Math 116 Homework 5 Solutions

Saturday, November 2, 2019

Problem 1. First, if \(z \in D_+ \), then \(z = x + iy \) for \(y > 0 \) and \(x^2 + y^2 < 1 \). So

\[
\text{Im}\left(-\frac{1}{2} \left(z + \frac{1}{z} \right) \right) = -\frac{1}{2} \text{Im}\left(\frac{z(x^2 + y^2) + \overline{z}}{x^2 + y^2} \right) > 0
\]

since \(\text{Im}(z(x^2 + y^2) + \overline{z}) < 0 \). Now suppose that \(f(w) = f(z) \) for some \(z, w \in D_+ \), so that \(z + 1/z = w + 1/w \) and hence \(z^2 w + w = w^2 z + z \). Rearranging yields \(wz(z - w) = z - w \), which implies \(z = w \) since \(|wz| < 1 \). Hence \(f \) is injective.

Next let \(w \in \mathbb{H} \). If \(w = -\frac{1}{2} (z + \frac{1}{z}) \), then \(z^2 + 2wz + 1 = 0 \), and the quadratic formula shows that

\[
z = -\frac{2w \pm \sqrt{4w^2 - 4}}{2} = -w \pm \sqrt{w^2 - 1},
\]

where \(\sqrt{w^2 - 1} \) is any fixed choice of square root for \(w^2 - 1 \) (of which there are exactly two). If \(\alpha = -w + \sqrt{w^2 - 1} \) and \(\beta = -w - \sqrt{w^2 - 1} \), notice that

\[
\alpha \beta = w^2 - (w^2 - 1) = 1,
\]

so that \(\alpha = c\beta \) for some \(c \in \mathbb{R}_{>0} \). By interchanging \(\alpha \) and \(\beta \), we may assume \(c \geq 1 \). Note that in fact \(c > 1 \) since \(\alpha + \beta = w \not\in \mathbb{R} \), so that \(|\alpha| < 1 \). Also, since \(\text{Im}(\alpha + \beta) = \text{Im}(-2w) < 0 \), it follows that \(\alpha \in D_+ \). Hence \(f \) is surjective, and since it is a bijective holomorphic map, it is conformal.

Problem 2. Let \(g : \mathbb{D} \to \mathbb{D} \) be the biholomorphic map given by

\[
g(z) = \frac{z - z_1}{1 + \overline{z_1}z},
\]

so that \(g(z_1) = 0 \). Then let \(h = g \circ f \circ g^{-1} \), so that \(h \) is an automorphism of \(\mathbb{D} \) and \(h(0) = g(f(g^{-1}(0))) = g(f(z_1)) = g(z_1) = 0 \). Moreover, if \(w = g(z_2) \),
then $g^{-1}(w) = z_2$ and it follows easily that $h(w) = w$. Of course, since h is biholomorphic and $z_1 \neq z_2$, it follows that $w \neq 0$. But then the Schwarz lemma implies that $h(z) = z$ for all $z \in \mathbb{D}$. But then $f = g^{-1} \circ h \circ g = g^{-1} \circ g$, which is the identity map on \mathbb{D}.

Problem 3. Suppose that $f(\beta) = 0$, and let $g : \mathbb{H} \to \mathbb{D}$ be given by

$$g(z) = \frac{z - \beta}{z - \overline{\beta}}.$$

It is not hard to see that this map is well-defined: $|z - \beta| < |z - \overline{\beta}|$ since $\beta, z \in \mathbb{H}$. Also, $g(\beta) = 0$. Consider now the automorphism $h = f \circ g^{-1}$ of \mathbb{D}. Then $h(0) = f(g^{-1}(0)) = f(\beta) = 0$. By the known classification of automorphisms of the disk, there is some $\theta \in \mathbb{R}$ such that $h(z) = e^{i\theta}z$ for all $z \in \mathbb{D}$. Then indeed

$$f(z) = f(g^{-1}(g(z))) = h(g(z)) = e^{i\theta} \frac{z - \beta}{z - \overline{\beta}},$$

as desired.
Note that all maps of the form \(f_{\alpha}(z) = \frac{z - \alpha}{1 - \alpha \overline{z}} \), \(|\alpha| < 1\). map circles to circles (Indeed all mobius transformations preserve the cross-ratio, & since \(\text{Re} m(f_{\alpha}) \subset \mathbb{D} \), circles cannot possibly get mapped to lines).

Suppose we find \(\alpha, r \) such that the circle \(|z - \frac{1}{2}| = \frac{1}{4} \) is mapped to the circle \(|z| = r \). Then \(f_{\alpha} \) would be a conformal equivalence between \(\mathbb{D} \triangle \left\{ |z - \frac{1}{2}| \leq \frac{1}{4} \right\} \) \(\cong \mathbb{D} \triangle \{ |z| < r \} \) since \(f_{\alpha} \) is injective must map the interior of the disk \(|z - \frac{1}{2}| = \frac{1}{4} \) to the disk \(|z| < r \) by the maximum modulus principle.

Furthermore, there is a unique \(r \) which satisfies the required property since annuli conformally equivalent precisely when the ratio of the radii is the same.

Suppose we find \(\alpha \) such that \(f_{\alpha}(\frac{1}{4}) = -f_{\alpha}(\frac{3}{4}) \) & \(\alpha \in \mathbb{R} \). Then, since \(f_{\alpha}(0) = \frac{1}{2} \) is the center of \(f_{\alpha}(\{ |z - \frac{1}{2}| \leq \frac{1}{4} \}) \) must be on the real line since \(f_{\alpha} \) maps real numbers to real numbers, and must be the origin since \(f_{\alpha}(\frac{1}{4}) \) & \(f_{\alpha}(\frac{3}{4}) \) are equidistant from the origin. A computation shows that \(\alpha = \frac{1}{16} (19 - \sqrt{105}) \) works, and that \(r = |f_{\alpha}(\frac{1}{4})| = \frac{1}{8} (13 - \sqrt{105}) \).