
Math 396. Gluing topologies, the Hausdorff condition, and examples
There are many important topological spaces (and manifolds) that are constructed by “identify-

ing” pieces of spaces. This typically takes the form of gluing along open sets or passing to quotients
by (reasonable) equivalence relations. In this handout we explain some general gluing procedures,
and we give some examples. Since the Hausdorff property of a space is not local, it is a non-trivial
condition on a gluing construction that the end result be Hausdorff, even when the initial pieces are
Hausdorff. (A basic example is the line with a doubled point: it is given by gluing the real line to
itself along the complement of the origin.) Hence, we also explore different ways to think about the
Hausdorff condition in order that we can formulate a clean criterion for a gluing of Hausdorff spaces
to be Hausdorff. We conclude with a representative non-trivial construction that will provide an
important family of compact Hausdorff manifolds.

1. Gluing and the Hausdorff property

Let X be a topological space and let {Xi} be an open covering, so each Xi gets an induced
topology. Note that a subset U ⊆ X is open if and only if U ∩Xi is open in Xi for each i. (Since
U is the union of the U ∩Xi’s, the key point is that for an open subset Y ′ in a topological space
Y , a subset of Y ′ is open for the induced topology if and only if it is open in Y .) We will use this
without comment.

If f : X → Y is a continuous map, then by restriction to Xi we get continuous maps fi : Xi → Y
such that fi|Xi∩Xj = fj |Xi∩Xj for all i and j. Conversely, if we are given continuous maps fi :
Xi → Y that agree on overlaps (that is, fi|Xi∩Xj = fj |Xi∩Xj for all i and j) then there is a unique
set-theoretic map f : X → Y satisfying f |Xi = fi for all i and it is continuous. Indeed, for any
open V ⊆ Y we have that f−1(V ) is open in X because f−1(V ) ∩Xi = f−1

i (V ) is open in Xi for
every i. Hence, we can view continuous maps X → Y as collections of continuous maps Xi → Y
that are compatible on overlaps Xi ∩Xj . We want to run this procedure in reverse.

Theorem 1.1. Let X be a set, and let {Xi} be a collection of subsets whose union is X. Suppose
on each Xi there is given a topology τi, and that the τi’s are compatible in the following sense:
Xi ∩Xj is open in each of Xi and Xj, and the induced topologies on Xi ∩Xj from both Xi and Xj

coincide. There is a unique topology on X that induces upon each Xi the topology τi.

We say that the topology in this theorem is obtained by gluing the given topologies on the Xi’s.
(We may also say that the topological space (X, τ) is obtained from gluing the topological spaces
(Xi, τi).) Intuitively, the topology on X declares that points “near” x ∈ X are those that are
“near” to it in a fixed Xi containing x, and the compatibility condition is what ensures that this
notion does not depend on the particular choice of Xi that contains x.

It is not at all clear that if the τi’s are metrizable then τ is metrizable, and this is false: τ can
even fail to be Hausdorff even when all τi’s are Hausdorff. (The line with a doubled point gives
a counterexample, as we will see.) The ability to glue without having to similtaneously confront
other structures (such as metrics) is a big advantage of working with topological spaces rather than
metric spaces as the basic geometric structures.

Proof. We first prove uniqueness. If τ is a topology on X inducing τi for each i and making Xi

open in X for each i, then a subset U ⊆ X is open for τ if and only if U ∩ Xi is open for the
induced topology on Xi for each i (as Xi is τ -open for every i), and hence (by the assumption
that the induced topology on Xi is τi) if and only if U ∩ Xi is τi-open in Xi for each i. This
final formulation of the openness condition for τ is expressed entirely in terms of the τi’s and so
establishes uniqueness: we have no choice as to what the condition of τ -openness is to be, and it
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must be the case that that τ -open sets in X are exactly those that meet each Xi in a τi-open subset
of Xi for each i.

We now run the process in reverse to verify existence. We define τ to be the collection of subsets
U ⊆ X such that U ∩ Xi is τi-open in Xi for each i. Is this a topology on X, and does it make
each Xi open in X with τi as its induced topology? By the definition, clearly ∅ and X are in τ . If
{Sα} is a collection of subsets of X in τ then we need the union S of the Sα’s to be in τ . That is,
we want S ∩Xi to be τi-open for each i. This overlap is the union of the overlaps Sα ∩Xi that are
τi-open for all α (due to the assumption that every Sα is in τ), and so this union is also τi-open for
each i. Hence, indeed S is in τ . A similar argument works for finite intersections, and so confirms
that τ is a topology on X. Since for each fixed i0 the overlap Xi0 ∩Xj is τj-open in Xj for every j
(by the hypotheses on the Xi’s at the outset), it follows that Xi0 is τ -open in X for every i0.

Finally, we have to check that τ induces the topology τi on the open subset Xi for each i. Let
U ⊆ Xi be a subset. We must prove that it is open for τi if and only if it is open for the induced
topology from τ . Since Xi is τ -open in X, a subset of Xi is open for the induced topology from τ
if and only if it is itself τ -open in X. Thus, we need to prove that U ⊆ Xi is τi-open in Xi if and
only if it is τ -open in X. The condition of τ -openness means (by definition of τ !) that U ∩Xj is
τj-open in Xj for each j, which for j = i says that U is τi-open in Xi (as U ∩ Xi = Xi), and so
we need to prove that a subset U ⊆ Xi that is τi-open necessarily has τj-open overlap U ∩Xj with
Xj for each j. By assumption Xi ∩ Xj inherits the same topology from both Xi and Xj , and it
is open in each, and by its τj-openness in Xj we see that the subset U ∩Xj ⊆ Xi ∩Xj is τj-open
in Xj if and only if it is open for the topology on Xi ∩Xj induced from Xj . However, this latter
induced topology on Xi ∩Xj is also the one induced from τi (by the compatibility hypothesis on
the τk’s!), and so since U ∩Xj = U ∩ (Xi ∩Xj) with U a τi-open subset of Xi (by assumption!) it
follows from the definition of “induced topology” that U ∩ (Xi ∩Xj) is indeed open in Xi ∩Xj for
the topology induced by τi. �

A basic question we must now wish to address is this: if X is given a topology τ obtained from
gluing compatible topologies τi on each Xi, how can be detect whether or not X is Hausdorff? Since
τi is the induced topology on Xi from τ , if X is going to be Hausdorff for τ then it is certainly
necessary that each Xi be Hausdorff for τi. To better understand how the converse can fail, and
how we can detect those cases when it holds, we need to recast the Hausdorff condition in a more
useful form. The key idea is to look at the diagonal map ∆X : X → X ×X defined by x 7→ (x, x).
Rather generally, if Y is any topological space then we have a diagonal map ∆Y : Y → Y ×Y given
by y 7→ (y, y), and this is not only continuous but even a homeomorphism onto its image. Indeed,
if U ⊆ Y is open then (U × U) ∩∆Y (Y ) is open in ∆Y (Y ) for the subspace topology from Y × Y ,
and its preimage in Y is U . It turns out that the Hausdorff property for Y encodes a global feature
of how ∆Y (Y ) sits in Y × Y :

Lemma 1.2. The Hausdorff property of Y is equivalent to ∆Y (Y ) ⊆ Y × Y being a closed subset.
That is, Y is Hausdorff if and only if ∆Y is a homeomorphism onto a closed subset of Y × Y .

Proof. The closedness of ∆Y (Y ) in Y × Y is equivalent to the openness of (Y × Y ) − ∆Y (Y ) in
Y × Y . A point in this complement has the form (y, y′) with y 6= y′ in Y , and by definition of the
product topology we see that such openness is exactly the statement that for any pair of distinct
points y, y′ ∈ Y there exist open U,U ′ ⊆ Y such that

• U × U ′ contains (y, y′) (that is, y ∈ U and y′ ∈ U ′),
• U × U ′ ⊆ (Y × Y )−∆Y (Y ). That is, we require (U × U ′) ∩∆Y (Y ) = ∅.

The second condition says exactly that ∆−1
Y (U×U ′) = ∅, and this preimage is exactly U ∩U ′ due to

the definition of ∆Y . Hence, we have arrived at an equivalent formulation of the initial closedness
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condition: for distinct y, y′ ∈ Y there exist disjoint opens U,U ′ ⊆ Y such that y ∈ U and y′ ∈ U ′.
This is precisely the Hausdorff property. �

Now consider a topological space X covered by open subsets Xi. Hence, the opens Xi×Xj cover
X × X. Since closedness is local on the ambient space (by the handout on interior, closure, and
boundary), a subset A ⊆ X ×X is closed if and only if its overlap with each Xi ×Xj is closed in
Xi×Xj . By definition of ∆X(X) and the homeomorphism identification of X with ∆X(X), clearly
∆X(X) ∩ (Xi ×Xj) is identified with Xi ∩Xj ⊆ X. Hence, ∆X(X) ⊆ X ×X is closed if and only
if the map Xi ∩ Xj → Xi × Xj has closed image for each i and j. For i = j this says that Xi is
closed in Xi ×Xi (via ∆Xi for all i, which is to say that each Xi is Hausdorff), but there are more
conditions! Indeed, we also have the conditions that the maps Xi ∩ Xj → Xi × Xj have closed
image for each i 6= j. Thus, we have established the following Hausdorff criterion:

Theorem 1.3. Let (X, τ) be obtained by gluing topological spaces {(Xi, τi)}. The space X is
Hausdorff if and only if each Xi is Hausdorff and the subset Xi ∩ Xj is closed in the product
topological space Xi ×Xj where the factors are given the respective topologies τi and τj.

Example 1.4. Let us return to the example of the line with the doubled origin. In this case
X1 = R and X2 = R with X1 ∩X2 the complement of the origin in X1 and X2 respectively. The
compatibility of the topologies on this subset viewed in each of X1 or X2 is clear, and X1 ∩X2 as
a subset of X1 ×X2 = R×R is the complement of the origin in the line u = v. This is clearly not
closed in R×R!

We will see a more interesting application in the affirmative direction in the next section, but
for now we give some additional practical applications of the diagonal description of the Hausdorff
property.

Theorem 1.5. Let f, g : X ⇒ Y be continuous maps to a Hausdorff space Y such that for a dense
subset S ⊆ X we have f |S = g|S. Then f = g.

Recall that a subset of a topological space is dense if its closure is the entire space. In the setting
of metric spaces, this theorem is easily proved by a limiting argument. In general we cannot use
limits in X when it is non-Hausdorff (and does not have a countable base of opens around all
points). Also note that the Hausdorff hypothesis on Y is crucial: if we let Y be the line with a
doubled origin, there are two natural maps R⇒ Y sending 0 ∈ R to each of the two origins; these
two maps are distinct, yet they coincide on the dense subset R× ⊆ R.

Proof. Consider the continuous product map (f, g) : X → Y × Y . To say f = g is to say that this
map has image contained in ∆Y (Y ), or in other words that the preimage of ∆Y (Y ) under (f, g)
is equal to X. This preimage contains S, due to the fact that f |S = g|S , and this preimage is
closed in X because (f, g) is continuous and ∆Y (Y ) ⊆ Y × Y is closed (as Y is Hausdorff). Hence,
(f, g)−1(∆Y (Y )) ⊆ X is a closed set in X that contains the dense subset S, and so it contains
S = X. �

An amusing application (which you may skip if you’re not interested) is in the setting of topo-
logical groups. A topological group is a topological space G endowed with a group structure such
that the multiplication law G×G → G and the inversion map G → G are continuous. Basic inter-
esting examples are a finite-dimensional vector space V with the operation of addition, and (more
interesting) G = GL(V ); in terms of coordinates we identify GL(V ) with GLn(R), so the continuity
of multiplication and inversion is seen through the habitual formula for matrix multiplication and
matrix inversion. In the case of topological groups, there is a very simple criterion for the Hausdorff
property to hold:
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Theorem 1.6. Let G be a topological group. It is Hausdorff if and only if the identity point is
closed in G.

