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1. Introduction

Let K be a number field, let A×
K be its idele group and let GK be its absolute Galois group. Class field

theory states that there is a natural map (up to a choice of normalization)

A×
K/K

× → Gab
K

which identifies Gab
K as the profinite completion of A×

K/K
×. Equivalently, class field theory can be stated

as an isomorphism

{finite order characters of A×
K/K

×} = {finite order characters of GK}.
Thus we have a description of the finite order characters of GK .

A p-adic character of GK is a continuous homomorphism GK → Q
×

p ; since GK is compact any such

character takes values in O
×
F for some finite extension F/Qp. There are many interesting p-adic characters

which are not of finite order: for instance, the cyclotomic character χp. Since O
×
F is profinite, p-adic

characters of GK are limits of finite order characters, and so we can use class field theory to understand

them. Define a p-adic Hecke character (of K) to be a continuous homomorphism A×
K/K

× → Q
×

p ; again,

the image is always contained in O
×
F for some F finite over Qp. We then have an identification

{p-adic Hecke characters of K} = {p-adic characters of GK}.
induced by class field theory.

We thus have an understanding of p-adic characters of the Galois group. However, this is not the end of
the story: there are compatible systems of characters. Such a system consists of a p-adic character ψp of GK

for each prime p such that for each place v of K the quantity ψp(Frobv) is independent of p in a suitable
sense. We would like to understand the collection of compatible systems. The Langlands program suggests
that compatible systems of characters should correspond to automorphic representations of GL1(AK), so
we now examine these objects.

What is an automorphic representation of GL1(K)? To begin with, it should be an irreducible subrepre-
sentation of GL1(AK) acting on the space of automorphic forms on GL1(AK) by right translation. (Recall
that an automorphic form on GL1(K) is a function K×\GL1(K) → C satisfying certain natural conditions.)
Since GL1(AK) is commutative, such a representation must be one dimensional. It is thus spanned by some
non-zero automorphic form f . Since Cf is stable by right translation, we find f(xg) = λgf(x) for all
x, g ∈ GL1(AK). Taking x = 1, we find λgf(1) = f(g) and so f(1)f(xg) = f(g)f(x) holds for all x and g.
Since f is non-zero we find that f(1) is non-zero; scale f so that f(1) = 1. We then find that f is a homo-
morphism, and since it is invariant under K× it also satisfies f(K×) = 1. The properties of automorphic
forms that we did not list amount to f being continuous. A continuous homomorphism A×

K/K
× → C× is

called a Hecke character. We have thus shown that every automorphic representation of GL1(K) is spanned
by a Hecke character. It is clear that the character is unique. It is also not difficult to show that every Hecke
character spans an automorphic representation. We thus have an identification

{automorphic representations of GL1(K)} = {Hecke characters of K}.
Consider now the diagram

{Hecke characters of K} oo //____

��
�

�

�

{compatible systems of characters of GK}

��

{p-adic Hecke characters of K} {p-adic characters of GK}

We have already explained the bottom map. The right map takes a compatible system of characters {ψp}
to its pth member ψp. The top arrow means “we expect a relationship.” Given a top arrow, the left arrow
is obtained by going around the diagram.
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As we have introduced it, the left arrow might seem the most mysterious: it is given by combining three
operations, one of which is itself somewhat unclear. However, it is actually quite accessible. We will explain
this in the coming sections. Once one has this left arrow, it is not difficult to understand the top arrow.
The story goes like this. There are certain special Hecke characters, the algebraic ones. Given an algebraic
Hecke character f one can build a p-adic Hecke character fp for any prime p. Each fp is associated to some
p-adic character ψp of GK and these ψp form a compatible system. In fact, this is a bijection, that is, every
compatible system arises from a unique algebraic Hecke character.

2. The case K = Q

We begin by considering the case K = Q. The general case does not differ much from this case except
that it is more notationally complicated. We have

A×
Q/Q

× =
∏

p

Z×
p × R+.

Here R+ denotes the group of positive real numbers under multiplication. Each Z×
p has its usual topology

and the product has the product topology; it is profinite.
Let f be a Hecke character. The restriction η of f to

∏

Z×
p is a finite order character, as is any continuous

homomorphism from a profinite group to C×. The restriction of f to R+ is of the form x 7→ xa for some real
number a. We call f algebraic if this number a is an integer. Let α∞ be the Hecke character which is trivial
on
∏

Z×
p and on R+ is given by the standard inclusion R+ → C×. Then an arbitrary Hecke character f is

algebraic if and only if it is of the form ηαn
∞ for some finite order character η and integer n. The character

η and the integer n are then uniquely determined.
Now let f be a p-adic Hecke character. The restriction of f to R+ is then trivial. The restriction of f to

∏

ℓ 6=p Z×
ℓ is of finite order. The restriction of f to Z×

p is a continuous homomorphism Z×
p → Q

×

p . It is not
difficult to classify all such maps, but we will not do this. We call f algebraic if this restriction is of the form
x 7→ xn on a compact open subset of Z×

p . Let αp be the p-adic Hecke character which is trivial on R+ and
∏

Z×
ℓ and on Z×

p is given by the standard inclusion Z×
p → Q

×

p . Then an arbitrary p-adic Hecke character
f is algebraic if and only if it is of the form ηαn

p for some finite order character η and integer n. Again, η
and n are uniquely determined.

Let f be an algebraic Hecke character. We can then write f = ηαn
∞. Define a p-adic Hecke character fp

by fp = ηαn
p . (Here we are implicitly identifying the roots of unity in C and Qp so that we may regard η

as being valued in either field.) Under class field theory, the p-adic Hecke character αp corresponds to the
cyclotomic character χp. Thus fp corresponds to ψp = η′χn

p , where η′ is the finite order character of GK

corresponding to η. Since the χp form a compatible system, we thus see that the ψp do as well. Therefore,
starting from a Hecke character f we can produce a system {fp} of p-adic Hecke characters and from this
obtain a compatible system {ψp} of one dimensional Galois representations.

3. The general case

Let K be an arbitrary number field. We will find it convenient to treat p-adic Hecke characters and normal
Hecke characters (which we now call ∞-adic Hecke characters) simultaneously. Thus let p be a prime or ∞.
Let Cp be Qp or C correspondingly (one could use Cp in place of Qp). A p-adic Hecke character is then
just a continuous homomorphism

A×
K/K

× → C×
p .

We fix an emedding K → Cp for each p. We explain how this large number of choices can be cut down at
the end of the section.

Let f be a p-adic Hecke character. We regard f as a character of

A×
K = (K ⊗ Qp)

× ×
∏

ℓ 6=p

(K ⊗ Qℓ)
×

which is invariant under K×. (If p = ∞ then Qp means R.) Of course, f restricts to a finite order character
on the second factor since ℓ-adic and p-adic topologies do not interact. On the first factor, however, f can
be much more complicated. We say that f is algebraic if its restriction to the first factor is given by a
rational function on an open subgroup, in the following sense. Regard K ⊗ Qp as an n-dimensional Qp

vector space, where n = [K : Qp], and let xi : K ⊗ Qp → Qp be the n coordinates. Then we want f to be
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a rational function function of the xi, with coefficients in Qp, after it is restricted to some open subgroup

of (K ⊗ Qp)
×. (Note that we do not say compact open here. If K ⊗ Qp = R then we allow f to be the

absolute value character. This is an algebraic function when restricted to the open subgroup R+.)
We now give a nicer reformulation of this algebraic condition. Define a weight to be a character of the

torus ResK
Q(Gm) over Q, that is, a weight is a homomorphism of algebraic groups

w : (ResK
Q(Gm))

Q
→ (Gm)

Q
.

Here Res denotes restriction of scalars. A weight gives a homomorphism K× → Q
×

which we also call
w. For f to be algebraic, it is equivalent to ask that there exists a weight w and an open subgroup U of
(K ⊗Qp)

× such that f(x) = w(x) for x ∈ K× ∩U . The weight w is then unique and called the weight of f .

Before continuing we give an example. Let K = Q(
√
d) be an imaginary quadratic field. Let u be a root

of d in K and let u′ be a root of d in C. We fix an embedding K → C by u 7→ u′. Let f be a (∞-adic)
Hecke character. At infinity, f gives a map (K ⊗ R)× → C×. Now, (K ⊗ R)× is isomorphic to C×. Every
homomorphism C× → C× is of the form

reiθ 7→ raeinθ = ea log r+inθ

where a is a complex number and n is an integer. We wish to rephrase this classification in terms of K.
Every element of K can be written as x + yu with x and y in Q. In these coordinates, r is given by the

positive square root of x2 + dy2 while eiθ is (x + du′)/
√

x2 + dy2. We thus find that every homomorphism
(K ⊗ R)× → C× is of the form

x+ yu 7→ (x2 + dy2)a/2

(

x+ du′
√

x2 + dy2

)n

= (x2 + dy2)(a−n)/2(x+ du′)n

where a is a complex number and n is an integer. Of course, a and n are uniquely determined. We find that
this is a rational function of x and y if and only if a− n is an even integer, say 2m. In this case, the above
formula can be written as

x+ yu 7→ (x− du′)m(x+ du′)n+m.

Thus if we identify K ⊗ R with C via u 7→ u′ then any algebraic character (K ⊗ R)× → C× is of the form
z 7→ znzm. Of course, n and m are uniquely determined, but if we use the embedding u 7→ −u′ then n and
m are switched.

We now examine the same example from the point of view of weights. Let T be the torus ResK
Q(Gm). It

can be thought of as the group of all matrices inside of GL2(Q) of the form
(

x y
dy x

)

The group of characters TQ → (Gm)Q is a free abelian group of rank two, generated by the two characters
(

x y
dy x

)

7→ x+ uy,

(

x y
dy x

)

7→ x− ux.

We thus see that the maps K× → Q
×

coming from weights are exactly the ones of the form

(x+ uy) 7→ (x+ uy)n(x − uy)m.

(Here we identify T (Q) with K× by letting x + uy correspond to the matrix whose top left entry is x and
bottom right entry is y.) Thus the homomorphisms (K ⊗ R)× → C× which come from weights are exactly
the ones z 7→ znzm. This shows that our two characterizations of algebraic homomorphisms agree in this
case.

We now return to the general setting. Let f be an algebraic ∞-adic Hecke character with weight w. For
any prime p let αw,p be the homomorphism A×

K → C×
p which is trivial on the prime to p components of A×

K

and given by w(x) for x ∈ (K ⊗ Qp)
×. Since f is algebraic of weight w, the character η = fα−1

w,∞ is locally

constant on A×
K , that is, its kernel is open. It is not difficult to see that there is a number field M such

that η takes values in M×. Choose an embedding of M into Qp. We now define fp to be ηαw,p. We have
thus associated a family of algebraic p-adic Hecke characters {fp} to our initial Hecke character f . Letting
ψp be the character of GK associated to fp we also get a system {ψp} of Galois characters. In fact, this is
a compatible system.
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Throughout we have been assuming an embedding of K into Cp for each p. This was actually not
used in our first characterization of algebraic. However, it was used to move between f and fp. We now
explain a nicer set-up that requires fewer choices. The idea is to work with a field of coefficients. Let M
be a number field. For a place v of M define a v-adic Hecke character to be a continuous homomorphism
A×

K/K
× → M×

v . Then, in this setting, one need only choose an embedding K → M . That is, after having
picked an embedding one can take an algebraic v-adic Hecke character and form from it a system of algebraic
Hecke characters indexed by the places of M .

4. Conclusion

We have a diagram

{algebraic Hecke characters} {compatible systems of characters}

{algebraic p-adic Hecke characters}
� _

��

{certain p-adic characters of GK}
� _

��

{all p-adic Hecke characters} {all p-adic characters of GK}
We now explain this. Equal signs mean isomorphism. The top left vertical arrow is our construction to go
between algebraic Hecke characters and algebraic p-adic Hecke characters. It is clearly an isomorphism, since
one can run the construction in reverse. The bottom left vertical arrow is just the inclusion of the algebraic
characters into all characters. The bottom horizontal arrow has already been discussed. The “certain p-adic
characters of GK” are just those that come from algebraic Hecke characters. The middle horizontal and
bottom right vertical arrow are evident. The top right vertical arrow takes a compatible system to its pth
member. It is injective since a compatible system is determined by any of its members. We now come to
interesting part. We have shown how to attach to an algebraic Hecke character a system of p-adic Hecke
characters, and therefore a system of p-adic characters of GK . As we stated, this is a compatible system.
This gives a map from the top left to the top right. It is easily seen to be injective. A more difficult result
is that it is surjective — every compatible system is associated to an algebraic Hecke character. A diagram
chase now gives the surjectivity of the top right vertical arrow.

A natural question one may now ask is: which are the “certain” p-adic characters of GK that arise from
algebraic Hecke characters? One answer is provided by the diagram: they are exactly those that fit into a
compatible system of characters. There is a better answer, though, one that is intrinsic to the character.
Namely, a p-adic character of GK comes from an algberaic Hecke character if and only if it is Hodge-Tate.
This is a condition from p-adic Hodge theory.


