)

where the e-factor on the right is the GL(1) e-factor of §2.1.3.
Let ¢ = ¢g belong to V*. Since ¢ is zero off of v(F*) we have

265,60, = [l o a= [ om0 Bmah = 2(5.8,0¢)

for any quasi-character £ of F'*, where £’ = £v, the zeta function on the left is a GL(2) zeta function,
and the zeta function on the right is a GL(1) zeta function. It thus follows that Z(s,¢)/L(s,w) is an
entire function of s.

Let wy = nw be the central quasi-character of m. Note that wj, = ww'. If ¢’ = 7(w)¢ and P’ is the
Fourier transform of ®, so that

¢'(a) = MK /F,vp)w(h) Rl ®(h)
then
Z(s,¢' ,wy ') = MK/F,¢p)Z(s,(®),w™") = MK/F,¢p)Z(s,® ,w™t).
Thus, using the functional equation on GL(1), we obtain

Z(l - S, ¢/7w0_1)
L(1-s,w™l)

KB, 0, Vi) =

We now consider functions ¢ in V' of the form

¢=7T{(€) (1)}%

where ¢ belongs to VT and ¢ is an element of F* which does not belong to F'™. We have
Z@@@z/|w*%mmmM%=MWﬂ€%M@%@.
FX

Thus Z(s,¢)/L(s,w) is entire; the functional equation follows easily.
Since V is spanned by VT and its translation under € (i.e., the functions considered in the previous
paragraph) the proposition follows.
5.11 Spherical representations
[narch-sph)]
5.11.1 Definition

[narch-sph-def]

192. A representation (7, V) of G is said to be spherical if V° = VEF is nonzero, i.e., if GL(2, OF)
stabilizes a nontrivial subspace. An element of V° is called a spherical vector.

193. Recall (¢f. §5.2.2) that the spherical Hecke algebra J#7 is the Hecke algebra associated to the
compact subgroup K of Gp. If (m, V) is a representation of Gr then V° is a module over J£5. If V is
irreducible as a representation of #% then V° is irreducible as a representation of J#3 (cf. proposition
18).

5.11.2 Classification of spherical representations

[narch-sph-class]
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194 Proposition ([JL] Lemma 3.9). [narch-sph-class-10] Let (m, V) be an infinite dimensional
irreducible admissible representation. If 7 is the representation mw(u1, p2) with py and ps unramified then
V° is one dimensional; otherwise V° is zero.

195 Proof of proposition 194 for absolutely cuspidal representations. = We prove that an
absolutely cuspidal representation contains no spherical vectors. Thus let (7, V') be an absolutely cuspidal
representation; take 7 in the Kirillov form with respect to a nontrivial additive character 1) of F with
conductor Op. Assume ¢ is a K p-fixed vector.

Sublemma A. We have

w[g 2]¢=w(a>¢=¢

for a in Urp. We thus deduce that w is unramified.
Sublemma B. We have

0
T 1

a

I 0 ¢ - ¢

for @ in Up. From this we deduce that ¢(ax) = ¢(z) for a in Up.
Sublemma C. We have

R
™ I 0 1 | d) - (725
for z in Op. This implies that (¢(xz) — 1)¢(z) = 0 for all x and for all z in OF. Since the conductor of

¥ is Op we deduce that ¢(x) vanishes if z is in w"Up with n < 0.
Sublemma D. We now have

bulw) = [ ot=metade = o(=") [ vieyde

Ur

Thus ¢E(V, t) = 0 if v is nontrivial and ¢E(V, t) has only nonnegative powers of ¢ if v is trivial.
Sublemma E. We have w(w)¢ = ¢. Applying proposition 61 (and remembering that the restriction
of w to Uy is trivial) we find

b(1,t) = C(1,1)p(1, 25 17,
However, the left hand side contains only nonnegative powers of ¢ while the right hand side (by proposition
102) contains only negative powers of ¢. Thus we must have ¢ = 0 and the proof is complete.

196 Lemma. [narch-sph-class-30] The space of spherical vectors for p(u1, p2) is one dimensional
if w1 and po are unramified and zero dimensional otherwise.
Let f be in Z(u1, u2) be a K p-fixed vector. Let g be an element of G; by the Iwasaawa decomposition
Gr = PrKp we may write g = pk with k£ in K and

_ aq X
p= 0 ag
with a; and ag in F'* and z in F. Since f(k) = f(1) we have
ay |12
F(pk) = m(ay)pz(az) | = f(1).

This shows that the space of spherical vectors is at most one dimensional.
We now try to construct a spherical vector f by defining

1/2
al/

f(pk) = pa(ar)pz(az) o

For this function to be well defined, we must have f(p) =1 if p € Pr N K, i.e., if a; and ay belong to
Ur and x belongs to 0. This condition amounts to

p(ar)pz(az) =1

for all a; and as in Up. This is satisfied if and only if p; and py are unramfied. Thus the proposition is
proved.
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197 Proof of proposition 194 for the principal series representations. There is nothing more
that needs to be said other than lemma 196.

198 Proof of proposition 194 for the special representations. Consider now a special repre-
sentation o (u1, ua) with Mlugl = ap. If g1 or py is ramified then lemma 196 proves the theorem. Thus
assume g and po are unramified. The space %Bs(u1, p2) of the representation o(uq, p2) is the space
orthogonal to g — x~!(det g), where Y is the trivial character (cf. theorem 123). Thus if f is a K p-fixed
vector in A(u1, p2) then

(f.x 1= B f(g)x (det g)dg = (1)dg = f(1)

f
Kp

and so s(u1,p2) contains no nontrivial Kp-fixed vector. This proves the theorem for the special
representations.

5.11.3 The Whittaker model of a spherical representation

[narch-sph-whit]

199 Proposition. [narch-sph-whit-10] Let m be an infinite dimensional irrreducible admissible
spherical representation. If 1 is unramified (i.e., its conductor is O ) then there exists a unique element
W of the Whittaker model # (w,v) of m such that W is invariant under Kgp and W (1) = 1.

We know that 7 = m(u1, 2) with gy and po unramified. Recall that if ® is an element of .7(F?)
then

Wa(g) = 0(p1, po; Tp,pe (9)®)

is an element of # (w, ) (cf. §5.6.3 and §5.6.4).

Let ® be the characteristic function of &%. Note 1) since ¢ is unramified we have ®~ = ®; and 2)
we have p(g)® = ® whenever g belongs to Kp. Since (r(g)®)™~ = p(g)®"™ it thus follows that r(g)® = ®
whenever g belongs to K. Because ;1 and o are unramified, we have r,,, ,,,(g) = r(g) when g belongs
to Kp. It thus follows that Wy is a spherical vector. We have

Wa (1) = / 1 () s L () D (t, 1) d" t = / dt # 0.
Fx Ur
It therefore follows that we can rescale Wg to get a spherical vector W with W (1) = 1. Since the space
of spherical vectors is one dimensional the uniqueness of W is clear.
5.11.4 The spherical Hecke algebra is commutative
[narch-sph-hecke]

200 Proposition ([Bu] Thm. 4.6.1). [narch-sph-hecke-10] The spherical Hecke algebra €3 is
commutative.

201 Corollary. [narch-sph-hecke-20] Let (m, V') be an irreducible admissible spherical representation.
Then the space V° of spherical vectors is one dimensional.

The space V° is irreducible under the action of the commutative algebra 72 (cf. proposition 18) and
therefore is one dimensional.

202. Note that the content of article 201 is already contained in proposition 196. We include this second
proof because 1) that which is proved is a crucial fact; and 2) the proof given in article 201 is much more

accessible (e.g., it does not use the classification theorem) than the proof of proposition 194.

203. We need a lemma before proving proposition 200.
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204 Lemma ([Bu] Prop. 4.6.2). [narch-sph-hecke-50] A complete set of double coset representa-
tives for Kp\Gr/KF consists of the matrices

with ny > na.
PROVE THIS.

205 Proof of proposition 200. Let ¢ be the anti-involution of £ given by ¢*(g) = ¢(g7) where
g" is the transpose of g. The algebra 2 has a linear basis consisting of the characteristic functions of
double cosets of Kp; by lemma 204 these are stabilized by ¢. Thus the anti-involution ¢ is the identity
map and therefore J#5 is commutative.

5.11.5 The character of .7 associated to a spherical representation
[narch-sph-char]
206. Let (m,V) be an irreducible admissible spherical representation. Let v be a nonzero spherical

vector. Since the space of spherical vectors is one dimensional it follows that for any f in J¢3 there
exists a unique complex number £(f) such that

The map £ : 57 — C is readily verified to be an algebra homomorphism. We call £ the character of
He associated to T.

207 Proposition. [narch-sph-char-20] Let w1 and mo be irreducible admissible spherical represen-

tations of Hx. Then m is equivalent to mo if and only if the associated characters of 2 are equal.
This follows immediately from proposition 116.
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Chapter 6

Representations of GL(2,R)

6.1 First notions and results

6.1.1 Notations

1. We use the following notations in this section:
1. We let Gr denote the group GL(2,R);
We let Kg denote the group O(2,R);
We let g denote the Lie algebra of Ggr and we let g¢ denote its complexification;
We let ¢ denote the Lie algebra of K and we let €c denote its complexification;
We let % denote the universal enveloping algebra of g¢;
We let Z denote the center of the algebra %
We let %k denote the universal enveloping algebra of ¢;

We let 1 be a fixed nontrivial additive character of R;

© 2 N e s W

We let 1c be the complexification of 1, given by ¢ (z) = ¥(x + ).

6.1.2 The Hecke algebra

2. The discussion in this section is based on chapter I of Knapp and Vogan.

3. We define the Hecke algebra 5% to be the algebra of all left Kpr-finite distributions on Gg with
support contained in Kg; multiplication in the algebra is given by convolution of distributions. We also
define R(K) to be the algebra of left K-finite distributions on Kx. (Note that Knapp-Vogan denotes the
Hecke algebra by R(g, K).)

4. Note that this is the Hecke algebra of Flath. In Jacquet-Langlands a different algebra is called the
Hecke algebra; we will discuss this alternative Hecke algebra in §6.1.8.

5 Proposition (K-V Prop. 1.80, 1.83). We have the following.

1. The map

given by X @ T — X T is an isomorphism (technically, the map should be X @ T — X * (i,T)
where 1 : Kp — Gy is the inclusion; we will usually neglect this detail).

2. All elements of i, are smooth functions which are K -finite on both sides.

8. All elements of #& are K-finite on both sides.
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These assertions follows easily from §1.2.6, propositions 45 and 46; see Knapp-Vogan for more details.

6. If ¢ is an elementary idempotent of Kg then £ may be regarded in the obvious way as an element of
Jk; we again call such elements elementary idempotents. The algebra 7% together with its elementary
idempotents forms an idempotented algebra in the sense of §1.4. Thus we have the notions of smooth
and admissible modules (or representations) of /& and contragrediants of such representations.

7. In this section we will be primarily studying admissible representations of the Hecke algebra #%; the
phrase “admissible representation” will by default mean an admissible representation of 7.

6.1.3 Admissible representations of %

8. Let ,, denote the one dimensional representation of SO(2,R) given by

cosf sinf Y
—sinf cos6 ©

We will also use the notion x,, to denote the corresponding representation of &.

9. We say a representation 7 of % is admissible if the restriction of 7 to ¥ decomposes into an algebraic
direct sum of the k,, with each x, appearing with finite multiplicity.

10 Proposition. Let (m,V) be an irreducible admissible representation of % . Then any linear operator
on V. commuting with 7% s a scalar.

By definition the representation V' comes from a representation of SO(2,R), which we will also denote
7. The operator

r(En) = / ™0 (g)udg
SO(2,R)

is the projection operator of V' onto its x,-isotypic component. If A is any operator commuting with %
then clearly A commutes with 7(&,,) and thus A maps the k,-isotypic component into itself. Since this
is finite dimensional, by admissibility, it follows that A has an eigenvector and is thus a scalar.

6.1.4 Harish-Chandra modules

11. A Harish-Chandra module (for GL(2,R)), or a (g, Kg)-module, or a representation of (g, Kgr), is a
vector space V' together with actions of g and Kg (which we denote by 7) subject to three conditions:

1. The space V' decomposes into an algebraic direct sum of finite dimensional subspaces stable under
Kg.

2. For any X in g and g in Kg we have 7((Adg)X) = n(g)n(X)m(g71).
3. For any X in the Lie algebra of K we have

o D)) = (1)
t—0 t

= 7(X).
The last condition should be explained more precisely. Given v in V there is a finite dimensional subspace
U containing v and stable under Kg. The third condition states that

lim m(exp(tX))v — v
t—0 t

=m(X)v
where the limit is now taking place in the finite dimensional vector space U and thus makes sense.
12. A Harish-Chandra module V is admissible if its isotypic parts V(o) are finite dimensional (for all

oin K ). Note that this is equivalent to the condition that the range of 7 () is finite dimensional for all
elementary idempotents £ of K.
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13. Note that if V' is a Harish-Chandra module then the complexification g¢ of g naturally acts on V'
as does the universal enveloping algebra % of gc. It is clear that if V' is an admissible Harish-Chandra
module then the associated representation of % is also admissible.

14 Proposition (J-L pg. 161). Let V be an irreducible admissible Harish-Chandra module. Then

Z acts as scalars.

Let X be in the center of % . It suffices to prove that 1) 7(X) commutes with 7(Y") for Y in g; 2)
m(X) commutes with 7(g) for g in Kg; and 3) 7(X) has an eigenvector.

1) This is clear.

2) Since X is invariant under the adjoint action of g¢ on itself, it follows that it is invariant under the
adjoint action of GL(2,C) on g¢ (since GL(2,C) is connected). Thus X is invariant under the adjoint
action of Ky and so for g in Kz we have

w(g)m(X)m(g™") = 7((Adg)X) = m(X).

Therefore 7 (X) commutes with 7(g) for g in Kg.
3) It follows that m(X) commutes with 7(§) for any elementary idempotent £. Since the range of m(&)
is finite dimensional it follows that 7(X) has an eigenvector and therefore acts as a scalar.

15. Note that Jacquet-Langlands uses the notion of a representation of the system {%,e} where % is
the universal enveloping algebra of g and
| -1 0
=0 1|

This notion is not quite the same as that of a Harish-Chandra module because there are representa-
tions of the Lie algebra of Ki which do not come from representations of Kr. However, they define
a representation of {%, e} to be admissible if the corresponding representation of % is admissible (in
the sense of article 9). Thus admissible representations of the system {%, e} are the same as admissible
Harish-Chandra modules.