Before we prove the theorem, we make some remarks on the property of closedness for the
identity point. For any g ∈ G the continuity of multiplication implies that the left multiplication
map `g : g′ 7→ gg′ is continuous, and the map `g−1 is a continuous inverse. Thus, `g : G → G is a
homeomorphism, and it carries the identity point to g. Thus, by using such maps we see that if
one point of G is closed then all points of G are closed. Of course, in a Hausdorff space any point
is closed (the openness of the complement of a point is immediate from the usual definition of the
Hausdorff condition), and so the remarkable aspect of the theorem is that this consequence of the
Hausdorff property is also sufficient in the setting of topological groups.

Proof. The necessity of the identity point being closed has just been explained, and we seek to
prove sufficiency. We want to prove that ∆G(G) is closed in G × G. If we let i : G ' G denote
the continuous inversion map (which is an isomorphism, as it is its own inverse map), then 1× i :
G × G → G × G is an isomorphism of topological spaces, and so ∆G(G) is closed if and only if
(1×i)(∆G(G)) is closed. This latter set is the set of points of the form (g, g−1), so it is the preimage
of the identity under the continuous multiplication map m : G×G → G. Hence, closedness of the
identity point in G gives the desired closedness in G×G. �

2. Grassmannians: algebraic theory

As a fundamental example of a construction of a topology by gluing, we investigate an important
example: Grassmannians. We begin with the algebraic development over a general field, and then
we specialize to the case F = R where we can bring in some topology. (Everything we do over R
works the same way over C, once one sets up the right topological theory over C.)

Let F be a field and V a vector space over F of dimension n + 1 (n ≥ 1). Let Gd(V ) denote
the set of codimension-d subspaces of V (with 1 ≤ d ≤ n). When V = Fn+1 this set is called the
Grassmannian of codimension-d subspaces in (n + 1)-space (over F ) and is denoted G(d, n)(F ) (or
just G(d, n) if F is understood). For d = 1 it called projective space and is denoted P(V ). By the
dual relationship between subspaces of V and of V ∨ (whereby a subspace W ⊆ V “corresponds”
to the subspace (V/W )∨ in V ∨), Gd(V ) can also be viewed as Gn+1−d(V ∨). We want to enhance
Gd(V ) from a set to a topological space when F = R. We shall first cover the Grassmannian Gd(V )
by nice subsets that can be identified with Euclidean spaces (this essentially amounts to finding
“standardized” equations for codimension-d subspaces of V , subject to some geometric constraints
on the subspace). In the special case F = R there will result a topology by gluing. We urge the
reader to think about the cases d = 1, 2 when formulas below look too complicated.

You may be wondering at the outset: what is the point of studying these spaces? There are many
situations in geometry where one needs to study moving families of linear subspaces of a vector
space, such as when one studies a surface S in R3 by slicing it with a family of parallel planes
(such as x = c for c ∈ R) and examining the topology of the slices as the planes move. To this end,
Grassmannians are examples of “parameter spaces”: their points parameterize (at least for now
in a set-theoretic sense) some interesting geometric structure (the set of all subspaces of a fixed
codimension), and so any investigation using variation of such structures (e.g., varying subspaces
of V with a fixed codimension) is naturally informed by the geometry of the “space” of all such
structures (once this “space” is given a reasonable topology which we can in turn interpret in terms
of the geometric structure being parameterized!). For example, as we shall see, the Grassmannians
for F = R are naturally compact and Hausdorff spaces. This ensures that it is often possible to
“pass to the limit” on constructions with moving linear subspaces in V with a fixed codimension,
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at least in the sense that any sequence of points in a compact space (such as sequence of points
in a Grassmannian, which is to say a sequence of codimension-d subspaces of V ) has a convergent
subsequence.

You should consider Grassmannians (for the time being) as a concrete collection of parameter
spaces whose points classify interesting objects. There is no God-given coordinate system on these
spaces, but we will see that Grassmannians are covered by natural subsets that do admit reasonable
coordinatizations, and Grassmannians do not a priori live inside of any “ambient” Euclidean space.
In this sense, they will convince us that it is worthwhile to develop the theory of differential geometry
for “abstract” spaces that (like the curved spacetime of General Relativity) do not naturally sit
inside of an ambient RN .

Fix an ordered basis e0, . . . , en of V .

Lemma 2.1. Let I = {i1, . . . , id} be a set of d distinct indices 0 ≤ i1 < · · · < id ≤ n. Let
UI ⊆ Gd(V ) denote the subset of codimension-d linear subspaces W ⊆ V for which the ei’s with
i ∈ I project to a basis of the d-dimensional V/W . The UI ’s cover Gd(V ) as a set.

Proof. Since the ej ’s span V , their images span the quotient V/W . Thus, some subset is a basis
for this quotient. Since this quotient has dimension d, there is some d-tuple I of distinct indices
such that {ej mod W}j∈I gives a basis of V/W . Thus, W ∈ Gd(V ) lies in UI . �

Remark 2.2. We really should write UI,e, as it depends on the d-tuple I ⊆ {0, . . . , n} and e, but
since e is fixed (for now!) we will write UI to keep the notation uncluttered.

With notation as above, suppose W ∈ UI , so for each 0 ≤ j ≤ n we can uniquely write
ej ≡

∑
i∈I aijei mod W with aij ∈ F (by the definition of UI); of course, when j ∈ I then aij = 0

for j 6= i and aii = 1. We may also write aij(W ) to emphasize the dependence on W (and that these
are “coordinates” that describe W considered as a “point” in UI). In terms of these coefficients,
can we describe those points of UI that lie in UI ∩ UI′? Indeed we can:

Lemma 2.3. The W ’s in UI lying in UI ∩ UI′ are those for which the d× d determinant

Det(aii′(W ))i∈I,i′∈I′

is non-zero.

