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1. Introduction

Let k be a field, and let A,B be abelian varieties over k. Let G = Gal(ks/k). Write
Hom(A,B) for the abelian group of k-homomorphisms A→ B, and for a prime ` 6= char(k)
let HomG(T`(A), T`(B)) denote the Z`-module of G-equivariant maps between the `-adic
Tate modules of A and B.

Consider the map

(?) Z` ⊗ Hom(A,B)→ HomG(T`(A), T`(B))

associating to a homomorphism of abelian varieties the induced morphism of Tate modules.
A variant on (?) allowing ` = char(k) is very important for some applications, but that

requires p-divisible groups (to be discussed later in the fall) so we pass over it in silence here,
apart from remark 2.5.

The map (?) is always injective; the proof is the same as for elliptic curves. (See [S].)
What’s the image?

Theorem 1.1 (Tate, 1966). If k is finite, then (?) is an isomorphism.

One goal of this lecture is to prove this theorem. But another goal is to prove the implica-
tion Akshay mentioned in his talk: for abelian varieties over a field k, if k-isogeny classes are
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known to consist of finitely many k-isomorphism classes, then the map (?) is an isomorphism.
This is useful because once the appropriate propeties of the Faltings height are established,
this finiteness property of isogeny classes (when k is a number field) will be clear. Moreover
Tate’s conjecture that (?) is an isomorphism whenever k is finitely generated over its prime
field (e.g. k a number field) is helpful to our cause of proving Mordell’s conjecture: it implies
that two abelian varieties with the Z`[G]-isomorphic Tate module are isogenous. Together
with the finiteness of isogeny classes and a finiteness result for Galois representations, this
yields the Shafarevich conjecture, which gives Mordell via the Kodaira-Parshin trick.

In fact, for the purposes of proving the Tate conjecture, we can even relax the finiteness
condition on k-isogeny classes assumption a bit. To be precise, we consider two finiteness
hypotheses which might hold for an abelian variety A over a field k, given a fixed prime `.

Hyps(A, k, `): Up to isomorphism, there are only finitely many abelian varieties B over k which are
isogenous to A via a k-isogeny of `-power degree.

Hypw(A, k, `): For any d ≥ 1, there are only finitely many isomorphism classes of abelian varieties
B over k such that
(i) B is isogenous to A via a k-isogeny of `-power degree, and
(ii) there exists a polarization ψ of B (over k) of degree d2.

(The subscripts s and w are for “strong” and “weak” respectively.)
We will see that Hyps is strong enough to prove Tate’s conjecture, and for number fields

it will be a consequence of the theory of Faltings height.
On the other hand, Hypw is not too difficult to show directly when k is finite. (Since it is

somewhat separate from the main ideas of this talk, I’ll do this only at the end.) However,
it alone doesn’t quite suffice to prove Tate’s conjecture. But with a bit of trickery, it can
still be leveraged to give the proof under an additional assumption which also holds when
k is finite. (This is good, because Faltings height doesn’t exist over finite fields, so without
this alternate proof we would not know Tate’s conjecture holds for such fields.)

Here’s the structure of the talk. First we’ll give some motivation, by mentioning some
applications of Tate’s theorem. Next we’ll make a couple of reductions, and then state our
main theorem precisely. Finally we’ll prove the theorem.

2. Some motivation: applications of theorem 1.1

For our discussion of applications we assume throughout that k = Fq is finite. Thus the

Galois group G is topologically generated by the q-Frobenius automorphism of k. Let A and
B be abelian varieties over k.

Tensoring (?) up with Q` (over Z`) we get to the land of vector spaces:

(??) Q` ⊗ Hom(A,B) ↪→ HomG(V`(A), V`(B)),

where by definition V`(A) = T`(A)⊗Z` Q`. Note that (??) is still injective, since localization
is exact. As we will see soon, one can pretty much work with (??) rather than (?): if one is
an isomorphism, so is the other.

A consequence of Tate’s theorem is that

rank(Hom(A,B)) = dim HomG(V`(A), V`(B)).

A first set of applications uses this identity to relate isogenies and point counting.
Let’s think about the right side above. Here’s an important fact about abelian varieties,

which Brian mentioned in his talk.
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Proposition 2.1. Let φ be an endomorphism of an abelian variety A over a field k. For
` 6= char(k), the characteristic polynomial f of T`(φ) acting on V`(A) has integer coefficients,
and is independent of `.

Proof. This is shown for elliptic curves in [S, §V.2] and by essentially the same method for
abelian varieties in [Mu, §19]. �

We can leverage this result using the following fact from linear algebra.

Proposition 2.2. Let α, β be semi-simple endomorphisms of two finite-dimensional vector
spaces over a field K, with characeristic polynomials fα and fβ having factorizations

fα =
∏
p

pnα,p , fβ =
∏
p

pnβ,p

as powers of distinct monic irreducible polynomials p ∈ K[t]. Then

dim{γ ∈ Hom(V,W ) : γα = βγ} = r(fα, fβ) :=
∑
p

nα,pnβ,p deg p.

Moreover the number r(fα, fβ) is invariant under extension of the field K.

Proof. Exercise. (See [Mu, App. 1, Lemma 6, p. 251].) �

Returning to the situation of abelian varieties over a finite field k = Fq, the q-Frobenius in
G acts on T`(A) exactly as does the Frobenius πA ∈ End(A). The induced action of Frobenius
on V`(A) is semisimple; we’ll check this later when we discuss semisimple algebras.

It follows (with a bit of thought) that

dimQ`
HomG(V`(A), V`(B)) = r(fA, fB)

where fA (resp. fB) is the characteristic polynomial of the q-Frobenius endomorphism πA of
A (resp. πB of B). Since the righthand side can be computed over Q ⊂ Q`, it follows that
this dimension is independent of `. (We’ll use this fact – which of course also follows from
Tate’s theorem – later, in the course of the proof of the main theorem!)

Thus we have proved the first part of the following corollary.

Corollary 2.3. Let A,B be abelian varieties over a finite field k, fA resp. fB the charac-
teristic polynomial of πA resp. πB on V`(A) resp. V`(B). Then

(a) rank Hom(A,B) = r(fA, fB);
(b) The following are equivalent:

(b1) B is k-isogenous to an abelian k-subvariety of A,
(b2) V`(B) is G-isomorphic to a G-subrepresentation of V`(A) for some ` 6= char(k),
(b3) fB|fA in Q[t];

(c) The following are equivalent:
(c1) A and B are k-isogenous,
(c2) fA = fB,
(c3) A and B have the same number of points over any finite extension of k.

Proof. We’ve seen (a). Everything else is pretty easy. For (b2)⇒(b1), given a G-linear
inclusion u : V`(B) ↪→ V`(A), we can by Tate’s theorem find φ ∈ Q⊗ Hom(B,A) such that
V`(φ) is arbitrarily close to u in Hom(V`(B), V`(A)). Since having rank at least a certain
amount is an open condition on a linear map, we can ensure that V`(φ) is injective. Clearing
the denominator, we can find a multiple of φ which is actually a k-map B → A inducing an
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injective map on V`. But the dimension of the kernel of V`(φ) is twice the dimension of the
abelian subvariety of B given as the connected component of the identity in the subgroup
kerφ. Thus kerφ must actually be finite, so φ is a k-isogeny. We leave the rest as an exercise.
One must use Poincaré reducibility (recalled below) and the semisimplicity of the action of
the q-Frobenius on V`(A). �

Why is this corollary cool? For one thing, it proves the hard direction of the fact that
two elliptic curves (or abelian varieties) are isogenous, if and only if their zeta functions
match. (This is precisely (c1)⇔(c3).) That’s because the characteristic polynomial fA of πA
determines the number of points of A over any finite k′/k.

The other important application of Tate’s theorem is that is gives insight into the structure
of the endomorphism algebra End0(A) = Q⊗ End(A). Here is just a taste of what one can
prove.

Corollary 2.4. Let A be an abelian variety of dimension g > 0 over a finite field k. Let
π = πA be the Frobenius endomorphism of A relative to k, and f its characteristic polynomial
(on one, or any, V`(A)). Then F = Q[π] is the center Z(E) of the endomorphism algebra
E = End0(A), and we have the inequality

2g ≤ [E : Q] = r(f, f) ≤ (2g)2.

Proof. It will come out in the proof of 1.1 that the subalgebra F` = Q`[T`(π)] of End(V`(A))
generated by Frobenius (i.e. the Galois group of k) consists of all endomorphism of V`(A)
which commute with E` = E ⊗ Q`. Thus Z(E`) = E` ∩ F` = F` since F` is obviously
contained in E`. But this implies that Z(E) = E ∩ Z(E`) = End0(A) ∩Q`[π] = Q[π].

Now by part (a) of the previous corollary we have [E : Q] = r(f, f). If we factor f over an
algebraically closed field as f(t) =

∏
(t − πi)mi then r(f, f) =

∑
m2
i . But

∑
mi = deg f =

dimV`(A) = 2g, and we have ∑
mi ≤

∑
m2
i ≤

(∑
mi

)2

.

�

Remark 2.5. One can actually say a lot more, especially in the cases when the upper or
lower bound in the inequality above is achieved, or when the minimal polynomial of π over
Q is irreducible, so F is a field. The latter situation turns out to be the case when A is
isogenous to a power of a k-simple abelian variety. It’s not hard to show that in this case
E is a central simple F -algebra split at all finite places of F not dividing p = char(k),
and ramified at all real places. To fully analyze the structure of E – which is relevant for
Honda-Tate theory – we need to know its invariants at primes of F lying over p. This
requires studying the p-divisible group of A, which plays the role of the Tate module when
` = p.

3. Initial reductions

Consider again the map (?)

(?) Z` ⊗ Hom(A,B) ↪→ HomG(T`(A), T`(B)).

Tensoring up with Q` (over Z`) as before, we obtain

(??) Q` ⊗ Hom(A,B) ↪→ HomG(V`(A), V`(B)).
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Since vector spaces over the field Q` are (at least slightly) easier to deal with than modules
over Z`, we begin with the following.

Lemma 3.1. For fixed `, A,B, (?) is surjective if and only if (??) is so.

Proof. It’s enough to show that coker (?) is torsion-free, since if (??) is surjective then
coker (?) is torsion. So it’s enough to show that the Z`-module

HomZ`(T`(A), T`(B))/ im (?)

is torsion-free, and it’s enough to check this module has vanishing `-torsion.
Suppose f ∈ Hom(T`(A), T`(B)) is such that `f zero modulo im (?). Then `f =

∑
αiT`(φi)

for some αi ∈ Z`, φi ∈ Hom(A,B). In particular, approximating each αi by some αi,n ∈ Z,
we can find a sequence of maps φ(n) : A → B with φ(n) =

∑
i αi,nφi such that φ(n) →∑

αiT`(φi) in Hom(A,B) ⊗ Z`, and hence T`(φ
(n)) → `f . In particular, by the nature of

`-adic convergence, we have T`(φ
(n)) ∈ `Hom(T`(A), T`(B)) for large n.

