
Math 396. Products of premanifolds
Let X1, . . . , X

n be Cp premanifolds, with 0 ≤ p ≤ ∞. The topological product
∏

Xi ought to
admit a natural Cp premanifold structure, using as local Cp-charts the maps

φ1 × · · · × φn : U = U1 × · · · × Un → V1 ⊕ · · · ⊕ Vn

for Cp-charts φi : Ui → Vi on Xi. Concretely, local coordinates on the product are concatenations of
local coordinates on the factors. To be a bit more precise, if we take Vi = Rmi and let {x(i)

1 , . . . , x
(i)
mi}

denote the component functions Ui → R given by φi (so these are the local Cp coordinates on Ui

encoded in φi), then local Cp coordinates on the open subset U =
∏

Ui ⊆
∏

Xi are given by the
collection of functions x

(i)
j ◦ πi : U → R for 1 ≤ i ≤ n and 1 ≤ j ≤ mi, where πi : U → Ui is the

projection to the ith factor.
In this handout we do three things: we confirm that this procedure works, we verify that it

is not merely ad hoc but in fact satisfies a “universal mapping property” as any good notion of
product should (now in the category of Cp premanifolds, of course!), and we apply it to verify an
“obvious” interpretation of maps to Rn in the category of Cp premanifolds. The Hausdorff and
second countability conditions will also be tracked.

1. Construction of products

Recalling how products of topological spaces were characterized by a mapping property (roughly
of the shape “to map continuously to the product is the same as to map continuously to the
factors”), we are led to make a definition that may sound a bit abstract at first.

Definition 1.1. Let X1 and X2 be two Cp premanifolds. A Cp premanifold product is a triple
(P, p1, p2) consisting of a Cp premanifold P equipped with Cp-maps pi : P → Xi such that for any
pair of Cp maps f1 : Z → X1 and f2 : Z → X2 from a Cp premanifold Z, there exists a unique Cp

map f : Z → P such that pi ◦ f = fi.

The exact same argument as in the topological case shows that if there exist two products
(P, p1, p2) and (P ′, p′1, p

′
2) of X1 and X2 as Cp premanifolds then there is a unique Cp-isomorphism

ξ : P ' P ′ compatible with the pi’s and p′i’s (i.e., p′i ◦ ξ = pi for i = 1, 2). The existence aspect
for Cp premanifold products provides no surprises: it should be a natural Cp-structure on the
topological product. The construction is simple to describe in the language of atlases, as follows.
Let P = X1 × X2 as a topological space (with the product topology), and let pi : P → Xi be
the usual continuous projections. If there is to be a Cp-structure O on P making it a Cp product
via the pi’s, then a priori O is uniquely determined: if O ′ is a second such structure then by the
universal property in Definition 1.1 applied to (P,O) and (P,O ′) we get a unique Cp isomorphism
of Cp products

ξ : (P,O) ' (P,O ′)
respecting p1 and p2 on both the source and target. Thus, since P = X1 ×X2 topologically (with
the usual pi’s), ξ is forced to be the identity on underlying topological spaces. Hence, the Cp inverse
to ξ must also be the identity on underlying topological spaces. The condition that the identity
map in both directions respects the Cp-structures O and O ′ says exactly that O(U) = O ′(U) inside
the set of all R-valued functions on U for every open set U ⊆ R. In other words, O ′ = O as desired.

Having settled uniqueness for O on P , we now treat the existence problem. For local Cp-charts
(φ1, U1) on X1 and (φ2, U2) on X2 with φi : Ui → Vi a homeomorphism onto an open set φi(Ui) ⊆ Vi

for finite-dimensional R-vector spaces Vi, the map

φ1 × φ2 : U1 × U2 → V1 ⊕ V2

1



2

is a homeomorphism onto the open subset φ1(U1)×φ2(U2) in the finite-dimensional R-vector space
V1 ⊕ V2. By the definition of “atlas”, the U1’s and U2’s cover X1 and X2 respectively, so the opens
U1 × U2 cover X1 ×X2. The content of the existence problem is:

Theorem 1.2. As we let (φ1, U1) and (φ2, U2) range through elements of Cp-atlases for X1 and
X2 respectively, the data (φ1 × φ2, U1 × U2) form a Cp-atlas on X1 × X2. With respect to the
associated Cp premanifold structure, the projections pi : X1 × X2 → Xi are Cp and satisfy the
universal property to be a product; in particular, this Cp-structure on the topological space X1×X2

is independent of the choices of Cp-atlases covering X1 and X2.

In concrete terms, the local Cp-coordinates on the product are just concatentations of local Cp-
coordinates on each of the factors (on products of small opens from the factors). Note also that
when X1 and X2 are Cp manifolds, then so is X1 ×X2 (as the Hausdorff and second-countability
conditions are topological and are preserved under the formation of products). Whenever we speak
of a product of Cp premanifolds, it is always understood that we use the Cp-structure on the
topological product as in this theorem, but do not forget the key point: this is not merely some
nice-looking Cp structure on the topological product but it satisfies the right universal mappping
property to deserve being called a product in the category of Cp premanifolds (and in particular it
is independent of the Cp-atlases chosen on the factors).

Proof. Let (φi, Ui) and (φ′i, U
′
i) be two Cp-charts on Xi (with φi and φ′i taking values in finite-

dimensional R-vector spaces Vi and V ′
i ), and suppose U1 × U2 meets U ′

1 × U ′
2 inside of X1 × X2.

Since
(U1 × U2) ∩ (U ′

1 × U ′
2) = (U1 ∩ U ′

1)× (U2 × U ′
2)

inside of X1 ×X2, we have to check that the composite homeomorphism

(φ′1 × φ′2) ◦ (φ1 × φ2)−1 : (φ1 × φ2)((U1 ∩ U ′
1)× (U2 ∩ U ′

2)) → (φ′1 × φ′2)((U1 ∩ U ′
1)× (U2 ∩ U ′

2))

between respective opens in V1⊕V2 and V ′
1 ⊕V ′

2 is a Cp-isomorphism. But this map is the product
of the homeomorphisms

φ′1 ◦ φ−1
1 : φ1(U1 ∩ U ′

1) ' φ′1(U1 ∩ U ′
1), φ′2 ◦ φ−1

2 : φ2(U2 ∩ U ′
2) ' φ′2(U2 × U ′

2)

between opens in V1 and V ′
1 , and in V2 and V ′

2 . Both of these latter maps are Cp-isomorphisms
because we are comparing local Cp-charts from a common Cp-atlas on each of X1 and X2, and
hence we just have to note that in the setting of multivariable calculus on vector spaces a product of
Cp maps is again Cp (as the Cp property may be checked using component functions with respect
to a choice of linear coordinates on the target). This completes the verification that we have a
Cp-atlas on X1 ×X2.

By construction, the projections X1 × X2 → Xi are Cp: working with the local Cp-charts in
the above Cp-atlas reduces this to the classical fact that if U ⊆ V and U ′ ⊆ V ′ are open domains
in finite-dimensional R-vector spaces then upon viewing U × U ′ as an open domain in the vector
space V ⊕V ′ the projection U ×U ′ → U is Cp; it is even C∞ since it is the restriction of the linear
projection V ⊕ V ′ → V . We therefore have a Cp-structre on X1 ×X2, and it remains to show it
“works”.