Proof. Let v = v mod W ∈ V/W for v ∈ V . To say that W lies in UI ∩ UI′ is to say that the
d vectors ei for i ∈ I as well as the d vectors ei′ for i′ ∈ I ′ form a basis. The matrix (aii′(W ))
describes (relative to the basis of ei’s for i ∈ I) the unique linear self-map TII′ of V/W which sends
the ordered set {ei1 , . . . , eid} (with i1 < · · · < id the elements of I) to the ordered set {ei′1

, . . . , ei′d
}

(with i′1 < · · · < i′d the elements of I ′). The vectors ei′j
span V/W if and only if they are a basis

(as there are d of them), so given that W ∈ UI it follows that W ∈ UI′ if and only if TII′ is an
isomorphism, or equivalently if and only if its matrix (aii′(W )) has non-zero determinant. �

We define a map of sets
φI : UI → F I×({0,...,n}−I)

by φI(W ) = (aij(W ))i∈I,j 6∈I , where ej ≡
∑

i∈I aij(W )ei mod W . We have noted above that such
coefficients aij(W ) are uniquely determined by W (as we’ve fixed our ordered basis of V ). Thus,
φI is well-defined.(As with UI , we really should write φI,e since this map depends on the choice of
ordered basis e, but we omit this from the notation since e is fixed for now.) We claim more:

Lemma 2.4. The map φI is bijective.
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Proof. For injectivity, we need to prove that φI(W ) determines W . In fact, we will explicitly
reconstruct W from the standard coordinates of φI(W ), which is to say from the aij(W )’s for i ∈ I
and j 6∈ I. By the definition of these aij(W )’s, for j 6∈ I the vector

vj,W = ej −
∑
i∈I

aij(W )ei

lies in W , and as j runs over all n + 1 − d indices not in I these vectors vj,W are clearly linearly
independent of each other (as a given vj0,W is the only one of the vj,W ’s (j 6∈ I) with a non-zero
coefficient for ejj0). Thus, their span has dimension n + 1− d. But this span lies inside of W and
dim W = n + 1 − d. Hence, the vj,W ’s for j 6∈ I span W , so we have universally reconstructed W
from φI(W ). In particular, φI is injective.

To see that φI is surjective, we just run the above argument in reverse: given (aij)i∈I,j 6∈I we
define W ⊆ V to be the span of the n + 1− d vectors

vj
def= ej −

∑
i∈I

aijei

for j 6∈ I. These are linearly independent (for the same reason as used in the preceding paragraph
with the vj,W ’s), so they span a subspace W in V with codimension d. By construction we see
that the d-dimensional V/W is spanned by (and hence has as basis) the d vectors ei for i ∈ I, so
W ∈ UI and then clearly aij(W ) = aij , so φI(W ) = (aij). This establishes surjectivity of φI . �

Using φI , points in UI ∩ UI′ can be put in F I×({0,...,n}−I) (whose coordinates are indexed by
ordered pairs (i, i′) with i ∈ I and i′ 6∈ I), and similarly φI′ puts UI ∩ UI′ into F I′×({0,...,n}−I′).
If we’re given W ∈ UI , then in terms of the standard coordinates of φI(W ) how to we detect if
also W ∈ UI′? That is, we want to describe φI(UI) ∩ φI(UI′) = φI(UI ∩ UI′). By what we have
shown above, the subset φI(UI ∩ UI′) in F I×({0,...,n}−I) consists of those elements (aij)i∈I,j 6∈I with
Det(aii′)i∈I,i′∈I′ 6= 0, where for i′ ∈ I ′ ∩ I we define aii′ = 0 when i′ 6= i and aii′ = 1 when i′ = i. A
more succinct description is

(1) φI(UI ∩ UI′) = {(aij) ∈ F I×({0,...,n}−I) |Det(aii′)i∈I−I′∩I,i′∈I′−I∩I′ 6= 0}.

We have now covered Gd(V ) by subsets UI endowed with bijective maps φI onto the Euclidean
space F I×({0,...,n}−I), but we can do better: we can describe the “transition map”

φII′ = φI′ ◦ φ−1
I : φI(UI ∩ UI′) ' φI′(UI ∩ UI′)

between the systems of linear coordinates arising from φI and φI′ on UI ∩ UI′ . From the explicit
descriptions in terms of non-vanishing of determinants, the description of φI′ ◦ φ−1

I comes down to
the following: given aI = (aij)i∈I,j 6∈I with Det(aii′)i∈I,i′∈I′ 6= 0 (again using the convention that
when i′ ∈ I ∩ I ′ then aii′ = 0 for i′ 6= i and aii′ = 1 for i′ = 1), with this point corresponding
to some φI(W ) for W ∈ UI ∩ UI′ , we want to describe the “coordinates” aI′ = (ai′j′)i′∈I′,j′ 6∈I′ of
φI′(W ). Let us introduce the notation

MaI = (aii′)i∈I,i′∈I′ , NaI = (aij′)i∈I,j 6∈I′

where once again air = δir for r ∈ I (i.e., 0 for r 6= i and 1 for r = i). Thus, MaI is an invertible
d×d matrix and NaI is a d× (n+1−d) matrix, with MaI having columns giving the ei-coefficients
of the vectors ei′ for i′ ∈ I ′ and with the columns of NaI giving the ei-coefficients of the vectors ej′

for j′ 6∈ I ′.
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Thus, MaI is the “change of basis” matrix from {ei′} coordinates to {ei} coordinates, whence
M−1

aI
NaI is the d× (n + 1− d) matrix whose columns are the ei′ coordinates of the ej′ ’s for j′ 6∈ I ′.

Thus, we have

(2) φII′ = φI′ ◦ φ−1
I : aI 7→ M−1

aI
NaI .

This is some enormous messy expression in general, but at least we know (via Cramer) that it’s
given by some “universal” polynomial expressions with big determinant denominator.

Before we specialize to the situation F = R and make a topology, let us work out these formulas
in two representative non-trivial cases.

Example 2.5. Suppose d = 1 but n ≥ 1 is arbitrary (i.e., hyperplanes in Fn+1, so P(Fn+1)). In this
case Ui is an n-dimensional Euclidean space on coordinates (aij)j 6=i, the correspondence being that
such an ordered n-tuple goes over to the hyperplane whose equation is

∑
j 6=i aijxj + xi = 0. These

are exactly the hyperplanes H whose defining equation (unique up to nonzero scalar multiple) has
a nonzero coefficient for xi, which is to say that ei mod H is a basis of the line Fn+1/H.

What is the map φi′ ◦ φ−1
i : φi(Ui ∩ Ui′) ' φi′(Ui ∩ Ui′)? Consider a hyperplane H om Fn+1

whose defining linear equation involves both xi and xj , and write the equation uniquely in the form∑
j 6=i aijxj + xi = 0 with aii′ 6= 0. Scaling by a−1

ii′ makes the xi′ coefficient into 1 and yields the
linear form

∑
j 6=i,i′(aij/aii′)xj + (1/aii′)xi + xi′ whose zero locus is also H, and so

φi′ ◦ φ−1
i : (aij)j 6=i 7→ (a′i′j)j 6=i′

with a′i′j = aij/aii′ for j 6= i′, i and a′i′i = 1/aii′ . Thus, for example, if n = 1 then we have P(F 2)
covered by two charts U0 and U1 with respective bijections φ0 : U0 ' F and φ1 : U1 ' F that read
off the coefficient of x1 (resp. x0) in the linear equation x0 + φ0(L)x1 = 0 (resp. φ1(L)x0 + x1 = 0)
for a line L in F 2 distinct from the x1-axis (resp. the x0-axis). The overlap U0 ∩ U1 is the locus
F − {0} in the coordinatizations of both U0 and U1 (i.e., φ0(L) 6= 0 and φ1(L) 6= 0 respectively),
with the transition relation between φ0(L) and φ1(L) given by φ0(L) = 1/φ1(L). To summarize,
the set P(F 2) of lines through the origin in the plane F 2 has the set U0 of lines distinct from the
x1-axis parameterized by the negative of the x0-coordinate of where such lines meet the line x1 = 1,
and similarly for U1 with the roles of the xj ’s reversed, and these respective “coordinates” for a
common line L distinct from the x0-axis and x1-axis are reciprocal to each other because L admits
unique equations of the form x0 + a′x1 = 0 and ax0 + x1 = 0 (whence −a′ = (−a)−1).

Example 2.6. We work out the formulas for n = 3, d = 2 (i.e., 2-dimensional subspaces of F 4)
and I = {0, 1}, I ′ = {1, 2}. We have UI = F {0,1}×{2,3} and UI′ = F {1,2}×{0,3}, with coordinates
denoted (a02, a03, a12, a13) on UI and (a10, a13, a20, a23) on UI′ . Moreover, UI ∩ UI′ corresponds to
the non-vanishing locus of the determinant a01a12 − a02a11 = −a02 in UI (the vanishing of this
coefficient is the only thing which prevents {e1, e2} from being a basis of F 4/W , given that {e0, e1}
is a basis of F 4/W , where aij = aij(W ) for W ∈ UI), and likewise the non-vanishing locus of
a10a21 − a11a20 = −a20 in UI′ . Here we have again used the convention for how to define aij with
i, j ∈ I, and likewise for ai′j′ with i′, j′ ∈ I ′.

The map φII′ is given by considering the columns of the matrix

M−1 =
(

a01 a02

a11 a12

)−1

=
(

0 a02

1 a12

)−1

=
(
−a12/a02 1

1/a02 0

)
and the columns of the matrix

M−1

(
a00 a03

a10 a13

)
= M−1

(
1 a03

0 a13

)
=

(
−a12/a02 a13 − a12a03/a02

1/a02 a03/a02

)
.
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These columns give the {e1, e2} coordinates of e0 and e3 respectively (in the quotient F 4/W ). In
other words,

φII′(a02, a03, a12, a13) = (−a12/a02, 1/a02, a13 − a12a03/a02, a03/a02).

3. Grassmannians: topological theory

Finally, we specialize to the case F = R, where we can make a topology on the Grassmannians
by using Euclidean topologies on the UI ’s.

Lemma 3.1. Let F = R. Fix an ordered basis {e0, . . . , en} of V . For each strictly increasing
d-tuple I = {0 ≤ i1 < · · · < id ≤ n} as above, give UI the topology induced by the bijection φI ;
that is, declare a subset of UI to be open when its image under φI is open in the finite-dimensional
vector space RI×({0,...,n}−I). These topologies are compatible, and so define a topology on Gd(V ) by
gluing.

Proof. The formula (1) shows that φI(UI ∩ UI′) is an open subset of the vector space φI(UI), as it
is given by the non-vanishing locus of a determinant polynomial in some of the linear coordinates.
Hence, when UI is topologized via φI , the subset UI ∩ UI′ is made into an open subset of UI . The
compatibility aspect of the topologies on the UI ’s requires one further condition: the topologies
induced on UI ∩UI′ by both UI and UI′ must be proved to coincide. Equivalently, this says that on
the open subsets φI(UI ∩ UI′) and φI′(UI ∩ UI′) in the Euclidean spaces φI(UI) and φI′(UI′), the
“transition map” φII′ = φI′ ◦φ−1

I relating them is a homeomorphism. But we have seen in (2) that
φII′ is given by rational functions in the standard linear coordinates of these respective Euclidean
spaces (with denominator that is non-vanishing on φI(UI ∩UI′)). Hence, the topologies are indeed
compatible, so we may glue. �

There now arises a natural question, in a sense pushing the compatibility problem one step
further: since the definition of the set Gd(V ) does not require a choice of ordered basis on V , is the
topology we have just put on this set independent of the ordered basis e = {ei} used above? Since
UI = UI,e and φI = φI,e certainly depend on e, there really is something to check! In other words,
if e′ is a second ordered basis of V , does the compatible system of Euclidean topologies on the
subsets UI,e′ (for varying d-tuples I of strictly increasing integers between 0 and n) put the same
topology on Gd(V ) that we get from the UI,e’s? This will require some further concrete formulas
(though it can also be deduced from Theorem 4.1 below and the known independent result in the
special case of projective spaces.