6.1.5 Hecke modules versus Harish-Chandra modules

16 Theorem (K-V Thm 1.117). We have the following:

1. Let V be a smooth representation of H#&. Given T in &' (Kr) and v in V pick an elementary
idempotent & stabilizing v and define

m(T)v = 7(T * &)v.

Then w gives a representation of &' (Kgr) on V. In particular, if for g in Kg we define w(g) to be
w(dq) (where &4 is the Dirac distribution supported at g) then V' becomes a Harish-Chandra module.

2. Let V be a Harish-Chandra module. For T in &' (Kgr) and v in 'V define
m(T)v = (T, g — m(g)v).

Then  gives a representation of &' (Kg) on V in such a way that V becomes a smooth representation

of I .

8. The constructions in 1 and 2 are inverse to each other. They yield a bijective correspondence
between smooth F#g-module and (g, Kr)-modules. Under this correspondence, the properties ad-
missible and irreducible are preserved.

4. If V and V' are Harish-Chandra modules and/or smooth representations of % then a linear map
AV = V' intertwines for (g, Kr) if and only if it does so for 7#%. Thus

HOm(g)KR)(‘/, V’) = Hom%(v, V/)

Therefore the correspondence in 8 actually gives an equivalence of categories.
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5. Let V is a Harish-Chandra module and/or a smooth representation of #x. Let f be a measurable
function on Kg, thought of as an element of &'(Kr). Then we have

m(flv= [ [flg)n(g)vdg.

Kr

1) We first check that 7(T") is well defined. Let £ and £’ be elementary idempotents stabilizing v; we
may assume £ > £. We then have

(T €Yo =n(T € )m(€)v = (T * (€ * €)= n(T*E

and so 7(T') is well defined. Note that 5 is true in this case by definition.

We must now check that 7 is an algebra homomorphism, i.e., we must verify =(T * .S) = 7(T)n(S5).
Let v be an element of V', let W be a finite dimensional Kg-stable subspace containing v and let £ be
the elementary idempotent of W. We have

(Ex5%&)(g) = (SV*&Y,p(9)€) = (5, (p(9)§) * &)

but (since £ is invariant under conjugation, Kg is unimodular, and ¢ is idempotent)

((p(9)) *&)(h) = | &(zg)é(a™" h)dw = (2)€(g2™ hgg™")dw = (& x€)(hg) = (p(9)€)(h)

3
Kg Kg

and so
(ExS*&)(g) = (S, p(9)€) = (S *&)(9);
therefore £ % S x £ = S« £. From this, we see that £ stabilizes 7(S)v and so

m(T)n(S)v=m(T+«E)m(S*xEv=n(T+Ex S« v=a((T*S)*&)v=mn(T xS)v

which proves that 7 is an algebra homomorphism. The rest of part 1 is clear.

2) First we must clarify the definition of m somewhat. Let T be an element of 5%, v an element
of V and W a finite dimensional Kg-stable subspace of V' in which v lies. Then the function ¢, given
by m,(g9) = m(g)v on Kp takes values in the finite dimensional vector space W, and so the meaning of
(T, ¢y) is clear.

We must show that 7, thus defined for elements of &’(KR), is an algebra homomorphism. Note that
A7 (g)pw = m(g)dy so that

(0 % 8Y)(9) = (S, Mg~ )pu) = (S,7(9)dv) = T(9)(S, $u) = T(9)7(S)0 = Sr(5(9)-
We therefore have
(T S)v= (T %S,¢y) = (T, 9o % SV) = (T, pr(5y0) = 7(T)(7(S)v)

and so 7 is an algebra homomorphism.

Note that in the present case, part 5 is clear. From this, it follows that the o-isotypic components of
V are the same when V is regarded as a Harish-Chandra module or as a J#%-module (since the isotypic
components are the images of the 7(§)). It therefore follows that V' is a smooth representation of .

3) It is clear that the constructions are inverse to each other. Since admissibility can be detected
by knowing the operators 7 () it follows that it is preserved under this correspondence. It is clear that
irreducible is preserved, for a space stable under one of the actions is clearly stable under the other.

4) This is clear.

5) This has already been remarked upon.

6.1.6 Twisting by a quasi-character
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17. Let x be a quasi-character of R*.
1. If (m, V) is a representation of g we define a representation (xy ® m, V') of g by
(x@m)(X) = 3str X 4+ m(X)

where x(t) = t® for t positive and the trace is evaluated by identifying g with the Lie algebra of
2 X 2 matrices.

2. If (m, V) is a representation of (g, Kg) we define a representation (x ® w, V') of (g, Kg) by using the
previous formula on g and by defining

(x@m)(9) = x(det g)7(g)
for g in Kg.
3. If (m, V) is a representation of .7 we define a representation (x ® m, V') of s by
(x@m)(T) = n(xT)

where xT is the product of the distribution T" with the function g — x/(det g).

6.1.7 The central quasi-character

18. Let (m,V) be an admissible representation of (g, Kg). Let v be an element of V' and let W be a
finite dimensional Kg-stable subspace containing v. Define an element z of g by

Sl

Since z commutes with Kgr (i.e., (Adg)z = z for all g in Kg), 7(z) maps W into itself. If a is a real
number we may thus define
Jo

e 0 = m(az)"

v { 0 et ] v = (expm(az))v = [Z .
n=0

(The sum on the right side is to take place in End W, where it obviously converges.) Thus we get a

representation of the group of positive scalar matrices on V. It is obvious that this representation is

compatible with the existing structures on V. Since the matrices

ERITEEY

belong to Kg, we can in fact build a representation of Zg, the full group of scalar matrices, on V.

19. Now let (7, V') be an irreducible admissible representation of (g, Kg). The action of Zg commutes
with the actions of & and (g, Kr). Thus by Schur’s lemma (cf. §1.4.5, proposition 113) for each a in
R* there is a complex number w(a) such that

where I is the identity map on V. The function w is easily seen to be a quasi-character of R*; it is called
the central quasi-character of .

6.1.8 The Hecke algebra of Jacquet-Langlands

Definition
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20. Let J4 be the subspace of C2°(GR) consisting of all functions which are Kg-finite on both sides.
The vector space 7% is made into an algebra by taking convolution for multiplication. If a Haar measure
dz has been chosen on Gy then % may be regarded as an algebra of measures on Gr by letting the
function f correspond to the measure fdz.

21. Let %7 be the subspace of functions on K spanned by the matrix elements of irreducible represen-
tations of Kg. We make 42 into an algebra by defining multiplication to be convolution. The algebra
42 may be regarded as an algebra of measures on K by letting the function f correspond to fdz,
where dz is the normalized Haar measure on Kg. We may also regard %2 as an algebra of measures on
GR via pushforward, i.e., if p is an element of /42 (regard as a measure on Kg) we define a measure on
GR by letting the measure of the set U be the measure assigned by u to the set U N Kg.

22. We define the Hecke algebra of Jacquet-Langlands (which we also denote by &) to be the algebra
S + A of measures on Gg. Multiplication is given by convolution of measures. In particular, if f
belongs to 7 and ¢ belongs to 42 then

(M) f(h=tg)dh, — (f*&)(g) = [ flgh™)&(h)dh.

€
KR K]Ri

€= f)lg) =

The algebra ¢ is associative, noncommutative and does not have a unit.
23. As with the Hecke algebra of Flath, we take the elementary idempotents of Kk, now regarded
as elements of ijR? , to be the distinguished idempotents of 7. The Hecke algebra thus becomes an
idempotented algebra. However, admissible representations of J# are not just admissible representations

of & as an idempotented algebra.

24. Tt is easy to see that for any f in % there is an elementary idempotent £ such that
Exf=[f*E=.
Moreover, if £ is any elementary idempotent then
HR[E] = Ex A € = ExC°(Gr) &
is a closed subspace of C¢°(GR) in the Schwartz topology; we give it the induced topology.

25. If we regard elements of g as distributions on Gr with support at the identity we may take their
convolution with elements of the Hecke algebra. More precisely, for X in g and f in & we have

d d
(X = f)(g) = Zflexp(=tX)g)|,_,  (fxX)(9) = 2 f(gexp(=tX))[,_q-
If f belongs to # then so does X * f and f * X. We extend this notation to allow for all X in %.
Admissible representations

26. A representation (m, V) of & is admissible if is satisfies the following three conditions:
1. We have V = n(J)V.
2. For each elementary idempotent £ the range of 7(€) is finite dimensional.

3. The map 4 [£] — GL(7(£)V) given by f +— m(f) is continuous.

27 Proposition. Let (7, V) be an admissible representation of Fg.
1. Every vector in V 1is stabilized by an elementary idempotent.

2. Every vector in 'V is stabilized by an element of 73 .
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Let v be an element of V' and write v =, 7(f;)v;.

1) Take & such that & * f; = f;. Then 7(§)v = v.

2) Let {¢n} be a sequence in C°(GRr) which converges in the space of distributions to the Dirac
distribution supported at the identity. Set @), = £ * ¢y, * & where £ is as in the first part. For each ¢ the
sequence {¢!, x f;} converges to f; in J£2[¢]. Thus, by the third condition of admissibility, the sequence
{n(¢},)v} converges to v in the finite dimensional space 7(£)v. Thus v belongs to the closure of 7( 4 [€])
and therefore belongs to it. Thus there exists f in 4 [€] such that 7(f)v = v.

28. For a smooth function f on Gr and a compactly supported distribution p we define A(u)f and

p(p)f by
uf)g) =1 (@) ), ((p(w)f)(g) = n(Ag~ ) f).

If, for example, p is a measure then

AWHg) = [ f( gduh),  (p())lg)= [ flgh)du(h).

GR GR
In any case, the functions A(u)f and p(p)f are smooth functions on Gg.

29. Applying the definitions of article 28 to the elements of J#&, we obtain representations A and p of
Jt& on the space C°(GR); these are called the left reqular and right regular representations of J%.

The matrix elements of a Hecke module

30 Proposition (J-L pg. 156). Let (m, V) be an admissible representation of H#%. Let v be an
element of V and v an element of V.

1. There exists a smooth function on Ggr, written alternatively as ¢, 5 or g — (m(g)v,v), such that
for any f in H7 we have

(m(fv,0) = [ Flg){m(g)v, v)dg.

Gr
2. The expression (mw(g)v,v) is bilinear in v and V.
3. We have (m(g)v,v) = (v, (g~ 1)D).

Let £ be an elementary idempotent such that 7(£)v = v and 7(£Y)v = v. Define a distribution p on
Gr by assigning to the function f in C2°(GRr) the number

u(f) = (w (& [+ Ev, ).
Note that C°(GRr)[£] = #4 [€] and so this definition makes sense. Note also that for f in 7% we have

p(f) = (x(f)v, ).
Now select an element ¢ of 73 [£] such that 7(¢)v = v. Then

(0" + p)(f) = u(fo) = u(§f68) = n(€fe) = (w(£fE0)v, v) = (n(££E)v, D) = p(f).

Thus p = ¢V * p. Since p is the convolution of a test function and a distribution it follows that p is a
smooth function.

31 Proposition (J-L pg. 160). Let (7w, V) be an admissible representation of &, let v be in V', let
v beinV and let X be in % . Then

vz * X = Or(xV)0,5-

For all f in 74 we have
£(9)(0us+ X)(a)dg = [ (£ X")(0)ns(o)dy = (n(f + X")0.)
G]R GR
:<7T(f)7T(XV)’U7:J> = o f(g)¢ﬁ(XV)v,5(g)dg
R

The proposition follows.
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The associated Harish-Chandra module

32 Proposition. Let (m,V) be an admissible representation of #%. Then there is exaclty one
representation of (g, Kr) on V (also written w) such that:

1. For all X in g and all f in 73 we have

T(X)w(f) =m(X = f),  w(f)m(X)=7(f*X)
(note that both X x f and f x X belong to 3 ).
2. For all g in Kg and all f in 7 we have

m(g)n(f) =7(N9)f),  w(N)m(g) =7(plg™")f)
(note that both X(g)f and p(g~')f belong to H4} ).

We call this action of (g, Kr) the action compatible with m or the associated Harish-Chandra module.
It is admissible.

That there can be only one such action is clear; thus we need only establish existence.

Let v be an element of V. Since 7 is admissible, we can write

T

v= Zﬁ(fi)vi

i=1
with f; in 54 and v; in V. We wish to define the action of g by

T

m(X)v = Z?T(X * fi)v

i=1
To check that this is well defined, we must show that if

T

> w(fi)vi =0

i=1

then

r

Z’IT X * fi)v
=1

is also zero. Now take f in 4 such that 7(f)w = w. Thus

T T T T

=Y m(NTX x fi)vi =Y w(fx (X x fi))vi = Y w((f + X) = fiJoi = w(f = X) Y (i)

=1 =1 =1 =1

and so our formula for m(X) is well defined. The same reasoning shows that, for any element f of %,

we have
T r T

() (w< ) (e ) ()Y R (X fen = (o X) Y (o

i=1 i=1 i=1

and so 7(f)m(X) = w(f * X). Thus the action of g just defined is compatible with the action of .
Now, note that for f in 4 and g in Kg we have X(g)f = &, % f and p(g~1)f = f % §,, where 4, is
the Dirac distribution on Gg supported at g. We thus attempt to define an action of Kg on V by

T

m(g)v = Zﬂ(ég * fi)v;

i=1

where v is an arbtirary element of V' and v; and f; are as above. The same “trick” as above shows that
this is well defined and that 7(f)m(g) = 7(p(g~1)f). Thus the action of Kp is compatible with the action
of 4.
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We must now verify that the actions of g and Ky actually yield an admissible Harish-Chandra module.
There are three conditions to be verified:

1) We first show that V breaks up into an algebraic direct sum of finite dimensional Kg-stable
subspaces and that each irreducible representation of Kg appears only finitely many times. This follows
immediately from the fact that every vector in V' is stabilized by some elementary idempotent & and that
the range of 7(&) is finite dimensional.

2) Given f in /4, X in g and g in Kg we have

(Adg)X) % f = 8, % (X * (5,1 f))

and so it follows that
m((Adg)X) = m(g)m(X)m(g~1).

This verifies the second condition for Harish-Chandra modules.
3) Now let v be an arbitrary element of V, let f in % stabilize v and let X be in the Lie algebra of
Kg. Since f is Kgr-finite we can find an elementary idempotent £ such that

Ex (M) f) = (Mg f) xE=Ag)f

for any ¢ in Kg. Let
_ Mexp(tX))f = f
fe= , :
We have that f; belongs to & x #7 * ¢ for all t and f; — X * f in this topology. Thus by the third
axiom of admissitibility 7(f;) — (X * f) as operators on the finite dimensional space m(§)V (to which
v belongs). We therefore have
A(exp(tX))v —v _ w(Aexp(tX))f)v — (/)

; = - —>m(X*x flv=n(X)v

and this verifies the final condition for Harish-Chandra modules.

33 Proposition (Knapp Thm. 8.7). Let (w, V) be a representation of H#%. Then the matriz
elements ¢, 5 are analytic functions on Gg.

We only sketch a proof; a complete proof is given in Knapp.

Consider the associated Harish-Chandra module structure on V. The space V breaks up into a direct
sum of its o-isotypic parts, each of which are finite dimensional. It suffices to prove the proposition when
v lies in one of these isotypic parts, say V(o).

The action of Z (the center of %) commutes with the action of Kgr and so the space V(o) is
stable under the aciton of Z. We now consider a specific element of Z, the so-called Casimir operator,
and examine how it acts on the finite dimensional space V(¢). From the specific form of the Casimir
operator, one deduces an elliptic partial differential equation satisfied by the matrix elements, and from
this concludes that they are analytic.

34 Proposition (J-L pg. 158). Let V be a vector space with compatible admissible actions of (g, Kgr)
and H%. Let v be in'V and v be in V. Then for g in Gr and h in Kr we have

d)ﬂ(h)v,ﬁ(g) = ¢v,5(gh)v v’ﬂA:l(h)g(g) = ¢v,5(hg)'

In particular, the two definitions of (w(h)v,v) agree.

For f in 74} we have
S @9reoslg)dg =(m(f)(m(h)v),v) = (m(p(h= ") v, D)

= [ f(9)dvz(gh)dg
Gr

and the first identity follows. The second is proved using a similar argument.
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35 Proposition. Let V be a vector space with compatible admissible actions of (g, Kr) and . Let
€ be in A2 and let v be in V. Then

(v = [ &(g)n(g)vdg.

Kr

Let f be an element of # such that 7(f)v = v. Then for any ¥ in V we have

(m(§)v,v) = (w(E* v, v) = [ (£ [)(g9){m(g)v,v)dg

Gr

- / M) f(hg)(m(g)o,T)dhdg = [ E(0)(r(A(R)F)v.T)dh
Gr J Kgr Kr
E(h)(m(h)v,v)dh

Kr

and the proposition follows.

36 Proposition. An admissible representation (m,V) of H& is irreducible if and only if its associated
Harish-Chandra module is irreducible.
It is clear (by way of definition) that an J#&-stable subspace of V' is (g, Kr)-stable as well; thus if the
associated Harish-Chandra module is irreducible the original representation of J#% is irreducible as well.
Now assume V that is irreducible as an J%-module. Let V; be a (g, Kr)-stable subspace of V' and
let V1 be its orthogonal complement. Then for any v in V, v in V g in Kg and X in % we have

(Bv,5 % X)(9) = br(xv)0,5(9) = (7(g)m(X )0, ) = 0;

this follows from propositions 31 and 34 together with the fact that 7(g)7(X")v belongs to Vi (since it
is stable under the action of (g, Kg)). Thus all the derivatives in every direction of ¢, 7 vanish in Kg.
Since Ky meets every connected component of Gg and the functions ¢, 7 are analytic (cf. proposition
33) it follows that ¢, is identically zero on all of Gg. Thus for any f in f%ﬁRl, vin Vi and v in \71 we
have

(m(f)v,v) = ; f(9)¢v5(9)dg = 0.

It thus follows that 7(f)v belongs to V. Since V; is clearly stable under %2 (e.g., by proposition 35) it
follows that V7 is stable under all of s%. Therefore V; is zero or all of V' and we have proved that V is
irreducible under the action of (g, Kg).

37 Proposition. Let (m1,V1) and (me, Vo) be representations of #& and let A : Vi3 — Vi be a linear
map. Then A commutes with the action of S if and only if it commutes with the action of (g, Kr).
The proof of this is similar to the proof of proposition 36 and omitted.

38 Proposition. Two irreducible admissible representations of & are isomorphic if and only if their
associated Harish-Chandra modules are isomorphic.
This follows immediately from proposition 37.

Comparison of the two Hecke algebras

39. There seem to be two differences between the two Hecke algebras. I say “seem” for I am not certain
they are actually differences.

1. The definition of admissible for a representation of the Flath Hecke algebra comes directly from
the definition of admissible for idempotented algebras. For the Jacquet-Langlands Hecke algebra,
the definition of admissible is more complicated (elements have to be stabilized by members of 7%
and there is a topological condition).

2. Smooth representations of the Flath Hecke algebra are in obvious bijective correspondence with
Harish-Chandra modules. On the other hand, given an admissible representation of the Jacquet-
Langland Hecke algebra, there is an associated admissible Harish-Chandra module; there does
not seem to be a direct inverse construction. However, it turns out (after we classify irreducible
Harish-Chandra modules) that this association is a bijection of the irreducible modules.
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For these reasons, I prefer the Flath Hecke algebra.

6.2 Classification of irreducible representations
6.2.1 Restricting representations of (g, Kr) to g

40. In this section we gather a few results about the restriction of representations of (g, Kg) to repre-
sentations of g.

41. If (7w, V) is a representation of g we write ((Ade)m, V') for the representation of g on the space V'
given by X — 7((Ade)X).

42 Proposition (J-L Lemma 5.8). Let (7,V) be an irreducible representation of (g, Kr). There
are two possibilities:

1. The restriction of  to g is irreducible and the representations (w,V) and ((Ade€)w, V) are equiva-
lent.

2. The space V breaks into a direct sum V1 ®Va of subspace stable under g. The representations w1 and
7o of g on Vi and Va are irreducible. The representations (w1, V1) and (wa, Va) are not equivalent
but the representations ((Ade€)my, V1) and (wa, V2) are.

If the restriction of 7 to g is irreducible then 7 and (Ade)7w are certainly equivalent; indeed 7(e) is
an intertwining operator.

Assume now that the restriction of 7 to g is not irreducible, let V; be a proper stable subspace and
let Vo = m(e)Vh. Both Vi + V4 and Vi NV, are stable under (g, Kg) and thus Vi +V, =V and Vi NV; = 0;
therefore V =V @ V5.

If V1 had a subspace V7 stable under g the same considerations as above would imply that V; = V] &V,
where Vj = 7(e)V{ and thus Vi would be a proper subspace of V stable under (g, Kg). Since this is
impossible it follows that V; and V5 are irreducible.

If v is in V7 then

mo(X)m(e)vy = 7(e)((Ad €)m1) (X))

so that m(e) is an intertwining operator from (Vi, (Ade)m) to (Va,m2). Thus these two representations
are equivalent.

Assume now that 7; and 7o are equivalent and let A be an intertwining operator, i.e., a bijective
linear map Vi — V4 such that Am(X) = m2(X)A. For v; in V; we have

A7 (O (X)vy = A7 M (Ad ) X)m(e)vy = mo((Ad€)) X) A m(e)vy.

Therefore (A~'7(€))?, regarded as a linear transformation of Vj, commutes with g and is therefore a
scalar (cf. proposition 10). We may take the scalar to be 1. The linear transformation of V' given by

v 4 vy — A" vy + Avy

then commutes with the action of (g, Kr). This is a contradiction; thus 7; and 7o are not equivalent.

43 Proposition (J-L Lemma 5.9). Let (7, V) be an irreducible admissible representation of g such
that o is equivalent to (Ade)mg. Let n be the nontrivial quadratic character of R* (i.e., n(t) = sgnt).

1. There is an irreducible admissible representation 7 of (g, Kr) on V whose restriction to g is mg.
2. The representations m and n @ 7 of (g, Kr) are inequivalent.

3. Any representation of (g, Kr) on V whose restriction to g is equivalent to mo is equivalent to either
Torn®m.

1) Obviously we take m(X) = mo(X) for X in g. By definition of admissible the representation g
comes from a representation 7 of SO(2,R). Thus we need only define 7(e).
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There is an invertible linear transformation A of V into itself such that Amy(X) = mo((Ade)X)A for
all X. Thus A% commutes with 7(X) and is therefore a scalar; we may assume A% = 1. We define 7 (¢)
to be A.

2) If we replace A by —A we obtain the representation nn ® 7. The representation 7 and n ® 7 are not
equivalent because any intertwining operator would have to commute with the 7(X) and therefore be a
scalar (and thus not intertwine the operators 7(¢) and (n ® 7)(¢)).

3) For any such representation e must act as either A or —A and thus the representation is equivalent
tororn®m.

44 Proposition (J-L Lemma 5.10).  Let (71, V1) be an irreducible admissible representation of
g such that m; is not equivalent to (Ade)m. Let (mwa, Vo) be the representation given by Vo = Vi and
w9 = Ademy. Let V=V, ® V5.

1. There is an irreducible representation © of (g, Kr) on V whose restriction to g is w1 @ ma.

2. Any irreducible admissible representation whose restriction to g is equivalent to 71 is equivalent to
.

3. In particular, n ® m s equivalent to m.

1) We take 7(X) = 71 (X) @ m2(X). We obtain for free a representation = of SO(2,R) on V. We
define 7(e) by
71'(6)(1)1 D ”UQ) = Vg D V1.
2) This follows from proposition 42.
3) This follows from part 2.

6.2.2 The representations p(u1, fi2)

45. Let p; and pse be quasi-characters of Z2*. Let %(u1, ne) be the space of functions f on Gg which
satify the following two conditions:

1. We have
1/2

f(g)

f ({ %1 ;; }9) = pa(a1)p2(az) Zl

for all g in Gg, a1 and as in R* and « in R.

2. fis SO(2,R) finite on the right.

The space % (u1, p2) is stable under the right regular representation p (cf. article 29) and thus we get a
representation of /& on B(u1, u2). We denote this representation, and the corresponding representation
of (g, Kr) by p(p1,p2). They are admissible.

46. Note that by the Iwasawa decomposition Gg = PrSO(2,R) (where Py is group of upper triangular
matrices) the elements of %(ju1, p2) are determined by their restiction to SO(2,R). In particular, since
they are SO(2,R) finite, they are smooth.

47. We now define some notations we will use while studying with the representations p(u1, p2).
1. Write
pi(t) = (sgn &)™

where m; is 0 or 1 and s; is a complex number.
2. Let s = 81 — 85 and m = |my — ma|. Note that
(pnp ) (t) = (sgnt)™[¢]°.

3. For integers n of the same parity as m, define an element ¢,, of Z(u1, pu2) by

1/2

a .
ezn@ )

Pn <[ %1 v ] [ cosf - sin6 D = p1(a1)p2(az) a;

as —sinf cosf

The collection {¢,} forms a basis for the space B(u1, p2).
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4. We define elements of Ky by
| -1 0 . cosf) sinf
““l o 1 o= _sing cosh |
Note that Ko, Koy = K@, +65-

5. We name several elements of gc (which we identify with the Lie algebra of 2 x 2 matrices):

L A R A

w8 3] x-[88] 2[ 2]
Note that the definition of V_ given in J-L on pg. 165 is incorrect.
6. We also name an element of the universal enveloping algebra:
D=X,X_+X_Xy+317%

In fact, D is the Casimir operator, which belongs to Z.

48 Proposition (J-L Lemma 5.6). We have the following identities:

1. p(U)¢y = ing, 2. p(€)dn = (—1)"" ¢y,
3 p(Vi)on = (s +1+n)dny2 4 p(V_)pr = (s +1—=n)pn_2
5. p(D)¢n = 5(5° — 1)obn 6. p(J)pn = (51 + 52)¢n.

1) Let
S a =z cosf sinf
9= 0 a9 —sinf cos@ )’
Note that exp(tU) = ;. We thus have

(p(U)n)(g) = lim Only exp@g )) = éul9)

1/2 6in(0+t) —_ etnd

lim ————— = ingu(9).

= p1(a1)p2(az) %

2) Left to the reader.
3) From the identites (Ad xg)Vy = €2V, and p(kg)pn = €™ ¢, we have

e p(Vi)on = p((Ad ko) Vi )by = plrio) p(Vi)p(ki—0)$n = €= plrig) p(Vi ) b
and so ‘
plr0) (p(Vi)dn)) = 2 (p(Vi ) ).
Thus p(V4 )¢y, is a scalar multiple of ¢, 2. Now, Vi = Z — iU 4 2iX . For any ¢ in B(u1, p2) we have
(p(2)9)(1) = (s +1)o(1)  (p(X4))(1) = 0.

It thus follows that the value of p(V} )¢, at 1is s+ 1 + n. Therefore p(Vi)p, = (s + 1 4 n)dnyo.
4) Similar to 3, left to the reader.
5) Since D lies in £ and D = DY we have

p(D)¢ = MND")¢ = A(D)¢
for any ¢ in B(u1, u2). If we now write D as
D=2X_X,+Z+32°

and observe that
AMX4)p=0 ANZ)p=—(s+1)9
for any ¢ in (1, p2), we see that

p(D)6n = (= (s +1) + §(s +1)°)dn = §(s* = 1o,
6) Left to the reader.
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49 Proposition (J-L Lemma 5.7). We have the following:
1. If s —m is not an odd integer then PB(u1, u2) is irreducible under the action of gc.

2. If s —m is an odd integer and s > 0 then the only proper subspaces of B(u1, u2) which are stable
under gc are

P (pa, p2) = P Con  Balpip) = b o

n>s+1 n>—s—1
n=s+1 (mod 2) n=s+1 (mod 2)

and
Bs (1, p2) = B (p1, p2) + Ba(pa, p2)
when it is not the entire space, i.e., when s # 0.

3. If s — m is an odd integer and s < 0 then the only proper subspaces of B(u1, pu2) which are stable
under gc are

Br(pa,p2) = P Coén, Balpm)= P Con

n>s+1 n>—s—1
n=s+1 (mod 2) n=s+1 (mod 2)

and
By, p2) = Br(pr, po) N Ba(pia, pi2)-

Any vector v in B(u1, p2) is a linear combination of the ¢,,. The operator p(U) can be used to recover
the ¢, which occur in v with a nonzero coefficient (by the formula given in proposition 48). Thus any
subspace of Z(u1, p2) which is stable under g¢ is spanned by the ¢,, which it contains. The proposition
then follows from the identities of proposition 48.

6.2.3 The representations 7(uy, po) and o(uq, o)

50 Theorem (J-L Thm. 5.11). Let u1 and ug be quasi-characters of R*.

1. Let plugl be not of the form t — tP sgnt where p is a nonzero integer.

(a) The space PB(u1, pe) is irreducible under the action of (g, Kr).

(b) We denote by mw(u1, o) any representation in its equivalence class.

IS

. Let ul,ugl be of the form t — tP sgnt where p is a positive integer.

(a) The space B(u1, p2) contains exactly one proper subspace Bs(ui1, p2) stable under (g, Kr).
(b) The space Bs(p1, pu2) is infinite dimensional and of finite codimension.
(¢c) We denote by o(u1, 1) any representation equivalent to the restrcition of p(u1, u2) on
Bs (b1, p2)-
(d) We denote by (1, pi2) any representation equivalent to the representation on Br(u1, p2) =
B, pi2)/ Bs (1, p2) induced by p(p, po)-

o

. Let ul,ugl be of the form t — tP sgnt where p is a negative integer.

(a) The space PB(u1, p2) contains exactly one proper subspace By, po) stable under (g, Kr).
(b) The space B (1, pn2) is finite dimensional and of infinite codimension.
(c) We denote by w(p1, u2) any representation equivalent to the restriction of p(u1, p2) on
By (1, p2)-
(d) We denote by o(u1,u2) any representation equivalent to the representation on Bs(p, p2) =
B, p2)/ Br(pas po) induced by p(pr, pa)-

4. The representations w(p1, o) and o(p), puh) are never equivalent.
5. The representations 7(p1, p2) and w(uh, ph) are equivalent if and only if {u1, pa} = {ph, ph}.
6. The representations o(u1, u2) and o(py, ph) are equivalent if and only if {p1, p2} is either {uf, ph}

or {nuy,nubs} (where n is the nontrivial quadratic character of R* ).
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51. The representations 7(u1, u2) are called the principal series representations; they are defined for
all p; and po. The representations o(uq, o) are called the special representations; they are defined only
for certain pq and po.

52 Proof of theorem 50. 1,2, 3) Let pjp; " = (sgnt)™|t|%; then s —m is an odd integer if and
only if s is an integer p and (p145 1)(t) = tPsgnt. Thus the first three statements of the theorem follow
easily from proposition 49 of the previous section, together with general facts about how representations
of (g, Kr) compare with representations of g (i.e., propositions 42, 43 and 44).

4) In the representations 7 (1, o) which are infinite dimensional, each integer apeears as an eigenvalue
of the operator p(U) (cf. proposition 48). However, in the representations o(p], uh) there are integers
which do not appear. Thus the two representations can never be equivalent.

5, 6) We now prove the equivalences between various representations by constructing an operator
T: B, p2) — B(usz, 1) which commutes with the action of (g, Kg) (and thus with the action of &
as well). We let ¢,, denote the basis for %(u1, pe) we have previously mentioned and we let ¢/, denote
the corresponding basis of Z(ua, p1).

We first assume s —m is not an odd integer (where p1pu5 ') (t) = (sgnt)™t*). Since ¢, and ¢/, are the
unique eigenvectors of p(U) of eigenvalue in it follows that 7" must take ¢, to a,¢!, for some constant
ay. In fact, by proposition 48 we see that T commutes with (g, Kg) if and only if

(s+1—n)apies =(—s+1+n)ay, (s+1—n)ap—2=(—s+1—n)ay, an = (—=1)"a_y,.
These relations are satisfied if we define

F(i(-s+1+4n))
F(i(s+1+mn))

ap = (ZH(S) =

Since n has the same parity of m and s —m —1 is not an even integer, the arguments stay away from the
poles of the gamme function and all quantites are defined and nonzero. Thus T defines an equivalence
between m(p1, p2) and w(ue, ft1)-

If s <0 and s —m is an odd integer we let

ap = ap(s) = lim a,(2).
zZ—S

The numbers a,, are defined and finite although some are now zero. The associated operator of T is still
a map of Harish-Chandra modules. If s = 0 the map T is a bijection. If s < 0 then the kernel of T is
By(p, t2) and T induces a bijection between % (1, p2) and B (pe, p1).

If s > 0 and s — m is an odd integer then functions a,(z) have at most simple poles; we let

by, = bp(s) = lim(z — 8)a,(2).
zZ—S8

The sequence b, still satisfies the necessary conditions so that the associated operator T' commutes with
the action of (g, Kr). Its kernel is s (11, o) so that it defines an equivalence between (11, p2) and
By (2, p11)-

Finally proposition 44 shows that o(u1, p2) is equivalent to o(nuy, nue). Thus all the stated equiva-
lences have been established.

Now assume 7 = 7(u1, u2) and 7" = w(uh, ph) or m = o(u1, pe) and ©" = o(u}, ph) are equivalent.
Let

’
Si

t

pi(t) = (sgnt)™ [, pi(t) = (sgnt)™
and
s=s81— 82, m=|my—ma s =5 — sy, m =|m]—m)|
By examining the actions of 7(e) and 7’(e) (¢f. proposition 48) we see that m = m’. Similarly, looking at
(D) and 7' (D) shows that s = +s’. Similarly, looking at w(.J) and 7'(J) we conclude s1 + s2 = §} + s5.
Thus we see that {u1, pe} must be either {uf, ub} or {nuf,nub}. Proposition 43 shows that m(uq, pe)

is not equivalent to w(nu1,nus2). This proves all the stated inequivalences and finishes the proof of the
theorem.

6.2.4 Classification of irreducible representations
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53 Theorem (J-L Thm. 5.11; Bump Thm. 2.5.5). FEvery irreducible admissible representation
of (g, Kr) or & is equivalent to one of the representations w(p1, ta) or o(u1, p2).

54 Corollary. The process of taking the associated Harish-Chandra module gives a bijective correspon-
dence between irreducible admissible representations of & and irreducible admissible representations of
(97 KR) .

The only part of this statement that we have not yet established by prior results is that every
irreducible admissible Harish-Chandra module comes from an irreducible admissible representation of
H&. Theorem 53 implies this.

55 Proof of theorem 53. Let (m,V) be an irreducible admissible representation of (g, Kg). By
the definition of admissible the space V' breaks up into a direct sum of spaces V,, where V,, is the in
eigenspace of p(U) and n is an integer. From the relations

U, V] =2iV,, [UV.]=-2iV., (Ade)U=-U

it follows that p(V,) takes V,, into V;,12, p(V_) takes V,, into V,,_2 and p(e) takes V,, into V_,.
An easy calculation shows that

D=0+ X(VoVo+VoVL),  (ViVo —V_Vy) = —4iU

-2

from which we conclude
V. V_ =2D+U? - 2iU, V.V, =2D 4+ U? + 2iU.

Since D is in the center of il it acts as a scalar under p; call this scalar a. Since U acts as a scalar on
the spaces V,,, it follows that V. V_ and V_V, both act as scalars on V,,. Note that we have

(Ade)Ve=V_, (Ade)V_ =V,.

Let v be in V,,. Let V' be the smallest space containing v and stable under the actions of V., V_, U and
¢. From the above considerations it follows that V' N'V,, = Cv. However, since V is irreducible we have
V = V'. Thus all the spaces V,, are one dimensional.

We now show that we can pick a basis v,, of V such that v,, spans V,, and

p(Vi)un = (s + 1+ n)vnya, p(V_)un = (s +1—=n)vn_ (1)

where £(s2—1) = a (note that s is determined only up to sign). To see this we examine the representation

of g on V; according to proposition 42 there are two cases: V' remains irreducible, or V' is a direct sum
V1 @ V4, of irreducible representations.

We consider the case where V' remains irreducible first. Pick some ng such that V,,, is nonzero and
pick some nonzero vy, in V. If v, is defined, simply define v, 42 and v,_2 by

1 1

— — o(V. o= ——p(V_
Un+2 S—l—l—i—np( +)Uns Un—2 s—i—l—np( )Un,

(so long as the denominators are nonzero). Note that

" Nopag =—— (V. n = ————(2D + U? 4 2iU)v,
p(V_) U0 S+1+np(V )p(Vi)v s+1+n( +U*+2iU)v
s2—1—-n?—-2n
= n = —1—
s+1+n " (s ”)on

so that (1) is indeed satisfied. The v,, span a subspace of V' stable under g, and thus form a basis for V.
Now consider the case where V' splits as V3 @ V5. Again, pick some ng and v, (say in V;) and carry
out the process in the previous paragraph. This will yield a basis for V;. Now define v_,,, = p(€)v,, and
repeat the process, yielding a basis for Vo. We thus have obtain a basis satisfying (53).
We now examine how p(e) acts. Since p(e) takes V,, to V_,, we can write p(e)v, = a(n)v, for some
constants a(n). We clearly have a(n)a(—n) = 1. Since (Ade€)Vy = V_, we obtain

a(n+2)(s + 1+ n)vn_ = p()p(Vi)vn = p(V-)p(€)on = a(n)(s + 1+ njv_pn_s.
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Thus (so long as V2 is nonzero) we find a(n) = a(n + 2). If the action of g on V is irreducible then
a(n) must be equal some constant a and a® = a(n)a(—n) = 1; thus a = £1. If under the action of g
the space V breaks up into Vi @ Vs, we find that a(n) is constant on V; and V5. However, by definition
p(€)vn, = v_p, and therefore a(ng) = a(—ng) = 1. It thus follows that a(n) = 1 for all n. We have thus
shown that p(€)v, = +v_,, where the sign is independent of n.

Finally note that since J is in the center of % it acts as a constant. Comparing our results so far
with proposition 48, we see that 7 is a subrepresentation of p(u1, u2) for some uy and ps. It now follows
from theorem 50 that 7 is equivalent to 7(u1, u2) or o(py, p2)-

6.3 The Whittaker model
6.3.1 The Whittaker model: overview

56. Let ¢ be a nontrivial additive character of R. Let #'(¢)) be the space of complex valued functions
W on Gr which satisfy the following conditions:

1. We have

for all z in R and all g in Gg.
2. W is smooth and K-finite on the right.
3. For all T in s there exists a positive real number N such that

| g § | o)

as [t| — oo.

Clearly s#& acts on the space #(¢) via the right regular representation p and so # (1) may be regarded
as either an #&-module or as a (g, Kr)-module.

57. We say a function W on Gy is rapidly decreasing if for all g in Gg and all positive real numbers N

we have
t 0
|tNW(|:0 1:|g)—>0

58. Let (m,V) be an admissible representation of J#&. A Whittaker model of 7 is a J&-submodule of
# (¢) which is isomorphic to m as J&-modules.

as [t| — oo.

59 Theorem (J-L Thm 5.13). Let (7,V) be an infinite dimensional irreducible admissible repre-
sentation of H%. Then w admits a unique Whittaker model. Furthermore, all members of the Whittaker
model are rapidly decreasing and analytic.

60. The proof of theorem 59 will consume this section. The existence proof is handled separately for
the special representations and the principal series representations. In both proofs, we first establish an
isomorphism of the representation in question with a certain Weil representation (for special representa-
tions it will be a Weil representation corresponding to the extension C of R while for the principal series
representations it will be a Weil representation corresponding to the algebra R & R). We then use the
functions in the space of the Weil representation to obtain a space of functions on Gg.
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61. Let #'(¢) be the space of all smooth functions W on Gg which satisfy

w(lo 1) =veowe

for all z in R and all g in Gg. It is clear that #”(¢) is a (g, Kr)-module (under p) which contains # (1)
as a submodule.

We are sometimes in the position that we have a map V' — #/ (1) of #&-modules and we would like
to know that the image belongs to # (). This would involve checking Kg-finiteness and the growth
condition. The following simple lemma, whose proof is clear, eases the burden. We will use it implicitly
in the sequel.

62 Lemma. Let (m,V) be an admissible Hg-module. Let f : V — #'(¢) be a map of H&k-modules
such that for all W in the image of f there exists N such that

Wy | =00

as |t| — oo. Then the image of f is contained in W (V).

6.3.2 The Weil representations for C/R

63. ADD REFERENCE TO SECTION 2.

64. We quickly review the Weil representations associated to the seperable quadratic extension C of R.
65. Let w be a quasi-character of C*. The Weil representation r,, is a representation of the subgroup

G, of Gg, consisting of those matrices with positive determinant, on the space .#(C,w), which is the
subspace of .#(C) consisting of those functions ® for which

®(zh) = w ' (h)®(z)
holds for all i of modulus 1.
66. As always, v is a fixed nontrivial additive character of R and ¢ is its complexification. We let u be

the real number such that ¢ (x) = e?™*® and we let v be the constant i sgn . The self dual Haar measure
on R with repsect to 1 is |a|'/2dz; the self dual Haar measure on C with respect to ¢ is |a|dzdy.

67. For ® in .¥(C,w) we have the following:

M2
1. <rw % (1) } <I>> (x) = w(a)|a|®(azx) for all @ in R* (note that this is consistent).
a 0 . o
2. (ro 0 a-! D | (z) = sgn(a)|a|®(az) for all a in R*.
3. (rw é i ]d)) (z) = ¥(2|z[2)®(x) for all z in R.
4. | ry, Pl (1) ] <I)> (x) = v®'(z) where @' is the Fourier transform of ® with respect to the char-
acter 1c.

6.3.3 The representation m(w)

68. As in the previous section, w denotes a quasi-character of C*. We write

mzn
, 2MZ

where 7 is a complex number and m and n are nonnegative integers, one of which is zero.
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69. Note that since the elements of .(C,w) are smooth, the representation r,, of G, may be differen-
tiated to obtain a representation of g on .#(C,w) (which we still denote by 7). The next proposition
describes this action.

70 Proposition. Let ® be an element of .7 (C,w).
1. (ro(X)®)(2) = 2mia|z|*®(2).

1 09

2mia 0z 0%

3. 1y (J)® = (2r —n—m)d.

2. ro(X_)®=—

4. (r,(2)®)(2) = O(2) + zgq)(z) + 2£<I>(z).

0z 0z
1) By defintion,
1 1 ¢t ) eZm’at|z|2 -1 ) )
(ro(X4)®)(2) = 251%; (rw [ 0 1 ] o — <I>) = d(2) }%f = 2miaz|*®(2)
and the first statement is proved.
2) We have X_ = —(Adw)X; where, as always,
To 1
w=1_7 ol
Since w™! = —w we have
T (X)P = —w(=1)ry, (w)ry (X4)re(w)®
= —w(=Dry(w)re (X )P Oy (2 +iy) = ¥'(x — iy)
= —2miayw(—1)r, (w)Py Oy (z +iy) = (22 +y*) Py (2 + iy)
= 27miay’w(—1)®; O3 (z +iy) = Ph(z — iy)
where throughout we use a prime to denote Fourier transform. Now, &) (x 4 iy) = —®(—z + iy) and so
(by standard properties of the Fourier transform)
1
P! 1Y) = AP 1Y) = AdD)(— ;
2($+2y) (271_0[) ( )(.’L‘+Zy) (2’/TO[)2( )( J}—f—ly)
where
_939
020z
We now have
oz + i) = —— (AD)(—x — i) = L (A@)( + i)
? v= (27rar) Y (2mar)? Y
and so, since v2 = —1, we have
1
(X)) (z) = AD
(ro(X)2)(2) = 5 (A®)(2)

3) By definition,

(ro(J)®)(2) = lim ~ (rw [ %t ft ] - @) (2) = @(2) lim w = (2r —n—m)®(z)

and the third statement is proved.
4) By definition,

(ro(2)®)() = lim% (m { %t o, ] b @) (2) = lim ©2(¢2) = @() _ %etq)(etz)‘tzo

t—0 t—0 t

and the result follows from rules of differentiation.
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71 Proposition (J-L Lemma 5.12). Let % (C,w) be the space of functions ® in ¥ (C,w) of the
form )
B(z) = e~ 2lelZZ (2, 7)

where P is a bivariate polynomial.
1. The space #(C,w) is stable under the action of g. Let w1 be the representation of g on /H(C,w).
1 18 admissible.

71 48 irreducible.

™

1 48 not equivalent to (Ad€)m.

1) It is clear from proposition 70 that #(C,w) is stable under X, X_ and J; since these generate
g as a Lie algebra the first statement follows.

2) The functions
<I>p(z) _ e—27r|a\zizn+p2m+p

with p a nonnegative integer form a basis for .#(C,w). Applying proposition 70 yields

ro(X4)0p = (2mia) Ppiq

(n+p)(m+p)

ro (X))@, = 2mia)Ppi1 — (tsgna)(2p+n+m+ 1), — i

p—1
ro(J)®p = (2r —n—m)®,
ro(Z)®p = 2p+n+m+ 1), — 4[| Ppy1.

Since U = X — X_ we thus have

ro(U)®, = (isgna)2p+n+m+1)®, +

Therefore, we can pick a basis ¥,, of the form

p—1
Uy =, + Z apg®p
q=0

such that
ro(U)¥, = (isgna)(2p +n+m+1)¥,

and it follows that the representation is admissible.
3) Note that
ro(Z — (2isgna) X1 )®, = 2p+n+m+1)P,.

Thus if & = > a,®, is any function in #5(C,w) it follows that a,®, lies in the smallest g-stable
subspace containing ®. Thus any stable subspace of #)(C,w) is spanned by the &, it contains. From
the equations which give the action of g on @, it therefore follows that .#4(C,w) is irreducible.

4) Note that the eigenvalues of U under 7y are (isgna)(2p +n +m + 1) with n, m and p positive,
while the eigenvalues of U under (Ade)m are —(isgna)(2p + n + m + 1) with the same restrictions on
n, m and p. It is thsu clear that the two representations are inequivalent.

72. It follows from proposition 71 and proposition 44 that there is a unique irreducible admissible

representation of (g, Kg) whose restriction to g is a direct sum of the representations 7; and (Ade€)m;.
We denote this representation by 7(w).
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73 Proposition. We have the following:
1. If both n and m are zero then w(w) is equivalent to w(u1, 1) with s; = r.

2. If either n or m is nonzero then w(w) is equivalent to o(uy, p2) with s1 = r+ 3(n +m) and
so=r1—1(n+m).

3. The representations m(w) and w(w') are equivalent if and only if w and W' are conjugate.

Here, as always, we write p;(t) = (sgnt)™[t]%.
These statements follow at one from the detailed description of the action of g given in the proof of

proposition 71, together with what we know about the representations (1, nu1) and o(u1, o).

6.3.4 The Whittaker model for m(w)
74. For a function ® in #(C,w) let Wg be the function on Gg given by
m@@):{wum¢xn g €0y
0 g¢ Gy
Let #4(w,) be the space of all the Wg for ® in .#,(C,w). Define
W (w,16) = Wa(w, ) + pl)Wa(w,0).

75 Proposition. The space # (w, ) is a Whittaker model for m(w).
This is fairly clear; we make some comments.
1) The map from the space of 7(w) to # (w, 1)) is given by

D — Wp, (€)@ — p(e)Wop

where @ lies in .%)(C,w). This is clearly a map of (g, Kr)-modules.

2) The space # (w,) is stable under the action of J; for this it is enough to show that .#5(C,w) is
stable under .#&. If ¢ is any function in .(C,w) and f is in 5% then 7(f)¢ is Kg-finite. Since .#4(C,w)
is precisely the space of Kg-finite vectors in .7 (C,w), the statement follows.

3) For any ® in .(C,w) we have

1/2Y,1/2 (o1/2
Wq>[a 0}{@0(& Jar/c®(at/?) a>0

0 1 0 a<0

Thus the functions in # (w, ) satisfy the necessary growth restrictions.

76. Note that since any o(u1, u2) is a m(w) for some w, proposition 75 establishes the existence of a
Whittaker model for the special representations.

6.3.5 The Weil representation for R & R
77. ADD REFERENCE TO SECTION 2.
78. We quickly recall the Weil representations associated to the algebra R @& R over R.

79. The Weil representation is a representation r of Gg on the space .#(R?). It can be described briefly
by

(r(9)®)~ = p(g)®~

where (p(g)®)(z) = ®(zg) and Gr acts on R? by matrix multiplication; ®~ is the partial Fourier
transform of ® given by

¢Wm®=4¢@wM@My
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80. We have the following:

1. <r 8 (1) ] Q)) (z,y) = ®(ax,y) for a in R*.
[a 0O .
2. <r 0 a1 } ‘I>) (z,y) = |a|®(az, ay) for a in R*.

—_

3. (r _ “17 } <1>) (z,y) = ¥(22y)®(z,y) for z in R.

o

4<rfléhﬁww=4}m@wm+mmw

81. If 411 and o are quasi-characters of R* we define a representation r,, ,,, also on the space . (R?)
by
Purna(9) = pa(det g)| det g|'/?r(g).

6.3.6 The Whittaker model for p(u, o)

82. In this section we construct the Whittaker model for p(j1, tt2). This construction is almost identitical
to the analagous construction in the non-archimedean case.

83. For ® in .%(R?) define

O(p1, pi2; ) :/

- pa(t)py (O(L 1) d "¢,

Define an element Wy of C*°(Gr) by

Wq;(g) = 0(:“/1; K25 Ty o (g)(I))
Let # (p1, 2; %) be the space of all Wg corresponding to Kg-finite functions ®.

84 Lemma. We have the following

1. Wrul,w(g)@ = P(Q)Wq>.
2. If ® is Kg-finite then the function Wg belongs to W ().

The only nontrivial point is to establish the growth conditions on Wy in part 2.

The Kg-finite functions in .#(R?) are linear combinations of functions of the form f(z? + y?)z™ and
f(x? + y?)y™ where f is a rapidly decreasing function and n is a nonnegative integer. By symmetry, it
thus suffices to establish the growth condition when

®(z,y) = f(2* +y*)a"

where f is rapidly decreasing.
To ease notation, we will be sloppy and write ¢P for any power function of ¢ and drop constants. We

have
We | @ e [ 2 +12)ar.
0 1 -

We need only consider the positive half of the integral, the other half can be handled in the same way.
We have

/OOO t f(a*t? +t2)dt = /Ooo tP f(at + ¢ 1)dt
:MAfWMHtMﬁ )
:ap/o t:f(a(t+t—1))dt+ap/1 tPfla(t +t1))dt
< Ca? /0 u? f (aw)du

< Cd?
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In the second to last step we made the change of variables v = t+t~! and applied some simple inequalites.
This proves the requisite condition.

85. If w is a quasi-character of R* and w(t) = (sgnt)™|t|° with s > 0 then the integral
2w, ®) = / (0, ) (t)d*t
RX
is defined for any element ® of .(R?). Thus if u; and po are quasi-characters such that (uypuy')(t) =
(sgnt)™|t|® with s > —1 then we can define

fa(g) = pi(det g)| det g|*/22(p1 15 o, p(g) @)

where ag is the quasi-character of R* given by t — [¢].

86 Lemma. Assume (uipy')(t) = (sgnt)™|t|* with s > —1.
1. p(9)fo = [, (det g)) det g|1/2p(g)®-
2. If ® is Kg-finite then fo belongs to B(u1, ps).
These again are easy calculations left to the reader.
87 Lemma. Assume (puypy ) (t) = (sgnt)™|t|* with s > —1. For all ® in ./ (R?) the function q on
R* given by
a(a) = 3 *(a)la] /2 W [ 0 }

1s integrable with respect to the additive Haar measure on R and

/ g(ayp(az)da = fo~ (—wn,).
RX

The proof is exactly the same as the proof of §5.6.4, lemma 119 and not worth repeating.

88 Proposition (J-L Lemma 5.13.1). Assume (uipuy ')(t) = (sgnt)™|t|* with s > —1.
1. There is a map A : W (p1, po; ) — B(u1, p2) which sends We to fo~ (where @ is Kg)-finite).
2. The map A is an isomorphism of F&-modules.

3. W (1, pa; ) is the Whittaker model for B(uq, pz).

The proof is exactly the same as that of §5.6.4, proposition 120 except for the proof that A is surjective.

We must thus show that given f in %(u1, u2) there exists a Kg-finite function ® in .%(R?) such that
f = fo~. In fact, if ® is any element of .#(R?) such that f = fe~ then we can find an elementary
idempotent £ which stabilizes f and thus

f=p&)fo~ = for

where ®1 = r,, ., ()P is now Kg-finite. Since .#(R?) is self dual under the Fourier transform, it thus
suffices to find a function ® in .#(R?) such that f = fs. In fact (by linearity) we need only exhibit such
® when f is one of the basis elements ¢,, of Z(u1, 112) where n has the same parity as m (cf. article 47).
Consider the function
O(x,y) = 67”("”2+y2)(:17 + (isgn n)y)‘”l.

We have p(rg)® = ¢™?® and (since det kg = 1) we also have

p(k0) fo = Fotug)s = €™ fo.
It thus follows that fg is a multiple of ¢,,. Since

1
fa(1) :i‘nl/Re—ﬂt?t‘”H's'HdXt: Lilnlgp=2nlr st DL (1] 4 5 4 1))

is nonzero the function f is a nonzero multiple of ¢,. This completes the proof.
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89 Proposition. For any quasi-characters pp and po we have

W (1, p2; ) = W (o, pas ).

The proof is the same as that of §5.6.4, proposition 122 and thus omitted.

90. Note that proposition 88 establishes the existence of a Whittaker model for the infinite dimensional
principal series representations. We have thus completed the existence part of theorem 59.

6.3.7 Uniqueness of the Whittaker model

91 Lemma (J-L pg. 188). Let # (m,v) be a Whittaker model for the irreducible admissible

representation (w, V). Let k,, be a representation of ¢ appearing in w and let W be an element of W (7, )
which satisfies

W (gro) = "W (g).
Define a function ¢ on R* by

o(t) =W (Sgnt3|t|1/2 \t|—01/2
We say ¢ corresponds to W.

1. ¢ is smooth.

2. ¢ determines W.

3. p(V)W corresponds to Zt% — (2at — n)o.

d
4. p(V_)W corresponds to 2t£ + (2at — n)é.

d2
5. p(D)W corresponds to 2252W;ZS + (2ant — 20°%t?) .

6. p(e)W corresponds to ¢(—t).

1) This follows immediately since, by definition, elements of the Whittaker model are smooth.
2) We have

w(lo o ][6 7110 S]] nl i ]) -e@eeeon

where w is the central quasi-character of 7. Since Gg = PrKR (the Iwasawa decomposition) it follows
that W is determined by ¢.
3,4, 5, 6) Left to the reader.
92 Lemma. Consider the following differential equation
d%¢ 9 N A
dt2+(a+t+t2¢ (2)
where a is a nonzero constant and X is an arbitrary constant.

1. There exist two solutions ¢1 and ¢o of (2) on the interval (0,00) such that if ¢ is any solution of
(2) on R* then there exist constants «; and (3; such that

_Jaida(t) + aga(t) t>0
o= {5@1(0 + Baga(—t) t<0

2. The functions ¢1 and ¢o are analytic.
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3. Ast tends to infinity ¢1(t) ~ tN1et while ¢o(t) ~ tN2e=t where Ny and Ny are real numbers and
c is a positive real number.

If we replace ¢(t) by ¢(t/2c) then (2) takes the form

42 1 n A
+<—4+2t+t2>¢=0.

This is the confluent hypergeometric equation the solutions of which are called Whittaker functions (not
to be confused with Whittaker functionals). The stated properties of the ¢; follow easily from the
corresponding properties of Whittaker functions, developped in e.g. Watson and Whittaker Chapter 16.

93 Proposition (J-L pg. 189). Let (7,V) be an infinite dimensional irreducible admissible repre-
sentation of F&. Then m admits at most one Whittaker model.

Take 7 to be a 7(p1, po) or a o(p1, p2) and write (uipy H)(t) = (sgnt)™[t|*. Let # be the Whittaker
model we have already constructed and let #’ be another Whittaker model. We consider two cases.

Case 1: s —m is an odd integer. Let n = s + 1. Then the representation k,, of £ appears in 7 (or,
more precisely, the restriction of the associated action of (g, Kg) to &. Let W and W’ belong to the
nth weigth space of # and # (i.e., they satisfy W(grg) = ¢™’). Let ¢ and ¢’ be the corresponding
functions on R*. Now, by proposition 48 we have p(V_)W = 0 and p(V_)W' = 0. Thus by lemma 91
both ¢ and ¢’ satisfy the equation 40

QtE + (2at —n)p = 0.

However,

o(t) = t|*/2e=t  at >0
~]o at <0

is the only solution (up to a constant) which satisfies the growth condition. Thus ¢ = C¢’ for some
constant C' and this proves that # = #".

Case 2: s—m is not an odd integer. Let n be some integer such that x,, appears in w. Let W and W’
be elements of the nth weight space of the two Whittaker models and let ¢ and ¢’ be the correspodning
functions on R*. By proposition 48 we have p(D) = % (52 — 1) and so lemma 91 implies that both ¢ and

@' satisfy , ’ )
M+<—a2+"ta+(s_1) )qb:O. (3)

dt? 4t2

Since ¢ and ¢’ are O(t") for some N, it follows from lemma 92 that ¢ and ¢’ are scalar multiples of
¢1 on (0,00) and scalar multiples of ¢t — ¢1(—t) on (—o00,0). Therefore ¢(t) = ag¢’(t) for ¢ > 0 and
@(t) = B¢/ (t) for t < 0. If we can pick n so that & =  then the uniqueness will follow. There are now
two subcases.

Subcase A: m = 0. Take n = 0. Proposition 48 gives

m(eW = (-1)™W

and similarly for W’ (where my is such that p1(t) = (sgnt)™|t|*'). Thus ¢(—t) = (—1)™1¢(t) and
similarly for ¢'. Therefore o = 3.
Subcase B: m = 1. Take n = 1. Then by proposition 48 we have

p(Vo)W = (=1)" sp(e)W
and similarly for W’. Thus, applying lemma 91, we see that both ¢ and ¢’ satisfy the equation

2t%(t) + (20t — 1)(t) = (—1)™ sg(—1)

and therefore a = (3.
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94 Proposition. Let m be an infinite dimensional irreducible admissible representation of #%&. Then
the members of the Whittaker model of m are rapidly decreasing and analytic.

It suffices to prove the proposition for members W of the nth weight space of = (for all n). Let g be
an arbitrary element of Gg and write

|1 =z a; O
I9=10 1 0 ag |7

First note that if w is the central quasi-character of m and ¢ is the function on R* associated to W then

w1 ] =eton.

A simple computation now shows

w (|5 1)) =vtnemaemainat oa; 0,

Since

(9:t) = W(tz)e™ w((sgn az)|arast|'/?)
is an analytic function of (g,t) which is O(t") as t tends to infinity with g fixed, it suffices to show that
¢ is analytic and rapidly decreasing. As in the proof of proposition 93, case 2, the function ¢ satisfies
the differential equation of lemma 92. Thus ¢, when restricted to either (0, 00) or (—o00,0), is a multiple
of ¢1 (¢2 is excluded for growth reasons) and therefore analytic and rapidly decreasing.

6.3.8 Comparison of # (w;v) and # (u1, j2;v)

95. We have defined two Whittaker spaces: the space # (w;®) associated to a quasi-character w of
C* and the space # (u1, 1o;1) associated to a pair of quasi-characters of R*. There is some overlap,
however. If, for instance, m(w) = m(u1,np1) then the two spaces must be equal. If w(w) is a special
representation, then % (w;) must appear as a constiuent of # (u1,us2;1). The following proposition
gives more detail.

96 Proposition (J-L Cor. 5.14). Let w be a quasi-character of C* given by

nsm

zZz

w(z) = (Zf)r(zz)%m

where one of m and n is positive and the other is zero. Let py and ps be quasi-characters of R* such
M 2
that
(1p2)(8) = [t*" (sgn )™+ FE, (m1py ) () = £ sgut.

1. We have 7(w) = o(u1, p2).

2. We have a diagram
W(w; ) ——= W, p2;9)

! T

B, po) ——= B(p1, p12)

where the vertical arrows are isomorphisms.

3. Let W(u1, p2;1b) be the image of Bs(u1, uz2) in the space W (1, p2; ). If ® belongs to .~ (R?) and
Wa belongs to W (1, po; ) then We belongs to #s(u1, pe; ) if and only if

07D
2'——(2,0)dx =0
r Oy
for two monnegative integers i and j satisfying i+ j=m+n — 1.

PROVE THIS.

6.3.9 The non-existence of Whittaker models for finite dimensional repre-
sentations

168



97 Proposition. If « is a finite dimensional representation then w does not posess a Whittaker model.

Since 7 is finite dimensional its contragrediant is equal to its dual and is finite dimensional. Thus
7(X4) is nilpotent. If 7 had a Whittaker model then it would have a Whittaker functional A\ (e.g.,
W+ W(1) for W in the Whittaker model) and neccessarily (X )\ = —2mia\ (where 1 (z) = e2™).
But this contradicts 7(X ) being nilpotent. Therefore m cannot have a Whittaker model.

6.4 Local L-functions

6.4.1 The functions L(s,7) and Z(s, ¢,¢)

98. Let 7 be an irreducible admissible representation. We define the local L-function L(s, ) of m:

1. If m = w(pa, p2) then L(s,m) = L(s, u1)L(s, pu2) where L(s, p1;) is the local L-function for GL(1,R)
(cf. §2.1.2).

2. If 7 = w(w) then L(s,7) = L(s,w) where L(s,w) is the local L-function for GL(1,C).

Note that we have defined L(s,7) even when 7 is finite dimensional. Note also that we have given two
definitions of L(s,7) when m = 7(u1,np1); it is a simple consequence of the duplication formula for the
gamma function that they agree.

99. Let 7 be an infinite dimensional irreducible admissible representation. For a quasi-character £ of
R* and a function W in the Whittaker model of 7 define the zeta function

Z(s, W, €) = /]R ¢(a)|al* W { oY ] d*a.

If € is the trivial character we write Z(s, W) in place of Z(s, W, ).

100 Proposition (J-L Thm. 5.15). Let m be an infinite dimensional irreducible admissible
representation

1. For any W in the Whittaker model and g in G the integral definining Z (s, p(g)W, &) converges in
some half plane Rs > sq.

2. For all g and W the ratio
Z(s,plg)W) "
L(s,m)

can be analytically continued to an entire function of s.

3. There exists W such that the quotient 4 is equal to 1 (with g =1).

4. If W is fized then Z(s,p(g)W) remains bounded as g varies in a compact set and s varies in a
vertical strip of finite width with discs removed about the poles of L(s, ).

101. We delay the proof of proposition 100 and prove it simultaneously with the local functional
equation.

6.4.2 The local functional equation

102 Theorem (J-L Thm. 5.15). Let w be an infinite dimensional irreducible admissible represen-
tation of & with central quasi-character w.

1. There exist e-factors such that for any W and g

Z(1 — s, p(wg)W, (w§) ™)
L(1—s,7)

Z (s, p(g)W,§)
L) (5)

= 6(57 m, &, ?/’)

If & is trivial we write (s, m,1) in place of e(s, 7, &, ).

169



2. The factors e(s,m, &) are of the form ab®.

3. If m = w(p1, ko) then
6(87 7771/)) = 6(87/’[/17’(/))6(87/1/271/])

where €(s, p;, ) are the epsilon factors for GL(1,R).
4. If T =w(w') and (x) = 2™ then

6(87 T, ’(/}) = (Z SgIlOt)G(S, wlv 1/’@)
103. We prove this theorem in the next two sections.
104. The identity (5) is called the local functional equation for GL(2,R).

105. As before, we define y-factors by

L(1—s,7)
L(s,m)

so that the local functional equation takes the form

Z(1 = s, p(wg)W, &) = (s, m,&,0) Z(s, p(g)W, §).

’Y(877T7£7 /ll)) = 6(87 Tr? 67 {ll))

6.4.3 Proofs for 7(uq, 112)

106. In this section we prove proposition 100 and theorem 102 for the representations (1, ua). It
suffcies to prove most of the statements for g = 1 and W = Wy with ® an arbitrary element of . (R?)

(since p(g)Wa = Wy(g)a)-

107 Lemma. For ® in . (R?) we have Z(s,Ws,£) = Z(s,&p1; 8, Epg; @) where

Z(s1, p1; 82, p2; @) = / . p (@) |z]*t o (y)|y|*2 @ (2, y)d™* xd* y.
(®X)

In particular, if ®(x,y) = é1(x)d2(y) where ¢1 and ¢o belong to S (R) then
Z (51, p1; 82, po; @) = Z(s1, P, 1) Z(s2, , p2)

so that the GL(2) zeta function factors into GL(1) zeta functions.
This is a simple computation which has already been performed in §5.8.2, lemma 156.

108. Since the integral defining Z(s,&u1; s, Epe; @) clearly converges in some half plane, part 1 of
proposition 100 follows. Also if we take ¢1 and ¢o so that Z(s,¢1)/L(s,p1) = 1 (possible by §2.1.2,
proposition 6) and let ®(z,y) = ¢1(x)p2(y) then it follows that (4) is equal to 1. Thus part 2 of
proposition 100 is proved.

109. Note that the effect of changing p; to p;of is the same as changing s to s + r; 4 rg, and since
the statements of the proposition and theorem are stable under translations in s, we may assume that
w1 and pg are characters. We make this assumption for the rest of the section (to ease some notation).

110 Lemma (J-L Lemma 5.15.1). Assume py and pe are characters. Then for all ® and ¥ in
S (R?) and complex numbers s; and so with real parts in (0,1) we have

Z(s1, 113 82, 12, @) Z(1 — s1, a7 51— 80,15 5 0) = Z(1 — s1, a1 551 — 89, 1555 ') Z (51, 115 82, s W)

where prime denotes Fourier transform.
First note that since 1 and ps are characters the integrals Z (s, (1 2, to; @) converge for Rsp, Rso >
0; thus the statement makes sense.
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The left hand side equals
/‘D(fﬂ,y)‘lf’(u,v)m(fw’l)uz(yv’l)Ifmfllslva’l\”dxxdxydudv

where the integral is over (R*)* and we have used d*z = |x|~'dx. A change of variables gives

[ i@t bl | [ oot o)dudo|a* oy

In the same way, the right hand side is equal to
[ ot @ns el =l [ / @'(zu,vaw,v)dudv]dxxdxy
= [ m@walel i [p:y—l [y v v)dudv}dxmxy.

Now, the Fourier transform of the function (u,v) — ®(zu,yv) is the function |zy|~1®’(x~tu,y~tv) and
so the Plancherel formula gives

/‘b(mu,yv)@'(u,v)dudv = |xy|_1/‘I)’(x_lu,y_lv)‘ll(u,v)dudv
which proves the lemma.

111. Now pick ¥; and 9 in Z(R) so that L(s, u;) = Z(s, ¢, p;). By the local functional equation for
GL(1) we have
Z(1 = s, 45, pu; ") = e, i, V)L = s,17)

Now let ¥(z,y) = ¢1(x)2(y). Lemma 110 then gives
Z(s1, ;82,105 ®)  Z(1— 81,0751 = 89,15 3 P)

6(31311'1,7/})6(527,“271/}) L(Slzﬂl)L(s%l‘?) = L(l _ Sl,ufl)L(l - 52;#51) :

when Rs; and Rsq lie in (0,1). However, the left hand side is defined and holomorphic for $s1, Rso > 0
while the right hand side is defined and holomorphic for Rsi, Rse < 1. It follows that both sides are in
fact entire functions of s; and ss. Letting s; = s5 = s we obtain the functional equation.

112. The only thing left to prove is the final statement of proposition 100, which we take care of in the
following lemma.

113 Lemma. Let Q be a compact subset of #(R?) and C a domain in C? obtained by removing
balls about the poles of L(s1,u1)L(s2,ue) from the region a3 < Rs; < by, ag < Rsg < be. Then
Z (81, u1; S2, 2; D) remains bounded as ® varies in Q and (s1, s2) varies in C.

It suffices to prove this when both a; and as are greater than 0 or both b, and by are less than 1. On
a region of the first type the function Z(u1, s1; 2, s2; @) is defined by a definite integral; integrating by
parts gives
Z(p1, 01 +iT1; po, 00 +im; @) = O((77 +73)™™)

as 72 + 74 — oo uniformly for ® in Q and a1 < o1 < by, as < 09 < by, which is much stronger than
required. For a region of the second type, combine the result just obtained with the functional equation
and known facts about the gamma function.

6.4.4 Proofs for 7(w)

114. In this section we prove proposition 100 and theorem 102 for the representations m(w). We assume
w does not factor through | - |¢; such representations were handled in the previous section.
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115. The space # (w; 1)) is the sum of #;(w, 1) and its right translate by e. Since
Z(s, plge)W) = w(=1)Z(s, ple~ ' ge)W)

it suffices to prove the statements for W in #; (w; ). As in the previous section, we prove the statements
for g =1 and W = Wg with ® an arbitrary element of . (C,w).

116 Lemma. Let ® belong to ./ (C,w). Then
Z(s,Ws) = cZ(s,P,w)

where the left side is a GL(2) zeta function, the right side is a GL(1) zeta function and ¢ is some absolute
constant.
We have

(o) e}
Z(s,Wa) :/ a* Wy { 8 (1) ] d*a :/ a* 2w (a?)a?®(a?)d* a
0 0

- 2/000 ®w(a)®(a)da

Now if z is a complex number of modulus 1 then ®(az) = w~™!(x)®(a). Thus, continuing the above
derivation, we have

1 00 2m ) ) )
Z(s,Wg) = f/ / lae®|**w(ae’®) D (ae')dod* a = c/ |z|¢w(z)®(2)d™ 2.
T™Jo Jo Cx
This proves the lemma.

117. Most of proposition 100 and theorem 102 now follow from facts about GL(1) (¢f. §2.1.2 and §2.1.3).
The last part of proposition 100 follows from a lemma similar to lemma 113, which we do not bother to
state or prove.

The only statement left to prove is that there exists ® in .#,(C,w) such that Z(s, ®,w)/L(s,w) =1
(note that the GL(1) theory asserts that the existence of ® in the larger space .#(C)). Let w(z) =
(22)"z"z™. The function

(13(2) _ 6727rz22m2n

belongs to #(C,w). We have
Z(s,P,w) = 271'/ g2(strtntm)—1-2ma® g 7(2m)~EFTHEREID (s 4 4+ m) = eL(s,w)
0
where c¢ is some nonzero constant. This finishes the proof.

6.4.5 The y-factors determine 7w

118 Proposition (J-L Prop. 5.18). Let m and © be infinite dimensional irreducible admissible
representations of H#%. Then 7 and 7' are equivalent if and only if they have the same central quasi-
character and

7(87 7(-7 67 ,l/}) = 7(87 ﬂ-/’ 57 w)

for all quasi-characters & of R*.

6.5 Representations associated to H

DO THIS.
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Chapter 7

Representations of GL(2,C)

7.1 Notations

1. Throughout this section we will use the following notations:

1. We let G¢ denote the Lie group GL(2,C) (thought of as a real Lie group);
We let K¢ be the standard maximal compact subgroup U(2,C) of G¢;

We let g denote the Lie algebra of G¢ (thought of as a real Lie algebra);
We let gc be the complexification of g;

We let % be the universal enveloping algebra of gc;

We let 2 be the center of % ;

We let ¢ be a fixed nontrivial additive character of C;

®©® N o ol W

We let p,, denote the unique irreducible representation of SU(2, C) of degree n + 1.

7.2 Basic constructs and their properties
2. Everything in §6.1 carries over to the present case. We give some brief comments.

3. We define the Hecke algebra ¢ to be the algebra of Kc-finite distributions of compact support on
G¢ with support contained in K¢ under convolution. It is an idempotented algebra; we thus have the
notions of smooth representations, admissible representations and contragrediants.

4. Again, this Hecke algebra (of Flath) differs from the Hecke algebra of Jacquet-Langlands. The
situation is exactly analagous to the real case and we do not both to expound.

5. A representation of % is defined to be admissible if its restriction to the Lie algebra of K¢ decomposes
into a direct sum of finite dimensional irreducible representations each occurring with finite multiplicity.

6. We again have the notion of a Harish-Chandra module or a representaiton of (g, K¢). However,
since K¢ is now connected an admissible represnetation of (g, K¢) is the same thing as an admissible
representation of g. Thus we do not use Harish-Chandra modules in this section.

7. Once again, there is an equivalence of categories between smooth .#¢-modules and Harish-Chandra
modules (and thus % -modules as well, in the present case).

8. Given an admissible representation 7 of J#¢ one can construct a representation of Z¢ on the same

space. If 7 is irreducible then Schur’s lemma is satisfied and the elements of Z¢ act as scalars. Thus we
have a central quasi-character associated to an irreducible admissible representation.
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9. One can again twist a representation of ¢ or % by a qausi-character of C*.

7.3 Classification of irreducible representations

10. Let 1 and up be quasi-characters of C*. Let u = iy ' As before, write

bi b

2%z 2%z

(22)%(041‘4’171‘)

1i(2) = (22)% pu(2) = (22)°

1
(22) 5 (a+b)
where a;, b;, a and b are nonnegative integers and one from each pair is zero.

11. We define the space Z(u1, p2) to be the space of all complex valued functions f on G¢ which are
Kc-finite on the right and which satisfy

1/2

I(9)-

a

F([4 2 o) = mbamten]|

az

Both J# and % act on ZB(u1, u2) via p and we denote the resulting representation as p(f1, f2).

12. We identify gc with gl(2, C) ©gl(2, C) in such a way that the elements of g correspond to elements of
the form X & X. If %4 is the universal enveloping algebra of gl(2, C) then % is identified with 23 ® %.

13. In section §6.2 we introduced the elements D and J of the complexification of the universal enveloping
algebra of Gr. We derive four elements of % from them:

D1:D®1, D2:1®D, J1:J®]., J2:1®J

All four of these lie in &

14 Proposition (J-L Lemma 6.1). For the representation p(u1, u2) we have the following:
p(D1) = s+ Ha=b)2 =% p(Da) = hs+b—a)? -4,

p(J1) = s1+ s2 + 3(a1 — b1 + az — by), p(J2) = 514 s2 + 5(b1 — a1 + by — az).

15 Proposition (J-L Lemma 6.1). We have:
1. The representation p(u1, u2) is admissible.

2. The restriction of p(p1, p2) to the Lie algebra of SU(2,C) contains the representation p, if and
only if n > a+ b and n has the same parity as a + b, in which case it occurs with multiplicity one.

16. We let B(u1, po; prn) be the space of functions in HB(u1, ) which transform according to p,,.

17 Theorem (J-L Thm. 6.2). We have the following:
1. Let p not be of the form z+— 2PZ% or z+— z7PZ 1 withp > 1 and ¢ > 1.

(a) The representation p(p1, p2) s irreducible.

(b) We denote by w(u1, pe) any representation in its equivalence class.
2. Let p be of the form z — 2PZ% withp > 1 and q > 1.

(a) The space
Bo(p,m2) = P Bl pai pn)

n2p+q
n=p+q (mod 2)

is the unique proper stable subspace of PB(u1, p2).
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(b) We denote by o(u1, i2) any representation equivalent to the restriction of p(u1, puz2) to
Bs (1, p2)-

(c) We denote by m(u1, n2) any representation equivalent to the representation on HBy(p, p2) =
B, p2)/ Bs (i, p2) induced by p(pa, pio).

3. Let pu be of the form z — 27Pz79 with p > 1 and ¢ > 1.

(a) The space

Bi(ppe) = B Blu,naipn)

lp—q|<n<p+q
n=p+q (mod 2)

is the unique proper stable subspace of PB(u1, p2).

(b) We denote by m(u1, o) any representation equivalent to the restriction of p(u1, pe) to
93;“(#17#2)-

(c) We denote by o(u1, pe) any representation equivalent to the representation on Bs(u1, ua) =
B, p2)/ By (p, p2) induced by p(pa, p2)-

4. The representations w(p1, po) and (), uh) are equivalent if and only if {u1, pa} = {p], b}
5. The representations o(p1, u2) and o(py, ph) are equivalent if and only if {1, pa} = {ui, ph}.

6. If u is of the form z — 2zPZ? with p > 1 and q > 1 then there is a pair of characters vi, vy such
that

(a) pipe = vive;
(b) vivy ' is of the form z — 2PZ79;

(c) the representation o(u1, p2) is equivalent to mw(vy, va).

7. Ewery irreducible admissible representation of ¢ or U is equivalent to a mw(p1, p2).

7.4 The Whittaker model

18. Let #'(¢) be the space of all complex valued functions W on G¢ which satisfy the following
conditions.

1. W is K-finite on the right and smooth.
2. We have

for all z in C and all g in G¢.

3. For all g in Gg there exists a positive real number N (depending on g and W) such that

w4 2]) o

as [t| — oo.

There is an action of (g, K¢) and ¢ on # ().

19. A Whittaker model of a representation 7 of J¢ is an #¢-submodule of # (1) which is equivalent
to 7.
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20 Theorem (J-L Thm 6.3). Let 7 be an infinite dimensional irreducible admissible representation
of Ht. Then w has a unique Whittaker model. All members of the Whittaker model are analytic and
rapidly decreasing (remember, we treat G¢ as a real analytic manifold.)

7.5 The functions L(s,7) and Z(s,¢,£) and the local functional
equation

21. Let 7 be an irreducible admissible representation. By theorem 17 7 is equivalent to (1, ps) for
some quasi-characters p1 and pg of C*. We define the local L-function of w to be

L(s,m) = L(s, 1) L(s, p2)
where L(s, p;) is the local L-function for GL(1,C) (¢f. §2.1.2).

22. Now let 7 be an infinite dimensional irreducible admissible representation. For a quasi-character &
of C* and a function W in the Whittaker model of 7 define the zeta function

2689 = [ sl w6 o

If ¢ is the trivial character we write Z(s, W) in place of Z(s, W, ).

23 Proposition. Let w be an infinite dimensional irreducible admissible representation.

1. For any W in the Whittaker model and g in G¢ the integral defining Z(s, p(g)W,&) converges in
some half plane Rs > sg.

2. For allW and g the ratio
Z(s, W)
L(s,m)

can be analytically continued to an entire function of s.

(1)

3. There exists W such that the quotient (1) is equal to 1 (with g =1).

4. If W is fized then Z(s,p(g)W) remains bounded as g varies in a compact set and s varies in a
vertical strip of finite width with discs removed about the poles of L(s, 7).

24 Theorem. Let w be an infinite dimensional irreducible admissible representation with central
quasi-character w.

1. There ezist e-factors such that for all W and g

Z(1 —s,p(wg)W, (W)~ 1) _
L(1—s,7)

Z(s, p(g)W; €)
L(s,m) @)

e(s,m & 1)
If € is the trivial character we write €(s,m, 1) in place of €(s,m,&,1)).

2. The factors e(s,m,&,1) are of the form ab®.
3. If w is equivalent to ww(py, p2) then

E(S, T, 1/’) = 6(57 M1, 1,[))6(5, H2, 1/})

25. The identity (2) is called the local functional equation for GL(2,C).

26. As before, we define ~-factors by
L(1—s,7)
L(s,m)

so that the local functional equation takes the form

Z(l -5 p(w.g)vvaf) = 7(3’ﬂ7£’¢)z(sap(g)mf)'

V(Svﬂ'vgv"/)) = 6(577T7€a7/})

176



27 Proposition (J-L Lemma 6.6). Let m and 7' be infinite dimensional irreducible admissible
representations. Then m and ' are equivalent if and only if they have the same central quasi-character
and

,-Y(s’ 7T7 é.’ /17[}) = ,-Y(s’ 7T/7 €7 ¢)

for all quasi-characters & of C*.
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Chapter 8

Representations of GL(2, A)

8.1 Notations

1. Throughout this section we will use the following notations:
1. We let F' denote a global field;
2. We let A denote the adele ring of F;
3. We let I denote the idele group of F}

4. We let X denote the set of all places of F; we let ¥y denote the set of finite places and ¥, the set
of infinite places;

5. If X is some adelic object and S is a finite subset of ¥, we let Xg denote the S-part of X and X?°
the complement of the S-part of X. We also let X, and X; denote the infinite and finite parts of
X. When S = {v} we write X,, in place of Xg. For example, F;, is just the local field of F at v;

Asg is the product [[,cg Fo; Is is the restricted direct product vazs(FvX :Uy), ete;

6. We let 1 denote a nontrivial additive character of A which is trivial on F'; we let 1, denote the
corresponding character of F,; note that 1, is also nontrivial and for almost all v it is unramified.

8.2 General representation theory

8.2.1 The Hecke algebra

2. Let v be a place of F. Define ¢, to be the characteristic function of K, on G,. Then (when regarded
in the appropriate manner) €, is an element of J%,; in fact, it is the elementary idempotent corresponding
to the trivial representation of K.

3. We define the global Hecke algebra € to be the restrictred direct product of the Hecke algebras
S, with respect to the idempotents €,. It is again an idempotented algebra. We thus have for free the
notions of smooth representations, admissible representations and contragrediants.

4. Recall (§1.4.2) that an admissible family of representations (m,) consists of, for each place v, an
admissible representation , of ., such that for almost all v the image of m,(e,) is one dimensional.
Note that this condition is equivalent to m, being spherical (cf. §5.11.1) for almost all v.

Let (m,) be an admissible family. Pick an element z, of the space of 7, such that for almost all v
x, spans the image of 7(e,) (i.e., x, is spherical for almost all v). We define the tensor product of the
family (m,), denoted ®m,, to be the restricted direct product of the 7, with respect to the x,. It does
not depend on the choice of x, (up to isomorphism).
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5 Theorem. We have the following.

1. Let (m,) be an admissible family of irreducible representations of J€,. Then ®m, is an admissible
irreducible representation of J¢,.

2. Let  be an irreducible admissible representation of 5. Then there exists an admissible family of
representations (m,) such that w is equivalent to Qm,.

This is precisely the assertion of §1.4.6, theorem 119.

6. Note that if 7 = ®m,, is irreducible and admissible then for almost all v the representation 7, is a prin-
cipal series representation corresponding to unramified quasi-characters of F,* (c¢f. §5.11.2, proposition
194).

8.2.2 The Whittaker model

7. Let ¢ be a nontrivial additive character of A. Let # (1) be the space of complex valued functions
W on G 4 which satisfy the following conditions:

1. We have

for all x in A and all g in G 4.
2. For all g in G the restriction of p(g)W to G is smooth and K-finite on the right.

3. For all g in Gy, all T in % and all non-archimedean places v, the restriction of p(T)p(g)W to G,
is locally constant.

4. For all g in Gy, all T in %, and all archimedean places v there exists a positive real number N

such that

e | 5 | =00a

where a belongs to F,* and |a| — oo.

It is clear that J¢ acts smoothly on #/(¢) via p. It is also clear that G (and thus %) acts smoothly
on # (). Therefore, there is a smooth action of 7 on # (¢).

8. A Whittaker model of a representation 7 of . is a submodule of # () which is isomorphic to 7.

9 Theorem (J-L Prop. 9.2, 9.3). Let 7 = ®m, be an irreducible admissible representation of €.
1. If each , is infinite dimensional for all v then m admits a unique Whittaker model W (w, ).
2. If m, is finite dimensional for any v then m does not have a Whittaker model.

1) For each place v we have a Whittaker model #,, = # (r,, %, ). For almost all v, , is spherical and
1, is unramified; for such v there exists a unique element W of #,, such that W, is invariant under K,
and W2 (1) =1 (¢f. §5.11.3, proposition 199). Define # (m, 1) to be the restricted tensor product of the
W, with respect to the elements W.. We interpret elements of # (r, 1)) as functions on G4 as follows:
if W =W, and g = (g,) then W(g) = [[ Wy(gy). Since for almost all v we have W,, = W and g, =1
it follows that almost all factors in the product are 1 and so the definition of W(g) makes sense. The
requisite properties of W follow easily from the corresponding properties of the W,,.

We must now show that the Whittaker model just constructed is the only Whittaker model of 7. Let
#’ be another Whittaker model and let T : # (7,v) — #” be an isomorphism of #’-modules. We will
show that T is given by multiplication by a scalar, which will establish the uniqueness.

For a subset S of ¥ put

s = QW0 : W),
vES
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We first show that if S is a finite subset of ¥ with complement S then there exists a complex valued
function cg on Gz x #3z such that if f =T(¢ ® ¢) with ¢ in #5 and ¢ in #3 then

F(99) = ¢s(3, 8)o(9)

for g in G5 and g in Gz (note that ¢(g) = [[,cg @v(gv))- It is clear that the number cs(g, @), if it exists,
is unique. _

First consider the case when S contains a single element v. Let ¢ belong to #3 and let g belong to
Gg. Given ¢, in #; let ¢, be the function on G, given by

Q%(gv) = f(gvg)

where f =T (¢ ® 5) It is easily verified that A) ¢/, belongs to #,; and B) if ¢, is replaced by p(f,)d,
(with f, in J%,) then ¢ is replaced with p(f,)@.. It thus follows that ¢, — ¢ is an endomorphism of
the irreducible 7,-module %, and is therefore equal to a constant c¢s(g, 5)

Assume we we have proved the statement for the finite set S, i.e., we have proved the existence of
cs. Let S’ be obtained from S by adjoining a single place w. Let ¢ belong to #7%, and let g belong to
Gg. Given ¢ in #5, ¢ in #,, g in G5 and gy, in Gy, we have (by the inductive hypothesis)

£(9909) = ¢5(9wd, dw @ 0)8(9)

where f =T (¢ ® ¢ ® 5) The argument used in the previous paragraph now shows that the function

Guw = CS(gw§7 Puw ® 5)

is a multiple cg/ (g gb) of ¢y,.

We have thus proved the existence of cg for all finite subsets S. Before continuing, we make one
observation. Suppose S is the disjoint union of S; and Ss. Given hy in G§1 we may write h; =
(ITues, frw)h where h belongs to Gg. Similarly, given ¢1 in #5 we may write ¢1 = (®),cg, Pv) ® ¢
where ¢ belongs to #z. We then have

cs, (h1,¢1) = ( IT ¢o(he ) h,¢) (1)

vESH

since the right side satisfies the defining properties of the left.

We now prove that T is a scalar. Take S7 so large that S; contains only spherical places. Then, by
its definition, cg, (h, @ ,cg, Wy ) is equal to a constant ¢(S1) as h varies in Kg . The identitiy (1) shows
that if S' contains S; then C(S) = ¢(S1). Let ¢ be the common value of all these constants.

Now, given ¢ = ®¢,, in # (m,¢) and g = (g,) take S containing 57 large enough such that for v not
in 57 we have ¢, = W and g, belongs to K,. Then

= C< H gvv®¢v> H ¢v(gv) =c H ¢v(gv) = C¢(g)7

veES veS veS vES

and we have proved uniqueness.

2) As we have seen above, if ¢ belongs to the Whittaker model of 7 then the restriction of ¢ to G,
belongs to the Whittaker model of 7,. Thus if 7 has a Whittaker model so do all the 7,. Since we know
that finite dimensional representations do not have Whittaker models, the second statement follows.

8.3 First properties of automorphic representations

8.3.1 Automorphic representations
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10. Let ¢ be a function on GF\G 4. We may think of ¢ as a function on G4 which satisfies ¢(gh) = ¢(h)
for all g in Gp. We make some definitions:

1. We say ¢ is smooth if for every g in G 4 there exists a neighborhood U and a smooth function f,
on G such that f(h) = fy(heo) for all h in U. Note that if F' is a function field this is equivalent
to ¢ being locally constant.

2. We say ¢ is slowly increasing if for any compact set 2 of G 4 there exist constants M; and My such
that for all g in Q and all @ in I with |a| > 0 we have

‘¢<[‘0’ Hg)‘swa%. 2)

3. We say ¢ is rapidly decreasing if for any compact set 2 and any My (positive or negative) there
exists a constant M; such that (2) holds for all g in © and all a in I with |a| > 0.

4. We say ¢ is cuspidal if for all g in G 4 we have

/F\A‘z’(u ﬂg>dw=0.

5. We say ¢ has central quasi-character n (where 7 is a quasi-character of F*\I, also regarded as a
quasi-character of Zp\Z4) if for all a in Z4 and all g in G4 we have ¢(ag) = n(a)d(g).

11. A smooth function ¢ on Grp\G4 is an automorphic form if:
1. ¢ is K-finite on the right.
2. For every elementary idempotent ¢ the space p(&)p(.#)¢ is finite dimensional.
3. ¢ is slowly increasing.

We say that ¢ is a cusp form if, in addition to the above conditions, it is cuspidal.

12. We let o denote the vector space of all automorphic forms; we let % denote the subspace of
cusp forms. For a quasi-character n of F*\I we let o/ (n) and %% (n) denote the subspaces consisting
of functions with central quasi-character 7. All of these spaces are stable under 7 acting via the right
regular representation p.

13. An irreducible admissible representation of ¢ is called an automorphic representation if it is
isomorphic to a constiuent (i.e., subquotient) of «/. An irreducible admissible representation of .7 is
called an automorphic cuspidal representation if it is isomorphic to a constiuent of .o7.

14 Proposition. Automorphic forms are Za-finite (Z 4 is the center of G4).

Let f be an automorphic form. Since f is K-finite there exists a finite set of place S (which we
take to contain all the archimedean places) such that f is invariant under K. Thus, in particular, f is
invariant under U® = vas U,. If S is sufficiently large then we will have I = F*U®Ig and so to show
that f is Za-finite it suffices to show that it is Zs-finite (since f is fixed by FXU?). Thus, in fact, it
suffices to show that f is Z,-finite for each place v.

Consider first the case when v is non-archimedean. Let £ be an elementary idempotent stabilizing f.
Since p(¢) and p(Z,) commute and p(G,) C p(4€) for v non-archimedean, we have

p(Zo)f = p(Z)p() f = p(§)p(Zy) f C p(&)p() .

By the definition of an automorphic form, the rightmost space is finite dimensional. Thus p(Z,)f is finite
dimensional as well.

Now consider the case when v is archimedean. Note that Z, is isomorphic to F,* which looks like
R* times some compact group which is contained in K. Since f is K-finite, we can ignore the compact
part of FX. Thus it suffices to show that f is RT-finite. In fact, since the space of automorphic forms is
closed under right translation, it suffices to show that the restriction of f to RT C F* is finite.
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We now introduce some notation that will make the argument a bit more simple to state. If f is any
cusp form, let f be the function on R given by

The above argument shows that it suffices to prove that f is finite for each automorphic form f.
Let Z be the element of the Lie algebra g, given by the matrix

R

As in the previous case, p(Z) and p(§) commute and p(Z)" € p(, so the span of the p(Z)"f is finite
dimensional. In particular, we have a reltationship of the form

Z aip(Z)'f =0.
i=0

If we apply * to the above relation, and use the fact that it is linear and transforms p(Z) into differenti-
ation, we deduce the relation
P
> @i =0,
i=0

where f (1) denotes the ith derivative of f . The solutions to this differential equation are sums of poly-
nomials times exponentials, and therefore finite. Thus f is finite, which finishes the proof.

8.3.2 An automorphic cuspidal representation is a constituent of «%(n)

15 Proposition (J-L Prop. 10.11). Let w be an automorphic cuspidal representation. Then there
exists a quasi-character np of I/F* such that 7 is a constituent of </y(n).
Let f be a cusp form. Since f is Z4-finite (cf., proposition 14), it follows from §1.6, proposition 126
that there is an expansion of the form

(5 0]9) =X S woglabsusto

=0 n

where the sum is over all quasi-characters n of I/F*, f, ; is a uniquely determined function, and f,; =0
for 7 sufficiently large and for 7 outside of some finite set. Note that all the f, ; are cusp forms.

For a finite set S of quasi-characters of I/F* and an integer M, let o (S, M) denote the set of cusp
forms f for which f;, = 0 for i > M or for n € S. This forms a vector and is stable under the action of
€. We have

By §1.7, proposition 134, it follows that any irreducible constituent of <% is a constituent of some
22 (S, M). Furthermore, from the easily seen decomposition

(S, M) = € o (n, M)
nes

and §1.7, proposition 135, it follows that any irreducible constituent of <% (S, M) is a constituent of
some 2/ (n, M). Therefore, we are reduced to showing that any irreducible constituent of 2% (n, M) is a
consistutent of 2% (n).

Let f be an element of < (n). We have

(15 wlo)=r( 2] v ]9)

from which we obtain the identity

fyww%mmezfy@@ngQgg}@.

=0 =0



By the uniqueness of the functions f; we may equate like coefficients and deduce that fp; belongs to
o(n). This gives us a map < (n, M) — 24(n) (namely, f — far), there kernel of which is obviously
o(n, M — 1); in other words we have an exact sequence

0 ——o(n, M — 1) —— (n, M) — o (n).

By §1.7, proposition 133, and an easy induction argument, we are finished.

8.3.3 The admissibility and complete reducibility of .o (n)

16 Proposition (J-L Prop. 10.5, 10.9). Let n be a quasi-character of F*\I. The representa-
tion 2/(n) is admissible and decomposes as a direct sum of irreducible admissible representations, each
occuring with finite multiplicity.

17. Proposition 16 will take the remained of the section to prove. Note that, together with proposition
15, it shows that any automorphic cuspidal representation occurs both as a subrepresentation and as a
quotient of 7 (n) for some 7.

8.3.4 The Fourier expansion of a cusp form

18 Proposition (Bump Thm. 3.5.5). Let ¢ be a cusp form. Define a function Wy on G4 by

We(g) = /A/Ffb ([ (1) :16 }g) O(—z)dz.

¢(g)=a§XW¢({g 2}9)-

The sum is absolutely convergent and uniformly convergent as g varies in compact sets.
Let g be a fixed element of G 4. Define a function A/F — C by

N EHD!

Since this is a continuous function on the compact group A/F it has a Fourier expansion. Note that the
characters of A/F are of the form x +— 1) (ax) where a belongs to F'. We thus have

5([5 1]9)= X cl@uan ()

Cla) = / ¢ ([ 0 } g) ¥(—ax)dz.
AJF
Note that since ¢ is cuspidal we have C'(0) = 0. Since ¢ is automorphic, and thus invariant under G,
we have
O(a)Z/ ¢>([a 0}{1 x}g>¢(—ax)dm
AJF 0 1 0 1

:/ ¢<[(1) Ong Hg)w(—ax)dx.
AJF

Upon making the change of variables z +— o~ !z (which is unimodular), we find

o[ 1))

Writing this in (4), dropping the a = 0 term, and setting 2 = 0 gives the stated formula for ¢(g). Since
the function (3) belongs to L?(A/F) the coefficients C'() are square-summable, and therefore the series
for ¢(g) converges absolutely.

Then

where

8.3.5 Automorphic cuspidal representations have Whittaker models
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19 Proposition. Let (m, V) be a subrepresentation of &4 (note that this applies to any automorphic
cuspidal representation, cf., the remarks following theorem 16). Then m has a Whittaker model.
Let the function Wy be as in proposition 18. It is clear that Wy satisfies

We ({ (1) 1 ]g> = p(x)Ws(9).

The necessary smoothness and growth conditions that Wy must satisfy to belong to # (¢) can be deduced
from the smoothness and growth conditions on ¢; thus Wy belongs to # (¢). The map ¢ — Wy therefore
gives a map V — # (1) of s#-modules, which is injective by proposition 18. The image of this map is
therefore a Whittaker model for V.

8.3.6 The multiplicity one theorem

20 Theorem (J-L Prop. 11.1.1). If an irreducible representation is contained in <%(n) then it is
contained with multiplicity one.

This is a logical consequence of the uniquess of Whittaker models (cf., proposition 9) and the Fourier
expansion of a cusp form (cf., proposition 18). We spell out the argument nonetheless.

Let U and V be irreducible submodules of 7 (n) which are abstractly isomorphic. Let # (U) (resp.
# (V)) be the collection of all the functions Wy with ¢ in U (resp. ¢ in V). Then #/(U) is literally equal
to #'(V), since both are Whittaker models for the same isomorphism class of irreducible representations.
Since a cusp form ¢ is determined by Wy, it therefore follows that U = V..

8.3.7 Automorphic representations which are not cuspidal

21 Proposition (J-L Thm. 10.10). Let 7 = ®m, be an automorphic representation which is not
cuspidal, i.e., not a constituent of o%. Then there are two quasi-characters p and v of I/F* such that
for each place v the representation m, is a constituent of p(thy, Vy).

22. The proof of proposition 21 will take the rest of the section. The strategy of proof is as follows: we
first introduce a space Z and show that a non-cuspidal representation occurs as a constituent of . We

then show that the constituents of % have the required properties.

23. Let & be the space of all smooth functions f on G4 satisfying the following four properties:

1. f is invariant under N4 on the left, i.e., we have
1 =z

2. f is invariant under Ap on the left (where Ap is the diagonal subgroup of Gr), i.e., we have

/(3 4190

for all z in A and ¢ in G4.

for all @ and 8 in F and ¢ in G4.
3. f is K-finite on the right.
4. For every elementary idempotent £ of 5 the space p(§)p()f is finite dimensional.

Note that S acts on £ via p.
If f belongs to # and is A 4-finite on the left then, by §1.6, proposition 126, we have an expansion
a 0 i i
(16 5]9) = X utaws)oalytoe] o) isuto) )

0,055V

where the sum is extended over all nonnegative integers ¢ and j and all quasi-characters p and v of I/F*.
The functions f; ; ., are uniquely defined and only a finite number of them are nonzero. For a finite set
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S of pairs of quasi-characters of I/F* and an integer M we let (S, M) be the space of all left A 4-finite
functions f in & for which f; ; ., = 0if i +j > M or (u,v) does not belong to S. We write #(S) in
place of #(S,0) and B(u,v, M) in place of B(S, M) when S = {(u,v)}.

24 Proposition (J-L Lemma 10.10.2). An automorphic representation which is not cuspidal is a
constituent of 4.
If ¢ belongs to &7 then the function ¢y on G4 defined by

wo=[ o[y 1 ]o)a

clearly belongs to #. Furthermore, the map ¢ — ¢y commutes with 7. In this way we obtain a map
of ##-modules o — A, the kernel of which, by definition, is @%. Thus we have an exact sequence

0 ) o AB.

Therefore by §1.7, proposition 133, any irreducible constituent of .« which is not a constituent of o is
necessarily a constituent of A.

25 Lemma (J-L Lemma 10.10.1). Let f be a function on G4 which is invariant under Ny and
Ap on the left and is K-finite on the right. The the two conditions

1. for every elementary idempotent & of F the space p(&)p(H) [ is finite dimensional;
2. f is Aa finite on the left;

are equivalent. In particular, we have

%= B(S,M).

PROVE THIS.

26 Lemma (J-L Lemmas 10.10.3, 10.10.4). An irreducible constituent of % is a constituent of
PB(u,v) for some pair of quasi-characters (u,v) of I/F*.
The proof of this proposition proceeds much like that of proposition 15.
Since # is the union of the (S, M), §1.7, proposition 134 implies that any irreducible constituent
of A is a constituent of some Z(S, M). From the direct sum decomposition

HB(S,M) = @ PB(p,v, M)

(n,v)eS

we have, by §1.7, proposition 135, that any irreducible constituent of (S, M) is a constituent of
PB(u, v, M) for some pair of quasi-characters (u, ).
Now, let f belong to %#(u,v, M) and write

(16 5]9)= X wams)osiatoelsy siso)

i+j<M

(10 o o) =[5 5 TS 5 19)

we obtain the identity

From the equality

Y wlaran)v(81s)(log laras) (log |81 Bal) fi.;(9)

i+j<M
= 32 plawyeton) el g 1) (1% 5 ]9):
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Since the functions f;; are uniquely determined, we may equate like coefficients to deduce that f; ;
belongs to A (u, ) whenever ¢ + j = M. It is also clear that f; ; = 0 for all i + j = M if and only if f
belongs to #(u,v, M — 1). We thus obtain an exact sequence

0 ——= B, v, M — 1) —= B(p,v, M) —= Dy js B0, V)

where the first map is inclusion and the second map sends f to the tuple (f; ;) with i +j = M. Using
§1.7 propositions 133 and 135 and an inductive argument completes the proof.

27 Lemma (J-L pg. 345). Let the automorphic representation 1 = &, be a constituent of B(u,v).
Then for each place v the representation m, is a constituent of p(tiy, Vy)-

For almost all places v, both p, and v, are unramified; at such places B(u,,v,) contians a unique
function ¢¢ which is right invariant under K, and has ¢3(1) =1 (¢f., §5.11.2, lemma 196). We may thus
form the restricted tensor product

®(‘%}(,U/v> Vv) : ¢Z)

v

There is a natural map

®(<@(Nva Vv) : d)g) )

v

which is easily seen to be surjective (and is in fact an isomorphism). Thus 7 is a constituent of ®p (i, vy)
and so by §1.7, proposition 136, each 7, is a constituent of p(p,, ).

28. This completes the proof of proposition 21.
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