
Math 396. Quotients by group actions
Many important manifolds are constructed as quotients by actions of groups on other manifolds,

and this often provides a useful way to understand spaces that may have been constructed by other
means. As a basic example, the Klein bottle will be defined as a quotient of S1 × S1 by the action
of a group of order 2. (We will also see how this is related to the usual picture of the Klein bottle,
to “justify” our definition.) Also, projective n-space as we defined it earlier will turn out to be
the quotient of the standard n-sphere by the action of a group of order 2. The circle as defined
concretely in R2 is isomorphic (in a sense to be made precise) to the the quotient of R by additive
translation by Z (or 2πZ; it all comes to the same thing, as we shall see).

We first work out some definitions and examples in a set-theoretic setting, then we introduce
topologies. In the geometric (as opposed to set-theoretic) setup, we will restrict our attention to
very nice cases where the group has essentially no geometric structure. In practice one must go
beyond this to allow the group that acts to be a positive-dimensional manifold, but that would
introduce a host of complications that we cannot adequately treat without more knowledge of the
theory of manifolds. Nonetheless, even within the restricted setup that we consider, we will see
many interesting examples.

1. Set-theoretic case

Definition 1.1. Let X be a set and G a group. A right action of G on X is a map of sets
X × G → X, denoted (x, g) 7→ x.g, such that x.1 = x for all x ∈ X and (x.g).g′ = x.(gg′) for all
x ∈ X and g, g′ ∈ G.

The content in the conditions is that the composition of the operations on X by elements of G
interact well with the group law on G, but there are two reasonable possibilities to demand: the
action of gg′ ∈ G on X is equal to “first act by g, then by g′” or “first act by g′, then by g”. The
first is most succinctly described with the notation x.(gg′) = (x.g).g′ whereas the second is most
succinctly described with the notation (gg′).x = g.(g′.x). Hence, this second possibility is called a
left action. Of course, nothing prevents us from using the notation g.x for right actions, but the
action-formula then takes the form “(gg′).x = g′.(g.x)” which does not look nice (as the order of
appearance of g and g′ on the two sides is not the same).

Since we require 1 ∈ G to act as the identity on X, it follows that for any action of G on X
the elements g, g−1 ∈ G act on X by mutually inverse self-maps of X and so in particular all
g ∈ G act on X by bijective maps. Hence, we can restate the notions of left-action and right-
action as follows. Let Aut(X) be the group of bijections from X to itself (made into a group using
composition, with the identity map of X serving as the identity of this group). A left action of G
on X is a homomorphism of groups λ : G → Aut(X) (as the condition λ(gg′) = λ(g) ◦ λ(g′) says
exactly “(gg′).x = g.(g′.x)”), and a right action of G on X is an antihomorphism ρ : G → Aut(X)
in the sense that ρ(gg′) = ρ(g′) ◦ ρ(g) for all g, g′ ∈ G.

We will be most interested in the case when G is a commutative group, so gg′ = g′g for all
g, g′ ∈ G, in which case the notions of left-action and right-action coincide.

Example 1.2. Let X = Sn be the unit sphere in Rn+1 (using the usual inner product) with n ≥ 1.
The map x 7→ −x sending each point to its antipode (the unique other point where the line
Rx ⊆ Rn+1 meets the sphere) is called the antipodal map and applying it twice gives the identity.
Thus, this is an action on X by the order-2 group of integers mod 2, where 0 mod 2 acts as the
identity and 1 mod 2 acts as the antipodal map. (Check the action axioms!)

Example 1.3. Let V be a finite-dimensional R-vector space, and let L be the Z-linear span of a
basis {e1, . . . , en} of V , by which we mean L = {

∑
aiei | ai ∈ Z}. Such an L is called a lattice in V .
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In {ei}-coordinates, V = Rn and L = Zn. Each λ ∈ L acts on V by the translation [λ] : v 7→ v +λ.
One readily checks the action axioms, since [0] is the identity on V and

(v + λ) + λ′ = v + (λ + λ′)

for all λ, λ′ ∈ L and v ∈ V .

Example 1.4. Let n be a positive integer and let X = R2. Let G be the group of integers modulo
n, considered as a group with respect to addition. Let a mod n act on X via counterclockwise
rotation by an angle of 2πa/n; note this does indeed only depend on a mod n ∈ G and not on the
representative a ∈ Z, and it really is an action (since rotating by 2πa/n and then 2πa′/n is the
same as rotation by 2π(a + a′)/n).

Definition 1.5. If a group G is given a right action on a set X, the G-orbit of x ∈ X is the set
of points x.g for g ∈ G. For a subset S ⊆ X and an element g ∈ G, the g-translate S.g is the set
of points x ∈ X with the form x = s.g for some s ∈ S and (not necessarily unique!) g ∈ G. The
quotient X/G is the set of G-orbits, and the map π : X → X/G sending x ∈ X to its G-orbit is the
quotient map.

Remark 1.6. Points x, x′ ∈ X lie in the same G-orbit if and only if x′ = x.g for some g ∈ G. Indeed,
suppose x and x′ lie in the G-orbit of a point x0 ∈ X, so x = x0.γ and x′ = x0.γ

′ for γ, γ′ ∈ G. For
g = γ−1γ′ we then have

x.g = (x.γ−1).γ′ = ((x0.γ).γ−1).γ′ = (x0.(γγ−1)).γ′ = (x0.1).γ′ = x0.γ
′ = x′.

Example 1.7. In Example 1.2, the orbits are the pairs of antipodal points. In Example 1.3, the
orbits are the lattice translates v + L, so in particular the orbit of the origin is L. For example,
if V = R and L = Z, then a Z-orbit is the same thing as the set of real numbers with a fixed
“fractional part”. In Example 1.4, the orbit of a nonzero point x ∈ R2 consists of n points equally
spaces about the circle of radius ||x|| (Euclidean norm) centered at the origin, whereas the orbit of
the origin is a one-point set. This latter type of orbit is “bad”, as we shall see.

Visually, you should think of the formation of X/G as collapsing all G-orbits into points. As a
basic example, if we consider Z acting on R by additive translations, the quotient R/Z is seen as
[0, 1) set-theoretically, since every real number differs by an integer from a unique number in [0, 1)
(the fractional part of the number). Set-theoretically, we could also use [−1/2, 0)∪ (1, 3/2] instead
of [0, 1). However, in terms of later notions these both give the “wrong” topological description for
the quotient.

Example 1.8. Again consider the translation action on R by Z. The quotient R/Z is identified with
the unit circle S1 ⊆ R2 via trigonometry: for t ∈ R we associate the point (cos(2πt), sin(2πt)),
and this image point depends on exactly the Z-orbit of t (i.e., t, t′ ∈ R have the same image in the
plane if and only they lie in the same Z-orbit). Hence, we get a well-defined bijection of R/Z onto
S1. This will soon be enhanced to more than a set-theoretic bijection (giving the “right” topology
on R/Z). It is more traditional to work with R/2πZ and with the map t 7→ (cos t, sin t).

Definition 1.9. Let X ′ and X be two sets endowed with right actions by G. A map f : X ′ → X
is G-equivariant if f(x′.g) = f(x′).g for all x′ ∈ X ′ and g ∈ G.

Any G-equivariant map f : X ′ → X must carry the G-orbit of x′ ∈ X ′ into the G-orbit of
f(x′) ∈ X, so there is a well-defined map f : X ′/G → X/G sending the orbit of x′ to the orbit of
f(x′); the maps f and f are compatible with the projections π′ : X ′ → X ′/G and π : X → X/G in
the sense that f ◦ π′ = π ◦ f . We call f the map induced by f .
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Example 1.10. Let X = R and G = 2πZ acting by additive translation. The map f : X → X
given by f(x) = x + c for some c ∈ R is G-equivariant ((x + c) + g = (x + g) + c for all x ∈ R and
g ∈ 2πZ), and the induced map f : S1 → S1 is rotation through an angle of c.

2. Topological case

We are not interested in group actions on bare sets X, but rather those actions which interact
well with topology (and later, differentiable structure) on the set X. We will only consider the case
when the group G is itself discrete, which is to say that all of the interesting geometric structure is
on X.

Definition 2.1. Let X be a topological space and G a discrete group. A right action of G on X is
continuous if for each g ∈ G the action map X → X defined by x 7→ x.g is continuous (and hence
a homeomorphism, as the action of g−1 gives an inverse); this just says that the map X ×G → X
is continuous when using the product topology on X ×G with G given the discrete topology.

The action is free if for each x ∈ X the stabilizer subgroup {g ∈ G |x.g = x} of g ∈ G fixing x is
the trivial subgroup {1}.

The action is properly discontinuous when it is continuous for the discrete topology on G and
each x ∈ X admits an open neighborhood Ux so that the G-translate Ux.g meets Ux for only finitely
many g ∈ G.

Remark 2.2. I think that the terminology “properly discontinuous” is due to the fact that G is
given the discrete topology, and such a topology is somehow the opposite extreme from the idea of
a “continuous group” (connected topological group manifold with positive dimension), whence it
is “discontinuous”.

Let us analyze free and properly discontinuous actions a bit more closely in order that we may
visualize their significance.

Example 2.3. Suppose that X is a locally Hausdorff space, and that G acts on X on the right via
a properly discontinuous action. For each x ∈ X, we get an open subset Ux such that Ux meets
Ux.g for only finitely many g ∈ G. This property is unaffected by replacing Ux with an open subset
around x, so by the locally Hausdorff property we can assume (by replacing Ux with its intersection
with an open Hausdorff set around x) that Ux is Hausdorff. The key is that we can do better: there
exists an open set U ′

x ⊆ Ux such that U ′
x meets U ′

x.g if and only if x = x.g. Thus, if the action is
also free then U ′

x is disjoint from U ′
x.g for all g ∈ G with g 6= 1.

To find U ′
x, let g1, . . . , gn ∈ G be an enumeration of the finite set of elements g ∈ G such that

Ux meets Ux.g. For any open subset U ⊆ Ux we can only have U ∩ U.g 6= ∅ for g equal to one of
the gi’s, so it suffices to show that for each i with x.gi ∈ Ux − {x} there is an open subset Ui ⊆ Ux

such that Ui ∩ (Ui).gi = ∅ (and then we may take U ′
x to be the intersection of the Ui’s over the

finitely many i such that x.gi 6= x). By the Hausdorff property of Ux, when x.gi ∈ Ux − {x} there
exist disjoint opens Vi, V

′
i ⊆ Ux around x and x.gi respectively. By continuity of the action on X

by gi ∈ G there is an open Wi ⊆ X around x such that (Wi).gi ⊆ V ′
i . Thus, Ui = Wi∩Vi is disjoint

from V ′
i yet satisfies (Ui).gi ⊆ V ′

i , so Ui ∩ (Ui).gi = ∅. This completes the construction of U ′
x.

The interest in free and properly discontinuous actions is that for such actions in the locally
Hausdorff case we may find an open Ux around each x ∈ X such that Ux is disjoint from Ux.g
whenever g 6= 1. (Conversely, when this holds we see that the action is certainly free and properly
discontinuous.) Thus, for such actions we may say that in X/G we are identifying points in the
same G-orbit with this identification process not “crushing” the space X by identifying points of X
that are arbitrarily close to each other. An example where things go horribly wrong is the action of
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G = Q on R via additive translations (with Q given the discrete topology, so as to fit into the above
framework). This is a continuous action, but the quotient R/Q is very bad: any two Q-orbits in R
contain arbitrarily close points! However, there are more subtle examples where things go wrong:

Example 2.4. Consider Example 1.4. For any nonzero x ∈ R2, its orbit consists of n equally space
points on the circle Cx of radius ||x|| centered at the origin. It is geometrically obvious (and you
should be able to give a rigorous proof) that for a Euclidean open ball Bx centered at x with
sufficiently small radius (on the order of ||x||π/n), Bx is disjoint from its translates by nontrivial
elements of the group; that is, rotating Bx about the origin by angles 2πa/n with a ∈ Z gives sets
disjoint from Bx except for when n|a. Hence, on R2 − {0} the action is properly discontinuous
and free. However, the story at the origin is very different (when n > 1): the origin is fixed by
the entire group, and so every neighborhood of the origin meets its translate by any element of the
group (e.g., they meet at the origin). Thus, the action on all of X is not free (though it is properly
discontinuous) because of the difficulties at the origin.

Here are some more examples of free and properly discontinuous actions.

Example 2.5. The antipodal map on Sn viewed as an action of the integers mod 2 is free and
properly discontinuous: freeness is clear, as is continuity, and for any x ∈ Sn the points near x all
have their antipodes quite far away! Also, the additive translation on a finite-dimensional vector
space V by a lattice L ⊆ V is free and properly discontinuous. Indeed, the continuity of the action
(relative to the discrete topology on L) is clear, and in terms of linear coordinates the freeness and
proper discontinuity follow upon noting that for each x ∈ Rn a small neighborhoord of x is disjoint
from its translates by nonzero elements of Zn; if x = (t1, . . . , tn) then the open neighborhood

(t1 − 1/2, t1 + 1/2)× · · · × (tn − 1/2, tn + 1/2) ⊆ Rn

around x does the job.

Example 2.6. Let X = S1 × S1 be a product of two circles, where the circle

S1 = {z ∈ C | |z| = 1}
is viewed as a topological group (using multiplication in C, so both the group law and inversion
z 7→ 1/z = z on S1 are continuous). The visibly continuous map (z, w) 7→ (1/z,−w) = (z,−w)
reflects through the x-axis in the first circle and rotates 180-degrees in the second circle, and is its
own inverse (applying it twice gives the identity). Thus, this gives an action by the order-2 group
G of integers mod 2 (as in the case of the antipodal map on the sphere). It is free and properly
discontinuous because a small neighborhood of a point (z0, w0) in S1 moves quite far away from
itself under application of this action by the unique non-trivial element of G, due to the fact that
w0 is moved 180-degrees away (even though for exceptional points z0 = ±1 we have z0 = z0). The
associated quotient X/G will be called the (set-theoretic) Klein bottle. In Remark 2.15 we will
explain how this definition is related to the traditional visualization of the Klein bottle.

Example 2.7. Let X0 be a topological space and let X = X0 × G with G given the discrete
topology. In other words, X is a disjoint union of copies of X0 indexed by elements of G; we
call X0 × {g} the gth copy of X0 in X. We make G act on X through right multiplication on
indices: (x0, g0).g = (x0, g0g). This is easily seen to be a continuous action that is free and
properly discontinuous. In this case the quotient is identified with X0 via the standard projection
X = X0 ×G → X0. In general, we say that a continuous right G-action on a topological space Y
is a split action if it arises by this example: there is a topological space Y0 and a homeomorphism
Y ' Y0 ×G carrying the G-action on Y over to the one on Y0 ×G through right multiplication on
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indices. Intrinsically, this just says that Y contains an open set Y0 such that the open sets Y0.g for
varying g ∈ G are pairwise disjoint and cover Y .

Theorem 2.8. Let X be a locally Hausdorff topological space equipped with a free and properly
discontinuous action by a group G. There is a unique topology on X/G such that the quotient
map π : X → X/G is a continuous map that is a local homeomorphism (i.e., each x ∈ X admits
a neighborhood mapping homeomorphically onto an open subset of X/G). Moreover, the quotient
map is open.

A subset S ⊆ X/G is open if and only if its preimage in X is open, and if U ⊆ X is an open
set that is disjoint from U.g for all non-trivial g ∈ G then the map U → X/G is a homeomorphism
onto its open image U and the natural map U × G → π−1(U) over U given by (u, g) 7→ u.g is a
homeomorphism when G is given the discrete topology; that is, the G-action on π−1(U) is split in
the sense of Example 2.7.

The topology in this theorem is called the quotient topology, and it is locally Hausdorff since
X → X/G is a local homeomorphism. The most important thing to keep in mind is that it is
the hypotheses of freeness and proper discontinuity for the action of G on X that ensure we can
topologize X/G such that X → X/G is a local homeomorphism. In particular, two points of X/G
are close if and only if the corresponding G-orbits in X contain “nearby” points, and for any small
opens U in X with U ∩ (U.g) = ∅ for all g ∈ G − {1} (there are many such U !) the open U
“represents” its open image in X/G with the same topology via the bijective projection from U
onto its open image in X/G. This is how you should visualize the topology. The final part of the
theorem is extremely important. We will see some explicit examples shortly.

Proof. We first show the uniqueness, granting existence, for such a topology τ . Suppose that X is
given a topology such that X → X/G is a continuous map and is a local homeomorphism. For any
open set U ⊆ X/G, continuity implies that its preimage U ⊆ X must be τ -open. More important
is that we claim the converse must be true: if U ⊆ X/G is a subset whose preimage U ⊆ X is
an open subset of X then U must be open in X/G. By surjectivity of the quotient map, U is
the image of its preimage U . Hence, it suffices to show that necessarily for any open U ⊆ X its
image in X/G must be open with respect to τ . For each x ∈ U the local homeomorphism property
provides an open neighborhood Ux ⊆ X around x such that Ux → X/G is a homeomorphism onto
an open image. The same therefore holds for any open subset of Ux, such as Ux ∩ U , so we may
suppose Ux ⊆ U . Hence, U is a union of open subsets Ux that have open image in X/G, so the
image of U is also open (as it is the union of the open images of the Ux’s). We have therefore given
a characterization of the τ -open sets in X/G in terms of the topology on X: these are the subsets
whose preimage in X is open. This proves the uniqueness aspect for the topology τ .

Now we prove the existence aspect, and we see that there is no choice: we simply declare a subset
S ⊆ X/G to be open if its preimage in X is open. One checks from the definition of a topology
that this is indeed a topology on X/G, and we have to prove that this really “works”: it makes
X → X/G a continuous local homeomorphism and an open map. The necessity of being an open
map was explained above once we have the local homeomorphism condition. Also, continuity is
trivial: open sets in X/G have open preimages by definition. Now pick x ∈ X, and we seek an
open Ux around x in X such that Ux maps homeomorphically onto an open image in X/G. By the
assumption that the action is properly discontinuous and free, we can find an open Ux around x
that is disjoint from the g-translate Ux.g of Ux for all non-identity g ∈ G, so in particular Ux injects
into X/G. (If distinct points u, u′ ∈ Ux have the same image in X/G then they lie in a common
G-orbit and hence u = u′.g for some g ∈ G that must be non-trivial, as u 6= u′ but u′.1 = u′. This
implies Ux meets Ux.g, a contradiction since g 6= 1.)
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To show that Ux maps homeomorphically onto an open image, it remains to check that for any
open U ⊆ Ux, the image of U in X/G is open. This says that the preimage of the image is open
in X, and this preimage is the union of subsets U.g for g ∈ G. Since the action x 7→ x.g is a
homeomorphism from X to itself for each g ∈ G (by the continuity condition on the action for G
on X), it follows that all subsets U.g are open, whence their union is open.

For an open U ⊆ X such that the translates U.g for varying g ∈ G are pairwise disjoint, it
remains to show that the natural action map U × G → π−1(π(U)) defined by (u, g) 7→ u.g is
a homeomorphism (where the left side is the product with G given the discrete topology. This
map is certainly surjective, since x ∈ π−1(π(U)) if and only if π(x) = π(u) for some u ∈ U ,
which is to say that x and u have the same G-orbit, or equivalently x = u.g for some g ∈ G.
Injectivity holds because if u.g = u′.g′ then u = u′.(g′g−1) and so U meets U.(g′g−1); this forces
g′g−1 = 1 (i.e., g′ = g) and hence u′ = u (since u′.1 = u′). For the homeomorphism aspect, we
note that by assumption the open translates U.g in X are pairwise disjoint, and their union does
cover π−1(π(U)). Thus, π−1(π(U)) as a topological space is a disjoint union of open subsets U.g
and by the continuity of the actions of g and g−1 we see that the action mapping U → U.g given
by u 7→ u.g is a homeomorphism (with inverse given by the action of g−1). Hence, the bijective
map U ×G → π−1(π(U)) carries the open subset U × {g} (endowed with the topology of U) over
to the open subset U.g via the homemorphism (u, g) 7→ u.g, so we have a bijective map between
topological spaces that restricts to homeomorphisms between collections of opens that each cover
the respective spaces with no overlaps. Such a map is obviously a homeomorphism. �

We want to revisit some of our earlier examples and see how the topology works out, but first we
need some further properties of this quotient topology, especially a criterion for the quotient topol-
ogy to be Hausdorff. This is a very nice application of the diagonal criterion for being Hausdorff.

Lemma 2.9. Let G have a properly discontinuous and free right action on a locally Hausdorff
topological space X. The quotient X/G is Hausdorff if and only if the image of the “action mapping”

X ×G → X ×X

given by (x, g) 7→ (x.g, x) is closed in X ×X.

In the special case G = {1}, the quotient map X → X/G is a homeomorphism and this lemma
recovers the diagonal criterion for X to be Hausdorff. The lemma does not give a new proof of the
criterion because its proof uses the criterion.

Proof. The space X/G is Hausdorff if and only if its diagonal map into (X/G)× (X/G) has closed
image. Since the continuous surjective map π : X → X/G is open, so is the map

π × π : X ×X → (X/G)× (X/G)

(due to the definition of product topologies). But if f : Y → Y ′ is a continuous surjective open map
between topological spaces then a subset Z ′ ⊆ Y ′ is closed if and only if f−1(Z ′) ⊆ Y is closed.
Indeed, by passing to complements we get an equivalent assertion for openness, and this follows
from the fact that f is a continuous surjective open map. Hence, we apply this with f = π × π to
conclude that X/G has closed diagonal image if and only if the preimage of this diagonal in X ×X
is a closed subset of X ×X. But a point (x, x′) ∈ X ×X lands in the diagonal of X/G precisely
when x and x′ have the same image in X/G, which is to say x = x′.g for some g ∈ G. Hence, this
preimage is the image of the map (x′, g) 7→ (x′.g, x′) from X ×G to X ×X. �

To work out examples, we require one further result. The next lemma answers the question of
why the quotient topology as defined above on X/G is the “right” one: it satisfies a convenient
mapping property.
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Lemma 2.10. Let X be a locally Hausdorff topological space with a free and properly discontinuous
right action by a group G. Let π : X → X/G be the continuous open surjective quotient map.

Let f : X → Y be a continuous map to a topological space Y , and assume that f is G-invariant
in the sense that f(x.g) = f(x) for all x ∈ X and g ∈ G. There is a unique set-theoretic map
f : X/G → Y satisfying f(π(x)) = f(x) for all x ∈ X, and it is continuous.

Proof. Since π is surjective, the uniqueness of f is clear. As for existence, we have no choice but to
define f to send the G-orbit π(x) of x ∈ X to f(x), and we have to check that this is well-defined
and continuous. The G-invariance assumption says exactly that f(x) = f(x′) when x, x′ ∈ X are
in the same G-orbit, so indeed f is well-defined. To check continuity, for open U ⊆ Y we want
f
−1(U) to be open in X/G. By definition of the quotient topology, this says that π−1(f−1(U)) is

open in X, and since this is (f ◦ π)−1(U) with f ◦ π = f : X → Y a map that was assumed to be
continuous, we are done. �

Example 2.11. Consider the action of the group of order 2 on the standard n-sphere Sn ⊆ Rn+1 via
the antipodal map. In this case, the quotient is identified with projective n-space Pn(R). This is
addressed in the homework, and recovers the standard topological construction of projective spaces.

Example 2.12. Let us revisit the example of Z acting on R by additive translations. This action
has been checked to be continuous for the discrete topology on Z and to be free and properly
discontinuous. To verify that the quotient R/Z is Hausdorff, we use the criterion for Hausdorffness
of properly discontinuous group-action quotients: is the image of the map Z×R → R×R defined
by (n, x) 7→ (n + x, x) closed? This is is the set of points (x, y) ∈ R2 such that y− x ∈ Z. In other
words, it consists of the infinite collection of lines y = x + n (n ∈ Z) parallel to the line y = x.
This is clearly closed. Since every point in R differs from some element of [0, 1) by an element of
Z, the compact subset [0, 1] ⊆ R surjects onto R/Z. Since the maps [0, 1] → R and R → R/Z
are continuous, it follows that [0, 1] continuously surjects onto R/Z, whence R/Z is a compact
Hausdorff space.

Geometrically, the situation is rather simple: we take [0, 1] and we “identify” the ends and
assign the “circle” topology. To make this precise, consider the map R → S1 ⊆ R2 given by
t 7→ (cos(2πt), sin(2πt)). This is a continuous map onto S1 that is invariant under the Z-action on
R, so by the mapping property for quotients it follows that this map uniquely factors through a
continuous surjective map R/Z → S1. However, this latter map is also injective since the points
of R with a common image in S1 are exactly the Z-orbits. Hence, R/Z → S1 is a continuous
bijection between compact Hausdorff spaces. It is therefore a homeomorphism! (It is instructive
to “see” this homeomorphism property directly from the definition of R/Z as a topological space,
without appealing to compactness; draw pictures.) Trigonometry thereby lets us always visualize
R/Z as a circle. We consider R/Z to be an “abstract circle” with no specified embedding into the
plane (or into anything else).

Example 2.13. The preceding example can be pushed further. Let V be a finite-dimensional R-
vector space and let L ⊆ V be a lattice (i.e., the Z-linear span of an R-basis of V ). We have seen
that the action of L on V (via additive translations) is continuous for the discrete topology on L
and is free and properly discontinuous as well. Thus, we get a topological quotient V/L. There
is an evident continuous map Rn → (R/Z)n that is invariant with respect to additive translation
by Zn on the source, so it induces a continuous map V/L = Rn/Zn → (R/Z)n that is clearly
bijective. Thus, V/L is always compact Hausdorff (since R/Z is)! It is homemorphic to a product
of n circles.
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A good example is V = R2 and L spanned over Z by λ1 = (1, 0) and λ2 = (a, b) with b > 0. To
visualize V/L in this case, consider the compact parallelogram

P = {t1λ1 + t2λ2 | t1, t2 ∈ [0, 1]} ⊆ R2.

(Why is this compact? Express it as a continuous image of [0, 1] × [0, 1].) The map P → V/L
is surjective and it identifies opposite sides of P “in the same direction.” Upon picking linear
coordinates dual to the R-basis {λ1, λ2} for V , we get a description as R2/Z2, so the quotient is
homemorphic to S1 × S1. Such a quotient is called a torus (or rather, a 2-torus).

Example 2.14. Consider the Klein bottle again. We defined it earlier (in the set-theoretic sense) to
be the quotient of S1 × S1 for the action by the group of order 2 for which the non-trivial element
acts by (z, w) 7→ (1/z,−w). In terms of viewing S1 as R/Z (via t 7→ (cos(2πt), sin(2πt))), this is
induced by the self-map (x, y) 7→ (−x, 1/2+y) on R2 (which does not give the identity on R2 when
applied twice, but does so when working modulo the additive translation action of Z2 on R2). We
saw above that this action is free and properly discontinuous, and so we get a topological structure
on the quotient, called the topological Klein bottle K.

Since the compact X = S1×S1 continuously surjects onto K, it follows that K must be compact.
Of course, we also want to check that K is Hausdorff. We again use the quotient criterion: we
must check that the subset of X × X given by pairs ((z, w), (z′, w′)) with (z′, w′) = (z, w) or
(z′, w′) = (1/z,−w) is closed. This is clear by using the sequential criterion for closedness in
X ×X = (S1)4. Later in the course we will construct a nice embedding of the Klein bottle into R4

(perhaps thereby making it seems less abstract, much as the concrete model S1 ⊆ R2 makes the
quotient R/Z seems less abstract).

Remark 2.15. Some words of explanation are now in order concerning how the preceding definition
of the topological Klein bottle K is related to other definitions or pictures that the reader may have
seen. The preceding definition presents K as a quotient of R2/Z2 by the action ι : (x, y) mod Z2 7→
(−x, 1/2 + y) mod Z2. Consider the rectangle R = [−1/2, 1/2]× [0, 1/2] with its product topology.
The continuous incluson of R into R2 induces a continuous map R → K by composition with the
continuous maps R2 → R2/Z2 → K. This continuous map R → K between compact Hausdorff
spaces is surjective. Indeed, any point (x, y) in R2 can be modified modulo Z2-translation to lie in
[−1/2, 1/2] × [−1/2, 1/2], and if the second coordinate of such a translation lies in [−1/2, 0) then
applying (x, y) 7→ (−x, 1/2 + y) carries it into R. This establishes the surjectivity.

Which points of R get mapped to a common point of K? The only way a pair of distinct points
in R can be related through translation by a nonzero element of Z2 is for them to be related through
translation by (±1, 0) (due to the lengths of the sides of R), which is to say the points have the
form (−1/2, y0) and (1/2, y0) for some y0 ∈ [0, 1/2]. The only way a pair of distinct points in R
with distinct images in R2/Z2 can map to the same point in K is for their images in R2/Z2 to
be related through the involution ι. That is, the points must have the form (x0, 0) and (−x0, 1/2)
for some x0 ∈ [−1/2, 1/2]. Hence, set-theoretically the way we get K from the rectangle R is to
“identify” the left and right edges in the “same direction” via (−1/2, y) ↔ (1/2, y) for y ∈ [0, 1/2]
and to “identify” the bottom and top edges in the “opposite direction” via (x, 0) ↔ (−x, 1/2) for all
x ∈ [−1/2, 1/2]. That is, if we define an equivalence relation ∼ on the set R via (−1/2, y) ∼ (1/2, y)
for all y ∈ [0, 1/2], (x, 0) ∼ (−x, 1/2) for all x ∈ [−1/2, 1/2], (x, y) ∼ (x, y) for all (x, y) ∈ R, and
(−1/2, 0) ∼ (1/2, 1/2) and (−1/2, 1/2) ∼ (1/2, 0) (stare at a picture to check that this really is
an equivalence relation; the actual content is that the final two conditions identifying “opposite
corners” are necessary for transitivity!), then K = R/ ∼ is the set of equivalence classes. Moreover,
the topology is determined by that of R: a subset U ⊆ K is open if and only if its preimage in R
is open, and likewise for closedness (in fancier language, K inherits the quotient topology from R).
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Indeed, it suffices to check closedness (why?), and the “only if” implication is just the continuity
of the map R → K whereas the “if” implication is just the fact that R → K is a surjective map
carrying closed sets to closed sets (as it is a continuous surjection between compact Hausdorff
spaces). In this way, we may say that K is obtained topologically from a rectangle by identification
of pairs of opposite sides using the same orientation for one pair and opposite orientations for the
other pair. This is the traditional way that the Klein bottle is defined by topologists, and the
relation with the traditional drawing is obtained by proceeding in two steps: first identify the pair
of sides with the same orientation to get the compact Hausdorff cylinder S1 × [0, 1/2] and then
identify the boundary circles via the antipodal map. (It is a theorem in topology that K cannot
be homeomorphically embedded into R3; the usual picture shows the antipodal map identification
by the artifice of the cylinder pass through itself, so to speak, but this “self-intersection” exposes
the fact that the usual picture is really showing the image of a non-injective continuous map of K
to R3.)

Example 2.16. Consider the case of a split action, so Y contains an open set Y0 such that the open
sets Y0.g for varying g ∈ G are pairwise disjoint and cover Y . In other words, the natural action
map Y0 × G → Y that respects the G-actions on both sides is a homeomorphism. In this case
the continuous standard projection Y → Y0 is an open map that is G-invariant, and the induced
continuous mapping Y/G → Y0 is certainly bijective and open (as opens in Y/G are images of
opens in Y ), so it is a homeomorphism.

We emphasize that, by the end of Theorem 2.8, every quotient situation X → X/G looks (in the
topological sense) like the split example locally over X/G.

Example 2.17. We now consider a new example. Choose a > 0. Let X = (−a, a) × S1, and let
the group of order 2 act on it with the non-trivial element acting by (t, w) 7→ (−t,−w). This is
easily checked to be a continuous action for the discrete topology of the group of order 2, and it is
free and properly discontinuous (why?). The quotient Ma is the Möbius strip of height 2a. Draw
a picture and convince yourself that this quotient really deserves to be called a Möbius strip. Note
that for 0 < a < 1/2 this is a “piece” of the Klein bottle upon viewing (−a, a) as an open subset
of R/Z = S1 (the crux is that for z = e2πit we have 1/z = e2πi(−t)).

To check that the Möbius strip Ma is Hausdorff, we again use the quotient criterion: the set
of points in X × X with the form ((t, w), (t′, w′)) with (t′, w′) = (t, w) or (t′, w′) = (−t, 1/w) is
checked to be closed by using the sequential criterion in X ×X.

We can do the same using X = R× S1, and then resulting Hausdorff quotient M∞ is called the
Möbius strip with infinite height.

Example 2.18. Let us revisit Example 1.4. We remove the origin, and so we consider X∗ = R2−{0}
with the rotation action through angles that are integer multiples of 2π/n. In this case the action
is free and properly discontinuous and so we can ask to describe the quotient with its topological
structure. This quotient is again the punctured plane! To see this, let us view X∗ as C× (via
(u, v) 7→ u + iv for a fixed choice of i =

√
−1 ∈ C), and consider the map X∗ → X∗ corresponding

to z 7→ zn on C×. In terms of standard coordinates (u, v) in the plane, this self-map of the
punctured plane X∗ is given by the real and imaginary components of (u+ iv)n; it is a “polynomial
map” of total degree n in u and v.

The formula for local extraction of nth roots on C× in terms of polar coordinates (which are C∞

in terms of the standard (u, v) coordinates and vice-versa) shows that this “nth-power map” on C×

is a surjective local C∞ isomorphism, and in particular is a surjective local homeomorphism. It is
also clear that this self-map of h : X∗ → X∗ is invariant under rotation by an angle of 2π/n (which
corresponds to z 7→ ζz with ζ = e2πi/n that satisfies ζn = 1), and so by the mapping property of
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the topological quotient map π : X∗ → X∗/G it follows that h uniquely factors through π via a
continuous map h : X∗/G → X∗ (sending the G-orbit {ζz}ζn=1 of z ∈ X∗ = C× to zn ∈ C× = X∗).
This map h is clearly bijective, and it is a local homeomorphism since h ◦ π = h with π and h local
homeomorphisms. Thus, h is a homeomorphism. This identifies X∗/G with X∗, under which the
projection map to the quotient is identified with the nth-power map on X∗ = C×.

We conclude the topological aspects by seeing how passage to the quotient interacts with open
and closed subsets. Let S ⊆ X be a subset and assume that it is G-stable in the sense that s.g ∈ S
for all s ∈ S and g ∈ G. Since x = (x.g−1).g for all x ∈ X and g ∈ G, it follows that for such S we
have S = S.g for all g ∈ G. We consider S as a set with a right G-action via s 7→ s.g, and (check!)
this is free and properly discontinuous when S is given the subspace topology.

Theorem 2.19. If S ⊆ X is a G-stable subset then the map of quotient sets S/G → X/G is
injective and when S is given the subspace topology it is a homeomorphism onto its image. The
image is an open (resp. closed, resp. locally closed) subset if and only if S is open (resp. closed,
resp. locally closed) in X. Moreover, S 7→ S/G is a bijection between the set of G-stable subsets of
X and set of subsets of X/G.

As a special case, for G-stable locally closed subsets U ⊆ X with image U ⊆ X/G that is
necessarily locally closed, the situation U → U is “the same” (respecting topologies and G-actions)
as the more abstract-looking situation U → U/G. This is very useful for “localizing” general
problems with such quotients by working locally on X/G.

Proof. The injectivity of the map of quotients S/G → X/G says that if s, s′ ∈ S and they are in
the same G-orbit in X then they are in the same G-orbit in S; this property is obvious. If x ∈ X
is in the G-orbit of some s ∈ S then x ∈ S because of the assumption of G-stability for S. Thus,
if π : X → X/G is the surjective quotient map then S = π−1(S/G). This shows that S 7→ S/G is
an injection from the set of G-stable subsets of X into the set of subsets of X/G, and conversely if
S ⊆ X/G is any subset then S = π−1(S) is a G-stable subset (because π(x.g) = π(x) for all x ∈ X
and g ∈ G) with S/G = S inside of X/G, so we get the desired bijectivity result.

We next show that S/G is open (resp. closed) in X/G if and only if the same holds for S in
X. Since S = π−1(S/G) and π is continuous, if S/G is open (resp. closed) in X/G then the same
certainly holds for S in X. The same even holds for the property of being locally closed, for if S/G
is an intersection of an open set and a closed set in X/G, then S = π−1(S/G) is the intersection of
the preimages of these two sets. Conversely, since π is open, if S is open in X then S/G = π(S) is
open in X/G. Also, if S is closed then by G-stability of S we see that the open set X − S in X is
G-stable with S/G = X/G−π(X−S), so S/G is closed in X/G. This takes care of the properties of
being open and closed, and so now we can deduce that the map S/G → X/G is a homeomorphism
onto its image as follows. It is continuous because composition with the local homeomorphism
S → S/G yields the map S → X/G that is continuous (as it factors as the composite of S → X
and X → X/G). The homeomorphism property onto the image says that every open set U in S/G
is the preimage of an open set in X/G. But U is the image of a G-stable open set U ⊆ S, and by
the definition of the subspace topology we have U = S ∩ U ′ for an open set in X. Hence, U is the
part of S/G that meets the open set π(U ′) in X/G. This settles the result that S/G → X/G is a
homeomorphism onto its image.

Finally, assume S is a G-stable locally closed set in X. We need to prove that S/G is locally
closed in X/G. Here the subtle point is that if we write S = U ∩C for an open set U and a closed
set C in X then neither U nor C needs to be G-stable and hence they do not interact well with
π. However, note that S ⊆ C, so S = U ∩ S. That is, S is open in its closure S. This is more
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promising because the closed set S is G-stable (any g ∈ G acts by a homeomorphism on X and
carries S bijectively back to itself, so it must likewise do the same for the minimal closed set S
containing S).

The bijectivity between sets in X/G and G-stable sets in X, and likewise for closed sets in each,
implies that the closed set S/G = π(S) in X/G is the minimal closed set containing S/G, so it is
the closure of S/G in X/G. Since S is open in S, by applying the preceding considerations to the
topological space S with its free and properly discontinuous right G-action we get that S/G is open
in the topological space S/G. However, S/G maps homeomorphically onto its image in X/G (!),
so S/G ⊆ X/G is an open subset of a closed set (with its subspace topology from X/G), so S/G is
a locally closed set in X/G. �

3. Premanifold case

To conclude our discussion, we need to bring in the differentiable structures. For example, we
want to consider the Klein bottle and the Möbius strip not merely as topological spaces, but as
C∞ manifolds. Such enhanced structure on topological quotients requires that the group action
also respect the differentiable structure:

Definition 3.1. Let X be a Cp premanifold with corners, 0 ≤ p ≤ ∞, and let G be a group
equipped with a right action on X. This action is a Cp action (for the discrete structure on G) if,
for each g ∈ G, the map x 7→ x.g from X to X is a Cp map (in which case it is a Cp isomorphism,
as x 7→ x.g−1 is a Cp map that is its inverse). Equivalently, the action map X × G → X is a Cp

map when G is given the structure of a discrete 0-dimensional Cp premanifold.

In the setup of the definition, when the G-action is free and properly discontinuous we can
make the topological quotient X/G (as the topological space X is locally Hausdorff) and it is
certainly a topological premanifold with corners (as the projection X → X/G is a surjective local
homeomorphism, and X is locally homeomorphic to an open set in a sector in a finite-dimensional
R-vector space). We can often do much better:

Theorem 3.2. Let X be a Cp premanifold with corners equipped with a Cp right-action by a
discrete group G. Assume that this action is free and properly discontinuous. There exists a unique
structure of Cp premanifold with corners on the topological quotient X/G such that the projection
π : X → X/G is a local Cp isomorphism. Moreover, this has the following mapping property: if
f : X → Y is a Cp map to another Cp premanifold with corners and f is G-invariant in the sense
that f(x) = f(x.g) for all x ∈ X and g ∈ G then the unique topological factorization f : X/G → Y
is Cp.

The basic idea is that since X → X/G is a local homeomorphism, local coordinates on X/G
should “come from” local coordinates on small opens in X. However, to verify that this gives a
Cp-atlas on X/G we will need to somehow use that the action of G on X is a Cp action. The
argument requires a bit of care, essentially because disjoint small opens in X may have non-disjoint
images in X/G (and so the key is the observation that in such cases there is a unique element of
g whose Cp action on X moves one of the opens so that it does meet the other, with overlap that
maps homeomorphically onto the overlap of the image opens in X/G).

Proof. The Cp property for a continuous map between Cp premanifolds with corners is local on the
source and target. Thus, once we find a Cp-structure on X/G making π a local Cp isomorphism,
then the Cp property for f will follow from local considerations and the assumed Cp property of
f . Our problem is therefore to find a Cp-structure on X/G making π a local Cp isomorphism, and
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to prove the uniqueness of such a Cp-structure on X/G. The uniqueness follows from the usual
argument we have seen for uniqueness of objects with universal mapping properties. Namely, if
we are given two Cp-structures O and O ′ on the topological space X/G that both make π a local
Cp-isomorphism, and such that each structure has the mapping property for G-invariant Cp maps,
then by the universal property for π : X → (X/G,O) applied to the Cp map π : X → (X/G,O ′)
we get the Cp property for the unique continuous factorization of π through itself, namely that
the identity map from (X/G,O) to (X/G,O ′) is a Cp map. Hence, O ′(U) ⊆ O(U) for each open
U ⊆ X/G. Likewise, by swapping the roles of these two Cp-structures on X/G we get the reverse
inclusion in the other direction, and so the two Cp structures would have to coincide.

Our problem is now to make a construction of a Cp-structure on X/G satisfying the desired
properties in the theorem. Let {(φi, Ui)} be a covering of X by local Cp-charts such that the
opens Ui map homeomorphically onto their open images U i in X/G; here, φi : Ui → Vi is a
homeomorphism onto an open subset φi(Ui) in a sector Σi in a finite-dimensional R-vector space
Vi such that φj ◦ φ−1

i is a Cp isomorphism between the open domains φi(Ui ∩ Uj) ⊆ Σi and
φj(Ui ∩Uj) ⊆ Σj . We also take the Ui’s so small that (Ui.g)∩Ui = ∅ for all g ∈ G with g 6= 1; such
small opens exist since the G-action is free and properly discontinuous.

Let πi : Ui → U i be the induced homeomorphism, and define φi = φi ◦ π−1
i : U i → Σi; this is a

homeomorphism onto the open set φi(Ui) in Σi. We claim that the pairs (φi, U i) form a Cp-atlas
on X/G that the resulting Cp premanifold structure on X/G satisfies the desired properties (i.e.,
it makes π : X → X/G a local Cp-isomorphism and it is universal for G-invariant Cp maps from
X to varying Cp premanifolds). We have to check that the homeomorphism

(1) φj ◦ φ
−1
i : φi(U i ∩ U j) ' φj(U i ∩ U j)

between open domains in Σi and Σj is a Cp isomorphism. (Of course, it suffices to merely prove
that it is a Cp map in general, as then swapping the roles of i and j will ensure that the inverse
is a Cp map too, so it is a Cp isomorphism.) This is a map between opens in φi(Ui) and φj(Uj)
respectively, but the subtle part is that these open subsets of φi(Ui) and φj(Uj) are generally not
contained in φi(Ui ∩ Uj) and φj(Ui ∩ Uj) respectively. Indeed, even if U i ∩ U j is non-empty, Ui

and Uj may not even meet each other! The issue is that a point in U i ∩ U j corresponds to a pair
of G-orbits ui.G and uj .G in X that meet (with ui ∈ Ui and uj ∈ Uj), but all this implies is
ui.g = uj .g

′ for some g, g′ ∈ G, or equivalently (by applying g′−1 and renaming gg′−1 as g) that
ui.g = uj for some g ∈ G. It could (and often does) happen that g cannot be taken to be the
identity. (For example, taking X = R and G = Z acting by translations, the disjoint open subsets
I = (−1/2, 1/2) and J = (1/2, 3/2) in R each map homeomorphically onto their images in the
circle, and each is disjoint from its translates by non-zero integers, but the images of I and J in
the circle have an enormous intersection.)

Choose x ∈ U i∩U j , and we wish to prove that (1) is a Cp-isomorphism between opens neighbor-
hoods around φi(x) and φj(x). The point x is the image of unique points ui ∈ Ui and uj ∈ Uj . Since
πi : Ui → U i and πj : Uj → U j are bijective, the equality π(ui) = x = π(uj) in X/G says that the
G-orbits of ui and uj meet, so (as we have just seen) there exists g0 ∈ G such that ui.g0 = uj . Since
Ui and Uj are open in X, and elements of G act on X by homeomorphisms of X, it follows that
the homeomorphism x 7→ x.g0 from X onto itself carries the open set U ′

i = Ui ∩ (Uj .g
−1
0 ) around ui

onto the open set U ′
j = Uj ∩ (Ui.g0) around uj . The images U

′
i = π(U ′

i) and U
′
j = π(U ′

j) are opens
in U i and U j containing x = π(ui) = π(uj), with the maps π′i : U ′

i → U
′
i and π′j : U ′

j → U
′
j induced

by π both homemorphisms. The subsets φi(U
′
i) and φj(U

′
j) are respectively open subsets in the
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open sets φi(U i) = φi(Ui) ⊆ Vi and φj(U j) = φj(Uj) ⊆ Vj , and they respectively contain φi(x)
and φj(x). Thus, it suffices to show that (1) is a Cp map between φi(U

′
i ∩ U

′
j) and φj(U

′
i ∩ U

′
j).

(Certainly it induces a homeomorphism!) Now comes the crux:

Lemma 3.3. The overlap U
′
i ∩ U

′
j is exactly the image under π of U ′

i .g0 = U ′
j.

Proof. Pick a point x′ in this overlap, so it has the form π(u′i) for u′i ∈ U ′
i = Ui ∩ (Uj .g

−1
0 ) and

it also has the form π(u′j) for u′j ∈ U ′
j = Uj ∩ (Ui.g0). Since the points π(u′i) and π(u′j) in X/G

coincide, we have u′i.gx′ = u′j for some gx′ ∈ G (with gx′ a priori depending on x′); note that gx′ is
necessarily uniquely determined by x′ because if u′i.g

′ = u′j too then u′i.g
′ = u′i.gx′ and hence

u′i.(g
′g−1

x′ ) = (u′i.g
′).g−1

x′ = (u′i.gx′).g−1
x′ = u′i.(gx′g−1

x′ ) = u′i.1 = u′i,

yet we took Ui (and hence U ′
i) so small that the only element of G carrying a point of U ′

i to a point
of U ′

i under the right action is the identity. This forces g′g−1
x′ = 1, so g′ = gx′ , giving the asserted

uniqueness of gx′ .
We claim that gx′ = g0, which will settle the lemma. To see that gx′ = g0, note that u′i ∈ Uj .g

−1
0 ,

so u′i.g0 ∈ Uj too, and hence

u′j .(g
−1
x′ g0) = (u′i.gx′).(g−1

x′ g0) = u′i.(gx′(g−1
x′ g0)) = u′i.(gx′g−1

x′ ) = u′i.g0 ∈ Uj .

Thus, g−1
x′ g0 ∈ G carries a point u′j of Uj to a point of Uj , yet by hypothesis Uj is so small that it is

disjoint from its translates by all non-identity elements of G. This forces g−1
x′ g0 = 1, so gx′ = g0. �

By the lemma, each point in φi(U
′
i ∩U

′
j) has the form φi(π(u′)) for a unique u′ ∈ U ′

i .g0 = U ′
j , so

this point can also be written as φi(π(u′.g−1
0 )) = φi(u′.g−1

0 ) since u′.g−1
0 ∈ U ′

i . The image of this
point under φj ◦ φ

−1
i is φj(π(u′)) = φj(u′) (as u′ ∈ U ′

j). Thus, the map φj ◦ φ
−1
i carries the point

φi(π(u′)) = φi(u′.g−1
0 ) to φj(π(u′)) = φj(u′), and so this is the restriction to φi(U ′

i) ⊆ φi(Ui) of
φj ◦ ρ(g0) ◦ φ−1

i with ρ(g0) : X → X the right action x 7→ x.g0. (The point is that to extract u′

from u′.g−1
0 we apply the right action by g0.) Hence, the problem of verifying that the (φi, U i)’s

form a Cp-atlas on the topological space X/G has been reduced to the problem of checking that
the map φj ◦ ρ(g0) ◦φ−1

i from φi(U ′
i) = φi(Ui ∩ (Uj .g

−1
0 )) to φj(U ′

j) is a Cp map. This is exactly the
statement that the map ρ(g0) : X → X is Cp as a map from (Ui.g

−1
0 ) ∩ Uj to Ui ∩ Uj .g0, since φi

and φj give Cp-coordinates for X on Ui and Uj respectively. Since we assumed that ρ(g) is globally
Cp (on all of X) for all g ∈ G, we are therefore done! �

Corollary 3.4. Let X be a Cp premanifold equipped with a free and properly discontinuous right
action by G. For any locally closed Cp subpremanifold X ′ ⊆ X that is G-stable, the induced map
X ′/G → X/G is an Cp embedding, and X ′/G is closed (resp. open) in X/G if and only if X ′ is
closed (resp. open) in X. Moreover, the mapping X ′ 7→ X ′/G gives a bijection between the set of
locally closed G-stable Cp subpremanifolds of X and the set of locally closed Cp subpremanifolds of
X/G.

Proof. Theorem 2.19 takes care of the topological apsects of the problem, and since the quotient
maps X → X/G and X ′ → X ′/G are local Cp isomorphisms it follows that the map X ′/G → X/G
is a homeomorphism onto a locally closed set in X/G and it is an immersion since X ′ → X is an
immersion. Hence, this map of quotients as Cp premanifolds is an embedding. Conversely, if Y
is an embedded Cp subpremanifold in X/G then we need to show that its G-stable locally closed
preimage Y in X is a Cp subpremanifold. Since X → X/G is a local Cp isomorphism and the
topological quotient Y = Y/G is a locally closed Cp subpremanifold in X/G, we can work locally
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on Y in X to see that it is a Cp subpremanifold (essentially by using the local immersion-theorem
description of the embedded Cp subpremanifold Y in X/G). �

We now revisit many of our examples.

Example 3.5. Let us consider a finite-dimensional R-vector space V and a lattice L in V . We view
V as a C∞ manifold in the usual manner, and let π : V → V/L be the projection. For each λ ∈ L,
the translation action v 7→ v + λ is certainly C∞ on V , and hence the compact Hausdorff quotient
V/L acquires a natural structure of C∞ manifold. Concretely, to give local C∞ coordinates near a
point v ∈ V/L we choose a point v ∈ V over it and we pick a small open U ⊆ V that is disjoint from
its L-translates by all nonzero λ ∈ L, so the projection πU : U → π(U) = U is a homeomorphism
(as it is a continous bijective open map). Letting φ : U → V be the inclusion (that gives U its C∞

manifold structure as an open set in the C∞ manifold V ), we define φ = φ ◦ π−1
U : U → V to be

the map that assigns to each x ∈ U the unique point over it in U considered inside of V . The pair
(φ,U) gives a local C∞-chart on V/L near v.

To be more explicit, choose linear coordinates on V to identify V with Rn. On the quotient
Rn/L, pick a point x ∈ Rn/L and any x ∈ Rn over x. Let U ⊆ Rn be a small open around x
such that U + λ is disjoint from U for all nonzero λ ∈ L. Let U be the image of U in Rn/L.
Local coordinates on U around x on Rn/L are given by restricting the standard coordinates on Rn

to the open U ⊆ Rn around x and then precomposing these coordinates with the inverse of the
homeomorphism U → U .

Example 3.6. Let us specialize the preceding example to the case of R/Z, as it reveals a delicate
issue. We get a C∞-structure on this compact space, and for any point ξ ∈ R/Z represented by ξ ∈
R, a local coordinate near ξ is given by the standard coordinate on R restricted to (ξ−1/2, ξ+1/2)
(or really the composition of this restriction with the inverse of the map projecting this interval into
R/Z). This example is a little subtle, because we have also identified R/Z topologically with the
circle S1 in R2, on which there are natural C∞-charts as well (generalizing to all standard spheres).
It is crucial to know that we get the same C∞ manifold structure on this topological space via both
methods! Roughly speaking, this says that locally on the circle the inverse trig functions depends
in a C∞ manner on the standard coordinates of the plane and vice-versa. We let the reader fill
in the details of an argument along such lines; we will later see a much more effective way to deal
with such issues. As but one application of this agreement of C∞-structures: we may identify C∞

functions on S1 with C∞ functions on R that are translation-invariant by Z (or 2πZ).

The preceding problem of comparing two different C∞-structures arises in many settings. Here
is another one where we can solve it “by hand”, and we give the explicit calculations. We have
exhibited Pn(R) as a quotient of the standard n-sphere Sn ⊆ Rn+1 by the antipodal map. The
standard n-sphere has a natural C∞ manifold structure arising from how it sits in Rn+1 (as was
sketched in class and worked out in the homework). Since the antipodal map on Sn is induced by
negation (x1, . . . , xn+1) 7→ (−x1, . . . ,−xn+1) in rectangular coordinates on Rn+1, it is easy to verify
(do it!) that the antipodal map on Sn is a C∞ map with respect to the C∞ structure on Sn. Hence,
the quotient procedure puts a C∞ structure on the topological quotient Pn(R) of Sn modulo the
antipodal map. But we have already made a C∞-structure on Pn(R) by covering it with n + 1
Euclidean spaces (as a special case of the general C∞-atlases we made on Grassmannians). So
once again there arises a question: are these two C∞-structures on the topological space Pn(R)
the same?

To verify the equality of these C∞-structures, let us first give Pn(R) its C∞-structure through
the atlas of n + 1 charts U0, . . . , Un modelled on Euclidean spaces. Recall that Ui is the set of
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hyperplanes in Rn+1 whose defining equation involves xi, and with coordinate system φi : Ui ' Rn

given by sending any H ∈ Ui to the coefficients (aj)j 6=i in the unique linear equation
∑

ajxj = 0
for H with ai = 1. We let Pn(R)′ denote projective n-space with the C∞-structure induced
as a quotient of Sn. The problem of comparison of C∞ structures reduces to checking that the
continuous antipodal-quotient map h : Sn → Pn(R) is C∞ and in fact a local C∞ isomorphism.
Indeed, assuming this is checked, then the universal property of the quotient manifold structure
implies that the unique factorization of h through a continuous map h : Pn(R)′ → Pn(R) has h
a C∞ map, yet h is even a local C∞ isomorphism because the quotient map π : Sn → Pn(R)′

is a local C∞ isomorphism and we are assuming that h = h ◦ π is a local C∞ isomorphism. But
with h a local C∞-isomorphism with respect to the two C∞-structures on projective n-space, the
observation that h is the identity map on the underlying topological space of projective n-space
then settles the problem (as then a sufficiently refined atlas for each C∞-structure on Pn(R) is also
an atlas for the other).

Having reduced ourselves to showing that h : Sn → Pn(R) is a local C∞-isomorphism, we now
bring out the C∞-atlases to describe h in local C∞ coordinates. One atlas on Sn is given by the
2(n + 1) charts arising from the hemispheres Sn

i,− = Sn ∩ {xi < 0} and Sn
i,+ = Sn ∩ {xi > 0} which

project onto the ith coordinate hyperplane in Rn+1. That is, for 0 ≤ i ≤ n and ε = ±1, on Sn
i,ε we

have the C∞ parameterization via the open unit ball in Rn:

{(aj)j 6=i ∈ Rn |
∑
j 6=i

a2
j < 1} ' Sn

i,ε

defined by

(aj)j 6=i 7→ (a0, . . . , ai−1, ε ·
√

1−
∑
j 6=i

a2
j , ai+1, . . . , an).

A point (a0, . . . , an) ∈ Sn lies in Sn
i,+ or in Sn

i,− precisely when the hyperplane
∑

ajxj = 0 has
aj 6= 0, which is to say that it lies in Ui ⊆ Pn(R). Hence, under the topological quotient map
π : Sn → Pn(R) the preimage of Ui is Sn

i,+ ∪ Sn
i,−. The local C∞-isomorphism property for

h therefore is equivalent to saying that the maps Sn
i,ε → Ui are local C∞-isomorphisms when

expressed in terms of the standard coordinates on these domains. This map is

(aj)j 6=i 7→ (εaj/s(a))j 6=i

with s(a) =
√

1−
∑

j 6=i a
2
j . This is obviously C∞. In this latter formula the sum of the squares of

the coordinates is (
∑

j 6=i a
2
j )/(1−

∑
j 6=i a

2
j ), and y 7→ y/(1− y) is a C∞-isomorphism of (0, 1) onto

(0,∞) (with inverse t 7→ t/(1 + t)), so the C∞ map Sn
i,ε → Ui = Rn has open image Rn − {0} and

is a C∞ isomorphism onto this image: a C∞ inverse map is

(tj)j 6=i 7→ (εtj/S(t))j 6=i

with S(t) =
√

1 +
∑

j 6=i t
2
j . This completes the verification that the two C∞-structures on Pn(R)

coincide.

Example 3.7. On both the Klein bottle and the Möbius strip (with finite or infinite height) we get
structures of C∞ manifolds as respective quotients of S1 × S1 and (−a, a)× S1 or R× S1. What
this means in concrete terms is that to give local coordinates at a point of either of these surfaces,
we simply use the “pushforward” of local coordinates on S1 × S1 and (−a, a) × S1 (or R × S1)
on small opens. The standard procedure on these products is to use coordinates from the factors,
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and for S1 we typically use “angular” coordinates arising from the presentation of S1 as R/Z via
trigonometric functions.

Example 3.8. Our analysis of the quotient of R2−{0} = C× by the rotation action of the additivie
group G of integers mod n works verbatim in the C∞ setting (with “homeomorphism” replaced
by “C∞ isomorphism”, and so on). Hence, we have a C∞ isomorphism of (R2 − {0})/G with
R2 − {0} carrying the canonical projection over to the nth-power map on R2 − {0} = C×. In
view of the general mapping property for C∞ quotients by free and properly discontinuous C∞

actions of discrete groups, the consequence is this: if we are given a C∞ map f : C× → Y to a
C∞ premanifold Y and f(ζz) = f(z) for all z ∈ C× and nth roots of unity ζ in C× (this is the
G-invariance condition in disguise), then the unique set-theoretic map f : C× → Y defined by
f(z) = f(z′) for any nth root z′ of z is in fact a C∞ mapping.

Example 3.9. If we replace C× with the circle S1 = R/2πZ, the same exact method identifies the
C∞ quotient of S1 by the 2π/n-rotation with S1 as a C∞ manifold; the quotient map is thereby
identified with the nth-power map S1 → S1. In the special case n = 2, this says that the C∞

quotient C of S1 by the 180-degree rotation w 7→ −w is identified with S1, with the quotient map
given by the squaring map S1 → S1.

Now consider the Möbius strip M∞ with infinite height. This is the C∞ quotient of R × S1

by (t, θ) 7→ (−t, θ + π). Letting G denote the group of order 2, G acts on R × S1 with quotient
M∞ and it acts on S1 (via 180-degree rotation) with quotient C that is also a circle, and these
G-actions are compatible with the projection p : R × S1 → S1. Thus, there is an induced C∞

mapping p : M∞ → C on quotients by the G-actions. For each c ∈ C, the fiber p−1(c) is identified
with R (considered as p−1(θ) for either of the two antipodal points θ ∈ S1 over c ∈ C).

For a small open U ⊆ S1 with arc length less than a half-circle, U maps isomorphically (in the
C∞ sense) onto its image U in C and likewise R× U maps isomorphically onto its image in M∞.
Thus, over the small open U ⊆ C the map π−1(U) → U is identified with the map R × U → U .
We shall see that the global geometry of the mapping π : M∞ → C onto the circle is more subtle:
it cannot be identified with the projection R × C → C in a manner that respects the a priori
identification of each fiber π−1(c) with a copy of the real line, even though we have just seen that
locally over C such “splittings” can be found. It is such global “twistedness” of M∞ that is the
hallmark of the distinction between local and global geometry.

Example 3.10. We conclude by revisiting the significance of the case of split actions. Now we let
X be a Cp premanifold with corners, and we consider the Cp quotient mapping X → X/G. As we
have seen in the topological considerations, we may cover X/G by (arbitrarily small) open subsets
U ⊆ X/G for which the open G-stable preimage U of U is topologically identified with the split
situation via the action mapping U0 × G → U for a suitable open subset U0 ⊆ U such that the
translates U0.g for varying g ∈ G are pairwise disjoint. This homeomorphism U0 ×G → U is even
a Cp isomorphism when the left side is given the product structure (with G considered to be a
discrete 0-dimensional Cp premanifold).

More precisely, the left side is a disjoint union of copies of U0 indexed by g ∈ G, with G acting
through right multiplication on the indices, and with this Cp structure on U0 × G that recovers
the given Cp structure from U0 on the open set U0 × {g}, the evident G-action on U0 ×G is a Cp

action and the mapping U0×G → U is also a local Cp isomorphism (and hence a Cp isomorphism).
The reason is that locally on source and target this restricts to the map U0 → U0.g given by the
restricting the Cp automorphism x 7→ x.g of X to the open subset U0. The importance is this:
locally over X/G the quotient situation X → X/G is identified with a split example in a manner
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that respects the Cp structures. This is extremely useful for reducing some questions of local nature
to the split case when everything can be sorted out “by hand”.


