
Math 396. Isomorphisms and tensor products
In this handout, we work out some examples of isomorphisms involving tensor products of vector

spaces. The three basic principles are: (i) to construct maps involving tensor product spaces we
should never use bases and should instead let suitable “bilinearity” of formulas do all of the work,
(ii) to prove properties of maps among tensor product spaces we may have to use bases (though
not always; this is a matter of experience), and (iii) when checking identities among different ways
of constructing linear maps, or proving that an abstract “tensorial” construction recovers some
concrete construction (that also depends linearly on the input), it suffices to check by chasing
elementary tensors.

Point (iii) merits further emphasis. In principle, when verifying an identity among linear maps
between tensor product spaces one can chase what happens on an arbitrary linear combination
of elementary tensors; however, this often makes things a big mess, and so one should just chase
elementary tensors (which suffice: they do span the tensor product spaces, after all). Also, although
one may note that in the spirit of cutting down one’s work it is enough just to chase what happens
on tensor products of vectors from chosen bases, by treating all elementary tensors in a uniform way
one usually gets cleaner calculations without a profusion of subscripts. When in doubt, compute
with elementary tensors from bases; experience will let you recognize when you can avoid it.

1. The dual map

Let V and V ′ be finite-dimensional vector spaces over a field F . Using the general linear iso-
morphism Hom(V, V ′) ' V ′ ⊗ V ∨ and the “double duality” linear isomorphism V ′ ' V ′∨∨ (that
associates to any v′ ∈ V ′ the “evaluation” functional ev′ : V ′∨ → F in the double dual that sends
`′ ∈ V ′∨ to `′(v′)), we get a string of natural isomorphisms

(1) Hom(V, V ′) ' V ′ ⊗ V ∨ ' V ′∨∨ ⊗ V ∨ ' V ∨ ⊗ V ′∨∨ ' Hom(V ′∨, V ∨)

where the third step uses the “flip” isomorphism from class and the final step is again the general
Hom-tensor isomorphism (applied now to the duals of the original spaces). Writing θ to denote
this composite isomorphism, for any linear map T : V → V ′ we have naturally associated a linear
map θ(T ) : V ′∨ → V ∨ such that θ(T ) depends linearly on T (in the sense of the linear structure
on Hom-spaces, of course). What could θ(T ) be? It is natural to guess that it is just the dual map
T∨, but this really requires a proof (and is good practice with making sure one understands what
is going on).

To prove θ(T ) = T∨, one method is to choose bases of V and V ′ and then to chase with matrices
through all steps above. This can be done and isn’t too messy. However, a more insightful method
that avoids the bases and is applicable in more complicated situations is to exploit the following
observation: the proposed formula θ(T ) = T∨ has both sides that depend linearly on the input T .
Thus, rather than checking it for all T , it suffices to check on a set of T ’s that span the source.
But which T ’s should we use? Note that elementary tensors v′ ⊗ ` span the term V ′ ⊗ V ∨, and
hence they go over to a spanning set on the left in (1). We shall verify the result for the T ’s that
arise in this way. Equivalently, what we shall do is this: we pick an elementary tensor v′ ⊗ ` in
the second term and then chase it out to both ends, say getting a linear map T : V → V ′ and a
linear map T̃ : V ′∨ → V ∨. It must be the case that T̃ = θ(T ) (why?), and the T ’s that we have
just obtained are necessarily a spanning set of Hom(V, V ′). Hence, if we can directly check T̃ = T∨

then we will have verified the desired identity on a spanning set of Hom(V, V ′) and hence we’ll be
done. To summarize, we pick an elementary tensor “in the middle” and chase it out to both ends,
and we aim to check that those outputs will be related in the desired manner. (Warning: This
trick of chasing general elementary tensors out from the middle is nifty, but it cannot always be

1



2

relied upon because it requires that all intervening isomorphisms be naturally defined in a way that
points “out to the ends”. If this is not the case, then one has to resort to computations in terms of
choices of bases, and with a little practice this isn’t so terrible as it may sound.)

Now comes the computation. Choose an elementary tensor v′ ⊗ ` ∈ V ′ ⊗ V ∨, so on the left it
goes to the linear map T : V → V ′ given by v 7→ `(v)v′. In the other direction, it goes to ev′ ⊗ ` in
the third term, whence to `⊗ev′ in the fourth term, and so gives the map of dual spaces V ′∨ → V ∨

that sends `′ ∈ V ′∨ to ev′(`′)` ∈ V ∨. By definition of ev′ , we have ev′(`′) = `′(v′). Thus, our goal is
to show that the map from V ′∨ to V ∨ given by `′ 7→ `′(v′)` is the dual of the map T : v 7→ `(v)v′

from V to V ′. That is, we want T∨(`′) = `′(v′)` for any `′ ∈ V ′∨. By definition of dual maps,
T∨(`′) = `′ ◦ T . Hence, we want `′ ◦ T = `′(v′)` in V ∨. To check this equality in the dual space
to V , we simply evaluate on an arbitrary v ∈ V and hope to get the same output: does (`′ ◦ T )(v)
equal (`′(v′)`)(v)? By the definition of the linear structure on V ∨, (`′(v′)`)(v) = `′(v′) ·`(v). Hence,
we want (`′ ◦ T )(v) = `′(v′) · `(v). By definition of T ,

(`′ ◦ T )(v) = `′(T (v)) = `′(`(v) · v′) = `(v) · `′(v′)

since `′ : V ′ → F is linear. This finishes the proof.

2. Duality and tensor products

In class, we saw how to define a natural map

V ∨
1 ⊗ V ∨

2 → (V1 ⊗ V2)∨

satisfying
`1 ⊗ `2 7→ (v1 ⊗ v2 7→ `1(v1)`2(v2)).

Recall that the construction of this required two steps: first we had to check that for any pair
`i ∈ V ∨

i the proposed linear functional on V1 ⊗ V2 (sending elementary tensors v1 ⊗ v2 to the
proposed value `1(v1)`2(v2)) made sense – this amounts to the fact that `1(v1)`2(v2) ∈ F depends
bilinearly on the pair of vectors v1 and v2 when the `j ’s are fixed – and then we had to verify
this functional as an element of (V1 ⊗ V2)∨ depends bilinearly on the pair of vectors `1 and `2 (in
the respective dual vector spaces). This latter verification amounted to certain identities among
linear functionals on V1⊗V2, and to verify such identities it was sufficient to compare evaluations on
members v1⊗v2 of the spanning set of elementary tensors in V1⊗V2. In such cases, the “evaluated”
identities boiled down to another property of the “formula” `1(v1)`2(v2) ∈ F , namely that it also
depends bilinearly on the pair of vectors `1 and `2 when the vj ’s are fixed.

Roughly speaking, the construction of this natural map from the tensor product of dual spaces
to the dual of the tensor product space comes down to the fact that the expression `1(v1)`2(v2)
depending on four quantities is linear in any one of them when all others are fixed. Having made
the linear map

V ∨
1 ⊗ V ∨

2 → (V1 ⊗ V2)∨

we want to show it is an isomorphism. In this case, we will chase bases in a simple manner. Let
{vi,1} and {vj,2} be ordered bases of V1 and V2, so {vi,1⊗ vj,2} is a basis of V1⊗V2 and {v∗i,1⊗ v∗j,2}
is a basis of V ∨

1 ⊗ V ∨
2 . It suffices to prove that this basis of V ∨

1 ⊗ V ∨
2 goes over to the basis of

(V1 ⊗ V2)∨ that is dual to the basis {vi,1 ⊗ vj,2} of V1 ⊗ V2. Thus, it suffices to show that the
functional on V1⊗V2 induced by v∗i,1⊗ v∗j,2 sends vr,1⊗ vs,2 to 1 if (r, s) = (i, j) and to 0 otherwise.
But this is clear: the evaluation of this functional on vr,1 ⊗ vs,2 is v∗i,1(vr,1)v∗j,2(vs,2), and this is
indeed 1 when r = i and s = j and it is 0 otherwise (due to the definition of {v∗i,1} and {v∗j,2} as
dual bases to {vi,1} and {vj,2} respectively).



3

3. Associativity isomorphism

We claim that there is a unique isomorphism

T : V1 ⊗ (V2 ⊗ V3) ' (V1 ⊗ V2)⊗ V3

that satisfies v1⊗ (v2⊗ v3) 7→ (v1⊗ v2)⊗ v3 (for vi ∈ Vi). Let us first check uniqueness. In general,
V ⊗W is spanned by elementary tensors v⊗w, but one can get away with less: if v and w merely
run through spanning sets of V and W , then the v⊗w’s will span V ⊗W . Indeed, this follows from
two facts: any elementary tensor (

∑
aivi)⊗ (

∑
bjwj) in V ⊗W is equal to the linear combination∑

aibjvi ⊗wj of the vi ⊗wj ’s, and all elements of V ⊗W are themselves finite linear combinations
of elementary tensors in arbitrary vectors from V and W . Thus, since the v2 ⊗ v3’s span V2 ⊗ V3,
we conclude that the “elementary tensors” v1⊗ (v2⊗v3) span V1⊗ (V2⊗V3) even though in general
many elements of V2 ⊗ V3 are not of the form v2 ⊗ v3. In view of this special spanning set for
V1 ⊗ (V2 ⊗ V3), the proposed linear map T is certainly unique if it exists. Why does T exist?

The basic principle is that the proposed “formula” (v1⊗v2)⊗v3 in the vector space (V1⊗V2)⊗V3

is linear in each of the vi’s when the others are fixed. This, as we shall see, is why T exists as a
well-defined linear map on V1 ⊗ (V2 ⊗ V3). To be precise, the definition of T simply requires us to
construct a bilinear pairing

B : V1 × (V2 ⊗ V3) → (V1 ⊗ V2)⊗ V3

that satisfies (v1, v2 ⊗ v3) 7→ (v1 ⊗ v2) ⊗ v3. This formula is certainly not a definition for B, as
we are merely specifying its value on certain special pairs. In this case, the trick to handling the
well-definedness issues is to treat the variables of B separately in a suitable order. (Much more
elaborate examples will be given in a later handout.) For the present case, the idea is to fix v1 and
view the problem as that of making the linear map B(v1, ·) from V2 ⊗ V3 to (V1 ⊗ V2)⊗ V3. That
is, we fix v1 and aim to make a linear map

Bv1 : V2 ⊗ V3 → (V1 ⊗ V2)⊗ V3

satisfying
v2 ⊗ v3 7→ (v1 ⊗ v2)⊗ v3.

Aha, now we are back in familiar territory: the right side is bilinear in the pair v2 and v3 (check!),
so the linear map Bv1 indeed exists (and is uniquely determined). Thus, we get a pairing of sets

β : V1 × (V2 ⊗ V3) → (V1 ⊗ V2)⊗ V3

via (v1, t) 7→ Bv1(t).
Now we have to analyze β: is it bilinear in its two variables v1 and t? For fixed v1 the linearity

in t is just the fact that Bv1 is rigged as a linear map. Consider the problem of linearity in v1 for
fixed t. That is, is v1 7→ Bv1(t) a linear map? This may seem tricky, as we don’t have a “general
formula” for Bv1(t) except for t’s that are elementary tensors. Fortunately, we can exploit linearity
of Bv1(t) in t to reduce our problem to the case of linearity in v1 only for such special t’s. To see
how this goes, suppose we can express t as a linear combination

∑
citi in V2 ⊗ V3. In this case, for

any v1 we see that Bv1(t) is equal to the corresponding linear combination
∑

ciBv1(ti), and so the
linearity problem in a varying v1 for the fixed vector t is easily reduced to the linearity problem in
a varying v1 for each of the ti’s separately (Check!). Thus, in this way we may reduce ourselves
to the case when t ranges through a spanning set in V2 ⊗ V3, and so it suffices to consider t’s that
are elementary tensors. That is, it suffices to prove that Bv1(v2 ⊗ v3) depends linearly on v1 for
fixed v2 ∈ V2 and v3 ∈ V3. But this special value is (v1 ⊗ v2) ⊗ v3, which visibly does have linear
dependence on v1 when v2 and v3 are fixed!



4

Remark 3.1. The preceding example is a bit special in the sense that in the tensor product V1 ⊗
(V2 ⊗ V3) at least one of the two factors (namely V1) involves no tensors. A more sophisticated
problem is to prove the existence and uniqueness of a linear isomorphism

T : (V1 ⊗ V2)⊗ (V3 ⊗ V4) ' V1 ⊗ ((V2 ⊗ V3)⊗ V4)

satisfying (v1 ⊗ v2)⊗ (v3 ⊗ v4) 7→ v1 ⊗ ((v2 ⊗ v3)⊗ v4) for vi ∈ Vi. Once one sees how to make such
a T , then one can figure out the zillion other variants on such a map that may leap to mind (as
we permit more Vi’s and other ways of setting the parentheses). The essential distinction is that
whereas before we could translate the problem into that of associating a linear map to a member
of some Vi, now the problem is that of associating a linear map V3 ⊗ V4 → V1 ⊗ ((V2 ⊗ V3) ⊗ V4)
to an elementary tensor v1 ⊗ v2 ∈ V1 ⊗ V2; this creates yet a new layer of difficulty (or so it may
seem) until we see the trick: we really should fix the ordered pair (v1, v2) ∈ V1× V2 and try to map
a linear map

Bv1,v2 : V3 ⊗ V4 → V1 ⊗ ((V2 ⊗ V3)⊗ V4)
satisfying v3 ⊗ v4 7→ v1 ⊗ ((v2 ⊗ v3)⊗ v4) (to be done by the usual bilinearity considerations in v3

and v4, with v1 and v2 fixed) such that the resulting pairing of sets

V1 × V2 → Hom(V3 ⊗ V4, V1 ⊗ ((V2 ⊗ V3)⊗ V4))

given by (v1, v2) 7→ Bv1,v2 is itself bilinear, and so on. In a later handout this general problem of
pairings of higher-order tensors will be addressed in a systematic manner that takes care of all such
problems at once. Just keep in mind that the preceding worked example of a 3-fold tensor pairing
is slightly more special than what one has to confront in more general situations.

With diligence and practice, these sorts of arguments really will become mechanical. Always
keep in mind the general principle of multilinearity provides the engine that makes it all work; for
example, the preceding argument used that (v1⊗v2)⊗v3 is linear in each of the vi’s when all others
are held fixed. This is the property that always predicts when (and is used to prove that) various
tensorial constructions are well-posed.

4. Trace pairings

We now combine everything: the dual-tensor, Hom-tensor, and “flip” isomorphisms. For finite-
dimensional V and V ′, we get an isomorphism

Hom(V, V ′)∨ ' (V ′ ⊗ V ∨)∨ ' V ′∨ ⊗ V ∨∨ ' V ′∨ ⊗ V ' V ⊗ V ′∨ ' Hom(V ′, V ).

This is interesting: we have naturally identified Hom(V, V ′) and Hom(V ′, V ) as dual to each other.
That is, if L denotes this composite isomorphism, we have constructed a non-degenerate bilinear
form

B = BV,V ′ : Hom(V ′, V )×Hom(V, V ′) → F

via B(T ′, T ) = (L−1(T ′))(T ) ∈ F . In other words, given two linear maps T ′ : V ′ → V and
T : V → V ′ we have provided a recipe to construct an element B(T ′, T ) ∈ F in a manner that
depends bilinearly on the pair T and T ′. What could this number be? We know a couple of ways of
extracting numbers from linear maps, such as traces and determinants, but these only apply to self-
maps of vector spaces. Thus, for example, the self-maps T ′ ◦ T : V → V and T ◦ T ′ : V ′ → V ′ have
traces and determinants. A moment’s reflection (check!) shows that trV (T ′ ◦T ) and trV ′(T ◦T ′) do
depend bilinearly on the pair T and T ′ (due to the linearity of trace in its argument), whereas such
bilinearity fails for the determinant analogues (since determinant does not have good interaction
with linear operations in self-maps).



5

Thus, we are led to guess that perhaps B(T ′, T ) is either trV (T ′ ◦ T ) or trV (T ◦ T ′). But which
one? Fortunately, these two traces are the same! We have seen long ago that formation of the trace
of a square matrix is insensitive to switching the order of multiplication when it is applied to a
product of square matrices of the same size, but the same argument works in general: for any n×n′

matrix (aij) and any n′×n matrix (brs), the products in both orders are n×n and n′×n′ matrices
whose respective traces can be directly computed to be the same:

∑
i

∑
j aijbji =

∑
r

∑
s brsasr.

(A closer inspection of the preceding tensorial construction of B does permit one to deduce by pure
thought that BV,V ′(T ′, T ) = BV ′,V (T, T ′), and so verifying the desired trace identity as we shall do
below does permit one to recover the “product invariance” of traces that we just checked by hand
using matrices, but we leave contemplation of this issue to the interested reader.)

Let us now verify that B(T ′, T ) is equal to the common trace of T ′ ◦ T and T ◦ T ′. This can
certainly be verified directly by picking bases of V and V ′ and computing everything in terms of
matrices relative to these bases and their dual bases (and elementary tensor products thereof). We
encourage the reader to carry out such a calculation, and in what follows we will show an alternative
method (that may seem a bit too sneaky, but shows that it is possible to pull off the proof with
virtually no use of bases): once again we use the principle of chasing elementary tensors out from
the middle of a string of isomorphisms. Consider the proposed identity B(T ′, T ) = trV (T ′ ◦ T ).
Alternatively, we consider the “left pairing” linear isomorphisms Hom(V ′, V ) ' Hom(V, V ′)∨ given
by T ′ 7→ B(T ′, ·) and T ′ 7→ trV (T ′ ◦ (·)). We want to prove that these linear maps agree for all T ′,
and rather than check for all T ′ we may use the evident linearity in T ′ for both formulas to reduce
to checking for T ′ in a (well-chosen) spanning set of Hom(V ′, V ). But which spanning set should
we use? Well, we pick an elementary tensor `′ ⊗ v in V ′∨ ⊗ V and we chase it out to both ends
of the long string of isomorphisms: such tensors give rise to elements T ′ ∈ Hom(V ′, V ), and the
T ′ that arise in this way are certainly a spanning set of Hom(V ′, V ) (why?). Hence, we will check
the result for each such T ′: we will compute T ′ in terms of `′ and v, and we will also compute the
linear functional that we get on Hom(V, V ′) from `′⊗ v. We then will check that the functional we
obtain is exactly trV (T ′ ◦ (·)). Note that to compare two linear functionals on Hom(V, V ′), we do
not need to compare values on all T ∈ Hom(V, V ′), but rather just those from a spanning set: a
convenient spanning set is of course the set of T ’s of the form `(·)v′ for ` ∈ V ∨ and v′ ∈ V ′ (i.e.,
those arising from elementary tensors in V ′ ⊗ V ∨).

Now we do the computation. Going to the right from `′⊗v, in Hom(V ′, V ) we get the linear map
T ′ : v′ 7→ `′(v′)v. Going to the left, we get `′⊗ev in V ′∨⊗V ∨∨ (where ev is the “evaluate on v” linear
functional on V ∨), and hence in (V ′ ⊗ V ∨)∨ we get the functional v′ ⊗ ` 7→ ev(`)`′(v′) = `(v)`′(v′).
Thus, the functional we get on Hom(V, V ′)∨ sends a linear map T : V → V ′ of the form `(·)v′
(i.e., a T that come from an elementary tensor v′ ⊗ ` ∈ V ′ ⊗ V ∨) to `(v)`′(v′). Our problem is
therefore reduced to this: prove that the trace of the composite (the order of composition doesn’t
matter!) of the linear maps `(·)v′ (from V to V ′) and `′(·)v (from V ′ to V ) is equal to `(v)`′(v′).
The composite (`(·)v′) ◦ (`′(·)v) from V ′ to V ′ sends v′1 ∈ V ′ to (`(·)v′)(`′(v′1)v) = `(`′(v′1)v)v′ =
`′(v′1)`(v)v′ = `(v)`′(v′1)v

′. In other words, this is the map V ′ → V ′ that projects onto the line
spanned by v′ with multiplier coefficient function `(v)`′. The trace of this self-map must be proved
to equal `(v)`′(v′). The scalar `(v) passes through the trace, so we can ignore it: it suffices to prove
that the self-map `′(·)v′ from V ′ to V ′ has trace `′(v′).

The case v′ = 0 is trivial, and otherwise we may consider a basis of V ′ containing v′ as the first
basis vector. With respect to this basis, the map sends the first basis vector v′ to `′(v′)v′ and sends
all other basis vectors to multiples of the first basis vector v′. Hence, the matrix for the map with
respect to this basis has upper left entry `′(v′) and has all other diagonal entries equal to 0. Thus,
the trace is `′(v′) as desired.


