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1 Introduction

We’ve seen that the tangent space to a deformation functor is a Galois coho-
mology group H1, and we’ll see that obstructions to a deformation problem
will be in H2. So if we want to know things like the dimension of R or
whether a deformation functor is smooth, we need to be able to get our
hands on the cohomology groups. Secondarily, if we want to “deform sub-
ject to conditions”, we’ll want to express the tangent space and obstruction
space of those functors as cohomology groups, and cohomology groups we
can compute in terms of an unrestricted deformation problem.

For the most part, we will assume the contents of Serre’s Local Fields and
Galois Cohomology. These cover the cases when G is finite (and discrete)
and M is discrete, and G is profinite and M is discrete, respectively.

References:
Serre’s Galois Cohomology
Neukirch’s Cohomology of Number Fields
Appendix B of Rubin’s Euler Systems
Washington’s article in CSS
Darmon, Diamond, and Taylor (preprint on Darmon’s website)

2 Generalities

Let G be a group, and let M be a module with an action by G. Both G
and M have topologies; often both will be discrete (and G will be finite),
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or G will be profinite with M discrete; or both will be profinite. We always
require the action of G on M to be continuous.

Let’s review group cohomology, using inhomogenous cocycles.

For a topological group G and a topological G-module M , the ith group of
continuous cochains Ci(G,M) is the group of continuous maps Gi → M .
There is a differential d : Ci(G,M)→ Ci+1(G,M) given by

(df)(g1, . . . , gi+1) = g1 ·f(g2, . . . , gi+1)

+

n
∑

j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1f(g1, . . . , gi)

It is easy to check that d2 is zero, so we have a complex C•(G,M). Then we
define H i(G,M) := ker d/ im d.

If G is finite and M is discrete, this is just ordinary group cohomology, see for
example [3]. But forG orM profinite, taking the algebraic group cohomology
gives the “wrong” answer. For example, if L/K is a finite Galois extension of
fields and M is a module equipped with a trivial action of G := Gal(L/K),
then the algebraic cohomology group H1(G,M) = Hom(G,M) classifies
subextensions K ⊂ K ′ ⊂ L with Gal(K ′/K) isomorphic to a subgroup of
M . It would be nice if we could relax the finiteness hypothesis on the exten-
sion L/K and still have H1 meaningfully classify subextensions. But infinite
Galois theory tells us that only closed subgroups of Gal(L/K) correspond
to subextensions K ⊂ K ′ ⊂ L, so our definition of H1 will have to take
topological information into account somehow.

For an explicit example where algebraic and continuous group cohomology
differ, see Brian’s notes from Hawaii, exercise 2.5.2.

2.1 Functorial properties

As we have defined it, Galois cohomology is functorial in the coefficients,
that is, given a morphism M → M ′ of G-modules, there is are morphisms
H i(G,M) → H i(G,M ′). Suppose 0 → M ′ → M → M ′′ → 0 is an exact
sequence of topological modules, and there is continuous sectionM ′′ →M (as
sets, not modules!). Then 0→ Ci(G,M ′)→ Ci(G,M)→ Ci(G,M ′′)→ 0 is
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exact for every i, and by homological algebra nonsense, we get a long exact
sequence

· · · → H i(G,M ′)→ H i(G,M)→ H i(G,M ′′)→ H i+1(G,M ′)→ · · ·

In all the cases we will care about, this hypothesis will be satisfied, because
surjective maps of discrete topological spaces have continuous sections, and
proposition 1, chapter 1 of Galois Cohomology tells us that continuous sur-
jections of profinite groups have continuous sections. In particular, if M is a
finitely-generated Zp-module or a finite-dimensional Qp-vector space, we will
have a long exact sequence.

For finite groups G and discrete G-modules M , recall that for all subgroups
H ⊂ G, we have a restriction map

res : H i(G,M)→ H i(H,M)

and a corestriction map

cor : H i(H,M)→ H i(G,M)

If H is normal in G, we also have an inflation map

inf : H i(G/H,MH)→ H i(G,M)

For G profinite and M discrete, we still have a restriction map

res : H i(G,M)→ H i(H,M)

If H is a closed, normal subgroup of G (so that the quotient G/H makes
sense), we also still have an inflation map

inf : H i(G/H,MH)→ H i(G,M)

However, to define a corestriction map, we need to assume H is open in G
with finite index. In that case, we define it “at finite level” (as discussed in
section 2.2) using the definition from finite group cohomology, and take the
limit.

When G is a finite group, or G is profinite and M is discrete, for any
normal subgroup H there is a spectral sequence Hp(G/H,Hq(H,M)) →
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Hp+q(G,M). This is because cohomology groups Hq(G,M) are the derived
functors (taken in the category of all G modules if G is finite, but taken in the
category of discrete G-modules if G is profinite) of the functorM 7→ MG, and

M 7→ MG is the composition of M 7→ MH and MG 7→ (MH)
G/H

. In particu-
lar, the low-degree terms of the spectral sequence give us the Hochschild-Serre
exact sequence

0→ H1(G/H,MH)
inf
→ H1(G,M)

res
→ H1(H,M)G/H → H2(G/H,MH)

inf
→ H2(G,M)

The first four terms are the usual inflation-restriction exact sequence.

Recall also that in finite group cohomology, there is a cup-product pairing

Hp(G,M)×Hq(G,N)
∪
→ Hp+q(G,M ⊗N) given on the level of cochains by

(ϕ ∪ ψ)(g1, . . . , gp, gp+1, . . . , gp+q) = ϕ(g1, . . . , gp)⊗ g1 · · · gpψ(gp+1, . . . , gp+q).
The same applies for profinite groups G and discrete G-modules. However,
if we want to allow more interesting topologies on the coefficient modules,
we may not be able to define the tensor product of modules. Instead, we
use the same formula to say that whenever there are (continuous) maps of

G-modules M → P,N → P , there is a cup-product Hp(G,M)×H1(G,N)
∪
→

Hp+q(G,P ).

2.2 Reducing to the Finite/Discrete Case

Now let’s allow G to be profinite (still assuming M to be discrete).

Theorem 2.1. Let (Gi) be a projective system of profinite groups, and let
(Mi) be an inductive system of discrete Gi-modules (the maps are all com-
patible). If G = lim

←−
Gi and M = lim

−→
Mi, then Hq(G,M) = lim

−→
Hq(Gi,Mi).

In particular,

Corollary 2.2. For profinite G, Hq(G,M) = lim
−→

Hq(G/U,MU) for q ≥ 0,
where the limit is taken over all open normal subgroups of G.

This corollary lets us reduce many statements to the equivalent statements
at finite level. For example, classical group cohomology tells us that for a
finite group G, Hq(G,M) is torsion for q ≥ 1, so for profinite G, Hq(G,M)
is the colimit of torsion groups, so is itself torsion.
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It also lets us make definitions at finite level, and then take a direct limit. For
example, in order to define corestriction for profinite groups, we recall the
definition of the corestriction map cor : Hq(H/(H ∩ U),M)→ Hq(G/U,M)
for open normal subgroups U ⊂ G of finite index. By applying the above
corollary, we obtain a homomorphism cor : Hq(H,M)→ Hq(G,M).

Now let’s relax the assumption thatM is discrete. Then we have the following
results due to Tate (see [4] or Appendix B of [1]):

Proposition 2.3. For T = lim
←−

Tn, Tn finite, if i > 0 and H i−1(G, Tn) is

finite for every n, then H i(G, T ) = lim
←−

H i(G, Tn).

Proposition 2.4. If T is a finitely generated Zp-module and i ≥ 0, then
H i(G, T ) has no divisible elements, and H i(G, T )⊗Qp→̃H

i(G, T ⊗Qp).

If we wanted, we could have first defined group cohomology for discrete G-
modules, and then defined H i(G, T ) by lim

←−
H i(G, Tn) and H i(G, T ⊗Qp) by

H i(G, T )⊗Qp, instead of via continuous cochains. Then these propositions
show we would end up with the same theory (at least for the coefficient
modules we care about).

These propositions also give us generalizations of the inflation-restriction
exact sequence and the five-term exact sequence associated to the Hochschild-
Serre spectral sequence.

Proposition 2.5. Suppose H is a closed normal subgroup of G.

1. There is an inflation-restriction exact sequence

0→ H1(G/H, TH)→ H1(G, T )→ H1(H, T )

2. Suppose that p is a prime and for every G-module (resp. H-module)
N of finite p-power order, H1(G,N) and H2(G,N) (resp. H1(H,N))
is finite. If M is discrete or a finitely generated Zp-module or a finite-
dimensional Qp-vector space, then there is a Hochschild-Serre exact
sequence

0→ H1(G/H,MH)→ H1(G,M)→ H1(H,M)G/H → H2(G/H,MH)→ H2(G, T )
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2.3 New Phenomena

However, there are some genuinely new phenomena when our groups are
profinite, even if our coefficients are still discrete. For example, there is the
notion of cohomological dimension:

Definition 2.6. Let p be a prime and G a profinite group. If for every
discrete torsion G-module M and for every q > n, the p-primary component
of Hq(G,M) is zero, and n is the smallest integer with these properties, we
say that n is the p-cohomological dimension of G and denote it by cdp(G).

Removing the requirement that the coefficients be torsion, we make the fol-
lowing definition:

Definition 2.7. Let p be a prime and G a profinite group. If for every
discrete G-module M and for every q > n, the p-primary component of
Hq(G,M) is zero, and n is the smallest integer with this property, we say
that n is the strict p-cohomological dimension of G and denote it by scdp(G).

Of course, we could have infinite cohomological dimension or strict cohomo-
logical dimension.

Note that these are not interesting concepts when G is assumed finite! Recall
that for any finite cyclic group G, H0

T (G,Z) = Z/#GZ and Hr
T (G,Z) ∼=

Hr+2
T (G,Z) for all r ∈ Z.

Examples:

• Let G = Ẑ. Then for every p, cdp(G) = 1 (see [3, Ch. XIII, Prop. 2]).
But H2(G,Z) ∼= H1(G,Q/Z) = Q/Z, so scdp(G) = 2.

• Let Gℓ be the absolute Galois group of Qℓ. Then for all p, cdp(Gℓ) =
scdp(Gℓ) = 2. This is a manifestation of the general fact that if k is the
residue field of K, then cdp(GK) ≤ 1 + cdp(Gk), with equality when
cdp(Gk) <∞ and p is different than the characteristic.

3 Local Duality

Now let’s try to say something about group cohomology we care about as
number theorists. Let K be a p-adic field, i.e., a finite extension of Qp and
let µn be the group of nth roots of unity in K.
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From now on, we will be considering Galois cohomology, that is, group co-
homology where the groups in question are Galois groups. If K is a field, we
will write H i(K,M) to mean H i(GK ,M), and if K ′/K is a Galois extension
of fields, we will write H i(K ′/K,M) to mean H i(Gal(K ′/K),M).

Proposition 3.1. • H0(K,µn) = µn ∩K

• H1(K,µn) = K×/(K×)n

• H2(K,µn) = Z/nZ

• H i(K,µn) = 0 for i ≥ 3

Proof. The first assertion follows by definition. For the cases i = 1 and i = 2,
use the exact sequence 0→ µn → Gm → Gm → 0 and look at the long exact
sequence in cohomology:

0 → H0(K,µn)→ H0(K,Gm)
n
→ H0(K,Gm)→

→ H1(K,µn)→ H1(K,Gm)
n
→ H1(K,Gm)→

→ H2(K,µn)→ H2(K,Gm)
n
→ H2(K,Gm)

By Hilbert’s Satz 90, H1(K,Gm) = 0, which implies that H1(K,µn) =
K×/(K×)n. In addition, H2(K,Gm) = Q/Z, with the isomorphism given
by the inv map, by the theory of Brauer groups. This implies H2(K,µn) =
Z/nZ. For i ≥ 3, the assertion is a theorem of Tate, and is proved in ([2,
§4.3, Prop. 12]).

In particular, this has the striking corollary

Corollary 3.2. For M a finite GK-module, H i(K,M) is finite as well.

Proof. Over a finite extension K ′/K, M becomes a GK ′-module isomorphic
to a direct sum of µn’s. We have a spectral sequence H i(Gal(K ′/K), Hj(K ′,M))⇒
H i+j(K,M), so by the proposition, H i+j(K,M) is finite.

Now we can state Tate’s local duality theorem:

Theorem 3.3. Let M be a finite GK-module and set M ′ = Hom(M,µ) =
Hom(M,Gm). Then for 0 ≤ i ≤ 2, the cup-product

H i(K,M)×H2−i(K,M ′)→ H2(K,µ) = Q/Z

is a perfect pairing.
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One of the consequences is the Euler-Poincaré characteristic. For a finite
GK-module M , we define the Euler-Poincaré characteristic to be

χ(M) :=
#H0(K,M)#H2(K,M)

#H1(K,M)

Then one can show that χ(M) = p−vp(#M)·N = 1/(O : #MO), where N =
[K : Qp] and O is the ring of integers of K. In particular, if the order of A
is relatively prime to p, then χ(A) = 1.

We can extend the concept to the case where M is a finite free Zℓ-module or
a finite-dimensional Qℓ-vector space by making the more familiar definition

χ(M) := h0(M)− h1(M) + h2(M)

where hi(M) := rkH i(K,M). If M is a free Zℓ-module of rank k, take
Mn = M/ℓnM , so that χ(M) = lim

←−
1
n

logℓ χ(Mn) = −kNvp(ℓ). In particular,
if ℓ 6= p, then χ(M) = 0.

Here are some interesting special cases:

• Take M = Z/nZ and i = 1. Then this theorem says we have a perfect
pairing H1(K,Z/nZ) × H1(K,µn) → Q/Z, which in particular says
that Hom(GK ,Z/nZ) is dual to K×/(K×)n. This is the duality given
by local class field theory, and if K contains the nth roots of unity, Tate
duality becomes the Hilbert symbol K×/(K×)n ×K×/(K×)n → Q/Z.

• If E is an elliptic curve (or A is an abelian variety) over K, there is an
action of GK on the torsion E(K)[m], so we have the perfect pairing

H1(K,E(K)[m])×H1(K,E(K)[m]′)→ Q/Z

But the Weil pairing tells us that E(K)[m] is dual to Ê(K)[m], which
for elliptic curves implies we have a pairing

H1(K,E(K)[m])×H1(K,E(K)[m])→ Q/Z

3.1 Unramified Cohomology

We’re going to be interested in a subgroup of H1 called the unramified co-
homology. We define

H i
nr(K,M) := H i(Knr/K,M I)
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to be the cohomology classes vanishing on inertia. For example,

• H0
nr(K,M) = H0(K,M)

• H1
nr(K,M) = ker(H1(K,M) → H1(Knr,M))—this is by inflation-

restriction. If M is finite, the order of H1
nr(K,M) is the same as the

order of H0(K,M), because there is an exact sequence

0→MGK →M I Frob− id
→ M I/(Frob− id)M I → 0

The lefthand term is H0(K,M) and the righthand term is H1
nr(K,M).

• H i
nr(K,M) = 0 for i ≥ 2 because Gal(Knr/K) = Ẑ has cohomological

dimension 1.

Why do we care? For one thing, suppose ρ is an unramified representation
and c ∈ H1

nr(K,M), and consider the corresponding deformation ρ′. Then ρ′

restricted to I is the trivial deformation, so ρ′ is still unramified.

Going back to elliptic curves, let’s briefly make K a global field with E an
elliptic curve (or abelian variety) defined over it. Define the finite set of
places S to be the union of the archimedean places, the places where E has
bad reduction, and the places v where v(m) 6= 0, and define KS to the be the
maximal extension of K unramified outside of S. Then E[m] is a GK-module,
so we have the exact sequence

0→ E(K)[m]→ E(K)
m
→ E(K)→ 0

The long exact sequence in cohomology gives us

0→ E(K)[m]→ E(K)
m
→ E(K)→ H1(GK , E(K)[m])

so
0→ E(K)/mE(K)→ H1(GK , E(K)[m])

We are interested in E(K)/mE(K) because of its role in the proof of the
Mordell-Weil theorem. In fact, its image in H1(KS, E(K)[m]) is exactly the
subgroup of cohomology classes unramified outside S.

Going back to the general theory, let’s look at what happens in the Tate
pairing. I claim that if #M is relatively prime to p, then H1

nr(K,M) and
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H1
nr(K,M

′) exactly annhilate each other. To see this, note that the inclusion
H1

nr(K,M) →֒ H1(K,M) is compatible with cup-product, so the cup-product
map

H1
nr(K,M)×H1

nr(K,M
′)→ H2(K,K

×
)

factors through H2
ur(K,K

×
), which is zero. So we only need to check that the

orders ofH1
nr(K,M) andH1

nr(K,M
′) match up, i.e., that #H1(K,M)/#H1

nr(K,M) =
#H1

nr(K,M
′). By the argument above, H1

nr(K,M) has the same number of
elements as H0(K,M), and H1

nr(K,M
′) has the same number of elements as

H0(K,M ′), which is identified with H2(K,M) by Tate duality. Since #M
is relatively prime to p, the Euler characteristic of M is 1, which implies the
desired equality.

4 Global Euler Characteristic and Poitou-Tate

Long Exact Sequence

4.1 Local Conditions

We are going to care about deformation problems more restricted than “all
deformations to A”, and we’ll want to identify tangent spaces of restricted
problems with cohomology groups, ideally subgroups of the cohomological
tangent spaces we already know about. For example, if we ask for de-
formations preserving the determinant, we find that the tangent space is
H1(G, ad0 ρ): let C : G → ad ρ be the cocycle representing an infinites-
imal deformation, i.e., the deformation is ρ′(g) = (I + εC(g))ρ(g). Then
det(ρ′) = (1+εTr(C)) det ρ, so keeping the determinant unchanged is equiv-
alent to Tr(C) = 0, that is, C is actually a cocycle valued in ad0 ρ.

Since we’re interested in deformations of global Galois groups, we’re also go-
ing to be interested in deformations satisfying local conditions. That is, if
v is a place of F , there is a homomorphism Gv →֒ G, so by contravariance,
we have a restriction map H i(G,M) → H i(Gv,M). This lets us try to un-
derstand global cohomology classes in terms of their restrictions to the local
Galois groups. For example, we could look at the subgroup of everywhere
uramified cohomology classes:

{c ∈ H i(G,M) | resv(c) is unramified}
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We make the following definition:

Definition 4.1. Let L = (Lv) be a collection of subgroups Lv ⊂ H1(Gv,M)
such that for almost all places v, Lv = H1

nr(Gv,M) (this is called a family of
local conditions). The generalized Selmer group is

H1
L(GF ,M) := {c ∈ H1(GF ,M) | resv(c) ∈ Lv∀v}

We also let LD (the dual) denote the family of local conditions (LD
v ), where

LD
v is the annhilator of Lv under the Tate local duality pairing.

Here’s an example of a family of local conditions: Fix a finite set S ⊃ S∞ of
places of a global field F , and let ρ : GF → GLn(R) be a representation of
the absolute Galois group of F . Then we set

• Lℓ = H1
nr(Gℓ, ad0 ρ) if ℓ /∈ S, ℓ 6= p

• Lℓ = H1(Gℓ, ad0 ρ) if ℓ ∈ S

• Lp the conditions for ordinary deformations

4.2 Global Euler-Poincaré characteristic and Poitou-

Tate

The Poitou-Tate nine-term exact sequence is the following: Let F be a num-
ber field, and let S be any set of places containing the archimedean places
and the places v with v(#M) 6= 0,

0 → H0(FS,M)→ P 0(FS,M)→ H2(FS, A
′)∨

→ H1(FS,M)→ P 1(FS,M)→ H1(FS, A
′)∨

→ H2(FS,M)→ P 2(FS,M)→ H0(FS, A
′)∨

This bears some explanation, since we haven’t defined the groups P i, or the
maps in the sequence. Let A be a finite GF -module. We define

P i(FS,M) :=

′
∏

v∈S

H i(Fv,M)
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Here the restricted product is taken with respect to the unramified cohomol-
ogy classes, that is,

P i(FS,M) = {(cv)v∈S ∈
∏

v∈S

H i(Fv,M) | cv ∈ H
i
nr(Fv,M) for almost all v ∈ S}

Moreover, for archimedean places v ∈ S, we replace H0 by the modified Tate
cohomology group Ĥ0. In particular,

P 0(FS,M) =
∏

v∈SrS∞

H0(Fv,M)×
∏

v∈S∞

Ĥ0(Fv,M)

P 1(FS,M) =

′
∏

v∈S

H1(Fv,M)

P 2(FS,M) =
⊕

v∈S

H2(Fv,M)

(by passing to a finite extension where A is unramified).

These groups have topologies: in order, excluding the zero terms, they are fi-
nite discrete, compact, compact, discrete, locally compact, compact, discrete,
discrete, finite.

Now we want to say what the maps are. The maps H i → P i are evident.
For the maps P i → H2−i, note that local duality gives an isomorphism
P i→̃(P 2−i)

∨
for 0 ≤ i ≤ 2; composing with the (Pontryagin) dual of the

homomorphism H2−i → P 2−i gives the desired map. That leaves the maps
(H2)

∨
→ H1 and (H1)

∨
→ H2. Denoting the maps H i → P i by αi, there is

a non-degenerate pairing kerα1 × kerα2 → Q/Z, which defines the desired
maps.

A theorem due to Poitou and Tate (independently) states that this sequence
is exact, and all of the maps are continuous.

Now we would like an analogue of the local Euler-Poincaré characteristic,
for global Galois cohomology. We need to assume that S is a finite set,
containing S∞ and the places v with v(#M) 6= 0. First of all, we show that
if M is a finite GS-module, then H1(FS,M) is finite. It is also true that
H i(FS, A) is finite for i 6= 1, but this is harder (this is Theorem 8.3.19 in
Neukirch)

Proof. We can pass to a finite Galois extension F ′/F such that GF ′,S acts
trivially onM . ThenH1(GF ′,S,M) is finite, because it’s equal to Hom(F ′

S,M),
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which classifies Galois extensions of F ′ unramified outside S with Galois
group a subgroup of M , and there are finitely many of these (Hermite-
Minkowski). Then use the spectral sequence or inflation-restriction to say
that H1(FS,M) itself is finite.

Now we define the global Euler-Poincaré characteristic to be

χ(FS,M) :=
#H0(FS,M)#H2(FS,M)

#H1(FS,M)

We have the formula

χ(FS,M) =
∏

v∈S∞

#H0(Fv,M)

‖#M‖
=

∏

v∈S∞

#Ĥ0(Fv,M)

#H0(Fv,M ′)
(4.1)

Note that this formula is in terms of the cardinality of the cohomology groups.
In this seminar, we will be interested in the case where the cohomology
coefficients are vector spaces (either over finite fields or over p-adic fields), so
we would like a formula in terms of the dimensions of cohomology groups as
vector spaces.

So suppose that M is a finite dimensional vector space over a finite field
k = Fq. Then the cohomology groups H i(GS,M) are vector spaces over k,
so we may take the base q logarithm of 4.1 to get

logq χ(FS,M) =
∑

v∈S∞

(

h0(Fv,M)− logq‖#M‖
)

=
∑

v∈S∞

(

ĥ0(Fv,M)− h0(Fv,M
′)
)

5 Product formula

The formula we want to prove is due to Wiles: Let M be a finite GF -module
and let L be a collection of local conditions. Then

#H1
L(F,M)

H1
LD(F,M ′)

=
#H0(F,M)

#H0(F,M ′)
·
∏

v

#Lv

#H0(Fv,M)

where the product runs over all places of F .

We choose a finite set S of places of F as follows: S contains all archimedean
places of F , all non-archimedean places whose residue characteristic divides
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#M , all places whereM is ramified, and all places p where Lp 6= #H1(Gp/Ip,M
Ip ).

Let FS be the maximal extension of F unramified outside S, and let GS be
Gal(FS/F ).

For any finite discrete GF -module M , we have an exact sequence

0→ H1
L(F,M)→ H1(GS,M)→ ⊕v∈SH

1(Gv,M)/Lv

Taking this exact sequence for M∗ and hitting it with Hom(−,Q/Z), we get
∏

v∈S

Lv → H1(GS,M
∗)∨ → H1

LD(F,M∗)∨ → 0

Here the ∨ refers to Pontryagin dual. The identity (H1(Gv,M
∗)/LD

v )∨ =
Lv follows from local duality: Hom(H1(Gv,M

∗)/LD
v ,Q/Z) is the subset of

H1(Gv,M) killing LD
v under the Tate pairing, which is to say that it is Lv

again.

Next we want to merge this exact sequence into the Poitou-Tate exact se-
quence:

0 → H0(GS,M)→ P 0(GS,M)→ H2(GS, A
′)∨ →

→ H1
L(F,M)→

∏

v∈S

Lv → H1(GS,M
∗)∨ → H1

LD(F,M∗)∨ → 0

If this sequence is exact, we have

#H1
L(F,M)

#H1
LD(F,M ′)

=
#H0(GS,M)#H2(GS,M

′)

#H1(GS,M ′)#P 0(GS,M)
·
∏

v∈S

#Lv

because H2(GS,M
′)∨ has the same number of elements as H2(GS,M

′). The

formula for χ(GS,M
′) is χ(GS,M

′) =
∏

v∈S∞

ĥ0(Fv,M ′)
h0(Fv,M)

, which yields

#H1
L(F,M)

#H1
LD(F,M ′)

=
#H0(GS,M)

#H0(GS,M ′)
·

1

#P 0(GS,M)
·

∏

v∈S∞

#Ĥ0(Fv,M
′)

#H0(Fv,M)

∏

v∈S

#Lv

=
#H0(GS,M)

#H0(GS,M ′)

∏

v∈S

#Lv

#H0(Fv,M)
by the definition of P 0

=
#H0(GS,M)

#H0(GS,M ′)

∏

v

#Lv

#H0(Fv,M)

The last line follows because outside of S, Lv = H1
nr(Fv,M) and M is unram-

ified, so we can apply the argument that #H1
nr = #H0 to say the quotient

is 1.
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