Let e′ = {e′0, . . . , e′n} be a second ordered basis of V , so for each ordered d-tuple I consisting of a
strictly increasing sequence 1 ≤ i1 < · · · < id ≤ n, we obtain subsets UI,e′ ⊆ Gd(V ) and bijections
φI,e′ of UI,e′ onto RI×({0,...,n}−I), and the topology obtained from e′ makes UI,e′ open with the
Euclidean topology. Since a subset of a topological space is open if and only if its overlap with each
of the constituents of an open covering is open in each such piece, the problem of agreement of
topologies amounts to checking that UI,e′ is open with its Euclidean topology (obtained via φI,e′)
when it is considered as a subset of the topological space Gd(V ) that is topologized using e.

We have to show that UI,e′ ∩ UJ,e is open as a subset of both UI,e′ and UJ,e when each is given
its Euclidean topology, and that the topologies on UI,e′ ∩UJ,e induced by the Euclidean topologies
from UI,e′ and UJ,e are the same. Concretely, we must show that when UI,e′ ∩UJ,e is put inside of
the two Euclidean spaces

VI,e′ = RI×({0,...,n}−I), VJ,e = RJ×({0,...,n}−J)
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then its images in these Euclidean spaces are open and the resulting bijection φI,e′ ◦ φ−1
J,e between

these open subsets (through the identification with UI,e′ ∩UJ,e) is a homeomorphism. This follows
from the following purely algebraic claim that is valid over any field:

Theorem 3.2. Let e and e′ be two ordered bases of V over F . Let I and J be two strictly increasing
sequences of d integers between 0 and n. The subsets

φI,e′(UI,e′ ∩ UJ,e) ⊆ VI,e′ , φJ,e(UI,e′ ∩ UJ,e) ⊆ VJ,e

are non-vanishing loci for certain polynomials in the linear coordinates on VI,e′ and VJ,e respectively.
Moreover, the bijection φI,e′ ◦φ−1

J,e between these non-vanishing loci is given by rational functions
in the standard linear coordinates on VI,e′ and VJ,e.

Proof. Let W ⊆ V be a codimension-d linear subspace. It lies in UJ,e precisely when the ej ’s for
j ∈ J project to a basis of V/W , and it lies in UI,e′ precisely when the e′i’s for i ∈ I project
to a basis of V/W . Assume W ∈ UJ,e. Consider the problem of expressing e′i mod W (for each
i ∈ I) in terms of the basis {ej mod W}j∈J of V/W . In general, any v ∈ V admits an expansion
in the e-basis of V , and the standard coordinates of the point φJ,e(W ) in the Euclidean space VJ,e

allow us to compute the unique system of coefficients for v mod W as a linear combination of the
ej mod W . More specifically, this computation is given by a universal polynomial formula in the
e-coefficients of v in F and in the standard coordinates of φJ,e(W ) ∈ VJ,e. Applying this with
v = e′i for each i ∈ I, we arrive at n−d ordered (n−d)-tuples (one for each i ∈ I), and the resulting
(n− d)× (n− d) matrix has rows that give the linear coordinates for the e′i mod W in terms of a
known basis {ej mod W} for V/W . Hence, this matrix has non-vanishing determinant if and only
if the classes e′i mod W are also a basis of V/W . This shows that φJ,e(UI,e′ ∩ UJ,e) in VJ,e is the
complement of the zero locus of a determinantal expression in the Euclidean coordinates on VJ,e.
We get an analogous conclusion for φI,e′(UI,e′ ∩ UJ,e) in VI,e′ . This settles the first part of the
theorem.

Next, we turn to the problem of computing the transition bijection φI,e′ ◦ φ−1
J,e between then

subsets of Euclidean spaces. For a point W ∈ UI,e′ ∩ UJ,e, the point φJ,e(W ) ∈ VJ,e has as its
standard coordinates the coefficients of all ej mod W for j 6∈ J when expressed in terms of the
basis vectors ej mod W for j ∈ J . Meanwhile, the standard coordinates of φI,e′(W ) ∈ VI,e′ give
the coefficients of all e′i mod W for i 6∈ I when expressed in terms of the basis vectors e′i mod W
for i ∈ I. The problem is to exhibit rational functions (with denominator non-vanishing on these
domains) that compute how to switch between such systems of coordinates. To do this, in view of
the universal algebraic formulas for switching between two linear coordinate systems with a known
“change of basis matrix” (this involves Cramer’s formula for inverting a matrix), what we need to
know is that the change of basis matrix on V/W between the two ordered bases {e′i mod W}i∈I and
{ej mod W}j∈J is given with matrix entries that (on the domain of interest) are rational functions
in the Euclidean coordinates with non-vanishing denominator.

First express each e′i in the e-basis of V . This introduces some constants (depending on e and e′

but not W !), and thereby expresses e′i mod W as a constant linear combination of the ej mod W
for 0 ≤ j ≤ n (by “constant” we mean “independent of W”). Next, each ej mod W with j 6∈ J
is a linear combination of {ej mod W}j∈J with coefficients given by the standard coordinates of
φJ,e(W ). We insert these linear combinations into the initial constant linear combination expres-
sions, and after recollecting terms we obtain the formula for e′i mod W as a linear combination of
the ej mod W with j ∈ J . The coefficients in these expressions are the standard coordinates of
φJ,e(W ), and these give the change of basis matrix in one direction, with non-vanishing determinant
precisely because W ∈ UI,e′ ∩ UJ,e. To go in the other direction, we use the standard coordinates
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of φI,e′(W ). In this manner, we have worked out general rational-function formulas for how to
switch between the standard coordinates of φI,e′(W ) ∈ VI,e′ and φJ,e(W ) ∈ VJ,e, with the rational
functions having non-vanishing denominators on the two respective domains

φI,e′(UI,e′ ∩ UJ,e) ⊆ VI,e′ , φJ,e(UI,e′ ∩ UJ,e) ⊆ VJ,e.