To check the universal property, let Y be a Cp premanifold and let fi : Y → Xi be Cp maps.
There is a unique continuous map f : Y → X1 × X2 with component maps f1 and f2 along the
factors, and our problem is to prove that this f is necessarily a Cp map. Such a property for a
continous map between Cp premanifolds may be checked working locally on the source and target,
so it suffices to separately study the maps f−1(U1 × U2) → U1 × U2 for local Cp-charts (φ1, U1)
and (φ2, U2) in the chosen atlases on X1 and X2. Thus, we may assume that X1 and X2 admit
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global Cp-charts, and hence we may suppose Xi is open in a finite-dimensional R-vector space Vi.
We may work locally on Y , and so we can assume Y admits a global Cp-chart as well. Thus, we
can assume Y is open in a finite-dimensional R-vector space V . Hence, we are in the following
situation: we are given an open set Y ⊆ V and a pair of Cp maps Y → Vi (landing in open subsets
Xi ⊆ Vi), and we want the product map Y → V1 ⊕ V2 (which factors through the product map
to the open subset X1 ×X2) to be a Cp map; but this is obvious from the “component function”
criterion in multivariable calculus for a map to a finite-dimensional vector space to be Cp. �

Remark 1.3. Of course, the same construction can be iterated for finite products in the evident
manner. We leave this to the reader’s imagination.

2. Mapping property for Rn

Consider Rn. This is always taken to be a Cp manifold via the usual R-space structure of Cp-
functions on opens as in calculus. As a topological space, Rn is a product of copies of R. Does
the product manifold structure as in Remark 1.3 using that on each of the factors R recover the
usual Cp manifold structure on Rn? Indeed it does; this follows from inspecting the construction
using the identity map on R as a global chart on each copy of R. The same argument shows
that for finite-dimensional vector spaces V and W , the product Cp-manifold structure on V ×W
coincides with the usual one via the vector space structure on the direct sum V ⊕W . Of course,
when working with finite-dimensional vector spaces as manifolds we often implicitly consider them
in the C∞ category. The preceding example has the following pleasing consequence:

Corollary 2.1. Let X be a Cp premanifold, and f1, . . . , fn ∈ O(X). The map of sets f : X → Rn

given by x 7→ (fi(x)) is a Cp mapping. Conversely, any Cp map X → Rn arises in this way.

This is the sort of statement that one wants to use without thinking twice, and fortunately we
can. (If we couldn’t, there would be something seriously wrong with the definitions.)

Proof. This is largely a matter of unwinding definitions, ultimately reducing to the fact that in the
very definition of a premanifold we require at the level of local Cp-charts that the distinguished
functions on an open set correspond to the usual Cp functions on the image open set in the target
vector space for the local Cp-chart. Also, once we settle the case n = 1, the general case follows by
the universal property of Cp products and the preceding verification that the usual Cp manifold
structure on Rn is the product structure coming from its n factor spaces R (with its usual Cp-
structure).

In the case n = 1, the content is this: for a Cp premanifold X, a set-theoretic function f : X → R
lies in O(X) if and only if f is a Cp map when R is itself viewed as a Cp premanifold in the usual
manner. To verify this “obvious” claim, we may work locally on X (as both sides of the implication
can be checked locally on X; e.g., f ∈ O(X) if and only if f |Xi ∈ O(Xi) for opens Xi that cover
X), and so we may assume that there is a global Cp-chart φ : X ' φ(X) onto an open subset
of a finite-dimensional R-vector space V . Hence, by definition of Cp-charts on a Cp premanifold,
f ∈ O(X) if and only if f ◦ φ : U → R is a Cp map in the traditional sense. However, since φ is a
Cp isomorphism when the open subset φ(X) ⊆ V is given the induced Cp-structure from the usual
manifold structure on V as in calculus on vector spaces (this follows from the very definition of a
Cp-chart!), and since f = (f ◦ φ) ◦ φ−1, it follows that f is a Cp map if and only if f ◦ φ is a Cp

map. Hence, we may replace f with f ◦ φ so as to reduce to the case when X is an open subset of
V with the induced Cp-structure from the usual one on V . But the Cp-structure on V is exactly
to declare the distinguished functions on an open subset to be the Cp-functions in the usual sense
of calculus on vector spaces, so we are done. �


