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0 Introduction

Predicative mathematics in the sense originating with Poincaré and Weyl be-
gins by taking the natural number system for granted, proceeding immediately to
real analysis and related fields. On the other hand, from a logicist or set-theoretic
standpoint, this appears problematic, for, as the story is usually told, impredicative
principles seem to play an essential role in the foundations of arithmetic itself.! It
is the main purpose of this paper to show that this appearance is illusory: as will
emerge, a predicatively acceptable axiomatization of the natural number system
can be formulated, and both the existence of structures of the relevant type and
the categoricity of the relevant axioms can be proved in a predicatively acceptable
way.

Indeed, there are three aspects of the set-theoretical foundations of arithmetic
which might appear to involve impredicative principles in an essential way, either
explicitly or implicitly. These may be listed as follows:

(a) Aziomatization: The axiom of mathematical induction ((N-III) below) is prima
facie in full second-order form.

(b) Categoricity: As usually formulated, the proof of categoricity employs an im-
predicative construction, namely in the specification of an isomorphism between two
models (of arithmetic with the full second-order induction axiom) as the intersection
of all one-one maps between their domains preserving the zeros and succession.

(c¢) Existence: To construct a set satisfying the axioms of (b), assuming one has a
set satisfying the usual first-order axioms on successor, one takes the intersection
of all sets closed under successor; this is an impredicative definition.

Concerning these points, we make the following remarks:

Ad (a): As is well known, no first-order axiomatization is categorical. The axiom
(N-IIT) is on its face second-order, so the usual conclusion is that we need “full”
second-order logic to underly the use of (N-III).

Ad (b) : This kind of proof is standard and is given, for example, in Shapiro [1991],
pp- 82-83.

Ad (c) : The question of existence is raised in a logicist or modified logicist (set-
theoretical) approach to the foundations of arithmetic, where one is also required
to “construct” the natural numbers. This played an important role for Dedekind
[1888], whose “existence proof” calls for special comment and reformulation (cf. e.g.
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Hellman [1989], Ch. 1). Predicativists such as Poincaré and Weyl, however, did not
require this step (cf. Feferman [1988]).

Thus, we may ask, to what extent can (a) - (¢) be accounted for on predicatively
acceptable grounds?

Re (a): Unrestricted second-order variables may be considered to range over pred-
icatively defined classes satisfying weak, predicatively acceptable closure conditions.

Re (b) : We assume that the notion of finite set is predicatively understood, gov-
erned by some elementary closure conditions.? Instead of defining the isomorphism
between two “N-structures” (as Dedekind’s “simply infinite systems” or the set the-
orist’s “w-sequences” will be called below) as the intersection of (certain) classes,
we obtain it as the union of (certain) finite sets.

Re (c¢) : Even if we pursue the logicist challenge to “construct” the natural numbers,
this can in fact be carried out within a predicatively justified system.

In sum, the moral is that appearances are deceiving!

Our work will be carried out within a three-sorted system, EFSC, standing for
“Elementary theory of Finite Sets and Classes”, and a certain extension EFSC*.
The three sorts are (general) individuals, finite sets, and classes. The notion of
N-structure can be formulated in the language of EFSC, and it is proved there that
any two N-structures are isomorphic (§1). EFSC* is obtained from EFSC by adding
an axiom to the effect that any (truly) finite set is Dedekind finite. EFSC* proves
the existence of an N-structure (§3). It will be shown that EFSC* contains the
first-order system of Peano Arithmetic, PA (under suitable definition of its basic
notions) and is a conservative extension of PA (§4). The system PA is a part of
what is predicatively acceptable, granted the conception of the totality of natural
numbers (cf. [Feferman 1964, 1968]).*

1 The system EFSC
The language L(EFSC) contains:

Individual variables: a,b,c,u,v,w, x,y, z, with or without subscripts;

Finite set variables: A, B, C, with or without subscripts;

Class variables: X,Y , Z, with or without subscripts;

Operation symbol: (,);

Individual terms, s, t, ... are generated from the individual variables by the opera-
tion (, );

Atomic formulas: s =1t, s € A, s € X;

Formulas ¢,, ... are generated from atomic formulas by &, V, -, — and V, J
applied to any one of the three sorts of variables.