Thus T`(φ
(n)) = `fn for some fn ∈ Hom(T`(A), T`(B)) and maps T`(A) to `T`(B). More-

over we must have fn → f since `fn = T`(φ
(n)) → `f , and we can check equality after

tensoring with Q`.
If λ ∈ T`(A) projects to some a ∈ A[`](ks) then by definition T`(φ

(n))(λ) projects to
φ(n)(a) ∈ B[`](ks). But T`(φ

(n))(λ) is a multiple of ` in T`(B), so its projection onto B[`](ks)
vanishes. Therefore the subgroup(scheme) A[`] – i.e., the kernel of the multiplication-by-`
isogeny A → A – is contained in the (scheme-theoretic) kernel of the isogeny φ(n). The
theory of isogenies of abelian varieties is sufficiently well-behaved for this to ensure that
φ(n) factors through `, and so φ(n) = ψ(n) ◦ ` for some isogeny ψ(n) : A → B; that is,
φ(n) = `ψ(n) ∈ `Hom(A,B) for certain homomorphisms ψ(n). Since the ball of multiples of `
in Hom(A,B)⊗Z` is `-adically closed and the φ(n) converge, it follows that the limit

∑
αiφi

of the φ(n)s is a multiple of `, and that ψ(n) → ψ := 1
`

∑
αiφi ∈ Hom(A,B)⊗ Z`.

Now we see that T`(ψ) = limT`(ψ
(n)) = 1

`
limT`(φ

(n)) = f . So f ∈ im (?) as desired.
(Note that we’ve used here the fact one can check equality of elements of Hom(T`(A), T`(B))

and Hom(A,B) ⊗ Z`, after tensoring up with Q`, which is true because these modules are
torsion-free over Z`.) �

The next reduction takes us from vector spaces to the more structured realm of Q`-algebras,
by restricting our attention to the case of endomorphisms of a single abelian variety, rather
than maps between two of them. As we shall see, we will be able to exploit the algebra
structure in the proof of the main result, theorem 4.1.

Lemma 3.2. Fix `. Suppose that for all A over k the map

(? ? ?) Q` ⊗ End(A)→ EndG(V`(A))

is an isomorphism. Then for all A,B, the map (??) – and hence (?) – is an isomorphism.

Proof. We leave this as an (easy) exercise in functoriality; use the fact that End(A × B) =
End(A)⊕End(B)⊕Hom(A,B)⊕Hom(B,A) and a similar decomposition on the Tate module
side. �

Remark 3.3. Lemma 3.2 reduces theorem 1.1 for A and B to the case of endomorphisms
of A × B. Hence we have increased the dimension of our abelian varieties at this step. In
particular, to handle even the elliptic curve case of theorem 1.1, we consider abelian surfaces.
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4. Statement of the main theorem

Now we can state the main result. Consider again the map

Q` ⊗ End(A)→ End(V`(A))

Note that I’ve dropped the G = Gal(ks/k)-linearity from the right side, so for a particular
A, `, k what we want to prove about this map is that the image is precisely the subspace of
G-invariant elements.

Notation. Denote the image of this map by E`; that is,

E` = End(A)⊗Q` regarded as a Q`-subalgebra of End(V`(A)).

Denote by F` the Q`-subalgebra of End(V`(A)) generated by the Galois group G acting as
automorphisms of V`(A).

Theorem 4.1. Fix a prime ` 6= char(k) and an abelian variety A over a field k.

(i) Assume Hyps(A× A, k, `) holds. Then

(? ? ?) Q` ⊗ End(A)→ EndG(V`(A))

is an isomorphism.
Bonus result: if Hyps(A, k, `) holds then V`(A) is a semisimple representation of

G, so the Q`-algebra F` is semisimple.
(ii) Assume Hypw(A, k, `) holds, and assume further that F` is isomorphic as a Q`-algebra

to a product of copies of Q` (so in particular, it is semisimple). Then (? ? ?) is an
isomorphism.

Moreover,

(iii) Hypw(A, k, `) holds for any A, ` when k is finite. Moreover when k is finite there
exist (infinitely many) primes ` such that F` =

∏
Q` as a Q`-algebra.

To conclude from (ii) and (iii) of the theorem (plus our previous reductions 3.1 and 3.2)
that Tate’s conjecture is true over finite fields, we must prove that it is “independent of `”.
Let’s get this out of the way now via the following lemma.

Lemma 4.2. Fix A,B abelian varieties over k. To conclude (??) is surjective for any ` 6=
char(k), it’s enough to prove it for one ` 6= char(k) and to show that dim HomG(V`(A), V`(B))
is independent of `.

Proof. Indeed, (??) is always injective, both sides are finite-dimensional Q`-vector spaces,
and the dimension of the left side is independent of `. �

Justifying the application of the previous lemma, we have:

Lemma 4.3. Suppose k is finite andA,B are abelian varieties over k. Then dim HomG(V`(A), V`(B))
is independent of ` 6= char(k).

Proof. As discussed earlier this follows from 2.1 and 2.2 provided we know the Frobenius πA
acts semisimply on V`(A). We’ll establish this in a moment, after reminding ourselves of the
facts of life concerning semisimple algebras. �
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5. Facts about semisimple algebras

Before starting in on the proof the main theorem, we digress to mention some facts in
non-commutative algebra that will be useful.

Definition 5.1. Let K be a field. A K-algebra R is called semisimple if R is semisimple
as a left module over itself; that is, if any left ideal of R admits a direct complement in R.

Below we will need the following basic facts about semisimple algebras.

Proposition 5.2. Let K be a field.

(0) A K-algebra R is semisimple if and only every left R-module is semisimple (i.e. is a
direct sum of simple R-modules).

(i) A matrix algebra over a division K-algebra is semisimple.
(ii) A finite product of semisimple K-algebras is semisimple.

(iii) Let A be an abelian variety over a field k. Then Endk(A) ⊗ Q` is a semisimple
Q`-algebra.

Proof. (0), (i) and (ii) are standard facts, which can be found in [L] for example. For (iii),
note that by Poincaré’s complete reducibility theorem (shown in [Mu, §18] when k = k),
A is k-isogenous to a product

∏
Anii of powers of pairwise non-isogenous k-simple abelian

varieties Ai. (Here k-simple means that Ai 6= 0 and Ai contains no abelian k-subvarieties
other than itself and zero.) Thus End0(A) := End(A)⊗Q coincides with End0(

∏
Anii ). Now

Hom(Anii , A
nj
j ) = 0 for i 6= j so End0(

∏
Anii ) =

∏
End0(Anii ). Finally it’s easy to see that

End0(Anii ) = Matni(End0(Ai)), so we are reduced to the case when A is k-simple, and we
need to show the endomorphism algebra is a division ring. (The statement (iii) then follows
by tensoring up to Q` over Q and using (i) and (ii).) But if A is k-simple then any nonzero
k-map A→ A must be surjective (else the image would be a nontrivial abelian k-subvariety),
hence an isogeny. Isogenies are all invertible in the ring End0(A). Proof: if f is a self-isogeny
of A then ker f is a finite commutative group scheme over a field. Any such is annihilated
by its order n. The fact that n(ker f) = 0 implies that mutiplication by n factors through
f ; in other words, f has an inverse up to multiplication by n, so we win. �

Example 5.3. Let’s now show that πA acts semisimply on V`(A).
This reduces to showing that Q[πA] ⊂ End0(A) is semisimple, since then by injectiv-

ity of (??), we have that Q`[πA] = Q` ⊗ Q[πA] ⊂ End(V`(A)) is semisimple. (Note that
semisimplicity is preserved under separable extensions of the base field; see [L, XVII§6].)

To see Q[πA] is semisimple, note that it is contained in the center Z(End0(A)), since
k-rational endomorphisms commute with Frobenius. But we already saw that End0(A) is
a product of matrix rings over division Q-algebras, so its center is a product of fields, and
hence reduced. A commutative Q-algebra is semisimple if and only if it is reduced (easy
exercise), so we are done.

Definition 5.4. Let R′ ⊂ R be an inclusion of associative K-algebras. The commutant of
R′ in R is

CR(R′) := {r ∈ R : rr′ = r′r,∀r′ ∈ R′}.

Theorem 5.5 (bicommutation). Let R be a semisimple algebra over a field K, and let V be
a faithful R-module, finite-dimensional as a K-vector space. Then CEndK(V )(CEndK(V )(R)) =
R.
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Proof. This is a special case of [J, Thm. 4.10]. �

Actually “bicommutation” seems to be more commonly used to describe this result in the
context of operator algebras. People also call this theorem the “Double Centralizer theorem”.

6. The meat of the proof

6.1. Proof under the strong finiteness hypothesis. Let us begin by proving 4.1(i),
following [Mi, IV.2.3ff.]. The idea is very easy. Let D denote the commutant of E` in
End(V`(A)). By proposition 5.2(iii), E` is semisimple. So by the bicommutation theorem
5.5, E` is the commutant B = CEnd(V`(A))(D). We want to prove that End(V`(A))G ⊂ E` (the
reverse inclusion being obvious), so consider α ∈ End(V`(A))G; we will show that α ∈ B = E`
and be done. The graph of α

W = {(x, αx) : x ∈ V`(A)} ⊂ V`(A)× V`(A) = V`(A× A)

is a G-stable Q`-linear subspace. Suppose we could find an element u of End(V`(A × A))
which satisfies

(i) uV`(A× A) = W , and
(ii) u actually belongs to End(A× A)⊗Q` ⊂ End(V`(A× A)).

Since any d ∈ D commutes with E`, the “diagonal” endomorphism d⊕ d ∈ End(V`(A×A))
commutes with the image of End(A×A)⊗Q` = Mat2(End(A))⊗Q` in End(V`(A×A)). In
particular, d⊕d commutes with u. So (d⊕d)W = (d⊕d)uV`(A×A) = u(d⊕d)V`(A×A) ⊂ W .
This means that for any x ∈ V`(A), the point (x, αx) in the graph W of α is mapped by
d ⊕ d to another point (dx, dαx) ∈ W . So dαx = αdx. This is true for all x ∈ V`(A),
so it follows that as endomorphisms of V`(A), dα and αd coincide. But this says precisely
that α commutes with d. Since d was arbitrary, α commutes with D, so it belongs to the
commutant E` of D and we are done.

