
Math 396. Globalization via bump functions

1. Motivation

In the text (as with most books on differential geometry), all notions that ought to be local (such
as tangent vectors, connections, curvature, etc.) are initially defined in terms of objects that are
far too “global” such as global functions, global vector fields, and so on. A sneaky device using
bump functions enables one to show that such global definitions are actually equivalent to the local
ones that we shall use.

The aim of this handout is to explain how this equivalence works in the case of tangent spaces
at a point: we gave a manifestly local definition in class, but the text gives the usual “global”
definition that is found in virtually all introductory books on differential geometry. There are some
useful applications of the ability to formulate local notions in terms of global structures, but it is a
bit unnatural to do so in the foundations of the theory. Moreover, such a global point of view is not
available in the foundations of the theory of real-analytic (or complex-analytic manifolds), due to
the lack of interesting analytic bump functions. We will leave it to the interested reader to adapt the
method below to verify that other later notions that we define locally are equivalent to the “global”
definitions found in the course text or in other books. The local definitions are always adequate for
all proofs, so for our purposes it doesn’t really matter than this equivalence holds (and in a sense
it is better to not use it early in the development of the theory, in order that one develops good
habits of mind that are necessary for the theories of real-analytic and complex-analytic manifolds).

2. Another perspective on tangent vectors

Let X be a Cp-premanifold with corners, 0 ≤ p ≤ ∞, and Ox the local ring at x ∈ X. Let mx be
the kernel of the evaluation map ex : Ox � R defined by f 7→ f(x). By the very definition of how
we add and multiply functions, it is clear that ex is a ring homomorphism such that ex(c) = c for
all c ∈ R (so in particular, ex is surjective). To be a bit pedantic, here are the details. Let (U, f)
and (V, g) be representatives for germs in Ox. By definition of the R-algebra structure on Ox, for
any a, b ∈ R, a[(U, f)] + b[(V, g)] is represented by (U ∩ V, a · f |U∩V + b · g|U∩V ). By the definition
of the R-algebra structure on the set of R-valued functions on open sets in X (such as U ∩V ), the
value of a · f |U∩V + b · g|U∩V at x ∈ X is a · f(x) + b · g(x) = a · ex([(U, f)]) + b · ex([(V, g)]). This
says exactly that for s, s′ ∈ Ox and a, a′ ∈ R, ex(as + a′s′) = aex(s) + a′ex(s′). This shows that ex

is R-linear. The same argument proves ex(c) = c for c ∈ R and ex(ss′) = ex(s)ex(s′), so e is a map
of R-algebras.

Somewhat more amusing is the fact that such properties uniquely characterize the evaluation
map ex; that is, if we focus on the R-algebra Ox and discard the space X and point x that gave
rise to it, we can still define the map ex. To make sense of this, the key is the following special
property of the local ring at x:

Lemma 2.1. A germ f ∈ Ox has a multiplicative inverse in Ox (i.e., fg = 1 in Ox for some
g ∈ Ox) if and only if f 6∈ mx. In other words, the kernel mx of ex is precisely the set of f ∈ Ox

that do not have a multiplicative inverse.

We warn the reader that if we choose a representative for a germ, to say that the germ has
a multiplicative inverse in the ring of germs does not imply that the representative function is
nowhere zero on its domain; all one can infer is that it has to be non-vanishing near x.

Proof. If f ∈ Ox satisfies fh = 1 for some h ∈ Ox then applying ex gives ex(f)ex(h) = ex(fh) =
ex(1) = 1 in R, so ex(f) 6= 0. That is, if f ∈ Ox has a multiplicative inverse then f 6∈ mx.
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Conversely, if f 6∈ mx then we want to show that f has a multiplicative inverse. In terms of
a representative function on an open, it suffices to show that if U is an open set around x and
f ∈ O(U) satisfies f(x) 6= 0 then on some small open U ′ ⊆ U around x there exists h ∈ O(U ′) that
is a multiplicative inverse to f |U ′ . To prove this we may shrink U around x, and so by continuity
of f we may assume that f is non-vanishing on U . Thus, there is a reciprocal 1/f as an R-valued
function on U and we just have to check that it lies in O(U). This is a local problem on U , and so by
working in local Cp-charts we can shift the problem over to one for Cp-functions on open domains
in sectors in Rn: if such a function is non-vanishing then its pointwise reciprocal is also Cp. This
follows from the stability of the Cp property under composition and the fact that x 7→ 1/x is a C∞

map from R× to R×. (Or one could use Whitney’s extension theorem to reduce the problem to
the case of non-vanishing Cp functions on open sets in Rn, at least for the non-trivial case p > 0,
but that would be overkill for the present circumstances.) �

Now we can prove the uniqueness for ex:

Theorem 2.2. Let e : Ox → R be a ring homomorphism such that e(c) = c for all c ∈ R (i.e., e
is a map of R-algebras). The map e must equal ex.

The significance is this: the R-algebra map ex is intrinsic to the R-algebra Ox without needing
to mention the geometric data such as X or x that gave rise to Ox.

Proof. Since e(c) = c for all c ∈ R, certainly e is surjective. We next check that e kills mx. If f ∈ mx

is not killed by e, so e(f) = c ∈ R is nonzero, then e(f−c) = e(f)−e(c) = c−c = 0. However, since
f ∈ mx and c 6∈ mx (as ex(c) = c 6= 0), we must have f − c 6∈ mx because mx = ker ex is an R-linear
subspace of Ox. Thus, by the lemma it follows that f − c ∈ Ox has a multiplicative inverse, say h.
Applying the ring homomorphism e to the identity (f − c)h = 1 in Ox gives e(f − c)e(h) = e(1) = 1
in R, a contradiction since e(f − c) = 0. Thus, e(f) must have been zero after all. This shows that
e kills mx.

It follows that e and ex agree on mx ⊆ Ox (both vanish) and they agree on R ⊆ Ox (both send
c to c for all c ∈ R). Hence, to conclude e = ex it suffices to show R⊕mx = Ox. That is, we want
that each f ∈ Ox is uniquely expressible as f = c + f0 with c ∈ R and f0 ∈ mx. The existence
follows from the definition of mx and the identity f = f(x)+ (f −f(x)). As for uniqueness, we just
need R ∩mx = 0, and this is clear. �

In the C∞ case, we can prove that not only the evaluation map at x but even the notion of
tangent vector at x is intrinsic to the R-algebra Ox and does not need to “know” about X and x.
More specifically, recall that in the definition of tangent vector at x we had two conditions on the
R-linear map ∂ : Ox → R for it to be a point-derivation: it has to satisfy the Leibnitz Rule at x,

∂(fg) = f(x)∂(g) + g(x)∂(f) = ex(f)∂(g) + ex(g)∂(f)

for all f, g ∈ Ox, and it has to kill all f ∈ Ox vanishing to first order. The Leibnitz Rule condition
only uses the data of the R-algebra Ox and the mapping ex that we have proved above is intrinsic
to Ox. However, the condition on killing elements vanishing to order 1 does not seem to be intrinsic
to Ox because the notion of “vanishing to order 1” is defined in terms of expressing germs in local
Cp coordinates near x on X rather than in terms of Ox itself. Remarkably, in the smooth case the
concept of “vanishing to order 1” is intrinsic to the ring Ox: one can prove that such elements are
exactly those elements that are finite sums

∑
gihi with gi, hi ∈ mx. This is the real content in the

proof of the following result which shows that the notion of point-derivation at x in the smooth
case is intrinsic to the R-algebra Ox:
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Theorem 2.3. If X is smooth, then any R-linear map ∂ : Ox → R satisfying the Leibnitz Rule at
x automatically kills those f ∈ Ox that vanish to first order.

Proof. We shall prove that if f vanishes to first order at x and {t1, . . . , tn} are local C∞ coordinates
near x with tj(x) = 0 then f =

∑
tjhj for hj ∈ Ox with hj(x) = 0. (If f is Cp for 1 ≤ p < ∞ then

one only gets hj of class Cp−1, so the proof only works in the C∞ case.) Using a local C∞ chart, we
can shift our problem to the origin x = 0 in Rn with its standard coordinate functions t1, . . . , tn,
and with Rn considered as a C∞ manifold with its usual C∞ structure. Let ∂ : O0 → R be an
R-linear mapping that satisfies ∂(fg) = f(0)∂(g) + g(0)∂(f). We want to prove that ∂(f) = 0
whenever f vanishes to first order. We claim that near the origin, f =

∑
tjhj for smooth functions

hj that vanish at the origin. If this is true then ∂(f) =
∑

∂(tjhj) and the Leibnitz Rule at the
origin gives ∂(tjhj) = tj(0)∂(hj) + hj(0)∂(tj) = 0, so ∂(f) = 0 as desired.

To find the expression f =
∑

tjhj with smooth hj vanishing at the origin, we use the first-order
Taylor formula: this says that for x near the origin

f(t) = f(0) +
∫ 1

0
Df(ut)(t)du =

∫ 1

0

∑
j

(∂jf)(ut)tjdu =
∑

tjhj

with hj(t) =
∫ 1
0 (∂jf)(ut)du. To see that hj is smooth we use the theorem on differentiation through

the integral and the fact that ∂jf is smooth (as f is smooth). Clearly hj(0) = 0 because (∂jf)(0)
vanishes due to the assumption that f vanishes to first order. �

Note that if we were to try to push through the above proof in the Cp case with finite p ≥ 1,
we would run into a serious problem: ∂jf would only be Cp−1, and so hj would only be Cp−1.
This suggests that in the local ring O0 it may not be generally possible to express a Cp function
f vanishes to first order as a sum f =

∑
tjhj with hj ∈ O0. Indeed, this is usually impossible.

A simple counterexample on the real line is f(t) = t3/2. This is C1 and vanishes to first order
at the origin, but we cannot write f = th near the origin with h a C1 (or even differentiable!)
function, as we must take h(t) =

√
t and this is not differentiable at the origin. Thus, we see that

the smoothness hypothesis is crucial for the truth of the result.

3. The global notion

Inspired by Theorem 2.3, for smooth manifolds X we are led to consider the notion of a global
point derivation at x ∈ X to be an R-linear map D : O(X) → R satisfying the “Leibnitz Rule at
x”: D(fg) = f(x)D(g) + g(x)D(f) for all f, g ∈ O(X). Such D’s form an R-vector space in the
evident manner. In the course book (as in many introductory books on differential geometry), this
is often given as the definition of a tangent vector at x (for smooth X). We shall proof that this
apparently global definition agrees with our local definition of tangent vectors in a precise sense.
The key is that, despite the apparently global nature of D, the value D(f) only depends on f near
x:

Lemma 3.1. Assume X is a smooth Hausdorff premanifold. If f, g ∈ O(X) agree on an open set
containing x, then D(f) = D(g). In particular, if the germ [(X, f)] ∈ Ox vanishes then D(f) = 0.

Proof. Since D(f) − D(g) = D(f − g), we may assume f vanishes on an open U around x and
we want to conclude D(f) = 0. Let (φ′, U ′) be a C∞-chart with U ′ ⊆ U . By the theory of bump
functions on open sets in a vector space (which we may restrict to sectors in the vector space), on
the open set φ(U ′) in a sectors in a vector space there is a C∞ function ϕ on φ(U ′) with compact
support such that ϕ equals 1 near φ(x). Thus, ϕ ◦ φ′−1 : U ′ → R is a C∞ function that equals 1
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near x and has compact support K. But X is Hausdorff, so K is closed in X (and not merely in
U ′). It follows from openness of X −K in X that ϕ ◦ φ′−1 ∈ O(U ′) and 0 ∈ O(X −K) agree on
overlaps and hence uniquely glue to a global C∞ function.

Thus, we get g ∈ O(X) that equals 1 near x and vanishes outside of the set K ⊆ U . But f
vanishes on U , so gf = 0. Applying D,

0 = D(0) = D(fg) = f(x)D(g) + g(x)D(f) = 0 + D(f) = D(f).

�

Observe that the preceding proof rested crucially on the existence of bump functions and the
Hausdorff property of X.

Lemma 3.2. Assume X is smooth and Hausdorff. The natural map of R-algebras πx : O(X) → Ox

given by f 7→ [(X, f)] is surjective.

Proof. Pick a representative f : U → R for an element of Ox. We seek an element in O(X) whose
restriction to U agrees with f near x. As in the preceding proof, we can find g ∈ O(X) with g = 1
near x and g = 0 outside of a compact set K ⊆ U . Hence, g|U · f ∈ O(U) agrees with f near x but
vanishes outside of K. Since X −K is open, we can glue g|U · f ∈ O(U) and 0 ∈ O(X −K) to get
f̃ ∈ O(X) that agrees with f near x. �

For the remainder of the discussion, we assume X to be smooth and Hausdorff. By Lemma
3.2, we view Ox as a quotient of O(X) (say as R-vector spaces). By Lemma 3.1, the R-linear
map D : O(X) → R defined by a global point derivation at x kills the kernel of the quotient map
πx : O(X) � Ox and hence uniquely factors as D = [D] ◦ πx for an R-linear map [D] : Ox → R.
This linear map satisfies the Leibnitz Rule at x (and so it is a tangent vector at x by Theorem
2.3!). Indeed, for any fx, gx ∈ Ox we have fx = πx(f) and gx = πx(g) for f, g ∈ O(X), so since πx

carries products to products we get

[D](fxgx) = [D](πx(fg)) = D(fg) = f(x)D(g) + g(x)D(f) = fx(x)[D](gx) + gx(x)[D](fx).

Conversely, if ∂ ∈ Tx(X) is a tangent vector in our sense then composing ∂ : Ox → R with πx

gives D = ∂ ◦ πx that is readily checked to be a global point derivation at x. Hence, D 7→ [D]
defines a surjective R-linear map from the R-vector space of global point derivations at x onto
Tx(X). Lemma 3.1 and Lemma 3.2 ensure that [D] = 0 only if D = 0, and hence we really have
an isomorphism from the R-vector space of global point derivations at x onto Tx(X). Thus, for
smooth X we have obtained an R-linear isomorphism between the tangent space at x ∈ X as
defined in the course text and the local definition that we have used as our foundation.

Note that in the preceding discussion, if we relaxed C∞ to Cp for 1 ≤ p < ∞ then we would get
an isomorphism between the R-vector space of global derivations at x and the R-vector space of
R-linear maps ∂ : Ox → R satisfying the Leibnitz Rule at x. But this is useless unless we know
that satisfying the Leibnitz Rule at x forces annihilation of germs vanishing to order 1. Hence,
only in the C∞ Hausdorff case can we get something interesting, thanks to Theorem 2.3.