�

The crux to everything in the above work is that the procedures in linear algebra for switching
coordinate systems are given by universal formulas. If, for example, the determinant of a matrix
was not given by a universal polynomial expression in the matrix entries, but was instead some
bizarre function of the matrix entries admiting no universal algebraic description, we would have
no way of knowing that the above transition manipulations are given by nice functions in Euclidean
coordinates on suitable domains.

Example 3.3. We claim that the topology on P(V ) = G1(V ) is compact and Hausdorff. To verify
the Hausdorff condition, we fix an ordered basis e = {e0, . . . , en} of V and consider the resulting
covering of P(V ) by open sets Ui equipped with homeomorphisms φi : Ui ' Rn. Each of these
opens is Hausdorff by Theorem 1.3, so the Hausdorff property for the glued topology is equivalent
to Ui ∩ Uj being closed in Ui × Uj for all i 6= j. In terms of the standard coordinates (aki)k 6=i on
Ui and (akj)k 6=j on Uj , Ui ∩ Uj as a subset of Ui × Uj consists of points satisfying ajiaij = 1 and
akjaji = aki (k 6= i, j). These are closed conditions on Ui × Uj ! The most concrete case is when
n = 1, in which case U0 × U1 is R×R and U0 ∩ U1 is the hyperbola a01a10 = 1.

To see that P(V ) is compact, we simply note that any hyperplane in V can be given by a linear
equation (relative to e-coordinates) with coefficients having absolute value at most 1. Hence, the
compact unit cubes [−1, 1]n in each of the finitely many Ui’s cover P(V ), and so this space must
be compact.

4. Topological properties of Grassmannians

To wrap up our topological discussion, we prove a fundamental fact concerning the topology of
Grassmannians:

Theorem 4.1. Let V be a finite-dimensional vector space over R with dimension n + 1 ≥ 2.
For 1 ≤ d ≤ n, the topological space Gd(V ) is naturally homeomorphic to a closed subset of the
projective space P(∧d(V )). In particular, Grassmannians are compact and Hausdorff.

The final part follows from the fact that projective spaces are compact and Hausdorff (by Example
3.3). The injection in this theorem is called the Plücker embedding.

Proof. This theorem turns out to be largely algebraic, and only briefly involves using that the
field F is R. We first work in an algebraic setting, and wish to define a natural injective map
Gd(V ) → P(∧d(V )). For each codimension-d linear subspace W ⊆ V , we have a quotient map
V � V/W , and so we clearly get a surjective map ∧d(V ) � ∧d(V/W ) whose target is one-
dimensional. The kernel of this is a hyperplane (slightly complicated to describe) in ∧d(V ), and so
corresponds to a point in P(∧d(V )). Hence, the assignment

W 7→ ker(∧d(V )� ∧d(V/W ))

defines a map of sets Gd(V ) → P(∧d(V )). In class it was proved that this map is injective. That
is, if W,W ′ ⊆ V are linear subspaces of V with codimension d and the projections of ∧d(V ) onto
∧d(V/W ) and ∧d(V/W ′) have the same kernel, then W = W ′ inside of V .
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There is further algebraic work to be done before we turn to the case F = R and sort out
topological consequences. Let us fixed an ordered basis e = {e0, . . . , en} of V . For each ordered
d-tuple i = (i1, . . . , id) of strictly increasing indices, define ei = ei1 ∧ · · · ∧ eid , so these give a basis
of ∧d(V ). The ei’s give a basis of ∧d(V ) that we shall denote ∧d(e) (and that we make into an
ordered basis with a choice of ordering; the choice does not matter). Let Ui ⊆ P(∧d(V )) be the
subset of hyperplanes in ∧d(V ) whose defining equation (unique up to scaling) has non-vanishing
coefficient for ei: that is, Ui consists of all hyperplanes H in ∧d(V ) such that the image of ei is
non-zero and hence a basis in ∧d(V )/H. Of course, Ui should be denoted Ui,∧d(e), but e will not
be changing.

Lemma 4.2. The preimage ι−1
d,V (Ui) ⊆ Gd(V ) is the subset UI = UI,e as defined earlier, with

I = {i1, . . . , id}. Moreover, the resulting map ιd,n : UI → Ui is given in coordinates by

(aij)i∈I,j 6∈I 7→ (Det(aij)i∈I,j∈I′)I′ 6=I ,

where I ′ runs over all strictly increasing d-tuples distinct from I (corresponding to all ei′’s with
i′ 6= i) and where, as usual, we define aij for j ∈ I to be 1 when j = i and to be 0 when j 6= i.

The significance of this lemma it that ιd,n : UI → Ui is a “polynomial map” in terms of the
standard linear coordinates on these domains (using φI,e and φi,∧d(e)). In particular, for F = R
this implies (by the local nature of continuity) that ιd,V is continuous.

Proof. If W ⊆ V is a codimension-d subspace, then the image of ei in ∧d(V/W ) is non-zero if and
only if the image vectors ei ∈ V/W for i ∈ I have non-zero wedge product in ∧d(V/W ). But such
a wedge product is non-zero if and only if {ei}i∈I is a linearly independent set in V/W (why?).
Since dim(V/W ) = d and I has size d, we arrive at the equivalent statement that the ei’s for i ∈ I
form a basis of V/W . This is exactly the criterion for the point W in the Grassmannian to lie in
UI , due to how we defined UI . This settles the determination of ι−1

d,n(Ui).
Given a point in UI corresponding to some W , it is cut out by equations

ej −
∑
i∈I

aijei = 0

for j 6∈ I. Recall how we defined coordinates on various pieces Ui of P(∧d(V )) using the preceding
general constructions (applied to the projective space viewed as G1(∧d(V )), with the basis ∧d(e)
for ∧d(V )); for i′ 6= i, the ii′-coordinate of the point ∧d(V/W ) ∈ Ui,∧d(e) is the coefficient that
expresses the image of ei′ in the 1-dimensional quotient ∧d(V/W ) as a multiple of the image of
ei. Since ej ≡

∑
i∈I aijei mod W for all j (using the usual convention of aij ’s when j ∈ I), when

computing in ∧d(V/W ) we can replace any appearance of an ej with
∑

i∈I aijei. Thus, for any
i′ 6= i we just use the computation

ei′1
∧ · · · ∧ ei′d

 (
∑
i∈I

aii′1
ei) ∧ · · · ∧ (

∑
i∈I

aii′d
ei) = Det(aii′)i∈I,i′∈I′ei1 ∧ · · · ∧ eid .

�

Before we apply this lemma to complete the proof of the theorem, we briefly digress to work out
an example.

Example 4.3. We wish to give an explicit formula for ι2,F 4 : UI → Ui for the special case V = F 4,
d = 2, and i = (0, 1) (so I = {0, 1}). To do this, first recall that (a02, a03, a12, a13) are coordinates
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on UI , denoting the conditions

e2 ≡ a02e0 + a12e1 mod W, e3 ≡ a03e0 + a13e1 mod W

for W a point in UI . We will need to compute the images of lots of wedge products ei ∧ ej in
∧2(V/W ), and more specifically we will need 5 coordinates for Ui in this example.

To be more precise, to compute ι2,F 4 : U{0,1} → U(0,1) we use the following computations in
∧2(F 4/W ) where W is spanned by e2 − a02e0 − a12e1 and e3 − a03e0 − a13e1:

e0 ∧ e2  e0 ∧ (a02e0 + a12e1) = a12e0 ∧ e1, e0 ∧ e3  a13e0 ∧ e1,

e1 ∧ e2  −a02e0 ∧ e1, e1 ∧ e3  −a03e0 ∧ e1,

and
e2 ∧ e3  (a02e0 + a12e1) ∧ (a03e0 + a13e1) = (a02a13 − a03a12)e0 ∧ e1

so relative to the lexicographical ordering of ei ∧ ej ’s for i < j, we have (in terms of the “usual” φI

and φi coordinates on the domains UI and Ui under consideration)

ι2,F 4(a02, a03, a12, a13) = (a12, a13,−a02,−a03, a02a13 − a03a12).

In terms of homogeneous coordinates [c(i,j)]i<j on P(∧2(F 4)) corresponding to the linear func-
tional

∑
i<j c(i,j)e

∗
i ∧ e∗j on ∧2(F 4), we conclude that the quadric Plücker relation

c(0,1)c(2,3) − c(0,2)c(1,3) + c(0,3)c(1,2) = 0

on P(∧2(F 4)) meets the open locus U(0,1) in precisely its overlap ι2,F 4(U{0,1}) with ι2,F 4(G2(F 4)).
It is also straightforward to check by hand that any permutation of the set {0, 1, 2, 3} carries this
equation back to itself up to a sign (it suffices to treat the transpositions (01), (12), and (23) that
generate the symmetric group S4!). Hence, the global homogeneous Plücker relation on P(∧2(F 4))
cuts out exactly the image of the Grassmannian G2(F 4) under ι2,F 4 .

Let us now push this example further, showing in general that every φI,e-coordinate aij (for
i ∈ I, j 6∈ I) on UI shows up (up to sign) as one of the component functions of the “coordinatized”
map

(3) φi,∧d(e) ◦ ιd,V |UI,e
φ−1

I,e : φI,e(UI,e) → φi,∧d(e)(Ui,∧d(e)).

For any i ∈ I and j 6∈ I the d-tuple I ′ = (I −{i})∪ {j} is such that the aI′I -coordinate function of
(3) is given up to sign by the coefficient which expresses the image of ω = ej ∧ei1 ∧· · ·∧ êi∧· · ·∧ein

(with no ei term) in ∧d(V/W ) as a multiple of the image of ei1 ∧ · · · ∧ eid . But replacing ej with
ai1jei1 + · · ·+ aidjeid in the wedge product ω kills off all terms except for the ith, leaving us with
±aijei1 ∧ · · · ∧ eid . Thus, we get the desired ±aij as a coordinate function.

Now we assume F = R and we are ready to deduce that the map ιd,V (which we have proved to
be continuous) is a homeomorphism onto a closed subset of the target projective space.

Due to the proved appearance of source coordinates (up to sign) as component functions of
(3), we can find a continuous projection map p : Ui → UI (with some sign interventions) such
that p ◦ ιd,n : UI → UI is the identity. Thus, to show that (3) is a closed embedding (i.e., a
homeomorphism onto a closed set in its target), from which we shall deduce that ιd,n is a closed
embedding, it suffices to show rather generally that if f : X → Y is any continuous map to a
Hausdorff topological space such that there exists a continuous p : Y → X with p ◦ f = idX , then
f must be a homeomorphism of X onto a closed subset of Y . Indeed, f is certainly injective, and
f(U) = f(X) ∩ p−1(U) is open in f(X) for any open U in X, so f is a homeomorphism onto its
image. To see that f(X) is closed, we use Lemma 1.2: f(X) ⊆ Y is the preimage of the closed
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set ∆Y (Y ) ⊆ Y × Y under the continuous map (f ◦ p, 1) : Y → Y × Y because if y = f(x) then
p(y) = x (so y = f(p(y))).

We now have a covering of P(∧d(V )) by opens Ui such that ι−1
d,V (Ui) → Ui is a closed embedding.

Thus, it remains to check quite generally that if f : X → Y is a continuous map of topological
spaces and {Vα} is an open covering of Y for which the maps f−1(Vα) → Vα are closed embeddings
for every α, then necessarily f is a closed embedding. In more suggestive terms, the property of
a continuous map f being a closed embedding is “local on the target space”. To check it, we first
note that f is definitely injective (for if x, x′ ∈ X with f(x) = f(x′) ∈ Vα then x, x′ ∈ f−1(Vα),
with f injective on f−1(Vα) (so x = x′). Thus, f : X → f(X) is a continuous bijection which we
want to have closed image and continuous inverse. Since

f(X) ∩ Vα = f(f−1(Vα))

with f : f−1(Vα) → Vα a closed embedding, we deduce that f(X) ∩ Vα is closed in Vα for all α (so
f(X) is closed in Y ) and likewise f : X → f(X) is even a homeomorphism since this is true over
the open covering of f(X) by f(X) ∩ Vα’s. �


