MATH 396. MAPS OF VECTOR BUNDLES AND &-MODULES

1. INTRODUCTION

Let (X, 0) be a CP premanifold with corners with 0 < p < co. In class we gave a recipe for
constructing an -module £ associated to any CP vector bundle 7 : £ — X: for any non-empty
open set U C X, E(U) is the &(U)-module E(U) of CP sections to £ — X over U C X. (If U
is empty, we define E(U) = {0}.) We saw in class that £ ~ %" as #-modules if and only if
E~ X x R" as CP vector bundles over X.

Let us recall how the formation of £ is well-behaved with respect to restriction to open subsets
in X. If X’ C X is an open subset, then we claim that the &|x,-module E|y: is exactly the one
associated to the vector bundle E|x, — X’. The crux is that open subsets U C X’ are exactly the
open sets of X that are contained in X’ (as X’ is open in X), and for such U we have that the
module E(U) over 0(U) = (0| x/)(U) is equal to the set of C? sections of E — X over U, which is
the same as the set of CP sections of F|xs — X’ over U.

The passage from E to E is much better than merely well-behaved with respect to restriction
over open sets in X; it is also well-behaved with respect to variation in E. More specifically, if
f : E' — FE is a bundle morphism between C? vector bundles 7’ : E' — X and 7 : F — X then we
get an O-linear map f : E' — E as follows. We have to define &(U)-linear maps [, : E'(U) — E(U)
for all opens U C X such that the iU’s are compatible with shrinking U. In view of how E and
E' are defined, this is a collection of compatible ¢'(U)-linear maps f y P E'(U) — E(U) between
O (U)-modules of CP sections for non-empty open U C X (and [ is taken to be the zero map).
The definition of f U for non-empty open U is given by composition: for any CP-section s : U — E’
we define f, (s) € E(U) to be fos:U — E. To see that f o s really makes sense in E(U), we
note that it is a CP map because f and s are CP, and it is a section to 7w : £ — X over U because
mo(fos)=(mof)os=n"os=1y due to f being a map of vector bundles (giving 7o f = 7’)
and s being a section of E’ over U (giving 7’ o s = 1yy). The following lemma ensures that these
set-theoretic maps f U for varying U do define a map of &-modules £’ — E:

Lemma 1.1. For each non-empty open set U C X, f : E'"(U) — E(U) is an O(U)-linear map.

Moreover, if U' C U is a non-empty open subset then the diagram

B(U) Y- B(U)

L

B(U) = B(U)

commutes, where the vertical maps are restrictions.

We do not need to track the situation with the empty set because there is only one set-theoretic
map to the zero module over any ring, namely the zero map.

Proof. To check €(U)-linearity, we must show that for si,se € E'(U) and a1,a2 € O(U),
iU(CLlSl + 0282) = a - iU(Sl) +as - iU(SQ)
in E(U). That is,

fo(ais:+asss) = ar-(fosi)+az-(foss)
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in E(U). Equivalently, for each u € U we need

flu((ars1 + ags2)(u)) = ar(u) - flu(s1(w)) + az(w) - flu(s2(w))

where f|, : E'(u) — E(u) is the R-linear fiber map over u induced by the bundle map f over X.
But by definition of the €¢(U)-module structure on E'(U) we have (a1s1 + ags2)(u) = aj(u)sy(u) +
as(u)so(u) in the R-vector space E'(u), so the desired identity on u-fibers just expresses the R-
linearity of f|,. This completes the proof that f, is O-linear.

Next, we have to verify the compatibility with respect to restriction to smaller (non-empty) open
sets: this is the commutative diagram in the lemma. We have to show that for s € E'(U), the
restriction (f, (s))|vr € E(U’) is equal to f,,(s[y). To check such equality of sections over U’ it is
the same to check at each point u' € U’, so the problem is to prove (f,(s))(u) = (f,(slv))(u')
in E(u) for all v’ € U'. That is, we want (f o s)(v') = (f o s|ys)(u/) for all v/ € U’. The map
fos:U — E has restriction to U’ C U that is certainly equal to f o s|ys, so we are done. |

The formation of f gives a map of sets
Homy (E',E) — Homg(E', E)

from the set of CP vector bundle morphisms to the set of &-linear maps: we send f to f. (Note
that if E' = E then idg = idg.) Both Hom-sets have an &'(X)-module structure (we add maps
and multiply by global functions in &'(X) in the evident pointwise manner), and reviewing the
definition of f shows that this map of Hom-sets is €'(X)-linear. Of much greater interest is that
it is an isomorphism, or equivalently that it is bijective. That is, we claim that any ¢-linear map
E’ — FE has the form f for a unique C? vector bundle map f : E' — E over X. The significance of
this is that it ensures we can work with vector bundles via the theory of &-modules without losing
touch with CP vector bundle maps.

Before we take up the task of proving the bijectivity result on Hom-sets, we record that passage
from f to f is also well-behaved with respect to composition:

Lemma 1.2. Ifg: E — E' and f : E' — E are bundle morphisms between CP vector bundles,
then fog: E" — E is equal to fog.

Proof. By definition of bundle morphisms, we must prove that for each open set U C X, the &(U)-
linear map fog, : E'(U) — E(U) is the composite of g, : E"(U) — E'(U) and f, : E'(U) —
E(U). The case U = () is trivial (as everything vanishes in this case), so we may assume U is
non-empty. We have to prove that composing the map E”(U) — E'(U) defined by s” +— go s”
and the map E'(U) — E(U) defined by s’ — f o s’ gives the map E”(U) — E(U) defined by
s +— (fog)os”. Since

(fog)os”=fo(gos"),
we are done. [

2. BIJECTION OF HOM SETS

The result is this:

Theorem 2.1. Let X be a CP premanifold with corners, 0 < p < oo. For any two CP wvector
bundles E and E' on X the map of sets

Homy (E',E) — Homg(E', E)

defined by f — [ is bijective; that is, every O-linear map E' — E has the form f for a unique C?
bundle mapping f : E' — E over X.



Before we prove the theorem, we record an important corollary.

Corollary 2.2. Let .# be a locally free O-module with finite rank. If E — X and E' — X are
CP wvector bundles and 0 : E ~ .# and 0' : E' ~ .# are O-module isomorphisms then there is a
unique CP isomorphism of bundles f : E' ~ E such that 6 o f = 0'. In other words, up to unique
isomorphism there is at most one pair (E,0) for a given M.

In a later handout it will be proved that for any .# such a pair (E, ) always exists, and so we
may say that the concepts of CP vector bundle and locally free &-module of finite rank are “the
same”.

Proof. The necessary and sufficient condition on f is f = 6~! 0@, and Theorem 2.1 ensures that
there do exist unique bundle maps f : E' — E and f' : E — E' such that f = 67! 0 ¢ and

f =601 o6. We have to prove that f is a bundle isomorphism, and we shall actually prove that
/! is inverse to f. Using Lemma 1.2 we get

fof’:iof:9_100'00/7109:1(12:1(1_&?’

so by the injectivity in Theorem 2.1 we must have f o f’ = idg. Similarly, f' o f = idg/, so f and
f! are inverse to each other. In particular, f is an isomorphism of C? vector bundles. |

Now we prepare to prove Theorem 2.1. We prove the bijectivity on Hom-sets in two stages:
for trivial bundles and then in the general case. First assume that F and E’ are trivial, say with
trivializing sections s1,...,s, in F(X) and s},...,s, in E'(X). To give a map E' — E is to
specify where the s%’s go, say s; — > ajjs; for a;; € O(X) for 1 < j <n'and 1 <i <n. The
trivializations identify E with %™ and E’ with 6%, so we have to prove that the only compatible
collections of @ (U)-linear maps Ty : O(U)®" — G(U)®" for varying U are those given by

(Cly..oycp) — Zalj\U'Cja---aZanﬂU'cj
J J

for unique a;; € O(X).
If we are given a compatible collection of Tt;’s, then by compatibility with restriction from X to
U we have

TU((Cl, e 7cn/)) = TU ZC]' . ej’U = ch . TU(ej\U) = ZC]' . TX(ej)’U-
J J J

Thus, from the expressions Tx(e;) = (aij,...,anj) € O(X)®" we see that T = {Ty} arises from
such a;;’s. Moreover, the a;;’s are uniquely determined from the T'x(e;)’s, so this settles the case
when F and E’ are trivial.

Now we pass to the general case. Let {U;} be an open covering of X on which E and E’ become
trivial. (To find such a cover, we first find trivializing open covers {Xj} for E and {X},} for E’,
and we take the U;’s to be the overlaps Xy N X} indexed by ordered pairs i = (k, k"). Each z € X
lies in some X}, and some X}, so z lies in some overlap Xj N X;,. Hence, these U;’s do indeed
form a trivializing cover for E and E'.) Let E; = E|y, and E;; = E|y,nv,, and similarly for E', so
the bundles E; and E} on U; are trivial and the bundles E;; and Elfj on U;; are trivial. We will
systematically use the settled case of trivial bundles, applied to the restrictions of E and E’ over Uj;
and U; NU; for all + and j. We will also make frequent use of the observation that for any inclusion
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of open sets U’ C U in X (such as U;; inside of U;, or U; inside of X) the diagram of Hom-sets
Homy (E', F) Hom,),, (E'lu, E|v)

| |

Homy (E'|yr, E|yr) — Homgy,, (E'|v7, Elvr)

is commutative.

To prove injectivity in the general case, suppose f,g : E/ = E are bundle morphisms such that
f = g. This implies the equality f|v, = g|v, of O|y,-module maps for all 4, which is to say that the
bundle morphisms f|y,, g|v, : E'|ly;, = E|y, induce the same €|y,-module maps for all i. Hence,
by injectivity in the settled case of trivial bundles (applied over the base space U;!) it follows that
flu, = glu, for all i, so f = g. This proves injectivity in general.

Turning to the case of surjectivity, let ¢ : E' — E be a map of &-modules. We seek to construct
a bundle morphism f : E' — E such that f = ¢. Let ¢; = ¢[y, as a map of &|y,-modules for all
i. By the settled case of trivial bundles (applied over the base space U;!) we have ¢; = f; for a
unique bundle morphism f; : E'|y, — E|y, for all i. Consider the two bundle morphisms

filvinv;s filvinu, = E'lvinu; = Eluinu, -
These give rise to 0|y,ny;-module maps L-|UzﬂUj = @ilv;nu; and ij|UimUj = @jlv,nu; that are equal:
they coincide with ¢[y,ny,. Hence, by injectivity for the settled case of trivial bundles (applied over
the base space U; N Uj!) we get filu,nu; = filu,nu, for all @ and j. This says that the f;’s satisfy
the hypotheses for gluing of bundle morphisms, so there is a unique bundle morphism f : E' — E
such that f|y, = f; for all i. Hence, f[u, = f, = i = ¢|y, for all 4.

To conclude that f = ¢, thereby settling surjectivity, it remains to prove that if {U;} is an open
covering of X and ¢, : 4" = A is a pair of O-linear maps of &-modules such that |y, = ¢|y,
as maps from .#'|y, to A |y, for all i, then ¢ = 1. That is, we want ¢y = ¢y as maps from
A'(U) to A4 (U) for all open U C X. Choose s’ € #'(U), so we want py(s') = ¢y (s’) in 4 (U).
Since {U NU;} is an open covering of U, to check equality in . (U) it suffices to check equality of
restrictions in .2 (U NU;) for all 4. Thus, we pick an ¢ and need to prove ¢y (s')|uvnu, = Yu(s)|vnu;
in (U NU;). But since ¢ and ¢ are maps of &-modules, we have compatibilities with respect to
restriction to smaller opens. In particular,

ou () vnu, = eunu, (8 lunw,), Yu(s)|lvnu, = Yunu, (' |un,)

in (U NU;). Hence, it suffices to prove pyny, = Yuny,- But by hypothesis |y, = ¢y, as
maps from .#'|y, to .#|y,, so in particular these restrictions over U; induce the same maps from
A" (UNU;) to (U NU;). This is exactly the desired equality of maps punu, = Yunu,-



