1. Let $\psi : \mathbb{R} \rightarrow \mathbb{R}$ be 2π-periodic continuous function.

Define a function $u : \{|z| = 1\} \rightarrow \mathbb{R}$ by the formula $u(\zeta) = \psi(\theta)$ for $\zeta = e^{i\theta}$. Extend u as a harmonic function to D by the Schwarz’s formula

$$u(z) = \text{Re} f(z), \quad f(z) = \frac{1}{2\pi i} \oint_{\partial D} \frac{u(\zeta)(\zeta + z) d\zeta}{(\zeta - z)\zeta}.$$

Define

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} \psi(\theta) d\theta, \quad a_n = \frac{1}{\pi} \int_0^{2\pi} \psi(\theta) \cos n\theta d\theta, \quad b_n = \frac{1}{\pi} \int_0^{2\pi} \psi(\theta) \sin n\theta d\theta \quad \text{for} \quad n \geq 1.$$

Show the following power expansion for f:

$$f(z) = \sum_{0}^{\infty} c_n z^n, \quad |z| < 1, \quad \text{where} \quad c_0 = \frac{1}{2\pi} \int_0^{2\pi} \psi(\theta) d\theta, \quad c_n = \frac{1}{\pi} \int_0^{2\pi} \psi(\theta) e^{-in\theta} d\theta \quad \text{for} \quad n \geq 1.$$

Deduce from it the expansion

$$u(re^{i\phi}) = a_0 + \sum_{1}^{\infty} (a_n r^n \cos n\phi + b_n r^n \sin n\phi), \quad r < 1,$$

where $a_n = \text{Re} c_n, b_n = -\text{Im} c_n$.

2. Let $\zeta = e^{i\theta}, z = re^{i\phi}$. Verify the identity

$$\frac{\zeta + z}{\zeta - z} = \frac{(I - r^2) + i2r \sin(\phi - \theta)}{1 - 2r \cos(\phi - \theta) + r^2}.$$
3. Let the function u and the coefficients a_n, b_n be as in Problem 1. Prove the following formula for the Dirichlet integral $D_U(u) := \iint_U (u_x^2 + u_y^2) \, dxdy$:

$$D_D(u) = \pi \sum_{n=1}^{\infty} n(a_n^2 + b_n^2),$$

provided that the integral and the sum are converging. Here \mathbb{D} is the unit disc.

4. Let $u : \mathbb{R} \to \mathbb{R}$ be a continuous bounded function. Prove that the function

$$U(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} u(t) \, dt$$

define a harmonic function in \mathbb{H} which extends continuously to the closure \mathbb{H} as equal to u on $\partial \mathbb{H} = \mathbb{R}$.

Hint. Use the Poisson-Schwarz formula for \mathbb{D} (See Section 10.4.1 in the lecture notes), and then apply a conformal map $\mathbb{H} \to \mathbb{D}$ to transpose this formula from the disc to the upper half plane.

5. Suppose $\Gamma \subset \text{Aut}(S)$ is a discrete subgroup of conformal automorphisms of S acting on S. A domain $U \subset S$ is called a fundamental domain for the action of Γ if every trajectory of Γ intersects the closure \overline{U} and no two points of the same trajectory belong to U^1. For instance, the square $\{0 < x, y < 1\}$ is the fundamental domain for the action $z \mapsto z + (m + in)$ of $\mathbb{Z} \oplus \mathbb{Z}$ on \mathbb{C}. Note that the choice of a fundamental domain is not unique.

Find the fundamental domain of $\Gamma = \text{PSL}(2,\mathbb{Z}) \subset \text{PSL}(2,\mathbb{R}) = \text{Aut}(\mathbb{H})$ which consists of transformations $z \mapsto \frac{mx+n}{kz+l}$, where m, n, k, l are integers with $ml - kn = 1$. (Γ is called the modular group).

Hint: Use Theorem 11.17 from the lecture notes. This theorem provides a domain whose closure intersects every trajectory of Γ. The fact that no trajectory intersects the interior of the domain in more than one point can also be deduced from the proof but requires some additional argument.

1 Sometimes, a part of the boundary ∂U is added to the fundamental domain to ensure that every trajectory intersects it exactly once.
Each problem is 10 points.