Thus it all comes down to producing the projection u satisfying (i) and (ii), given only
the fairly arbitrary G-stable subspace W of V`(A×A). That we can do this, leveraging the
“strong” finiteness hypothesis, is a consequence of the following proposition.

Proposition 6.1.1. Fix A, k, ` and assume Hyps(A, k, `). Let W be a G-stable subspace of
V`(A). Then there exists u ∈ E` = End(A)⊗Q` ⊂ End(V`(A)) such that uV`(A) = W .

The proof will require a lemma.

Lemma 6.1.2. Let Λ ⊂ T`(A) be a G-stable, finite-index Z`-submodule. There exists an
abelian variety B over k and an isogeny f : B → A of `-power degree, such that imT`(f) = Λ.

Proof. Since Λ has finite index, Λ ⊃ `nT`(A) for some n. Let N be the image of Λ in
T`(A)/`nT`(A) = A[`n](ks). Since Λ was G-stable, so is N .

Brian noted last time that we can form the quotient by such a subgroup N ⊂ A(ks) and
get an abelian variety B = A/N defined over the ground field k, with the quotient map
A→ B is a separable k-isogeny. Since N ⊂ A[`n], the multiplication-by-`n map `n : A→ A

factors through the quotient B, so we get a map f : B → A over k so that A → B
f→ A is

`n. In particular, the degree of f is a power of `. It remains to show that imT`(f) = Λ.
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Consider the resulting diagram on Tate modules:

T`(A)
`n

$$HH
HH

HH
HH

H

��
T`(B)

T`(f)
// T`(A)

We want to prove imT`(f) = Λ. Certainly imT`(f) ⊃ `nT`(A). So it’s enough to prove
imT`(f)/`nT`(A) = N ⊂ A[`n](ks). But modulo `n, the image of T`(f) is just the image of
f : B[`n](ks)→ A[`n](ks). Since B = A/N , we have

B[`n](ks) = [`n]−1
A (N)/N

and the map f , being induced by [`n]A, sends the coset a + N to `na ∈ A[`n](ks). Since
`n surjects [`n]−1

A (N) � N , this shows that T`(f)mod `n surjects B[`n](ks) onto N . So the
image of T`(f) is precisely Λ as desired. �

Proof of 6.1.1. Let Xn = (T`(A)∩W )+`nT`(A) ⊂ T`(A). This is a finite index, G-stable, Z`-
submodule. So by 6.1.2 there is an isogeny fn : Bn → A of `-power degree with imT`(fn) =
Xn. By Hyps(A, k, `), the Bn’s belong to only finitely many k-isomorphism classes, so by
pigeonhole we can find a subsequence Bni of k-isomorphic abelian varieties. Choose k-
isomorphisms vi : Bn1 → Bni . Form the element ui = fnivif

−1
n1
∈ End0(A), which is possible

because we can divide by isogenies such as the fn’s in the isogeny category (i.e. after tensoring
with Q).

Now we compute T`(ui)(Xn1). For notational simplicity, let’s omit writing the functor T`
when we apply it to morphisms. We have

ui(Xn1) = uifn1(T`Bn1) = fniviT`(Bn1) = fniT`(Bni) = Xni .

Since by definition Xni ⊂ Xn1 , this says that the ui all preserve the lattice Xn1 in T`(A).
Thus they belong to a compact subspace EndZ`(Xn1)∩E` ⊂ E` = End(A)⊗Q` (with respect
to the `-adic topology).

By compactness, we can refine our subsequence Xni and assume that the sequence ui
converges to a limit u ∈ End(Xn1) ∩ E`. For any x ∈ Xn1 the limit u(x) = limui(x) is
arbitrarily `-adically close to

⋂
Xn = T`(A) ∩W . Conversely for any y ∈ T`(A) ∩W , we

can find xi ∈ Xni with ui(xi) = y. Some subsequence of the xis must converge, by the same
compactness argument, to an x ∈ Xn1 , which must satisfy u(x) = limu(xi) = limui(xi) = y.
So u(Xn1) = T`(A) ∩W , which implies uV`(A) = W . �

Let’s now prove the bonus result that F` is semisimple, assuming Hyps(A, k, `) holds, since
it’s a straightforward application of 6.1.1.

Let W ⊂ V`(A) be G-stable. We need to construct a G-stable complement W ′. Now
consider the right ideal of E`,

a = {u ∈ E` : uV`(A) ⊂ W}.
By 6.1.1 there is some u ∈ a which satisfies uV`(A) = W . Thus aV`(A) = W .

We know that End0(A) is a product of matrix algebras over division Q-algebras, so E` is
a product of matrix algebras over division Q`-algebras. By an explicit analysis (which we
leave as an exercise) of the right ideals in Matn(D) for a division K-algebra D, one finds
that each such ideal is generated by an idempotent. It follows easily that the same is true
for a product of such algebras.
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Thus we see that the right ideal a of E` is generated by an idempotent e. Now eV`(A) =
eE`V`(A) = aV`(A) = W , so e is actually a projection operator on V`(A), with image W .
The orthogonal idempotent 1 − e is therefore a projection onto a direct complement W ′ of
W . So V`(A) = eV`(A)⊕ (1− e)V`(A) = W ⊕W ′, and since W ′ = (1− e)V`(A) is the image
of an element of E`, which commutes with G, this complement W ′ is G-stable. �

6.2. Idea of proof under the weak finiteness hypothesis. Now we turn to the case
where we have only the weak finiteness hypothesis to work with, plus the hypothesis that F`
is a product of copies of Q`.

The natural thing to do is to try to prove 6.1.1 with our weaker hypotheses and repeat the
proof above. Unfortunately this is too hard: we need to impose an additional assumption
on the subspace W (besides G-stability) to produce the required projection u. Alas, the
graph of a random G-invariant endomorphism of V`(A) will fail to satisfy this additional
assumption. So we must modify our proof strategy.

First we state another reduction which will be helpful. Note that the hypothesis on F`
ensures its semisimplicity. As before we let D denote the commutant

D := CEnd(V`(A))(E`).

Observe that F` ⊂ D, since we know that the endomorphisms E` of V`(A) coming from
(k-rational) isogenies of A commute with the Galois action.

Lemma 6.2.1. Fix A, `, k, and assume F` is semisimple. Then

(? ? ?) Q` ⊗ End(A)→ EndG(V`(A))

is bijective if and only if F` = D.

Proof. The bijectivity of (? ? ?) says that E` = CEnd(V`(A))(F`). So by the bicommutation
theorem 5.5 the lemma follows. �

We need to prove D ⊂ F`, under the hypotheses of 4.1(ii).
Suppose we knew that every F`-eigenline (1-dimensional F`-stable subspace, which is to

say, G-stable line) in V`(A), were also stable under D. Since F` =
∏

Q` we can decompose
V`(A) =

⊕
Vi as a sum of nonzero subspaces corresponding to the factors of F`, and F` is

precisely the subalgebra of End(V`(A)) consisting of those endomorphisms which act as a
scalar on each subspace Vi. In particular, for any nonzero vi ∈ Vi, vi is an eigenvector of F`
and hence of an arbitrary d ∈ D. That is, Vi is preserved by d, and in fact Vi \ {0} consists
entirely of eigenvectors of d.

Lemma 6.2.2. If T is an endomorphism of a vector space U for which every nonzero vector
in U is an eigenvector, then T is a scalar.

Proof. Exercise. �

Thus d acts by a scalar on each Vi, so it belongs to F`.
This reduces our problem to showing that G-stable lines in V`(A) are D-stable. Now this

is where Tate had a brilliant idea: G-stable lines have an additional structure beyond their
G-stability, in virtue of their one-dimensionality: a line L is automatically isotropic for
any alternating bilinear form β on V`(A). (Recall that this means β|L×L vanishes.) It turns
out that we can endow V`(A) with a suitable symplectic form, and that the condition of
being (maximal) isotropic for this form is precisely what enables us to prove a version of
proposition 6.1.1 under the weaker finiteness hypothesis Hypw.
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6.3. Recall: polarizations and their associated bilinear forms. Last time Brian ex-

plained an abelian variety A over k admits a polarization θ : A→ Â over k, i.e. a symmetric

k-isogeny such that the pullback L := (1, θ)∗℘A of the Poincaré bundle ℘A on A × Â, is

ample. Moreover we saw that this data together with the natural maps A[n] × Â[n] → µn
yields, for any ` 6= char(k), a non-degenerate, skew-symmetric, G-equivariant, Z`-bilinear
pairing

β = βθ : T`(A)× T`(A)→ Z`(1) := lim←−µ`n .
Tensoring up, we obtain a G-equivariant symplectic form

β : V`(A)× V`(A)→ Q`(1)

on V`(A).

6.4. Proof under the weak finiteness hypothesis.

Proposition 6.4.1. Suppose Hypw(A, k, `) holds and W ⊂ V`(A) is a G-stable, maximal
isotropic subspace with respect to the symplectic form βθ defined by a polarization θ of A
(defined over k). Then there exists u ∈ E` such that uV`(A) = W .

Proof. As in the proof of 6.1.1, form the submodules Xn = (T`(A) ∩ W ) + `nT`(A), and
let fn : Bn → A be the `-power degree k-isogeny with imT`(fn) = Xn guaranteed to exist
by 6.1.2. This time we need to keep track of degrees a bit more carefully. Note that since
W is maximal isotropic for a symplectic form on V`(A), it has dimension 1

2
dimV`(A) = g,

which implies that Xn/`
nT`(A) is a subgroup of A[`n](ks) ≈ (Z/`nZ)2g of order `ng. (Proof:

(W ∩T`(A)+ `nT`(A))/`nT`(A) ≈ (W ∩T`(A))/(W ∩ `nT`(A)) = (W ∩T`(A))/`n(W ∩T`(A))
since W is a Q`-vector space implies W = `nW , and W ∩T`(A) is Z`-free of rank dimQ`

W =
g.) Thus the proof of 6.1.2 in fact shows that deg fn = `ng.

In order to repeat the proof of 6.1.1 with only the hypothesis Hypw, we must equip each
Bn with a polarization of some fixed degree d2, which will turn out to be deg θ. The first
step is to consider the isogeny

f ∗nθ := f̂nθfn : Bn → A→ Â→ B̂n.

It’s easy to check this is a polarization (i.e. the symmetry and ampleness conditions), and
we leave this as an exercise in chasing definitions.

Unfortunately deg f ∗nθ = deg(fn)2 deg θ = `2ng deg θ depends on n. What we need to do is
split off a factor of [`n] from f ∗nθ, leaving a polarization of degree deg θ. For this we exploit
the isotropicity of W .

Consider the non-degenerate alternating pairing

βf∗nθ : T`(Bn)× T`(Bn)→ Z`(1).

I claim that in fact βf∗nθ takes values in `nZ`(1). We have

βf∗nθ(x, y) = eBn,`∞(x, f̂nθfny) = eA,`∞(fnx, θfny) = βθ(fnx, fny), x, y ∈ T`(Bn),

(writing α for T`(α) everywhere,) since the dual isogeny acts as the adjoint for the Weil en
pairings. Thus βf∗nθ(x, y) = βθ(fnx, fny) ∈ βθ(Xn, Xn) for each n. But since W is βθ-
isotropic, we have

βθ(Xn, Xn) = βθ(`
nT`(A), Xn) ⊂ `nZ`(1).

We omit the proof of the following fact, which uses the nondegeneracy of the Weil pairing.
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Lemma 6.4.2. Let B be an abelian variety over a field k with a polarization φ defined
over k, such that the `-adic pairing βφ (with ` 6= char(k)) takes values in `nZ`(1). Then
φ = ψ ◦ [`n] for some polarization ψ over k. �

Thus the polarization f ∗nθ on Bn factors as ψn ◦ [`n] where ψn is a polarization of degree
deg(f ∗nθ)/ deg[`n] = deg θ =: d2.

The finiteness hypothesis Hypw(A, k, `) now guarantees that the Bns fall into finitely many
k-isomorphism classes, and the rest of the proof of 6.4.1 is identical to that of 6.1.1. �

Corollary 6.4.3. Suppose that Hypw(A, k, `) holds, let θ be a polarization of A over k, and
assume F` is a product of copies of Q`. If W is any G-stable, βθ-isotropic subspace of V`(A),
then W is also D-stable.

Proof. Descending induction on dimW . When W is maximal isotropic, we apply proposition
6.4.1 to produce u ∈ E` with uV`(A) = W . Then as in the proof of theorem 4.1(i) we compute
that DW = DuV`(A) = uDV`(A) ⊂ W , since D is the commutant of E` and so commutes
with u.

Now suppose dimW < g = 1
2

dimQ`
V`(A), so W is not maximal isotropic. Consider the

orthocomplement W⊥ of W with respect to β. Since the Weil pairing and the k-rational
polarization θ are G-equivariant, the fact that W is G-stable implies W⊥ is too.

Now we use the assumption on F`: it implies that any simple F`-module is 1-dimensional.
Thus we can decompose W⊥ = W ⊕ W ′ into F`-stable subspaces, and W ′ =

⊕
Li into

F`-eigenlines. How many Lis must occur? Well dimW ′ = dimW⊥ − dimW . Since β is
non-degenerate, dimW + dimW⊥ = dimV`(A) = 2g. So dimW ′ = 2g − 2 dimW ≥ 2, as
W is non-maximal. Thus there are at least two lines L1, L2. Now consider the F`-stable,
βθ-isotropic subspaces W ⊕ L1,W ⊕ L2. Each has dimension bigger than that of W , so by
induction they are D-stable. Hence their intersection W is D-stable as well, completing the
proof. �

Applying this corollary to F`-eigenlines as above, this completes the proof of theorem
4.1(ii).

7. Loose ends

We have proved parts (i) and (ii) of the main theorem 4.1. But we still need to show part
(iii) in order to conclude Tate’s theorem 1.1 using lemmas 4.2 and 4.3.

7.1. Existence of primes ` such that F` =
∏

Q`. Assume k is finite.
Let F ⊂ End0(A) be the subalgebra generated by πA. This is central and commutative,

so it’s a product of fields. Moreover since πA acts on V`(A) by the topological generator of
G, we have F` = Q` ⊗ F ⊂ End(V`(A)).

Now if F =
∏
Fi is a product of number fields Fi, note that Fi ⊗ Q` =

∏
v|`(Fi)v is a

product of `-adic fields. Each (Fi)v is isomorphic to Q` provided that ` splits completely
in Fi. Now it is an easy exercise in algebraic number theory to show that infinitely many
` satisfy this condition for all i. (Hint: by passing to the Galois closure of the compositum
of the Fi’s, reduce to the case of a single number field F ; for this, use Chebotarev or argue
directly.)
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7.2. The finiteness hypothesis when k = Fq. Here we verify that Hypw(A, k, `) holds
when k is finite.

The most direct argument rests upon the following fact. If X is a variety, a g-cycle on X
is a formal linear combination of irreducible, g-dimensional subvarietis of X.

Theorem 7.2.1 (Existence of Chow variety, [R]). Suppose k is perfect. The k-rational g-
cycles of degree d in PN

k are parametrized by the rational points of a projective k-varierty
Chowg,d(P

N). �

Here is the idea of the proof. Work over k, and worry about rationality issues later. A
generic codimension g + 1 linear subspace of PN will be disjoint from a given irreducible
g-cycle V . It turns out that in ((PN)∨)r+1, the locus of (r + 1)-tuples of hyperplanes which
have a common intersection with V forms a hypersurface. The defining polynomial is called
the Chow form of V , and it is multihomogeneous of degree degPN (V ) in each factor. Its
coefficients are known as the Chow coordinates of V , and they determine V . Now one
has to do some work to show that the locus of possible Chow coordinates is actually a
projective variety, but this is true. We emphasize, however, that this variety interacts well
with rationality of cycles only over a perfect field.

Now how do we apply this to get Hypw? In fact we will show the stronger statement: Over
a finite field k, there are only finitely many isomorphism classes of g-dimensional abelian
varieties A which admit a k-polarization of some fixed degree d2. This implies Hypw(A, k, `)
since any B isogenous to a fixed A has dimension g = dimA.

To get the finiteness result, we want to obtain from a polarization ψ of fixed degree d2, a
projective embedding of controlled degree. For then we can consider our abelian varieties as
(irreducible) rational g-cycles in a projective space of controlled degree, which correspond to
rational points of the corresponding Chow variety, and are thus finite in number.

Now L = (1, ψ)∗℘A is an ample line bundle on A. Over k any polarization comes from
an ample line bundle, so ψk = φN for some ample N on Ak. Moreover we have the relation
that Lk

∼= N⊗2mod Pic0(Ak). Consequently the k-rational ample line bundle L satisfies
deg φL = deg φLk

= deg φN⊗2 = deg([2]φN) = deg([2]ψ) = (2gd)2.
Now we must invoke another nontrivial fact:

Theorem 7.2.2 ([Mu]). If L is an ample line bundle on an abelian variety over a field k
with deg φL = d2, then L⊗3 is very ample and the corresponding projective embedding (via
the complete linear system |L⊗3|) is a map

A ↪→ P3gd−1
k

of degree g!3gd. �

Thus any g-dimensional abelian variety over k with a polarization of degree d2 is equipped
with a projective embedding of degree g!6gd into P6gd−1

k .
Hence our desired finiteness assertion follows from the fact that the Chow variety Chowg,g!6gd(P

6gd−1
k )

exists and is of finite type.

7.3. Digression: Hilbert schemes, alternate proof of the finiteness hypothesis.
Here we introduce the Hilbert scheme in order to give an alternate proof of Hypw for finite
fields k. Hilbert schemes and related moduli spaces will be used later in the seminar, so it’s
worth getting a glimpse of them now. We refer to [FGAE] for details, proofs, and further
examples.



14 SAM LICHTENSTEIN

Theorem 7.3.1 ([Mu], §16). Let X be an abelian variety over a field. Then for any line bun-
dle L = OX(D) on X, χ(L⊗n) = (D·g)ng/g!. Here (D·g) denotes the g-fold self-intersection
number of the divisor D. In particular, is L is very ample, the Hilbert polynomial of the em-
bedding |L| : X ↪→ PN is homogeneous, so is determined by the degree of the embedding. �

Secretly we have already invoked this fact, since it is used for the proof of theorem 7.2.2.
What this theorem tells us is that the Hilbert polynomial of the embedding

A ↪→ P6gd−1
k

is determined by the degree g!6gd. Thus rather than invoking the fact that this embedding
makes A into a rational g-cycle on this projective space, and the existence of the Chow
variety, we can use the Hilbert scheme instead:

Definition 7.3.2. The Hilbert functor of closed subschemes of PN with Hilbert polyno-
mial h is the functor (Schemes)→ (Sets)o defined by

HilbhPN (T ) = {finitely presented closed subschemes Y ⊂ PN
T : Y → T is flat, hYt = h, ∀t ∈ T}.

Rather than asking for a Chow variety, whose “points” parametrize g-cycles on PN , we
can ask for a Hilbert scheme which actually represents the functor above. This has the
benefit that being a “fine moduli space” – i.e. actually representing a reasonable functor –
makes such a scheme a lot easier to work with than something like a Chow variety. On the
other hand, it has the cost that you must let yourself parametrize subschemes which are not
actually varieties. (That is, Y ⊂ PN might be non-integral, and it will still show up as a
point of the corresponding moduli space.)

Here is a (special case of) the main existence theorem for Hilbert schemes.

Theorem 7.3.3 (Grothendieck). The functor HilbhPN is representable by a projective Z-

scheme HilbhPN . �

(In fact one can replace the base Spec Z by an arbitrary scheme S, and replace projective
space with an arbitrary finitely presented projective morphism π : Z → S and a choice of
relatively ample L on Z. One still has a representing scheme which is projective over S.)

Remark 7.3.4. Interestingly, Grothendieck’s original proof of the above theorem used the
notion of Chow coordinates introduced above. Mumford, however, discovered a proof which
avoids this construction; see [FGAE].

We emphasize that in order to get a finite type representing scheme, you must pin down
the Hilbert polynomial: if you ask merely for “all flat closed subschemes of PN” (or of some
other projective scheme), the analogously defined functor is representable, but by a huge
disjoint union of the Hilbert schemes corresponding to all possible Hilbert polynomials in
Q[t].

However, as we saw above, an abelian variety A over a field k of fixed dimension g with
a k-polarization of fixed degree d2 automatically possesses a projective embedding A ↪→ PN

k

over k, where N = Nd,g and the Hilbert polynomial h = hg,d both depend only on d and g.
Thus since the Hilbert scheme exists, each k-isomorphism class of such an A gives rise to

a k-point of Hilb
hg,d

P
Ng,d

. Since the Hilbert scheme is finite type over Z and k is finite, there

are only finitely many k-points. In particular, we have re-proved the finiteness hypothesis
Hypw(A, k, `).
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