WS-formulas: Predicative or Weak Second-Order Formulas are those in which there
are no bound class variables.

The underlying logic is classical three-sorted (first-order) predicate calculus with
equality (in the first sort).



Definition: X CY =% Va[rc X -2€cY]; X =Y =¥ XCY &Y CX.
Similarly defined are X C A, AC X, X =A, ACB, A=B8B.

The Azioms of EFSC are (WS-CA), (Sep), (FS-I), (FS-1I), and (P-I), (P-II), as
follows:

(WS-CA) AXVz[z € X < ¢],

where ¢ is a WS-formula lacking free ‘X’. (‘WS-CA’ is for ‘Weak Second-order
Comprehension Axiom’.)

Notation: We write {z|¢} for an X such that x € X < ¢. Since X is determined
up to definitional =, this is an inessential extension of the symbolism. As special
cases, we define: X NY ={zjz e X &2z €Y}, XUY ={zjlzr € X V z€Y},
—X={zlzr ¢ X}, X xY ={z|3r,y(r e X &yecY &z=(2,y)}, V={z|z =
p, A={zlz #z}, ANX ={z|lr € A&z € X}, {a} = {z|z = a}, etc.

(Sep) VAIBVzjr € B—x € A& ¢],

¢ a WS-formula, ‘B’ not free in ¢.

(FS-1)( Empty) JAVz[z ¢ A].

(FS-1I) (Adjunction) VaVA3BVzjr € B—x € A V z=al.
(P-1) (z1,22) = (y1,92) cT1 =y1 & 22 = Y2

(P-1I) Juvz, y[(z,y) # ul .

Remarks on the axioms:

1. Define Fin(X) = JA[X = A], “X is (truly) finite”. Then under (WS-CA), the
Separation Axiom (Sep) is equivalent to VA, X[ X C A — Fin(X)]. However, we
can consider variant formulations of EFSC without class variables. Then we need
(Sep) as above. (See remark 7 and Metatheorem 1, below.)

2. Under (WS-CA), the first Finite Set Axiom (FS-I) is equivalent to Fin(A).

3. Under (WS-CA), (FS-II) is equivalent to VA, a[Fin(AU{a}] or VX, a[Fin(X) —
Fin(X U{a}].



4. We use pairs so as to define relations, functions, etc., in terms of classes. Al-
ternatively, we can dispense with pairs by introducing more sorts of variables for
binary, ternary, ... relations, and for (truly) finite relations of each “arity”.

5. The axiom (P-II) says that there are “urelements” under pairing.

6. The system EFSC has a certain analogy to the NBG (von Neumann-Bernays-
Godel) theory of sets and classes. In fact, there is a simple interpretation of EFSC
in NBG: both individual and finite set variables are taken to range over all sets in
NBG, and (z,y) is defined as usual, (x,y) = {{z}, {z,y}}. We can take u in (P-II)
to be the empty set A. Class variables are taken to range over classes in NBG. This
interpretation does not require the axiom of infinity. Note that NBG — {Inf} has a
standard model in which the set variables range over the hereditarily finite sets V/,,,
i.e., Up<cwVin, where V, = A and V.41 = V,, UP(V,), and the class variables range
over the definable subsets of V.

7. Let EFS be EFSC without (WS-CA) in the language without class variables.

Metatheorem 1: EFSC is a conservative extension of EFS.
Proof (model-theoretic): By Godel’s completeness theorem, it suffices to show how
any model M of EFS can be expanded to a model M’ of EFSC. We can simply
take the range of the class variables to be all the WS-definable subsets of M (from
parameters for individuals and “finite” sets in M.)

A proof-theoretic argument can also be given. This is analogous to the conser-
vation result of NBG over ZF, which was established by proof-theoretic means in
[Shoenfield, 1954].

Remarks (cont’d):

8. As will be seen, the system EFSC allows for a natural development of arith-
metic and a general proof of categoricity, since it allows for quantification over
general structures. (In particular, individuals may be any objects whatever, and
are not restricted to objects in the range of numerical quantifiers.) The alternative
approach of adopting number-theoretic axioms directly along with those of EFSC
just presented—a system that we have dubbed “Predicative Dedekind Arithmetic”
(“PDA”)—has the awkwardness of being able to treat only structures with “num-
bers” as individuals. An advantage of PDA, however, that we forego in the present
approach, is that the implication from (true) finiteness to Dedekind finiteness (TF—
DF)—adopted as a further axiom (Card) below—can be derived in PDA from the
more intuitive axiom that “truly finite sets are bounded” (in the natural ordering
of natural numbers). That implication (TF— DF), however, is elementary enough
for present purposes, and so we shall pursue the present systems, in which the
number-theoretic structures of interest may be both characterized and proved to
exist.

Definition: Func(X) =Vz,y1,p2[(x,11) € X & (x,y2) € X — y1 = 2.

We use f, g, h with or without subscripts to range over functions. Define Dom(f) =
{z[3y[(z,y) € fI}; Ran(f) = {y|3z[(z,y) € f]}; we write f(z) =y for (z,y) € f;
f: X — Y means Dom(f) = X & Ran(f) CY. We shall use functional notation
freely in the following.



Definition: (z1,...,2Zn, Tnt+1) = (Z1, o0y Tn )y Tnt1);

Xt = X" x X.
Thus, functions of n arguments may be reduced to unary functions on Cartesian
powers.

Definition: A pre-N-structure is a triple M =< M ,a,g >, where a € M, g :
M — M, and

(N-1) ¥ € Mlg(x) # d]

(N-II) Va,y € Mg(z) = g(y) — = = y].

Definition: An N-structure is a pre-N-structure < M, a, g > such that
(N-III) (Induction) VX C M[a e M & Vz(x € X — g(z) € X) - M C X].

By (WS-CA), the scheme of induction for WS-formulas, relativized to any N-
structure, can be derived from (N-III). In particular, for any N-structure < IN, 0, >,
one can prove

(Pr) (Predecessors): x # 0 — Jy(z =y').

Definition: Let M =< M, a,g > be a pre-N-structure; we define
y<mr=VAr e A&Vz(g(z) e A—2z€ A) - ye A

Where no confusion will arise, the subscript M may be dropped. It will also con-

tribute to intuitive clarity to work with the notation < IN,0,/ > for an arbitrary

but fixed pre- N-structure.

Theorem 2: EFSC proves the following for any pre-N-structure < IN,0,” >, where
z,y € N :

(1) z < z;

() w<y<z—w<xz

(i) y' <z —y <

(i) y <0 y=0;

(vyy<az'—y<zvy=2a.

Proof: (i), (it), (i), and < of (iv) and (v) are immediate.

(iv) —: Suppose y < 0. Let A = {0}, which exists by (FS-I), (FS-1I), i.e.,
Vz(z € A« z2=0). Then 0 € A and Vz(z' € A — z € A), since 2’ # 0 (by (N-I).
So, by hypothesis, y € A, whence y = 0.

(v) —: Suppose y < &’ but not y < x; to show y = z’. By hypothesis, JA[z €
A&Vz(Z € A—z2z€A) &y A]l. Let B=AU{z'},ie,z€ B z€ AVz=1'.
Then 2’ € B & Vz(2' € B — z € B). Since y < 2/, it follows that y € B. But
y¢ A soy=ua.

Let < N,0,/ > be an N-structure and let M, a, and g be arbitrary satisfying a € M
and g : M — M. We seek to introduce f satisfying the recursion equations

£(0) =a
(1) { f(2') = g(f(x)).

Let Rec(A,g,a,z) be the following formula, which expresses that the finite binary
relation A is the graph of f restricted to {z|z <z} :
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Rec(A,g,a,x) =Vz,w[A(z,w) — z < 2] & Vw[A(0,w) < w=a] &
Vz < aVwlA(Z,w) < Ju(A(z,u) & g(u) = w)].

(Here and in the following two theorems, it simplifies notation to use z,y, z as
individual variables ranging over N and u, v, w as individual variables ranging over

Theorem 3 (EFSC):

(i) Rec(A,g,a,x) — Vz[z <z — Jlw A(z,w)];

(i) Rec(A,g,a,x) & Rec(B,g,a,z) — A = B;

(7ii) Vx3A Rec(A,g,a,x);

(iv) Rec(B,g,a,2") & Vz,w[A(z,w) < B(z,w) & z < z] — Rec(A, g,a,z);

(v) Rec(A,g,a,z) & Rec(B,g,a,y) &z <y — ACB.
Proof: (i) is by induction (in IN) on z. For (i), by induction on z, Yw[A(z,w) <
B(z,w)]. (i) is by induction on x (for any given g, a), invoking (Sep), (FS-I), (FS-
II). If Rec(A,g,a,x) and A(z,u), then Rec(B,g,a,z’), where B = AU{(2',g(u))}.
(7v) is immediate. (v) is by induction on x.

Now we can define f satisfying (1) by a WS-formula:
(2) (f(z) =u) =3A[Rec(4, g,a,z) & Az, u)].

The preceding theorem then yields

Theorem 4 (EFSC): Let < N,0,/> be an N-structure and let M, a, g, satisfy
a € M and g: M — M; then

(i) Ve3lw3A[Rec(A, g,a,z) & A(x,u)];

(i) for f defined by (2), the equations (1) hold, i.e.,

AN = M & f(0) =a & Vo € N[f(@') = g(f(2)]}.

Theorem 5 (Categoricity) (EFSC): If < N,0,/> and < M,a,g > are any two
N-structures, then < N,0,/> = < M,a,g >, that is, there exists a bijection f
between IN and M such that

(i) £(0) = a;

(i) £(a') = g(f(2)).
Proof: By Theorem 4 (ii), there exists f from NN into M satisfying (i) and (i), i.e.
preserving the “zeros” and “succession”. It remains to show that f is a bijection
between N and M. By induction on z (in IN), it follows from the suppositions on
M and g and (¢) and (7) that f(z) € M. Further we prove Vy[f(x) = f(y) — = =
yl, also by induction on x : Setting z = 0, Vy[f(0) = f(y) — 0 = y| is equivalent
to Vy(f(y) = a — y =0). Now if y # 0, find z such that y = 2’ (by (Pr) above);
then f(y) = f(2') = g(f(2)). But g(f(2)) # a, so we have a contradiction. Now
suppose Vy(f(z) = f(y) — & = ); we must show Vy[f(«’) = f(y) — @' = y], that
is Vylg(f(x)) = f(y) — 2’ = y]. Here if y = 0, we again get a contradiction. So
y =2z and f(y) = f(z') = g(f(2)). But then f(z) = f(z), whence z = z, and
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then 2’ = 2/ = y. Finally, to show Yu € M3z(f(x) = u), we proceed by induction
in M, using X = {wjw € M & Jz(f(z) = w)}. Clearly a € X. If u € X, then
Jz(f(x) = u), so g(f(x) = f(2') = g(u). Hence M C X, g.e.d.

For purposes of comparing EFSC with well-known systems, the following theorem
establishing closure under primitive recursion on any N-structure will also be useful:

Theorem 6 (EFSC): If < N,0,/> is any N-structure and h : N* — N, g :
N7™t2 5 N, then there exists f : N*"t! — N such that

flz1,...,20,0) = h(x1,...,25)
flx1,. .. xn,2') =g(x1,..., 20,2, f(21,. .., Tn, T)).

Proof. Exactly analogous to that of Theorem 3 above.
2. Existence of special pre-N-structures in EFSC.

Definition: Let 0 be some fixed urelement under pairing, .e., suppose

(P-IT)o Va,y[(z,y) # 0].

Then define 2’ =% (z,0).

Lemma: (i) Vz[z' # 0];
(i) Ve, ylz' =y — x =y].
Proof: Immediate, by P-1, P-II,.

Corollary: < V,0,/ > is a pre-N-structure.
Proof: Immediate, by the definition of pre-N-structure and the lemma.

Now the question is whether we can construct a pre-N-structure satisfying the
induction axiom, (N-III). The obvious way to do this would be to take
M={zlvX[0e X &Vy(ye X -y € X) -z € X]}.

However, in EFSC we cannot infer the existence of such M using (WS-CA)—indeed,
this is a prima facie impredicative definition. We can, however, construct a pre-/N-
structure satisfying some special conditions which hold in any N-structure; this will
serve as a preliminary to the construction of an N-structure in the stronger theory
EFSC* of §3.

Definition: < is the <y —relation for the structure V =< V,0,/ > .
For any x, let Pd<(x) = {yly < z}.

By Theorem 2, < is reflexive and transitive, Pd<(0) = {0}, and Pd<(z') =
Pd<(z) U{z'}.

Definition: M is special just in case:
(i) 0 € M;
(it) x € M — 2’ € M,
(i) re M &y<z—ye M;
() x € M — Fin(Pd<(z));
(v)xreM&zx#0— Jye Mz =1y
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If M is special, then the substructure < M,0,” > of < V,0,/ > is called a special
pre-N-structure.

Theorem 7 (EFSC): There exist special pre-N-structures.

Proof: Let M = {z|Fin(Pd<(z)) & Vu[u <z —u=0 V Iw(u=w")]}.

Then (i) 0 € M, because Pd<(0) = {0} and Vu[u <0 — u = 0].

(#6) Suppose x € M. Then 2/ € M because Pd<(z') = Pd<(x) U {2'}, so
Fin(Pd<(x)) — Fin(Pd<(z')), and Yulu < 2’ — u = 0V Jw(u = w')] since
u<z -u<zVu=2o.

(1)) x e M &y <z — ye M, for first Pd<(y) C Pd<(z), so Fin(Pd<(z)) —
Fin(Pd<(y))(cf. Remark 1 on the axioms, above). Now if u < y then u < z, so
u=0 VIw(u=uw).

() v € M — Fin(Pd<(x)), by construction of M.
(v)rxeM&zxz#0—3Jye Mlx =1y, forx <z, sox=0 VIylz =19], by
construction of M. Suppose x # 0, and let y be such that x = 3. Sincey <3/ = =z,
we have y € M, by (iii).

3. Existence of N-Structures.

The theory EFSC* will be obtained from EFSC by adding the axiom that every
(truly) finite set is Dedekind finite.

Definition: DedFin(X) =Vf[f: X — X & f is one-one — Ran(f) = X],
where “one-one” is defined in the usual way.

(Card) (Cardinality Aziom): YA[DedFin(A)].

It follows from (Card) that VX[Fin(X) —DedFin(X)] (this is what we called
“TF — DF" above), and conversely, so this is equivalent to (Card).

We define EFSC* to be EFSC + (Card).
Lemma (EFSC* ): Let < IN,0,/ > be a special pre-N-structure; then

(i) Ve € NIY C NVze€ N[z€Y < z <zj;

(i9) (DFIS) Vx € NYY C N[Vz€ N(z €Y < z<z) — DedFin(Y)]
(“DFIS” is for “Dedekind finite initial segments”).
Proof: Immediate, by (WS-CA), the definition of “special” and (Card).

Theorem 8 (EFSC*) : Suppose < N,0,” > is a special pre-N-structure; then it is
an N-structure.

Proof: What must be shown is that < IN,0,’ > satisfies Mathematical Induction,
(N-III). Suppose Induction fails, i.e., for some X C N we have 0 € X, Vy(y €
X — y' € X) but for some z, z ¢ X. Introduce the predecessor function p<,(y)
defined for y < z and y # 0, i.e. (p<2(y) =u)=(y<z&y#0& v =y). Next
introduce the set,

Y ={ulu<z&ud¢ X}.

Clearly Y is Dedekind-infinite: by (Pr) (Predecessors), p<, is a 1-1 function on
Y (0 ¢ Y by hypothesis that 0 € X), with values in Y (by Theorem 2 (i),
and contraposing the second hypothesis of Induction), but z ¢ Range(p<.) by
stipulation of p<.. It follows that Pd<(z) = {ulu < z} is also Dedekind-infinite
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(by a general argument: define the witnessing function on Pd<(z) to be p<.U the
identity on Pd<(z) —Y’). This contradicts the Lemma (i) (DFIS). g.e.d.’

The following metatheorem is now a direct consequence of Theorem 8.

Corollary: The system PA of Peano Arithmetic is interpretable in EFSC*.
Proof. Fix an N-structure, < IN,0,/ >, e.g. as defined in §2 above. By Theorem 6
(§1), all primitive recursive functions are definable on N, satisfying their defining
equations. In particular, the recursion equations for addition and multiplication
hold in < IN, 0,/ > . Further, any formula ¢ (z,y1,...,y,) in L(PA) with parameters
Yl,--,Yn € N defines a class, X = {z|z € N & v™N)(2,y1,...,yn)}, where in
Y (N) all (first-order) quantifiers are relativized to IN. Hence, by (N-III),

< N0+, >EVy, L yn[v(0,01, - un) & V22,91, Yn) —

¢(2’7 Yty - yn)) - vx(¢(x7 Yty - yn)]
This completes the proof.

4. Proof-Theoretic Strength.

Metatheorem 9: EFSC* is of the same proof-theoretic strength as PA, and it is
a conservative extension of PA under the interpretation in the preceding Corollary
(to Theorem 8).

Proof: By the Corollary, EFSC* is at least as strong as PA. In the other direction,
EFSC* is interpretable in the second-order extension ACAy of PA (“ACA” stands
for “arithmetic comprehension axiom and the subscript ‘0’ indicates that induction
is taken as the second- order axiom VX[0 € X & Vz(z € X — 2/ € X) —
Vz(z € X)]”).¢ Individuals are interpreted as natural numbers, pairing is a primitive
recursive function with (x,y) # 0, finite sets are interpreted as the codes by numbers
of finite sets (with the primitive recursive €-relation—the empty set is coded by 0,
the finite non-empty set {x1,..., 25} with x; < ... < xy is represented by 2%* + ...
+271), and classes are interpreted as sets of natural numbers in the second-order
language L(ACAy). Under this translation, the axioms of EFSC* are derivable as
theorems in ACAy. For example, for (Card), one proves in ACA that every finite
set is equinumerous with an initial segment. One then proves by induction on k
that every initial segment (0, k) is Dedekind finite. Now it is well known that ACA,
is a conservative extension of PA (either by a direct model-theoretic argument or
by a proof-theoretic result similar to [Shoenfield 1954]). Thus, following through
the above interpretation of EFSC* in ACA, we infer that EFSC* is conservative
over PA.

Now, by [Feferman 1964 or 1968], PA is a small part of what is directly predica-
tively acceptable. Thus, EFSC* is what Feferman has called a predicatively reducible
system, that is, one which can be reduced by finitary proof-theoretic methods to a
directly predicatively justified system.

Remark: Reflecting on the last two theorems, we see that, although EFSC* proves
the existence of a (standard) model of PA, this cannot-in virtue of the second Gédel
incompleteness theorem—be converted into a consistency proof within EFSC*. Al-
though the relativization to an N-structure of each PA axiom (and indeed PA
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theorem) can be proved, one by one, in EFSC*, there is no way to introduce satis-
faction and hence no way to prove a general soundness theorem (to the effect that
any PA theorem holds in any N-structure). Indeed, the introduction of satisfaction
would require impredicative construction, beyond the power of EFSC*. (Again, the
analogy with NBG set theory and ZF is a good one: NBG “proves the existence of
a (standard) ZF model, < V, €> ”—again in the sense of proving the relativization
to V of each ZF theorem—but, without impredicative class construction, it cannot
introduce satisfaction for unbounded set theoretic formulas, and, of course, cannot
prove the consistency of ZF.)

We close this section with two questions and a brief discussion:
Question 1: What is the exact proof-theoretic strength of EFSC?
N.B. The proof of the categoricity theorem (§1) uses only a small part of EFSC.
This part should be interpretable in the system designated by Friedman RCAy,
i.e. the weak fragment of ACA, which uses only (relative) A-comprehension.
By Friedman’s work (cf. [Simpson 1987] or [Sieg 1985]) RCA( is a conservative
extension of PRA (primitive recursive arithmetic).
Question 2: What is a nice axiomatization of a subsystem of EFSC (7) in which
categoricity is provable, and (7)) which is equivalent in strength to PRA?

Discussion: Even without claiming a strongest possible result, we have seen how
the machinery of (a fragment of) weak second-order logic can be exploited to derive
both the categoricity of number-theoretic axioms and the existence of arithmetical
structures. In both cases, the central idea is that initial segments be finite (as in ()
of Theorem 3 and condition (7v) in the notion of a special pre-N-structure), allowing
for a predicative construction of isomorphisms (Theorems 4 and 5) and of special
pre- N-structures (see the construction of M in the proof of Theorem 7), which
then are proved to satisfy full (predicative) induction (Theorem 8). Clearly this
procedure bears on the position of Poincaré, according to which induction plays a
primitive role in our conception of the natural numbers. As the above demonstrates,
however, there is a viable alternative which begins with “Dedekind-finite initial
segments” and which actually allows for a “predicative logicist” construction of the
natural number system.

The argument that mathematical induction necessarily involves impredicativity
(given e.g. by Parsons [1983], p. 137) turns on the evident circularity of attempt-
ing to guarantee induction by introducing the natural numbers as “those objects
obtainable from 0 by iterating the successor operation an arbitrary finite number of
times.” There is, however, no circularity in beginning with the notion of “finite set”
as governed by the axioms of EFSC* (including the link with Dedekind—finitude),
which are articulable as above, prior to the construction of the natural number sys-
tem. (It was indeed one of Dedekind’s principal insights [1888] that the concept of
finitude can be introduced prior to the natural numbers.) Moreover, from the gen-
eral predicativist standpoint there is independent justification for proceeding in this
manner: predicativism restricts itself to domains in which every object is explicitly
describable by symbolic expressions of a predicativist language; so the finite subsets
of any such domain D are also explicitly describable, by means of disjunctions of
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the form x =c¢; Vo =ca V...V z = ¢, (where the ¢; represent designators (in the
predicativist language) of objects in D). Again, this is conceptually independent
of the natural number sequence.

It should be stressed in this connection that intelligibility of the notion “finite
set” does not depend on a prior grasp of the structure of finite sets (of a give domain,
ordered by inclusion), which is indeed a fairly complicated infinitistic object. It is,
however, the infinitistic structure we call “the natural number sequence” that we
seek to ground. Moreover, on a structuralist view, one can say (with Dedekind)
that the individual numbers have no identity apart from position in this structure;
but this contrasts with the self-standing character of “finite set” we have just noted.

It is true, however, that the weak second-order language is employed in these
constructions in an essential way: if one tried to bypass it by substituting the explic-
itly defined notion “X is Dedekind-finite” for “X is finite” (i.e. JAVz(x € X < z €
A)) throughout, one would find oneself appealing to impredicative comprehension,
due to the quantifier over general functions in the definition of “Dedekind-finite”.

Thus, we can see a far-reaching tradeoff between predicativism—or predicative
logicism—and classical logicism. Classical logicism provides a complete analysis of
the concepts “finite”, “infinite”, and “cardinal number”, but at the price of im-
predicative comprehension with all of its attendant “metaphysical” commitments.
Predicativism avoids the latter but must presuppose the concept of “finite” in some
form or other. However, as the above demonstrates, it can do this in a natural way
without thereby taking the natural number system as given. On the contrary, it can
exploit its assumptions to recover the essential core of Dedekind’s analysis.

Notes

! For a careful discussion in support of this conclusion, see Parsons [1983]. We shall
comment on this below, in the final Discussion section.

2 Tt is well known that a categorical theory for the natural number system can be
expressed in (monadic) weak second-order logic in its semantical sense: following
[Monk 1976], pp. 488-489, letting the variable ‘A’ range over finite sets of individ-
uals, we can extend Robinson’s system () of arithmetic with the axiom,

VedAlz e A& Vy(y € A—ye 4
(“Every individual belongs to a finite set closed under predecessor”). However,
since finite set variables are the only higher-order variables available in this system,
neither (the full statement of ) mathematical induction nor categoricity can even be
expressed, so it is clearly inadequate as a predicativist framework for arithmetic.
(Monk’s point in considering this system is to demonstrate that even such a minimal
enrichment of first-order logic is non-compact and not recursively axiomatizable.)

The systems presented here extend an axiomatizable fragment of weak second-
order logic so that mathematical induction, categoricity, and notions of “infinite”
and “Dedekind infinite” can be expressed. It then turns out that important metathe-
orems are provable from within these predicatively justifiable systems.

3Interestingly enough, this was also Dedekind’s procedure, cf. his “126. Theorem of
the definition by induction” [Dedekind 1888, pp. 85-86] used to prove categoricity,
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his major “132 Theorem”, although indeed Dedekind did not formalize the com-
prehension principles he employed. Of course, Dedekind worked entirely with the
notion of “Dedekind-finite”, which involves quantification over general functions,
and so a formal version of his proof of Theorem 126 would ultimately appeal to
impredicative comprehension.

4There is a radical form of predicativism which does not accept the natural numbers
as a “completed totality”, i.e. over which unbounded quantification has a definite
truth-functional value. This is the sense of [Nelson 1986]; Nelson’s system is much
weaker than PRA, Primitive Recursive Arithmetic, whereas PRA itself is already
acceptable to finitists.

>This theorem together with Theorem 5 (Categoricity) realizes in effect a sugges-
tion attributed to Michael Dummett for characterizing the natural numbers in a
predicatively acceptable way, as those individuals x belonging to every class con-
taining 0 and closed under successor applied to individuals distinct from x (i.e.,
VX[0e X &Vyly € X &y #x—y € X) — x € X|, which specifies the
initial segment inclusively up to x), a construction which works as well when the
class variable is replaced throughout with a finite-set variable. For a discussion, see
[Isaacson 1987], pp. 155-6.

Clearly we disagree with Isaacson’s diagnosis of the situation, that “the weak
second-order definition does not fare significantly better on the score of avoiding
impredicativity than the one based on full second-order logic.” (p. 156) The reason
given is that “an exact representation of the natural number sequence must occur as
elements of the domain [of the second-order quantifiers].” But, as maintained here,
this assumption—of the existence of finite initial segments (of isomorphisms between
w-sequences (cf. Theorem 3, (iii)), as well as of the individual w-sequences)-is
clearly predicatively justified. Moreover, there is a vast difference between presup-
posing infinitely many finite sets and presupposing an infinite one, especially the
very one you are trying to “introduce”! The predicativist can afford to talk like a
platonist about (hereditarily) finite sets, but not about the infinite.

6 For information on ACAq and related subsystems of analysis (of a hierarchy
explored by Harvey Friedman and others), see e.g. [Simpson 1987].
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